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Recursive Pathways to Marginal Likelihood
Estimation with Prior-Sensitivity Analysis
Ewan Cameron and Anthony Pettitt

Abstract. We investigate the utility to computational Bayesian analyses of
a particular family of recursive marginal likelihood estimators characterized
by the (equivalent) algorithms known as “biased sampling” or “reverse lo-
gistic regression” in the statistics literature and “the density of states” in
physics. Through a pair of numerical examples (including mixture model-
ing of the well-known galaxy data set) we highlight the remarkable diversity
of sampling schemes amenable to such recursive normalization, as well as the
notable efficiency of the resulting pseudo-mixture distributions for gauging
prior sensitivity in the Bayesian model selection context. Our key theoretical
contributions are to introduce a novel heuristic (“thermodynamic integration
via importance sampling”) for qualifying the role of the bridging sequence
in this procedure and to reveal various connections between these recursive
estimators and the nested sampling technique.

Key words and phrases: Bayes factor, Bayesian model selection, impor-
tance sampling, marginal likelihood, Metropolis-coupled Markov Chain
Monte Carlo, nested sampling, normalizing constant, path sampling, reverse
logistic regression, thermodynamic integration.

1. INTRODUCTION

Though typically unnecessary for computational
parameter inference in the Bayesian framework, the
factor, Z, required to normalize the product of prior
and likelihood nevertheless plays a vital role in
Bayesian model selection and model averaging (Kass
and Raftery, 1995; Hoeting et al., 1999). For priors ad-
mitting an “ordinary” density, π(θ), with respect to the
Lebesgue measure (a “�-density”), we write for the
posterior

π(θ |y) = L(y|θ)π(θ)/Z with
(1)

Z =
∫
�

L(y|θ)π(θ) dθ,
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and, more generally (e.g., for stochastic process priors)
we write

dPθ |y(θ) = L(y|θ) dPθ(θ)/Z with
(2)

Z =
∫
�

L(y|θ)
{
dPθ(θ)

}
,

with the likelihood, L(y|θ), a non-negative, real-
valued function supposed integrable with respect to the
prior. In this context Z is generally referred to as either
the marginal likelihood (i.e., the likelihood of the ob-
served data marginalized [averaged] over the prior) or
the evidence. With the latter term though, one risks the
impression of overstating the value of this statistic in
the case of limited prior knowledge (cf. Gelman et al.,
2004, Chapter 6).

Problematically, few complex statistical problems
admit an analytical solution to Equations (1) or (2),
or span such low-dimensional spaces [D(θ) � 5–10]
that direct numerical integration presents a viable al-
ternative. With errors (at least in principle) independent
of dimension, Monte Carlo-based integration methods
have thus become the mode of choice for marginal
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likelihood estimation across a diverse range of scien-
tific disciplines, from evolutionary biology (Xie et al.,
2011; Arima and Tardella, 2012; Baele et al., 2012) and
cosmology (Mukherjee, Parkinson and Liddle, 2006;
Kilbinger et al., 2010) to quantitative finance (Li, Ni
and Lin, 2011) and sociology (Caimo and Friel, 2013).

1.1 Monte Carlo-Based Integration Methods

With the posterior most often “thinner-tailed” than
the prior and/or constrained within a much dimin-
ished sub-volume of the given parameter space, the
simplest marginal likelihood estimators drawing solely
from π(θ) or π(θ |y) cannot be relied upon for model
selection purposes. In the first case—strictly, that∫
�[1/L(y|θ)]π(θ) dθ diverges—the harmonic mean

estimator (HME; Newton and Raftery, 1994),

ẐH =
[

n∑
i=1

1/n/L(y|θi)

]−1

for θi ∼ π(θ |y),

suffers theoretically from an infinite variance, meaning
in practice that its convergence toward the true Z as
a one-sided α-stable limit law can be incredibly slow
(Wolpert and Schmidler, 2012). Even when “robusti-
fied” as per Gelfand and Dey (1994) or Raftery et al.
(2007), however, the HME remains notably insensitive
to changes in π(θ), whereas Z itself is characteris-
tically sensitive (Robert and Wraith, 2009; Friel and
Wyse, 2012). [See also Weinberg (2012) for yet an-
other approach to robustifying the HME.] Though as-
suredly finite by default, the variance of the prior arith-
metic mean estimator (AME),

ẐA =
n∑

i=1

L(y|θi)/n for θi ∼ π(θ),

on the other hand, will remain impractically large
whenever there exists a substantial difference in “vol-
ume” between the regions of greatest concentration in
prior and posterior mass, with huge sample sizes neces-
sary to achieve reasonable accuracy (e.g., Neal, 1999).

A wealth of more sophisticated integration meth-
ods have thus lately been developed for generat-
ing improved estimates of the marginal likelihood,
as reviewed in depth by Chen, Shao and Ibrahim
(2000), Robert and Wraith (2009) and Friel and Wyse
(2012). Notable examples include the following: adap-
tive multiple importance sampling (Cornuet et al.,
2012), annealed importance sampling (Neal, 2001),
bridge sampling (Meng and Wong, 1996), [ordinary]
importance sampling (cf. Liu, 2001), path sampling/
thermodynamic integration (Gelman and Meng, 1998;

Lartillot and Phillipe, 2006; Friel and Pettitt, 2008;
Calderhead and Girolami, 2009), nested sampling
(Skilling, 2006; Feroz and Hobson, 2008), nested im-
portance sampling (Chopin and Robert, 2010), reverse
logistic regression (Geyer, 1994), sequential Monte
Carlo (SMC; Cappé et al., 2004; Del Moral, Doucet
and Jasra, 2006), the Savage–Dickey density ratio
(Marin and Robert, 2010) and the density of states
(Habeck, 2012; Tan et al., 2012). A common thread
running through almost all these schemes is the aim
for a superior exploration of the relevant parameter
space via “guided” transitions across a sequence of
intermediate distributions, typically following a bridg-
ing path between the π(θ) and π(θ |y) extremes. [Or,
more generally, the h(θ) and π(θ |y) extremes if a suit-
able auxiliary/reference density, h(θ), is available to
facilitate the integration; cf. Lefebvre, Steele and Van-
dal (2010).] However, the nature of this bridging path
differs significantly between algorithms. Nested sam-
pling, for instance, evolves its “live point set” over a se-
quence of constrained-likelihood distributions, f (θ) ∝
π(θ)I (L(y|θ) ≥ Llim), transitioning from the prior
(Llim = 0) through to the vicinity of peak likelihood
(Llim ≈ Lmax − ε), while thermodynamic integration,
on the other hand, draws progressively (via Markov
Chain Monte Carlo [MCMC]; Tierney, 1994) from the
family of “power posteriors,”

πt(θ |y) ∝ π(θ)L(y|θ)t ,(3)

explicitly connecting the prior at t = 0 to the posterior
at t = 1.

Another key point of comparison between these ri-
val Monte Carlo techniques lies in their choice of iden-
tity by which the evidence is ultimately computed. The
(geometric) path sampling identity,

logZ =
∫ 1

0
Eπt

{
logL(y|θ)

}
dt,

for example, is shared across both thermodynamic in-
tegration and SMC, in addition to its namesake. How-
ever, SMC can also be run with the “stepping-stone”
solution (cf. Xie et al., 2011),

Z =
m∏

j=2

Ztj /Ztj−1, where t1 = 0 and tm = 1,

with {tj : j = 1, . . . ,m} indexing a sequence of (“tem-
pered”) bridging densities, and, indeed, this is the
mode preferred by experienced practitioners (e.g.,
Del Moral, Doucet and Jasra, 2006). Yet another iden-
tity for computing the marginal likelihood is that of the
recursive pathway explored here.
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First introduced within the “biased sampling” para-
digm (Vardi, 1985), the recursive pathway is shared
by the popular techniques of “reverse logistic regres-
sion” (RLR) and “the density of states” (DoS). By re-
cursive we mean that, algorithmically, each may be
run such that the desired Z is obtained through back-
ward induction of the complete set of intermediate nor-
malizing constants corresponding to the sequence of
distributions in the given bridging path by supposing
these to be already known. That is, a stable solution
may be found in a Gauss–Seidel-type manner (Ortega
and Rheinboldt, 1967) by starting with a guess for
each normalizing constant as input to a convex sys-
tem of equations for updating these guesses, returning
the new output as input to the same equations, and it-
erating until convergence. In fact, although the RLR
and the DoS approaches differ vastly in concept and
derivation—the former emerging from considerations
of the reweighting mixtures problem in applied statis-
tics (Geyer and Thompson, 1992; Geyer, 1994; Chen
and Shao, 1997; Kong et al., 2003) and the latter from
computational strategies for free energy estimation in
physics/chemistry/biology (Ferrenberg and Swendsen,
1989; Kumar et al., 1992; Shirts and Chodera, 2008;
Habeck, 2012; Tan et al., 2012)—both may be seen to
recover the same algorithmic form in practice. To il-
lustrate this equivalence, and to explain further the re-
cursive pathway to marginal likelihood estimation, we
describe each in detail below (Sections 2.1 and 2.2),
though we begin with the more general biased sam-
pling algorithm (Section 2).

Following this review of the recursive family (which
includes our theoretical contributions concerning the
link between the DoS and nested sampling in Sec-
tion 2.2.1), we highlight the potential for efficient
prior-sensitivity analysis when using these marginal
likelihood estimators (Section 2.3) and discuss is-
sues regarding design and sampling of the bridging
sequence (Section 2.4). We then introduce a novel
heuristic to help inform the latter by characterizing
the connection between the bridging sequences of bi-
ased sampling and thermodynamic integration (Sec-
tion 3). Finally, we present two numerical case stud-
ies illustrating the issues and techniques discussed
in the previous sections: the first concerns a “mock”
banana-shaped likelihood function (Section 4) and in-
cludes the demonstration of a novel synthesis of the
recursive pathway with nested sampling (Section 4.2),
while the second concerns mixture modeling of the
galaxy data set (Section 5) and includes a demonstra-

tion of importance sample reweighting of an infinite-
dimensional mixture posterior to recover its finite-
dimensional counterparts (Section 5.4.3).

2. BIASED SAMPLING

The archetypal recursive marginal likelihood esti-
mator—from which both the RLR and DoS methods
may be directly recovered—is that of biased sampling,
introduced by Vardi (1985) for finite-dimensional pa-
rameter spaces and extended to general sample spaces
by Gill, Vardi and Wellner (1988). The basic premise
of biased sampling is that one has available m sets of
nj i.i.d. draws, {θi}j , from a series of wj(θ)-weighted
versions of a common, unknown measure, F , that is,

{θi}j ∼ Fj , where dFj (θ) = wj(θ)/Wj dF(θ).

