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Recursive Prediction Error Methods for
Adaptive Estimation

JOHN B. MOORE AND HAIM WEISS

Abstract—Convenient recursive prediction error algorithms for
identification and adaptive state estimation are proposed, and the
convergence of these algorithms to achieve off-line prediction error
minimization solutions is studied. To set the recursive prediction
error algorithms in another perspective, specializations are derived
from significant simplifications to a class of extended Kalman filters.
The latter are designed for linear state space models with the
unknown parameters augmenting the state vector and in such a way
as to yield good convergence properties. Also, specializations to
approximate maximum likelihood recursions, Kalman filters with
adaptive gains, and connections to the extended least squares
algorithms are noted.

1. INTRODUCTION

AN IMPORTANT class of nonlinear filtering and con-
trol problems arises when there is a finite dimensional
linear stochastic signal model with unknown parameters,
and a simultaneous state and parameter estimation is
required. An optimal solution to this adaptive filtering
problem is usually not feasible, and schemes based on
approximations must be investigated.

The extended Kalman filter (EKF) approach to adaptive
filtering is an obvious possibility. In this approach the state
space model, including noise covariances, is parameterized
by an unknown parameter vector (or matrix )8, and then the
elements of 6 are treated as additional states. Experience
indicates that this approach may lead to parameter estima-
tion bias [1] or divergence [2] in the case that the initial
estimates are not sufficiently good. As pointed out by Ljung
[3], the estimates will, in general, be biased unless the noise
characteristics of the signal model are known. However,
very natural modifications introduced in [3] ensure good
convergence of the parameter estimate to the true parameter
and thus good performance. The modifications which re-
quire the computation of 6K /86 where K is the Kalman gain,
in general, add considerably to the computational effort. Of
course when K is independent of 6 or is explicitly expressed
in terms of 0, as can frequently be arranged, then the
additional effort required is negligible.

For a restricted class of linear signal models par-
ameterized by 6, alternative approaches via extended least
squares (ELS)[3}-[5] and via approximate maximum likeli-
hood recursions (RML) [3], [6], [7] are also attractive. The
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restricted models are those for which the measurements z,
must satisfy z, = 6"H, x, + v, with H, measurable, x, the
model state vector, and v, a white noise process. Though not
obvious, this includes the case when autoregressive moving
average (ARMA) models are assumed with § comprising the
autoregressive and moving average parameters. (This and
other examples are given in [4], [S]) The approximate
maximum likelihood recursions for these models are
claimed in [3] to be asymptotically equivalent to specializa-
tions of the extended Kalman filter scheme of [3] and have
the same attractive convergence properties. The ELS
schemes are also widely used, being mildly simpler to
implement and having good convergence properties.
However, these require additional restrictions on the signal
generating system to achieve convergence.

The ideas of [3],[6], and [ 7] can in fact be exploited to yield
a recursive maximum likelihood method for simultaneous
state and parameter estimation in a linear state space system
with Gaussian disturbances. In Section II, such a theory is
built upon using results in [13] to yield, first, an off-line
prediction error scheme and, then, a recursive prediction
error algorithm in convenient form for state and parameter
estimation from vector measurements. In prediction error
methods [8], [9], the index to be minimized J,,,, is expressed
in terms of the prediction error z,5 = 2z, —
2, -+, t for some one step ahead prediction estimate z,, _,
and takes the form

"klk—lﬂs k=1,

[ 4
Jygo = 5 Z [Zd6 Ao Zupe + log det Aye)

where A, is some positive definite weighing matrix. The
derived recursive prediction error (RPE) algorithm is based
on approximated minimization of J,, for each t to achieve a
recursive update of a parameter estimate 0,.

In Section 111, a convergence analysis along the lines given
in [10] and [11)] and exploitation of ergodicity results in [§]
and [9] lead to the result that under very reasonable
conditions, the recursive prediction error algorithm leads to
the same parameter estimates (asymptotically) as an off-line
prediction error scheme. The attractive feature of off-line
prediction error index minimization schemes is that not only
do they achieve a minimum index which has strong appeal
but also the best predictor in the set of permitted predictors
in terms of spectrum closeness and Kullback information
function measures. See [9] for details.
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In Section 1V specializations of the recursions to the case
of known linear system innovations model structures with
unknown parameters are derived by introducing significant
simplifications to the extended Kalman filter designed with
the unknown parameters augmenting the state vector and
modified to yield good convergence properties. Thus it is
possible to demonstrate that the recursive prediction error
schemes are simpler than their nearest competitor, the
extended Kalman filter. The convergence analysis is also
more direct. The special case of a Kalman filter with an
adaptive Kalman gain is highlighted.

Manipulations of the RPE algorithm in Section V involv-
ing approximations allow significant computational
simplifications for the multivariable models discussed in [4]
and [5]. Such algorithms are considerably simpler than the
corresponding EKF algorithms. Moreover, additional man-
ipulations are possible in the scalar measurement case to
achieve further computational simplifications, and the re-
sulting class of algorithms contains the RML2 algorithm of
[6] and [7]. When specialized to single-input/single-output
systems described by x,., = Fx, + Key; z,= 0"x, + &,
with {¢,} as an innovations sequence, the above scheme
permits an interesting interpretation in terms of an ELS
scheme for a nonminimal model.

The fact that the RPE schemes of this paper have the
extensively studied and attractive RML2 algorithm of [6]
and (7] as an important subclass, we believe, is sufficient
support of the RPE schemes of this paper at this stage—at
Jeast as far as simulation studies are concerned.

In a paper under preparation, refinements of RML2 and
more general RPE algorithms to avoid stability tests are
proposed, and simulation studies are given which further
support the approach developed here. In cases such as a
Kalman filter with an adaptive gain where the algorithms of
this paper are novel, the supportive simulation studies are of
particular interest.

II. THE RECURSIVE PREDICTION ERROR ALGORITHM

In this section, we consider in turn the prediction error
index, its minimization using off-line calculations, and then
its minimization using on-line techniques.

A. The Prediction Error Index
Consider the index

1 & . .
Jyo= 3 Y [ZkeAxo Zio + log det Aol
k=1

(1)

Here 6 is the unknown parameter r-vector, Z,eis the onc step
ahead prediction error, and A, is some positive definite
weighting matrix.

In the case of linear state space signal models with
Gaussian disturbances and unknown parameters 8, the one
step ahead prediction estimate which is most widely used is
given from a Kalman filter as 2, ;0= E{z\|z¢. 2. ",
Zx-1,» 0}. The prediction error z,, is the innovations
sequence, and if in (1) A, is the innovations covariance
matrix, then (1) represents the negative log-likelihood func-
tion within a constant.

For the special case when A, is independent of 0 and is
denoted as A,, the functional to be minimized simplifies as

- 1 & e