The Wj term here represents the normalization con-
stant of the j th weighted distribution, typically un-
known. As Vardi (1985) demonstrates, provided the
drawn {θi}j obey a certain graphical condition (dis-
cussed later), then there exists a unique nonparametric
maximum likelihood estimator (NPMLE) for F , which
as a by-product produces consistent estimates of all un-
known Wj . If the common measure, F , is in fact the
parameter prior, Pθ , then the choices w1(θ) = 1 and
wm(θ) = L(y|θ) describe sampling from the prior and
posterior, respectively. Hence, we switch to the nota-
tion Wj = Zj with Z1 = 1 (for a proper prior) and
Zm = Z for the above choices of w1 and wm.

For a given bridging scheme to be amenable to nor-
malization via biased sampling, it is of course neces-
sary that each intermediate sampling distribution be
absolutely continuous with respect to the prior (i.e.,
Pj � Pθ ) such that the weight function corresponds

to the Radon–Nikodym derivative, wj(θ) = dPj

dPθ
(θ). It

is easy to verify then the applicability of biased sam-
pling to, for example, (I) importance sampling from
a sequence of bridging densities, fj (θ), with (at least
the union of their) supports matching but not exceed-
ing that of a �-density prior, wj(θ) = fj (θ)/π(θ); and
(II) thermodynamic integration over tempered likeli-
hoods, wj(θ) = L(y|θ)βj , for both the �-density and
general case. In fact, if we view the likelihood func-
tion as defining a transformation of the prior, Pθ , to
the measure PL in univariate “likelihood space,” 0 ≤
L ≤ ∞, then such tempering may be seen as directly
analogous to Vardi’s example of “length biased sam-
pling.” Accordingly, Vardi’s case study of m = 2 with
w1 = 1 and w2 = x (read L) equates to marginal like-
lihood estimation via defensive importance sampling



400 E. CAMERON AND A. PETTITT

from the prior and posterior (Newton and Raftery,
1994; Hesterberg, 1995), while his one sample study
with w1 = x (L) matches the HME.

For Bayesian analysis problems in which the prior
measure is explicitly known (as opposed to being
“known” only implicitly as the induced measure be-
longing to a well-defined stochastic process), the ap-
plication of the biased sampling paradigm to the task
of marginal likelihood estimation is arguably paradoxi-
cal since we make the pretence to estimate Pθ (known)
in order to recover an estimate for Z (unknown). How-
ever, we would propose that an adequate justification
for the use of Vardi’s method in this context is already
provided by the same pragmatic reasoning used to
adopt any statistical estimator for the task of marginal
likelihood computation in place of the direct approach
of numerical integration (quadrature)—namely, that al-
though Z is defined exactly by our known prior and
likelihood function, we choose to treat it as if it were
an unknown variable simply because the MC integra-
tion techniques this brings into play are more compu-
tationally efficient (being relatively insensitive to the
dimension of the problem; cf. Liu, 2001).

Vardi’s derivation of the NMPLE for the unknown
F (i.e., Pθ ) in biased sampling involves two key steps.
The first is the observation that, as is typical of the NM-
PLE method in general, the resulting estimator, dF̂ (θ),
will be strictly atomic with point masses assigned to
each of the sampled θi (also called a histogram esti-
mate of F ). The second is that the normalization con-
stants for each Wj corresponding to the atomic dF̂ (θ)

can then be learned via an appropriately weighted sum-
mation over all the observed θi (not just those from the
corresponding j th distribution). In the notation for our
marginal likelihood estimation scenario, Vardi (1985)
shows that the estimation problem for dP̂θ (θ) = {pi}j
can ultimately be reduced to the maximization of the
following log-likelihood function,

logL(p) =
m∑

j=1

nj∑
i=1

log
(
wj

({θi}j ){pi}j /Ẑj

)
,

subject to the constraints,
∑m

j=1
∑nj

i=1{pi}j = 1 and all
{pi}j > 0 [see Vardi’s Equation (2.2), where we avoid
his explicit treatment of matching θi draws, implic-
itly allowing multiple point mass contributions at the
same θi to give a summed contribution to the atomic
dP̂θ (θ)].

Importantly, the resulting biased sampling estimator
for the unknown Zk allows for a recursive solution via
the iterative updating of initial guesses (Ẑk > 0) as fol-
lows:

Ẑk =
m∑

j=1

nj∑
i=1

(
wk

({θi}j )
(4) /(

m∑
s=1

nsws

({θi}j )
/Ẑs

))

(adapted from Gill, Vardi and Wellner’s 1988 Propo-
sition 1.1c). As discussed by Vardi (1985) and Geyer
(1994), the above system of (m − 1) equations in
(m − 1) unknowns (given Z1 = 1) with Gauss–Seidel
type iterative updates is globally convergent, although
the gradient and Hessian of the likelihood function are
also accessible, meaning that alternative maximization
strategies harnessing this information may prove more
efficient within a restricted domain.

The convergence properties of the biased sampling
estimator for the unknown F (i.e., Pθ ) and its associ-
ated Wj (Zj ) in general state spaces (possibly infinite-
dimensional) have been thoroughly characterized by
Gill, Vardi and Wellner (1988) using the theory of em-
pirical processes indexed by sets and functions (cf.
Dudley and Philipp, 1983). In particular, Gill, Vardi
and Wellner (1988) demonstrate a central limit theorem
(CLT) for convergence of the vector of normalization

estimates, Ŵ, to the truth, W, as
√

N(Ŵ − W)
d−→

N (0,	), where the covariance matrix, 	, takes the
form given in their Proposition 2.3 [for the case here
of Z1 = 1 known, otherwise their Equation (2.24)].
The sample-based estimate of this error matrix, 	̂, is
easily computed from the output of a standard biased
sampling simulation, and in our numerical experiments
with the banana-shaped pseudo-likelihood function of
Section 4 it was observed to give (on average, with
an approximate transformation via Slutsky’s lemma) a
satisfactory, though slightly conservative, match to the
sample variance of log Ẑ under repeat simulation, even
at relatively small sample sizes.

However, as noted by Christian Robert in his discus-
sion of Kong et al.’s (2003) “read” paper, the avail-
ability of such formulae (for the asymptotic covari-
ance matrix) can sometimes “give a false confidence
in estimators that should not be used.” A canonical ex-
ample is that of the HME, for which the usual impor-
tance sampling variance formula applied to the pos-
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terior draws may well give a finite result, though in
fact the theoretical variance is infinite (meaning that
the convergence of the HME is no longer obeying
the assumed CLT). In particular, for finite theoreti-
cal variance of the HME (cf. Section 1) we require
that the prior is fatter tailed than the posterior such
that

∫
�[1/L(y|θ)]π(θ) dθ < ∞. As was recognized by

Vardi (1985) and Gill, Vardi and Wellner (1988), the
same condition effectively holds for the validity of the
CLT for biased sampling and may be expressed as an
inverse mean bias-weighted integrability requirement
over the indexing class of functions or sets in its em-
pirical process construction. Important to note in the
context of marginal likelihood estimation is that pro-
vided the prior itself is contained within the weight-
ing scheme [e.g., w1(θ) = 1], then the above condi-
tion is automatically satisfied; this of course parallels
the strategy of defensive importance sampling (Newton
and Raftery, 1994; Hesterberg, 1995).

Finally, we observe here the other key prerequi-
site for successful biased sampling: that the bridg-
ing sequence of weighting functions and the random
draws from them are such that a unique NPMLE for
F (Pθ ) actually exists. To ensure the asymptotic exis-
tence of a unique NPMLE (i.e., with an unlimited num-
ber of draws from each weighted distribution), Vardi
(1985) gives the following condition on the supports,
Supp(wj ), of the bridging sequence: that there does not
exist a proper subset, B , of {1, . . . ,m} such that( ⋃

j∈B

Supp(wj )

)
∩

( ⋃
j /∈B

Supp(wj )

)
= ∅.

In effect, the set of bridging distributions must overlap
in such a way that the relative normalization of each
with respect to all others will be inevitably constrained
by the data. This condition is again satisfied automati-
cally if the support of at least one of the bridging distri-
butions encompasses all others, such as that of the prior
or an equivalent reference density. In the finite sam-
ple sizes of real-world simulation the above must be
strengthened to specify that the drawn {θi}j do in fact
cover each critical region of overlap. Formally, Vardi
(1985) introduces a requirement of strong connectivity
on the directed graph, G, with m vertices and edges h

to j for each (h, j)-pairing, such that wh(θk) > 0 for
some θk ∈ {θi}j . This is equivalent to the finite sample
“inseparability” condition given by Geyer (1994).

2.1 Reverse Logistic Regression

In the reweighting mixtures problem (cf. Geyer and
Thompson, 1992 and Geyer, 1994) the aim is to dis-

cover an efficient proposal density for use in the im-
portance sampling of an arbitrary target about which
little is known a priori. Geyer’s solution was to sug-
gest sampling not from a single density of standard
form, but rather from an ensemble of different densi-
ties, fj (θ) = qj (θ)/Qj , for j = 1, . . . ,m with qj (θ)

known and Qj typically unknown. The pooled draws,
{{θi}j : i = 1, . . . , nj ; j = 1, . . . ,m}, are then to be
treated as if from a single mixture density, with each
free normalizing constant—and hence the appropri-
ate weighting scheme—to be derived recursively. As
with biased sampling, if we suppose q1(θ) to be the
Bayesian prior (with Q1 = 1) and qm(θ) the (unnor-
malized) posterior (with Qj = Z), the relevance of this
approach to marginal likelihood estimation becomes
readily apparent. In this context we write the imagined
(i.e., pseudo-) mixture density, p(θ), in the form

p(θ) =
m∑

j=1

[nj/n][qj (θ)/Zj

]
,(5)

where n = ∑m
j=1 nj .

The recursive normalization scheme introduced by
Geyer (1994) for this purpose is based on maximiza-
tion in {Z2, . . . ,Zm} (i.e., [R+]m−1) of the following
quasi-log-likelihood function representing the likeli-
hood of each set of {θi}j having been drawn from
its true fj (θ) rather than some other fk[
=j ](θ) in the
pseudo-mixture:

logL
({{θi}j : i = 1, . . . , nj ; j = 1, . . . ,m

}|
{Z1, . . . ,Zm})(6)

=
m∑

j=1

nj∑
i=1

log
(
qj

({θi}j )
/Zj/p

({θi}j ))
.

Owing to the arithmetic equivalence between Equa-
tion (6) and the objective function of logistic regres-
sion in the generalized linear modeling framework—
but with the “predictor” here random and the “re-
sponse” nonrandom—Geyer (1994) has dubbed this
method “reverse logistic regression.” Setting the par-
tial derivative in each unknown Zk to zero yields the
series of convex equations defining the RLR marginal
likelihood estimator:

Ẑk =
m∑

j=1

nj∑
i=1

qk

({θi}j )
/p

({θi}j )
/n,(7)

which, with reference to our definition of the pseudo-
mixture density above, may be confirmed equivalent to
biased sampling [Equation (4)] in the �-density case
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for wj(θ) = qj (θ)/π(θ). [The π(θ) term ultimately
cancels out from both the numerator and denominator
of Equation (4), but serves here to establish our con-
nection with the notion of a common unknown distri-
bution, F or Pθ .]

As Kong et al. (2003) explore in detail, the fact that
Geyer’s RLR derivation via the quasi-log-likelihood
function of Equation (6) leads to the same set of re-
cursive update equations as Vardi’s biased sampling
hides a certain weakness of this “retrospective formu-
lation”: that the Hessian of the quasi-log-likelihood
does not provide the correct asymptotic covariance ma-
trix for the output Ẑk . (Though the difference in prac-
tice is almost negligible; cf. Section 4.) The same ap-
plies to a “naïve,” alternative derivation of the RLR
estimator—relevant to the thermodynamic integration
via importance sampling methodology we describe in
Section 3—given by Evans et al. (2003) in their dis-
cussion of Kong et al.’s “read” paper. That is, treat the
pooled {θi}j as if drawn from the pseudo-mixture den-
sity, p(θ), with Zk (k = 2, . . . ,m) unknown, and apply
the ordinary importance sampling estimator—based on
the identity, Zk = ∫

�
qk(θ)
p(θ)

p(θ) dθ—to recover the re-
cursive update scheme of Equation (4) (but again with-
out a corresponding argument to arrive at the correct
variance).

An interesting observation often made in connection
with RLR is that Equation (7) can in fact be applied
without knowledge of which fj (θ) each θi was drawn
from, such that we may rewrite the recursive update
scheme,

Ẑk =
n∑

i=1

qk(θi)/p(θi)/n,(8)

where we have taken the step of “losing the labels,”
j , on our {θi}j . This is made possible, as Kong et al.
(2003) explain, because “under the model as specified
. . . the association of draws with distribution labels is
uninformative. The reason for this is that all the infor-
mation in the labels for estimating the ratios is con-
tained in the design constants, {n1, . . . , nm}.”
2.2 The Density of States

Yet another construction of the convex series of Ẑk

updates characterizing the recursive appoach [cf. Equa-
tion (4)] has recently been demonstrated in the con-
text of free energy estimation for molecular interac-
tions by Habeck (2012) and Tan et al. (2012). In this
framework rather than aiming directly for estimation of
the marginal likelihood one aims instead to reconstruct

a closely-related distribution, namely, “the density of
states” (DoS), g(e), defined in the physics literature in
terms of a composition of the Dirac delta “function,”
δ(·), as

g(e) =
∫
�

π(θ)δ
(
e + logL(y|θ)

)
dθ.

Important to note from a mathematical perspective,
however, is that the composition of the Dirac delta
“function”—which is itself not strictly a function,
being definable only as a measure or a generalized
function—lacks an intrinsic definition. Hörmander
(1983) proposes a version in R

n valid only when
the composing function, here v(θ) = e + logL(y|θ),
is continuously differentiable and dv(θ)/dθ nowhere
zero, clearly problematic whenever the likelihood
function holds constant over a set of nonzero measures
with respect to Pθ ! We therefore begin by suggesting
a robust, alternative definition of the DoS as a trans-
formation of the likelihood through the prior, an exer-
cise that also serves to elucidate its connections with
Skilling’s nested sampling.

As briefly noted earlier with respect to character-
ization of the HME as Vardi’s “length biased sam-
pling,” the likelihood function can serve as the ba-
sis for construction of a number of measure theoretic
transformations of the prior. Most notably, the mapping
L(y|θ) :� �→ R

+ gives the prior in likelihood space
(0 ≤ L ≤ ∞),

PL : PL{B} =
∫
L−1B

{
dPθ(θ)

}
for B ∈ B(R+) (the Borel sets on the extended reals)
following Halmos [(1950), page 163], with the notation
L−1B denoting the (assumed Pθ -measurable) set of all
θ transformed through L(y|θ) into B . If the domain of
θ is a metric space, then continuity (or at least discon-
tinuity on no more than a countable set) of L(y|θ) is
sufficient to ensure the Pθ -measurability of B (i.e., the
validity of the above), while the continuity of the loga-
rithm in e(θ) = − logL(y|θ) ensures the same for the
corresponding transformation of the prior to “energy”
space (−∞ ≤ e ≤ ∞),

Pe : Pe{C} =
∫
e−1C

{
dPθ(θ)

}
,

with C ∈ B(R+). In each case the appropriate ver-
sion of the marginal likelihood shares equality with the
original [Equation (2)] wherever Z is itself finite, ow-
ing to the PL- and Pe-measurability of L and exp(−e),
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respectively:

Z =
∫ ∞

0
L

{
dPL(L)

}
and

Z =
∫ ∞
−∞

exp(−e)
{
dPe(e)

}
(cf. Halmos, 1950, page 164).

Although unnecessary for a straightforward appli-
cation of biased sampling, one might choose to fur-
ther require that Pe admit a �-density, equivalent to
the requirement that its distribution function, Ge(e

′) =∫ e′
−∞{dPe(e)}, be everywhere differentiable. For a con-

tinuous likelihood function we can be assured of this
provided that L(y|θ) at no place holds constant over
a set of nonzero measures with respect to Pθ —the
same limitation on its δ “function” definition. If so, we
may write the marginal likelihood integral as Habeck
(2012),

Z =
∫ ∞
−∞

exp(−e)ge(e) de.(9)

Estimation of ge(e) (or in fact the general measure,
Pe) can of course be accomplished via biased sampling
given i.i.d.’s draws from a series of w(e)-weighted ver-
sions of ge, and, indeed, this is the justification of
the DoS algorithm—seen as the limiting case of the
weighted histogram analysis method (Ferrenberg and
Swendsen, 1989) with bin size approaching zero—
given by Tan et al. (2012). The derivation of the re-
cursive update formula [Equation (4)] presented by
Habeck (2012) for the DoS is alternatively via a novel
functional analysis procedure for optimization of the
log-likelihood of an empirical energy histogram; how-
ever, as with Geyer’s RLR derivation, this approach
does not lead to an uncertainty estimate or CLT for the
output Ẑk .

2.2.1 Relation to nested sampling. The nested sam-
pling identity (Skilling, 2006),

Z =
∫ 1

0
L(X)dX,(10)

where L(X) represents the inverse of the survival func-
tion of likelihood with respect to the prior—that is,
X(L′) = 1 − PL{L ≤ L′}—and dX denotes Riemann
integration over the “prior mass cumulant,” may best be
understood by reference to a well-known relation be-
tween the expectation of a non-negative random vari-
able and its distribution function, namely, that for y ∼
PY with y ≥ 0,

EY {Y } =
∫ ∞

0
Y

{
dPY (Y )

} =
∫ ∞

0

(
1 − PY {Y ≤ y})dy

(cf. Billingsley, 1968, page 223). Importantly, this re-
lation (which follows from integration by parts) holds
irrespective of whether or not PY admits a �-density,
and in the marginal likelihood context becomes Z =∫ ∞

0 1 − PL{L ≤ L′}dL′. If PL{L = ∞} = 0, then
this monotonically decreasing, cadlag function on R+
with bounded range (between zero and one) is (per-
haps improper) Riemann integrable, and we may sim-
ply “switch axes” to obtain Equation (10). While the
uniqueness of the inverse survival function, L(X),
can be ensured by requiring L(y|θ) to be continuous
with connected support (Chopin and Robert, 2010), the
weaker condition of L(y|θ) discontinuous on a set of
measure zero with respect to PL suffices to ensure an
L(X) defined uniquely on all but a corresponding set
of Lebesgue measure zero, negligible also for our Rie-
mann integration.

Now for differentiable Ge(e
′) = Pθ {e(θ) < e′}, such

that g(e) might be defined without our earlier measure
theoretic considerations as g(e) = dGe(e)/de, the DoS
version of the marginal likelihood [Equation (9)] can
nevertheless be recovered using the nested sampling
identity. Observing that Ge(e) = X(exp[−e]) = X(L),
we have

g(e) = dX
(
exp[−e])/de = dX(L)/dL × dL/de

= dX(L)/dL × − exp[−e].
Substitution of X(L) into Equation (10) yields

Z =
∫ X(0)

X(∞)
L(X)dX

=
∫ 0

∞
L

(
X

(
L′)) × dX

(
L′)/dL′ × dL′,

and then by substitution of e we recover

Z =
∫ e(∞)

e(−∞)
L′ × dX

(
L′)/dL′ × dL′

=
∫ ∞
−∞

exp[−e] × −g(e) exp[e] × − exp[−e] × de.

That is, consistent with the requirements of Habeck
(2012) and Tan et al. (2012), this alternative DoS for-
mulation returns the identity

Z =
∫ ∞
−∞

g(e) exp(−e) de.

Interestingly, the above relationship between the
DoS and nested sampling identities is mirrored by the
existence of a measure theoretic construction for the
latter (cf. Appendix C of Feroz et al., 2013). If we take
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the survival function, X(L) = 1 − ∫ L
0 {dPL}, as defin-

ing yet another transformation of the prior through the
likelihood—a transformation ensured PL-measurable,
and hence Pθ -measurable, by the right continuity of
X(L)—we recover the following distribution in prior
cumulant space (0 ≤ X ≤ 1):

PX : PX{D} =
∫
X−1D

{
dPθ(θ)

}
.

Similarly, the marginal likelihood formula equivalent
to the nested sampling identity becomes

Z =
∫ 1

0
L(X){dX}

for X(L) invertible, that is, L(y|θ) continuous with
connected support (Chopin and Robert, 2010). More
generally, though, we can view L(X) as the conditional
probability function of likelihood given prior mass cu-
mulant defined modulo Pθ by the relation∫

X−1D
L(y|θ)

{
dPθ(θ)

} =
∫
D

eθ (L|X)
{
dPX(X)

}
(11)

(cf. Halmos and Savage, 1949). For statistical problems
on a complete separable metric space there will always
exist a unique local version of eθ (L|X) defined as a
weak limit such that eθ (L|X = x) is meaningful even
for atomic x (Pfanzagl, 1979).

The value of this insight becomes apparent when we
examine the nested sampling estimator for posterior
functionals (cf. Chopin and Robert, 2010),

Eπ(θ |y)

{
f (θ)

} ≈
n∑

i=1

w̃iL(θi |y)f (θi),

where w̃i here represents the nested sampling posterior
weight for θi , dP̂X(X(θi))—typically w̃i = (X̂i−1 −
X̂i) (Skilling, 2006). This estimator relies on the re-
lation given by Equation (11) with L(y|θ) replaced
by L(y|θ)f (θ), which holds for f (θ) measurable—
a more general condition than that of eθ (f |L) abso-
lutely continuous given by Chopin and Robert (2010).
Importantly, this ensures the validity of prior-sensitivity
analysis via computation of the posterior functional
of πalt(θ)/π(θ) in nested sampling—a powerful tech-
nique not previously exploited in nested sampling
analyses—as we shall discuss for the case of biased
sampling below.

2.3 Importance Sample Reweighting for
Prior-Sensitivity Analysis

In the Bayesian framework (Jeffreys, 1961; Jaynes,
2003) the ratio of marginal likelihoods under rival hy-
potheses (i.e., the Bayes factor) operates directly on the

prior odds ratio for model selection to produce the pos-
terior odds ratio as

P{M1|y}/P{M2|y}
= [

P{y|M1}/P{y|M2}][P{M1}/P{M2}](12)

= [ZM1/ZM2]
[
P{M1}/P{M2}].

A much maligned feature of the marginal likelihood in
this context is its possible sensitivity to the choice of
the parameter priors, P{θ |M1} and P{θ |M2}, through
ZM1 and ZM2 . When limited information is available
to inform (or justify) this choice, the resulting Bayes
factor can appear almost arbitrary. [On the other hand,
viewed as a quantitative implementation of Ockham’s
Razor, the key role of prior precision may well serve as
strong justification for the use of Bayesian model se-
lection in the scientific context; cf. Jeffreys and Berger
(1991).] In their influential treatise on this topic Kass
and Raftery (1995) thus argue that some form of prior-
sensitivity analysis be conducted as a routine part of
all Bayesian model choice experiments, their default
recommendation being the recomputation of the Bayes
factor under a doubling and halving of key hyperpa-
rameters.

If the original marginal likelihoods have been esti-
mated under an amenable simulation scheme, then, as
Chopin and Robert (2010) point out for the case of
nested importance sampling, alternative Bayes factors
under (moderate) prior rescalings may be easily recov-
ered by appropriately reweighting the existing draws
without the need to incur further (computationally ex-
pensive) likelihood function calls; and, indeed, the
RLR method was conceived specifically to facilitate
such computations (though in the reweighting mixtures
context; Geyer and Thompson, 1992; Geyer, 1994).
Using the Ẑk from biased sampling under our nomi-
nal prior for a given model, the pseudo-mixture den-
sity, p(θ), of Equation (5) now serves as an efficient
“proposal” for pseudo-importance sampling of vari-
ous other targets with mass concentrated near that of
the posterior. In particular, for the alternative marginal
likelihood, Ẑalt, under some alternative prior density,
πalt(θ), we have

Ẑalt =
n∑

i=1

L(y|θi)πalt(θi)/p(θi)/n.(13)

The stability of this importance sample reweighting
procedure may be monitored via the effective sam-
ple size, ESS = n/[1 + varp{πalt(θ)/p(θ)}], follow-
ing Kong, Liu and Wong (1994), and its asymptotic
variance estimated via recomputation of Equation (13)
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under perturbations to the original Ẑk drawn from the
biased sampling covariance matrix with bootstrap re-
sampling of the pooled θi .

For the general case of biased sampling from wj(θ)-
weighted versions of a prior distribution, Pθ , not nec-
essarily admitting a �-density, the equivalent formula
takes the Radon–Nikodym derivative of the alterna-
tive prior with respect to the original, dPθ,alt

dPθ
(θ) (for

Pθ,alt � Pθ ), such that

Ẑalt =
n∑

i=1

L(y|θi)
dPθ,alt

dPθ

(θ)

(14) /[
m∑

j=1

nj/n × wj(θi)

]/
n.

We demonstrate the utility of this approach to prior-
sensitivity analysis in our finite and infinite mixture
modeling of the well-known galaxy data set in Sec-
tion 5—and we refer the interested reader to our
other recent astronomical application concerning a
semiparameteric mixed effects model presented in
Cameron and Pettitt (2013). Though both these ex-
amples are based on the Dirichlet process prior, one
can envisage application of the same technique to in-
vestigate prior sensitivity in many other problems of
applied statistics—for example, Gaussian or Ornstein–
Uhlenbeck process modeling of astronomical time se-
ries (Brewer and Stello, 2009; Bailer-Jones, 2012).

2.4 Designing and Sampling the Bridging
Sequence

Although the recursive update scheme of biased
sampling provides a powerful technique for estimat-
ing the marginal likelihood given i.i.d. draws from a
prespecified sequence of wj(θ)-weighted distributions,
the design of this bridging sequence and the choice
of an algorithm to sample from it are left to the user.
While it is possible from theoretical principles to iden-
tify the optimal choice of wj(θ) with respect to the
asymptotic variance under perfect sampling for a lim-
ited range of problems—for example, Gill, Vardi and
Wellner (1988) show the optimality of w1(θ) = |L−Z|
(requiring Z known!) for the one sample case with
F = PL (in our marginal likelihood notation)—the de-
sign problem cannot easily be solved in general. More-
over, even where a theoretically optimal sequence can
be identified, it will not necessarily be computationally
feasible to sample from such a sequence. Of more prac-
tical value therefore are heuristic guides for the prag-
matic choice of wj(θ): strategies that will in a wide

variety of applied problems produce adequate bridging
sequences to ensure manageable uncertainty in the out-
put Ẑ while remaining accessible to existing posterior
sampling techniques. This topic in various guises is the
focus for the remainder of this paper, including our nu-
merical examples.

Perhaps the most natural family of bridging se-
quence for use on the recursive pathway is that of the
power posteriors method [Equation (3); Lartillot and
Phillipe, 2006; Friel and Pettitt, 2008]: this being both
the favored approach for past DoS-based applications
(Habeck, 2012; Tan et al., 2012)—where the parame-
ter, t , has a physical interpretation as the inverse system
temperature—and in Geyer’s formulation of RLR—
where this particular sampling strategy ties in neatly
with his parallel tempering MCMC algorithm (MC3;
Geyer, 1992). And, indeed, in Section 3 below we will
describe yet another conceptual connection between
these two methods, providing a heuristic justification
for the borrowing of thermodynamic integration strate-
gies to this end. Importantly, simulation from the power
posterior at an arbitrary tj is typically no more diffi-
cult than simulation from the full posterior (tm = 1),
the required modifications to a standard MCMC and/or
Gibbs sampling code being often quite trivial (e.g.,
Cameron and Pettitt, 2013). With biased sampling de-
vised for i.i.d. draws, though, it is important to thin the
resulting chains (Tan et al., 2012) so as not to bias the
corresponding asymptotic covariance estimates. Expe-
rience has shown that prior-focused temperature sched-
ules, such as t = {0,1/(m−1),2/(m−1), . . . ,1}c with
c ∼ 3–5, tend to work well for thermodynamic inte-
gration (Friel and Pettitt, 2008), and we confirm this
also for biased sampling of our banana-shaped likeli-
hood case study in Section 4. [Likewise for temper-
ing from a normalized auxiliary density, h(θ), closer in
Kullback–Leibler divergence to the posterior than the
prior; Lefebvre, Steele and Vandal (2010) and see our
Section 4.1.]

Another effective choice of bridging sequence for bi-
ased sampling, which we demonstrate in our galaxy
data set case study of Section 5, is that of partial data
posteriors (cf. Chopin, 2002): that is, L(y(rj )|θ)π(θ)

where y(rj ) represents a subset of rj elements of the
full data set with r1 = 0 the prior and rm = ntot the full
posterior. For i.i.d. y, with an expected contribution
of rj times the unit Fisher information, the “volume”
of highest posterior mass should shrink as roughly√

rj , suggesting an automatic choice of roughly rj =
�ntot × {0,1/(m − 1),2/(m − 1), . . . ,1}c� with c = 2
for this method. (In practice though, the first nonzero



406 E. CAMERON AND A. PETTITT

rj may well be limited by sampling/identifiability con-
straints on the model; for our mixture model, for in-
stance, we must specify r2 = k, the number of mixture
components.)

Finally, as observed by Habeck (2012), the con-
strained-likelihood bridging sequence of nested sam-
pling can also be represented within the DoS frame-
work via wj(e) = I (e < ej ) with ej < ej−1, although
in practice (as we explore in Section 4) the non-i.i.d.
nature of the resulting draws (with each draw from
ej−1 influencing the placement of the next ej and
its successors) violates the assumptions of the biased
sampling paradigm and ultimately limits the utility of
this approach by biasing its asymptotic covariance es-
timate. In fact, this issue more generally remains an
open problem for recursive marginal likelihood estima-
tion theory: how can we best design effective strate-
gies for adaptively choosing our bridging sequence,
and how can such modifications to the biased sam-
pling paradigm be accounted for theoretically? Given
the effectiveness of empirical process theory for char-
acterizing the asymptotics of Vardi’s biased sampling,
it seems likely that a solution to the above will require
extensive work in this area (with a focus on the impact
of long-range dependencies). A similar problem arises
in describing the asymptotics of adaptive multiple im-
portance sampling (Cornuet et al., 2012), which with-
out its adaptive behavior could be considered a version
of biased sampling with known Wj ; Marin, Pudlo and
Sedki (2012) were recently able to provide a consis-
tency proof for a modified version of this algorithm,
but with a CLT remaining elusive.

3. THERMODYNAMIC INTEGRATION VIA
IMPORTANCE SAMPLING

Inspired by the recursive pathway of biased sam-
pling, RLR and the DoS, we present here yet another
such strategy for marginal likelihood estimation, which
we name “thermodynamic integration via importance
sampling” (TIVIS). Although quite novel at face value,
it is easily shown to be a direct transformation of the
recursive update methodology; yet by effectively re-
casting this as a thermodynamic integration procedure
we attain insight into the relationship between its er-
ror budget and bridging sequence. Specifically, the er-
ror in the estimation of each Zk may be thought of as
dependent on both the J -divergence (Lefebvre, Steele
and Vandal, 2010) between it and the remainder of the
ensemble (via the thermodynamic identity) and on the
accuracy of our estimates for those other Zj (j 
= k).

To construct the TIVIS estimator, we once again
assume the availability of pooled draws, {{θi}j : i =
1, . . . , nj ; j = 1, . . . ,m}, from a sequence of bridging
densities, fj (θ) = qj (θ)/Zj (j = 1, . . . ,m), with each
gk(θ) exactly known. Moreover, we suppose that j = 1
indexes a normalized reference/auxiliary, π(θ) or h(θ),
such that Z1 = 1 is known, but with the remaining
Zk typically unknown. Despite our subsequent use of
the thermodynamic identity, however, we do not nec-
essarily require here that the bridging densities follow
the geometric path between these two extremes. Now,
rather than seek each Ẑk via direct importance sam-
pling from p(θ) as per the RLR, the TIVIS method is
to instead seek each normalization constant via ther-
modynamic integration from its preceding density in
the ensemble, qk−1(θ), using the identity,

logZk =
∫ 1

0
Eπk

t

{
log

(
qk(θ)/fk−1(θ)

)}
dt,(15)

where πk
t (θ) ∝ [fk(θ)]t [fk−1(θ)]1−t ∝ [gk(θ)]t ×

[gk−1(θ)]1−t . For existence of the log-ratio in Equa-
tion (15) we must impose the strict condition (not nec-
essary for ordinary RLR) that all fk(θ) share matching
supports. Pseudo-importance sampling from p(θ)—
that is, importance sample reweighting of the drawn
{θi}j —allows construction of the appropriate (but un-
normalized) weighting function,

u(θ, t) = [
gk(θ)

]t [
gk−1(θ)

]1−t
/p(θ),

which in substitution to Equation (15) yields the TIVIS
estimator,

log(Ẑk/Ẑk−1)

=
∫ 1

0

[
n∑

i=1

log
(
gk(θi)/gk−1(θi)

)
u(θi, t)

]
(16)

/[
n∑

i=1

u(θi, t)

]
dt.

In computational terms, numerical solution of the one-
dimensional integral in the above may be achieved
to arbitrary accuracy by simply evaluating the inte-
grand at sufficiently many tj on the unit interval, fol-
lowed by summation with Simpson’s rule. If the se-
quence of bridging densities is well chosen (and suit-
ably ordered), the J -divergence between each fk(θ)

and fk−1(θ) pairing should be far less than that be-
tween prior and posterior, such that a naïve regular
spacing of the tj will suffice.

To show the equivalence between this estimator and
that of the recursive update scheme defined by Equa-
tion (4), we simply observe that the derivative of the
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denominator in Equation (16) equals the numerator
and, thus, by analogy to

∫ 1
0 s′(x)/s(x) dx = log s(1) −

log s(0), we have

log(Ẑk/Ẑk−1) = log

[
n∑

i=1

gk(θi)/p(θi)

]

− log

[
n∑

i=1

gk−1(θi)/p(θi)

]
,

and, thus,

log Ẑk = log

[
n∑

i=1

gk(θi)/p(θi)/n

]
.

In the following two case studies we further explore
by numerical example various issues concerning the
design of the bridging sequence [with particular ref-
erence to the efficiency in L(y|θ) calls; Section 4], and
we highlight the utility of the normalized bridging se-
quence for prior-sensitivity analysis (Section 5).

4. CASE STUDY: BANANA-SHAPED
LIKELIHOOD FUNCTION

For our first case study we consider a (“mock,” that
is, data independent) banana-shaped likelihood func-
tion, defined in two dimensions (θ = {θ1, θ2}) as

L(θ) = exp
(−(

10 × (0.45 − θ1)
)2

/4
(17)

− (
20 × (

θ2/2 − θ4
1
))2)

,

with a Uniform prior density of π(θ) = 1/4 on the rect-
angular domain, [−0.5,1.5]×[−0.5,1.5]. A simple il-
lustration of this likelihood function as a logarithmical-
ly-spaced contour plot is presented in the left-hand

panel of Figure 1. Brute-force numerical integra-
tion via quadrature returns the “exact” solution, Z =
0.01569[6] (or logZ = −4.154[3]).

As a benchmark of the method we first apply the
biased sampling estimator to draws from a sequence
of bridging densities following the standard power
posteriors path. Though even a cursory inspection of
the likelihood function for this simple case study is
sufficient to confirm its unimodality and to motivate
a family of suitable proposal densities for straight-
forward importance sampling of πt(θ) ∝ π(θ)L(θ)t ,
for demonstrative purposes we have chosen to im-
plement an MC3 (Geyer, 1992) approach here in-
stead, the latter being ultimately amenable to more
complex posteriors than the former. Following stan-
dard practice for thermodynamic integration—as per
our motivation from Sections 2.4 and 3 above—we
adopt a prespecified tempering schedule spaced ge-
ometrically as t = {0,1/(m − 1),2/(m − 1), . . . ,1}c
with c = 5 and m = 5. To illustrate the 1/

√
n con-

vergence of biased sampling, we run this procedure
100 times at each of five total sample sizes (ntot =
{125,500,1250,5000,12,500}; distributed equally
across all five temperatures) thinned at a rate of 0.25
from their parent MC3 chains. The resulting mean and
standard error (SE) at each ntot are marked in the right-
hand panel of Figure 1.

Overlaid are (the means of) the corresponding “per
simulation” estimates of this standard error computed
from the rival asymptotic covariance matrix forms of
Gill, Vardi and Wellner (1988)/Kong et al. (2003) and
Geyer (1994): the former being originally derived from

FIG. 1. The banana-shaped likelihood function of our first case study [Equation (17) of Section 4] illustrated graphically as a logarith-
mically-spaced contour plot on the domain of our Uniform prior, [−0.5,1.5] × [−0.5,1.5] (left-hand panel). Convergence of the biased
sampling estimator for the corresponding marginal likelihood under MC3 sampling of the power posterior (at five prespecified temperatures)
as a function of the total sample size is shown in the right-hand panel. The marked points and error bars on this figure indicate respectively
the recovered mean and standard error (SE) in log Ẑ for 100 trials at each ntot. The dashed, light grey line indicates the “exact” logZ for
this example derived via brute-force quadrature, and the open, light grey symbols indicate the mean “per simulation” estimate of the SE from
the asymptotic covariance matrix formulae of Gill, Vardi and Wellner (1988) and Geyer (1994) alternately.
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the empirical process CLT applicable to biased sam-
pling and the latter from maximum likelihood the-
ory using the Hessian of the quasi-likelihood function
for reverse logistic regression. As noted in Section 2,
Kong et al. (2003) have previously discussed the inade-
quacy of Geyer’s covariance estimator—though for the
present design the difference is negligible. It is worth
noting that both estimates are a little conservative at
low ntot but give an excellent agreement with the re-
peat simulation SE by ntot = 1250.

With this power posteriors version of biased sam-
pling as benchmark, we now consider the merits of two
alternative schemes for defining, and sampling from,
the required sequence of bridging densities, fk(θ), in
Sections 4.1 and 4.2 below.

4.1 Thermodynamic Integration from
a Reference/Auxiliary Density

As highlighted by Lefebvre, Steele and Vandal
(2010), the error budget of thermodynamic integration
over the geometric path depends to first-order upon
the J -divergence between the reference/auxiliary den-
sity, h(θ), and the target, π(θ |y). Thus, it will gen-
erally be more efficient to set a “data-driven” h(θ)—
such as may be recovered from the position and lo-
cal curvature of the posterior mode—than to integrate
“naïvely” from the prior, that is, h(θ) = π(θ). Here
we demonstrate the corresponding improvement to the
performance of the biased sampling estimator result-
ing from the choices, h(θ) ∼ NTrunc.(μmode,	

−1
mode)

and h(θ) ∼ TTrunc.(μmode,	
−1
mode). Here NTrunc. and

TTrunc. denote the two-dimensional Normal and Stu-
dent’s t (ν = 1) distributions (truncated to our prior

support), respectively, while μmode denotes the poste-
rior mode and 	mode its local curvature (recovered here
analytically, but estimable at minimal cost in many
Bayesian analysis problems via standard numerical
methods). As before, we apply MC3 to explore the
tempered posterior and repeat both experiments 100
times at each of our five ntot. In contrast to the power
posteriors case, we adopt here a regular temperature
grid, t = {0,0.25,0.5,0.75,1}, to allow for the im-
posed/intended similarity between π(θ |y) and h(θ).
Our results are presented in Figure 2 and discussed be-
low.

As expected from both theoretical considerations
(Gelman and Meng, 1998; Lefebvre, Steele and Van-
dal, 2010) and reports of practical experience with
other marginal likelihood estimators (Fan et al., 2012),
use of a “data-driven” auxiliary in this example has
indeed reduced markedly the standard error of the
biased sampling scheme (at fixed ntot) with respect
to that of the naïve (power posteriors) path, that is,
h(θ) = π(θ). In this instance the (thinner-tailed) Nor-
mal auxiliary has outperformed the (fatter-tailed) Stu-
dent’s t (with one d.o.f.); however, although this result
is again consistent with theoretical expectations—as
a quick computation using the “exact” logZ confirms
J [N (μmode,	

−1
mode), h(θ)] � J [T (μmode,	

−1
mode),

h(θ)]—it should be remembered that the optimal
choice of auxiliary from within a standard parametric
family depends on the likelihood function itself, and so
will vary from problem to problem. Moreover, without
knowledge of the desired Z it is not possible to opti-
mize h(θ) a priori; and even a crude estimator of the
J -divergence run with, for example, the Laplace ap-
proximation to the marginal likelihood will neverthe-

FIG. 2. Convergence of the biased sampling estimator for the marginal likelihood of our banana-shaped likelihood function under MC3

sampling (at five prespecified temperatures) on the geometric path between a “data-driven” reference/auxiliary density, h(θ), and the pos-
terior, shown as a function of the total sample size. The adopted h(θ) takes a two-dimensional Student’s t form in the left-hand panel and
a Normal form in the right-hand, with its controlling parameters (μmode and 	mode) in each case set to the location and curvature of
the posterior mode. A marked reduction in standard error (at fixed ntot) with respect to that of the naïve (power posteriors) path, that is,
h(θ) = π(θ), is evident from comparison with Figure 1.
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less add numerous extra likelihood evaluations to the
computational budget. Although “fatter-tailed” than a
typical likelihood function, the Student’s t may well
prove a superior choice for some multimodel posterior
problems in practice by better facilitating mixing dur-
ing the MC3 sampling stage.

4.2 Ellipse/Ellipsoid-Based Nested Sampling

Recalling the connections between the DoS deriva-
tion of the recursive pathway and the nested sampling
algorithm described in Section 2.2, it is of some in-
terest to compare directly the performance of these
rival techniques. The present case study with its Uni-
form prior density is in fact well suited to this pur-
pose since in the field of cosmological model selection,
where nested sampling has been most extensively used
of late (Mukherjee, Parkinson and Liddle, 2006; Feroz
and Hobson, 2008), it is standard practice to adopt sep-
arable priors from which a Uniform sample space may
be easily constructed under the quantile function trans-
formation, which, for the discussion below, we assume
has been done such that π(θ) may be taken as strictly
Uniform on [0,1]N (in the transformed coordinate
space). Given these conditions, Mukherjee, Parkin-
son and Liddle (2006) outline a crude-but-effective
scheme for exploring the constrained-likelihood shells
of nested sampling, in which the new “live” particle for
each update must be drawn with density proportional to
π(θ)I (L(θ) > L(θi−1)).

Under the Mukherjee, Parkinson and Liddle (2006)
scheme, to draw the required θi , one simply identi-
fies the minimum bounding ellipse [or with D(θ) > 2,
the minimum bounding ellipsoid] for the present set
of “live” particles, expands this ellipse by a small fac-
tor ∼1.5–2 with the aim of enclosing the full support

of I (L(θ) > L(θi−1)), and then draws randomly from
its interior until a valid {θi,L(θi)} is discovered. Sup-
posing the elliptical sampling window thus defined has
been enlarged sufficiently to fully enclose the desired
likelihood surface [which it must do to ensure unbiased
sampling of {θi,L(θi)}, although we can rarely be sure
that it has], it remains unlikely to match its shape ex-
actly, leading to an overhead of noh discarded draws,
{θ(j)

i :L(θ
(j)
i ) < L(θi−1), j = 1, . . . , noh}. At each θi

the incurred noh may be thought of as a single real-
ization of the negative binomial distribution with p

equal to the fraction of the bounded ellipse for which
L(θ) < L(θi−1), hence, E(noh) = 1/p − 1. The mag-
nitude of this overhead can in general be expected
to scale with the geometric volume of the parame-
ter space, potentially limiting the utility of this other-
wise dimensionally-insensitive Monte Carlo-based es-
timator. However, where applicable, the Mukherjee,
Parkinson and Liddle (2006) scheme may nevertheless
prove more efficient than the alternative of constrained-
MCMC-sampling to find the new θi (cf. Friel and
Wyse, 2012) in which one must discard at least ∼10–
20 burn-in moves [each with a necessary L(θ) call] per
step to achieve approximate stationarity.

Applying the ellipse-based approach to nested sam-
pling of the banana-shaped likelihood function of
Equation (17) with Nlive = {12,25,50,125} live par-
ticles evolved over 10 × Nlive steps in each case [and a
small extrapolation of the mean Llive times exp(−10)

at the final step; cf. Skilling, 2006], we recover a con-
vergence to the true logZ as shown in the left-hand
panel of Figure 3. Important to note is that with the
ellipse scale factor of 1.5 used here the result is an
overhead of noh ≈ 2.3 likelihood calls per accepted θi ,

FIG. 3. The performance of nested sampling (left-hand panel) as a marginal likelihood estimator for our banana-shaped pseudo-likeli-
hood function, run under the ellipse-based strategy for exploring the sequence of constrained-likelihood densities proposed by Mukherjee,
Parkinson and Liddle (2006); compared with that of biased sampling (middle panel) and “importance nested sampling” (right-hand panel)
with the same bridging sequence. The first two schemes converge to the true logZ at a similar rate in Nlive, while the third is faster since it
harnesses the information content of draws otherwise discarded from nested sampling in its constrained-likelihood search.
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such that nested sampling at Nlive = 125 corresponds
to ntot ≈ 2875 in the previous examples. An overhead
of this magnitude should be a concern for “real world”
applications of nested sampling in which the likeli-
hood function may be genuinely expensive to evaluate;
indeed, for modern cosmological simulations MCMC
exploration of the D(θ) � 12 posterior is effectively a
super-computer-only exercise due solely to the cost of
solving for L(y|θ). [At this point the skeptical reader
might object that the distinctly nonelliptical L(θ) con-
sidered in this example be considered a particularly un-
fair case for testing the Mukherjee, Parkinson and Lid-
dle (2006) method, but such banana-shaped likelihoods
are in fact quite common in higher-order cosmologi-
cal models; see, for instance, Davis et al. (2007).] We
therefore suggest that one might improve upon the ef-
ficiency of ellipse-based nested sampling by co-opting
its bridging sequence into the biased sampling frame-
work in some manner.

As Habeck (2012) has pointed out, the nested sam-
pling pathway can be accommodated roughly within
the DoS (and hence biased sampling) framework, for
example, by treating the accepted θi (pooled with the
surviving Nlive live particles) as drawn from the series
of weighted distributions, wj(θ) dF (θ) = I (L(θ) >

Lj ) dF (θ). However, with each wj(θ) (j > 1) now de-
pendent on past draws—and hence the {θi}j no longer
i.i.d.—although we can apply the recursive update
scheme of Equation (4) to normalize the bridging se-
quence and then importance sample reweight to Z, the
biased sampling CLT no longer holds. To demonstrate
this, we apply the above procedure to the draws from
our previous nested sampling runs and plot the mean
and repeat simulation SE at each Nlive in the middle
panel of Figure 3. While the efficiency of this estimator
is almost identical to that of ordinary nested sampling,
the “naïve” application of Gill et al.’s asymptotic co-
variance matrix does not yield an SE estimate matching
that of repeat simulation.

A more interesting alternative is to observe that for
the ellipse-based nested sampling method (given uni-
form priors) the normalization of each fk(θ) is in fact
easily computed from the area/volume of the corre-
sponding ellipse/ellipsoid. That is, we can simply pool
our draws—including the θi with L({θi}j ) < Lj other-
wise discarded from nested sampling—and apply the
importance sample reweighting procedure of Equa-
tion (13) with πalt(θ) = π(θ) and

p(θ) =
m∑

k=1

[nk/ntot][I (
θ ∈ Ell[Elive(k)])/Vk

]

(with Vk the volume of the kth ellipse and Ell[Elive(k)]
its interior). Application of this strategy—which we
dub “importance nested sampling” (INS)—to the pres-
ent example yields logZ estimates with much smaller
repeat simulation SE than either of the previous sum-
mations as shown in the right-hand panel of Figure 3.
Bootstrap resampling of the drawn {θi,Li} gives a rea-
sonable estimator of this SE, though we note that INS
does not appear to be unbiased in logZ, with a slight
tendency toward underestimation at small ntot. Further
computational experiments are now underway to bet-
ter quantify the advantages offered by this approach to
harnessing the information content of these otherwise
discarded draws in the ellipse-based nested sampling
paradigm (presented in Feroz et al., 2013).

5. CASE STUDY: NORMAL MIXTURE MODELING
OF THE GALAXY DATA SET

The well-known galaxy data set, first proposed as
a test case for kernel density estimation by Roeder
(1990), consists of precise recession velocity measure-
ments (in units of 1000 km s−1) for 82 galaxies in the
Corona Borealis region of the Northern sky reported
by Postman, Huchra and Geller (1986). The purpose of
the original astronomical study was to search—in light
of a then recently discovered void in the neighboring
Boötes field (Kirshner et al., 1981)—for further large-
scale inhomogeneities in the distribution of galaxies.
Given the well-defined selection function of their sur-
vey, Postman, Huchra and Geller (1986) were easily
able to compute as a benchmark the recession veloc-
ity density function expected under the null hypothesis
of a uniform distribution of galaxies throughout space,
and by visual comparison of this density against a his-
togram of their observed velocities the astronomers
were able to establish strong evidence against the null,
thereby boosting support for the (now canonical) hier-
archical clustering model of cosmological mass assem-
bly (Gunn, 1972). However, under the latter hypoth-
esis, as Roeder (1990) insightfully observed, one can
then ask the more challenging statistical question of
“how many distinct clustering components are in fact
present in the recession velocity data set?”

Many authors have since attempted to answer this
question (posed for simplicity as a univariate Normal
mixture modeling problem) as a means to demonstrate
the utility of their preferred marginal likelihood estima-
tion or model space exploration strategy. Notable such
contributions to this end include the following: the in-
finite mixture model (Dirichlet process prior) analyses
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of Escobar and West (1995) and Phillips and Smith
(1996); Chib’s exposition of marginal likelihood es-
timation from Gibbs sampling output (Chib, 1995);
the reversible jump MCMC approach of Richardson
and Green (1997); and the label switching studies
of Stephens (2000) and Jasra, Holmes and Stephens
(2005). The earliest of these efforts are well summa-
rized by Aitkin (2001), who highlights a marked de-
pendence of the inferred number of mixture compo-
nents on the chosen priors. For this reason, as much as
its historical significance, the galaxy data set provides
a most interesting case study with which to illustrate
the potential of prior-sensitivity analysis under the re-
cursive pathway.

The outline of our presentation is as follows. In Sec-
tion 5.1 we set forth the finite and infinite mixture mod-
els to be examined here and in Section 5.2 we describe
the MCMC strategies we use to explore their complete
and partial data posteriors. In Section 5.3 we discuss
various astronomical motivations for our default hyper-
prior choices and, finally, in Section 5.4 we present the
results of a biased sampling run on this problem with
importance sample reweighting-based transformations
between alternative priors.

5.1 Normal Mixture Model

5.1.1 Finite mixture model. Following Diebolt and
Robert (1994) and Lee et al. (2008), we write the
k-component Normal mixture model with component
weights, φ, in the latent allocation variable form for
data vector, y, and (unobserved) allocation vector, z,
such that

π(zi = j) = φj and π(yi |zi = j) = fN (yi |θj ).

Here fN (·|θj ) represents the one-dimensional Normal
density, which we will reference in mean–precision
syntax as N (μj , τ

−1
j ), that is, θj = {μj , τj }.

Given priors for the number of components in the
mixture, the distribution of weights at a given k and the
vector of mean precisions—that is, π(k), π(φ|k) and
π(θ |φ, k), respectively—the posterior for the number
of mixture components in the finite mixture case may
be recovered by integration over {φ, θ} at each k,

π(k|y) = π(k)/Z

×
∫
�

π(φ|k)π(θ |φ, k)L(y|θ,φ, k) dφ dθ

= π(k)Z(k)/Z.

Here the likelihood, L(y|θ,φ, k), is given by a summa-
tion over the ntot unobserved, zi , as

L(y|θ,φ, k) =
ntot∏
i=1

k∑
j=1

φjfN (yi |θj ).(18)

That is, for a π(k) assigning mass to only a small set of
elements, one approach to recovering π(k|y) is simply
to estimate the “per component” marginal likelihood,
Ẑ(k), at each of these k and then reweight by π(k).
The full marginal likelihood of the model can then of
course be estimated from the sum, Ẑ = ∑

k Ẑ(k). While
this is indeed the strategy adopted here for exposition
purposes, it is worth noting that such direct marginal
likelihood estimation to recover π(k|y) for this model
can in fact be entirely avoided via either the reversible
jump MCMC algorithm (Richardson and Green, 1997)
or Gibbs sampling over the infinite mixture version de-
scribed below.

5.1.2 Infinite mixture model. Rather than specify
a maximum number of mixture components a pri-
ori, Escobar and West (1995) and Phillips and Smith
(1996) (among others) have advocated an infinite-
dimensional solution based on the Dirichet process
prior. In particular, one may suppose the data to have
been drawn from an infinite mixture of Normals with
means, variances and weights drawn as the realiza-
tion, Q, of a Dirichlet process (DP), DP(M,G0), on
R × R+, the characterization of the DP being via a
concentration index, M , and reference density, G0, and
with all Q being both normalized and strictly atomic.
For small M (� 10) the tendency is for these Q to be
dominated by only a few (mixture) components, while
for large M the number of significant components in-
evitably increases, with the typical Q thereby becom-
ing closer (in the metric of weak convergence) to G0.
The likelihood of i.i.d. y for a given Q requires (in the-
ory) an infinite sum over the contribution from each of
its components,

L(y|Q) =
ntot∏
i=1

∞∑
j=1

φjfN (yi |θj ),

where each φj represents the limiting fraction of
points in the realization assigned to a particular θj .
(In practice, however, this summation can generally
be truncated with negligible loss of accuracy after
accounting for the contributions of only the most dom-
inant components.) Computation of the marginal like-
lihood for the above model is thus nominally by in-
tegration over the infinite-dimensional space of Q.
In particular, if we suppose a hyperprior density for
the hyperparameters, ψ , of the DP (i.e., for M and
the controlling parameters of G0), we have Z =∫
�(ψ)

∫
�(Q) L(y|Q){dPQ|ψ(Q)}π(ψ)dψ .

As per the finite mixture case, we can simplify our
posterior exploration and relevant computations by in-
troducing latent variables, z and θ , for allocation of the
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y and the corresponding mean-precision vectors of the
parent components in Q. In this version the likelihood
takes the form

L
(
y|{z, θ}) =

ntot∏
i=1

fN (yi |θzi
),

and the marginal likelihood becomes

Z =
∫
�(ψ)

∫
�(Q)

∫
�({z,θ})

L
(
y|{z, θ})

· {
dP{z,θ}|Q

({z, θ})}(19)

· {
dPQ|ψ(Q)

}
π(ψ)dψ.

Importantly, existing Gibbs sampling methods for the
DP allow for collapsed sampling from the poste-
rior for {z, θ,ψ} and Equation (19) can be reduced
to

∫
�({z,θ,ψ}) L(y|{z, θ}){dP{z,θ,ψ}({z, θ,ψ})}. In one

further twist, however, we note that since the reduced
expression is degenerate across component labelings,
it is in fact more computationally efficient to estimate
Z from∫

�({z,θ,ψ})

∫
�(Q̂)

L(y|Q̂)

· {dP
Q̂|{z,θ,ψ}}(20)

· {
dP{z,θ,ψ}

({z, θ,ψ})},
where P

Q̂|{z,θ,ψ} takes a particularly simple analytic
form by the nature of the DP (cf. Escobar and West,
1995).

Finally, it is important to note that since each re-
alization of the DP has always an infinite number of
components with probability one (though usually only
a few with significant mass), the usual interpretation
for the posterior, π(k|y), in this context is the posterior
distribution of the number of unique label assignments
among the observed data set (i.e., the dimension of θ

in {z, θ}). However, although pragmatically useful for
such modeling problems as that exhibited by the galaxy
data set, as Miller and Harrison (2013) note, this esti-
mate is not consistent.

5.2 MC Exploration of the Mixture Model Posterior

5.2.1 Finite mixture model. Exploration of the pos-
terior for {θ,φ} at fixed k in this finite mixture model
can be accomplished rather efficiently (modulo the
well-known problem of mixing between modes; cf.

Neal, 1999) via Gibbs sampling given conjugate prior
choices, as explained in detail by Richardson and
Green (1997). To this end, we suppose

μj ∼ N
(
κ, ξ−1)

, τj ∼ �(α,β), and

β ∼ �(β1, β2),

where �(a, b) represents the Gamma distribution with
rate a and shape b. To simulate from the resulting
posterior, we use the purpose-built code provided by
BMMmodel and JAGSrun in the BayesMix pack-
age (Grün and Leisch, 2010) for R. No modifications
to this code are necessary for sampling the partial data
posterior, and both the partial and full data likelihoods
given partial likelihood draws (at fixed k) may be re-
covered with Equation (18). The range of k for which
we compute marginal likelihoods is here limited by the
range of a truncated Poisson prior on k.

5.2.2 Infinite mixture model. As noted earlier, ex-
ploration of the infinite mixture model posterior can
also be facilitated through Gibbs sampling with the ap-
propriate choice of priors (Escobar and West, 1995);
and although contemporary codes typically use the
(more efficient) alternative algorithm of Neal (2000),
the prior forms dictated by the conjugacy necessary for
Gibbs sampling remain the default. Hence, to this end,
we suppose a fixed concentration index of M = 1 and
a Normal-Gamma reference density,

G0 : τj ∼ �(s/2, S/2), μj |τj ∼ N (m, τjh),

assigning hyperpriors of h ∼ �(h1/2, h2/2) and 1/S ∼
�(ν1/2, ν2/2). Here we use the DPdensity function
in the DPpackage (Jara et al., 2011) for R to explore
this posterior. While no modifications to this code are
required for sampling the partial likelihood posteriors,
the computation of full data likelihoods given the par-
tial likelihood posterior requires that we sample a se-
ries of dummy components from the current posterior
until some appropriate truncation point, k′ :

∑k′
j=1 φj ≈

1, before applying (the k′-truncated version of) Equa-
tion (20).

5.3 Astronomical Motivations for our Priors

5.3.1 Finite mixture model. As noted earlier, by
considering the well-defined selection function of their
observational campaign, the authors of the original as-
tronomical study were able to construct the expected
probability density function of recession velocities for
their survey under the null hypothesis of a uniform dis-
tribution of galaxies throughout space. In particular,
Postman, Huchra and Geller (1986) recognized that the
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strict apparent magnitude limit of their spectroscopic
targeting strategy (mr < 15.7 mag) would act as a lu-
minosity (or absolute magnitude) limit evolving with
recession velocity (distance) according to

Mr,lim(v) ≈ mr − 5 log10(v) − 30,

where we have assumed units of 1000 km s−1 for v

and a “Hubble constant” of H0 = 100 km s−1 Mpc−1.
To estimate the form of the resulting selection func-
tion, Smag(v), Postman, Huchra and Geller (1986) con-
sidered how the relative number of galaxies per unit
volume brighter than this limit would vary with dis-
tance given the absolute magnitude distribution func-
tion, Fmag(·), for galaxies in the local Universe, that
is, Smag(v) ∝ 1 −Fmag(Mr,lim(v)). To approximate the
latter, the astronomers simply integrated over a previ-
ous estimate of the local luminosity density parame-
terized as a Schechter function (Schechter, 1976) with
characteristic magnitude, M∗

r ≈ −19.40 − 1.5 mag,
and faint-end slope, α∗

r ≈ −1.3, such that

f (M) ∝ [
102/5(M∗

r −M)]α∗
r +1 exp

[−102/5(M∗
r −M)]

and

Smag(v) ∝
∫ Mr,lim(v)

−∞
f (M)dM.

An interesting feature of magnitude-limited astro-
nomical surveys is that, although with increasing reces-
sion velocity this Smag(v) selection function restricts
their sampling to the decreasing fraction of galaxies
above Mr,lim(v), the volume of the Universe probed by
(the projection into three-dimensional space of) their
two-dimensional angular viewing window is, in con-
trast, rapidly increasing. Hence, there exists an im-
portant additional selection effect, Svol(v), operating
in competition with, and initially dominating, that on
magnitude, and scaling with (roughly) the third power
of recession velocity such that

Svol(v) ∝ v3.

The product of these two effects therefore returns
the net selection function of the galaxy data set, which
we illustrate (along with each effect in isolation) in
Figure 4 (see also Figure 4b from Postman, Huchra
and Geller, 1986); the point being that there do exist
informative astronomical considerations for choosing
at least some of the hyperparameters of our priors in
this mixture modeling case study, though past anal-
yses have tended to ignore this context (contributing
somewhat to the apparent “failure” of Bayesian mix-
ture modeling for this data set; Aitkin, 2001). In par-
ticular, the shape of the selection function in velocity

FIG. 4. Visualization of the galaxy data set, including its Abell clusters and selection function. The clustering of galaxies in recession
velocity–declination space is illustrated by way of the “cone diagram” shown in the top panel and its projection to a recession velocity
histogram shown in the bottom panel. The positions of five Abell clusters targeted by the original survey are also highlighted here (open
circles and arrows in light grey), along with the survey’s magnitude-dependent, volume-dependent and net selection functions (shown as the
dotted, dash-dotted and solid curves, respectively, in the bottom panel).
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space suggests the form for our prior on the component
means: a choice of {κ = 17, ξ = 0.008} gives a rea-
sonable match to the shape of Smag(v)Svol(v). Perhaps
surprisingly, as we will demonstrate later, the choice of
prior on the component means has a substantial influ-
ence on the resulting π(k|y); changing only these of
our hyperparameters to “data-driven” values chosen as
{κ = ȳ (20.8), ξ = 1/var{y} (0.048)} results in a dras-
tic shift of the posterior.

Likewise, we can inform our prior choice for the
number of components in the mixture with regard to
the original survey design, which featured five separate
observational windows placed so as to cover five previ-
ously identified galaxy clusters from the Abell catalog.
(The positions of these clusters in bivariate recession
velocity–declination space, and its projection to uni-
variate velocity space, are also marked on Figure 4 for
reference.) Hence, we select a mode of λ = 5 for our
truncated Poisson prior for π(k). With the k = 1 and
k = 2 mixture models already well excluded by pre-
vious analyses, and k > 10 a pragmatic upper bound
for exploration given λ = 5, we therefore truncate our
prior to the range 3 ≤ k ≤ 10. This contrasts somewhat
with the Uniform priors on k ≤ 10 and k ≤ 30 assumed
by Roeder and Wasserman (1997) and Richardson and
Green (1997), respectively—though reweighting for
alternative π(k) (on this support) is trivial in any case.

Only the precisions of the Normal mixture com-
ponents are not well constrained from astronomical
considerations—although we can at least be confi-
dent that any large-scale clustering should occur above
the scale of individual galaxy clusters (∼1 Mpc or
�v ≈ 0.1) and (unless the uniform space-filling hy-
pothesis were correct) well below the width of our
selection function. Thus, we simply adopt a fixed
shape hyperparameter of α = 2 for our Gamma prior
on the τj and allow the rate hyperparameter to vary
according to its Gamma hyperprior form β1 = 1
and β2 = 0.05. Our choice here is thus comparable
to that of Richardson and Green (1997) who sup-
pose π(β) ∼ �(0.2,0.016)—not �(0.2,0.573) as mis-
quoted by Aitkin (2001)—though we evidently place
far less prior weight on exceedingly large precisions
(small variances).

5.3.2 Infinite mixture model. The same considera-
tions can also help shape our hyperparameter choices
for the priors on our infinite mixture model. In partic-
ular, we take {m = 17, s = 4, h1 = 2, h2 = 8, ν1 = 1,

ν2 = 1} for the hyperparameters shaping the Normal-
Gamma reference density, G0, with the aim of match-
ing as closely as possible to the priors of our finite-
dimensional model. With the scale parameter of our

prior on the component precisions taking an inverse-
Gamma hyperprior form in the infinite case and a
Gamma form in the finite case, it was not possible
to exactly match these distributions: our choice of
{ν1 = 1, ν2 = 1} is intended to at least give compara-
ble 5% and 95% quantiles. Finally, we adopt a fixed
value for the concentration parameter of M = 1; this
choice coincidentally gives a similar effective prior for
the number of unique components among the 82 ob-
served galaxies to that of the π(k) adopted for our fi-
nite mixture model (see Escobar and West, 1995, for
instance).

5.4 Numerical Results

5.4.1 Chib example. As an initial verification of our
code, we first run the Gibbs sampling procedure out-
lined above (Section 5.2.1) to explore the partial data
posteriors of a three-component (unequal variance)
mixture model using the priors from Chib (1995),
with the biased sampling algorithm then applied for
marginal likelihood estimation. Neal (1999) has made
public the results of a 108 draw AME calculation pro-
viding a precise benchmark for the marginal likeli-
hood under these priors of −226.791 (±0.089) (SE),
though it should be noted that the galaxy data set used
for this purpose is that with Chib’s transcription er-
ror in the 78th observation (which we insert explic-
itly into the public R version for the present appli-
cation only). Given just 200 saved draws from Gibbs
sampling (at a thinning rate of 0.9) of the partial data
posterior at each of 10 steps spaced as rj = �ntot ×
{0,1/9,2/9, . . . ,1, }c=2� (with r2 reset to 3 to facil-
itate sampling), we can confirm the recovery of this
benchmark as −226.79 (±0.15) (SE). Estimation of
the (single run) standard error (SE) was for this pur-
pose conducted via 1000 repeat simulations. Further
repeats of this procedure with both more posterior fo-
cused (c = 0.5, 1) and more prior focused (c = 4) par-
tial data schedules confirm the optimality of the c = 2
choice anticipated from Fisher information principles
(Section 2.4). The results of this experiment are illus-
trated in Figure 5.

5.4.2 Finite mixture model. To estimate “per com-
ponent” marginal likelihoods for each k (3 ≤ k ≤ 10)
in our finite mixture model, we run the same procedure
of partial data posterior exploration followed by biased
sampling with 4000 draws from each of ten steps on
the c = 2 bridging sequence. The results of this com-
putation are illustrated in Figure 6; the uncertainties in-
dicated are gauged from the asymptotic covariance ma-
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FIG. 5. Relationship between the standard error (SE) of logZ estimation and the choice of a partial data posterior bridging sequence
for biased sampling of the 3-component (unequal variance) mixture model under the Chib (1995) priors. The data points in the left-hand
panel represent the mean log Ẑ and the error bars its (single run) SE, computed from 1000 repeat simulations with 200 draws from each of
10 steps in the bridging sequence. The dashed grey lines indicate the benchmark estimate (± SE) from Neal (1999), and the c values of the
horizontal axis refer to the design of the partial data posterior bridging sequence as rj = ntot × {0,1/9,2/9, . . . ,1}c . These sequences are
also illustrated graphically for clarity in the right-hand panel.

trix of the biased sampling estimator (as per Gill, Vardi
and Wellner, 1988). We recover a posterior mode of
k = 7 components, the recession velocity density be-
longing to which at the corresponding mode in {φ, θ}
is also illustrated in Figure 6 for reference. To the eye,
it appears that k = 7 may be a slight overestimate since
the third and fourth components (in order of increas-
ing recession velocity) are more or less on top of each
other, suggesting that one is being used to account for
a slight non-Normality in the shape of this peak.

To demonstrate the potential for efficient prior-
sensitivity analysis via importance sample reweighting
of the pseudo-mixture density of partial data posteriors
normalized by biased sampling (Section 2.3), we begin
by recovering the Richardson and Green (1997) result

from the above simulation output. The results of this
reweighting procedure are shown in Figure 7. Since
the Richardson and Green (1997) priors are signifi-
cantly different to those chosen here from astronom-
ical considerations (as discussed in Section 5.3), the
effective sample sizes provided by our pseudo-mixture
of 4000 × 10 draws range from just 13 to 928, yet the
resulting approximation to the former benchmark is ac-
tually rather good. Moreover, the corresponding 95%
credible intervals [recovered via bootstrap resampling
from our pseudo-mixture plus estimates of the asymp-
totic covariance matrix for each log Ẑ(k)] indeed en-
close all eight π(k|y) reference points.

As a second demonstration we also show in Fig-
ure 7 the results of reweighting for alternative “data-

FIG. 6. Posterior probabilities for the number of Normal mixture components in the galaxy data set, π(k|y), under our astronomically
motivated priors (left-hand panel). The solid, dark grey symbols here denote the true posterior, while the open, light grey symbols indicate for
reference the raw, “per component” marginal likelihood-based result, that is, before application of our truncated Poisson π(k). In each case
the relevant uncertainties [recovered from estimates of the asymptotic covariance matrix for each log Ẑ(k)] are illustrated as 95% credible
interval error bars. The effective sample size (ESS) provided by the pseudo-mixture of 10 partial data posteriors sampled for 4000 draws
each is noted in grey for each k. The inferred probability density (in velocity space) at the maximum a posteriori parameterization of our
Normal mixture model (k = 7) is then illustrated for reference against a scaled histogram of the galaxy data set in the right-hand panel.
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FIG. 7. Importance sample reweighting of our draws from the pseudo-mixture of partial data posteriors used to estimate π(k|y) under the
Richardson and Green (1997) priors (left-hand panel). The solid, dark grey symbols here denote the reweighted posterior estimate, while
the open, light grey symbols indicate for reference the Richardson and Green (1997) benchmark. The results of the equivalent procedure to
approximate the effect of using alternative “data-driven” priors are shown in the right-hand panel; here the solid, dark grey symbols again
represent the reweighted estimate, with the open, light grey symbols illustrating the reference point provided by our default priors. In both
instances we treat π(k) as uniform to emphasize the difference to the “per component” marginal likelihoods made by this modest change of
prior. In each panel the relevant uncertainties [recovered via bootstrap resampling from our pseudo-mixture plus estimates of the asymptotic
covariance matrix for each log Ẑ(k)] are illustrated as 95% credible interval error bars. The effective sample size (ESS) provided by the
pseudo-mixture of 10 partial data posteriors sampled for 4000 draws each is noted in grey for each k.

driven” choices for the hyperparameters of our prior
on the component means: {κ = ȳ (20.8), ξ = 1/var{y}
(0.048)}. To emphasize the large difference this small
change in π(θ) makes to the “per component” log Z(k)

values, the comparison presented is between our de-
fault and “data-driven” priors with π(k) removed (i.e.,
treated as uniform). This investigation clearly confirms
the remarkable prior sensitivity of π(k|y) in the galaxy
data set example. Interestingly, the preference under
our “data-driven” priors is for an even greater number
of mixture components (k > 7), despite the k = 7 solu-

tion already seeming (visually) to be an overfitting of
the available data.

5.4.3 Infinite mixture model. In Figure 8 we present
the results of Gibbs sampling the posterior of our infi-
nite mixture model. In particular, we show in the left-
hand panel of this figure the posterior for the num-
ber of unique label assignments among the galaxy data
set, which, as we have noted earlier, is typically used
as a proxy for the number of mixture components
present (although under the Dirichet process prior this
is formally always infinite). In the right-hand panel
we demonstrate again the power of importance sample

FIG. 8. Posterior for the number of unique label assignments among the galaxy data set recovered from Gibbs sampling of our (Dirichlet
process-based) infinite mixture model (left-hand panel). The results of importance sample reweighting of these draws, combined as a pseu-
do-mixture with those simulated under our bridging sequence of partial data posteriors, are shown via the solid, dark grey symbols in the
right-hand panel. The target of this reweighting procedure is the “per component” [i.e., uniform π(k)] posterior for the number of mixture
model components in our benchmark finite mixture model (shown as the open, light grey symbols). The relevant uncertainties [recovered via
bootstrap resampling from our pseudo-mixture plus estimates of the asymptotic covariance matrix for each log Ẑ(k)] are illustrated as 95%
credible interval error bars. The effective sample size (ESS) provided by the pseudo-mixture of 10 partial data posteriors sampled for 4000
draws each is noted in grey for each k.
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reweighting for prior-sensitivity analysis, though for
this particular case the stochastic process prior used re-
quires that we apply the appropriate Radon–Nikodym
derivative version given by Equation (14).

The Radon–Nikodym derivative,
dP{z,θ,ψ},alt
dP{z,θ,ψ} ({z, θ,

ψ}), of the measure on {z, θ,ψ} assigned by a k-
component finite mixture model with respect to that
assigned by the Dirichlet process prior of our infinite
mixture model may be computed as follows. First,
we observe that the Radon–Nikodym derivative be-
tween two Dirichlet process priors on the (equiva-
lent) space of {{θ1, . . . , θntot},ψ} (with the θi possi-
bly nonunique) has been previously derived by Doss
(2012), thereby providing a direct formula for comput-
ing

dP{z,θ,ψ},int
dP{z,θ,ψ} ({z, θ,ψ}), where P{z,θ,ψ},int represents

a Dirichlet process prior with hyperpriors on the ψ of
its reference density chosen to be identical to those on
the {μj , τj } and β of our finite mixture model. That
is, we choose P{z,θ,ψ},int such that its projection to
P{z,θ,ψ},int for z with k unique elements is equivalent
(a.e.) to that of P{z,θ},alt with our hyperparameter on β

integrated out, allowing P{z,θ,ψ},alt to be defined iden-
tical to f (z)P{z,θ,ψ},int. The necessary f (z) to ensure

that
dP{z,θ,ψ},alt
dP{z,θ,ψ},int

dP{z,θ,ψ},int
dP{z,θ,ψ} = dP{z,θ,ψ},alt

dP{z,θ,ψ} is then simply the
ratio of the labeling probabilities under our finite mix-
ture model and the intermediate version of our infinite
mixture model [with f (z) 
= 0 only where the number
of unique elements in z equals k].

A formula for the desired f (z) can be derived
by combining standard properties of the Dirichlet-
Multinomial distribution (our finite-dimensional model
prior on z) with results from the work of Antoniak
(1974) on the marginals of the Dirichlet process. In
each case the probability of a given labeling sequence
depends not on its ordering, but rather on its vector
of per-label counts. Using Antoniak’s system of writ-
ing C(m1,m2, . . . ,mntot) as the set of labelings with
m1 unique elements, m2 pairs, etc., we have wherever∑ntot

i=1 mi ≤ k,

f (z ∈ C) =
(

ntot!∏ntot
i=1(i!)mi

�(kα)

�(ntot + kα)

·
ntot∏
i=1

(
�(i + α)

�(α)

)mi
)

/(
(k − ∑ntot

i=1 mi)!(∏mi)!
k!

· ntot!∏ntot
i=1 imi (mi !)

M
∑ntot

i=1 mi

M [ntot]
)
,

where x[j ] denotes the rising factorial function as per
Proposition 3 of Antoniak (1974). For our case of α =
1 and M = 1 this reduces to

f (z ∈ C) =
(

ntot!(k − 1)!
(ntot + k − 1)!

)
/(

(k − ∑ntot
i=1 mi)!(∏mi)!

k!∏ntot
i=1 imi (mi !)

)
.

6. CONCLUSIONS

In this paper we have presented an extensive review
of the recursive pathway to marginal likelihood estima-
tion as characterized by biased sampling, reverse logis-
tic regression and the density of states; in particular, we
have highlighted the diversity of bridging sequences
amenable to recursive normalization and the utility
of the resulting pseudo-mixtures for prior-sensitivity
analysis (in the Bayesian context). Our key theoretical
contributions have included the introduction of a novel
heuristic (“thermodynamic integration via importance
sampling”) for guiding design of the bridging sequence
and an elucidation of various connections between
these recursive estimators and the nested sampling
technique. Our two numerical case studies illustrate in
depth the practical implementation of these ideas using
both “ordinary” and stochastic process priors.
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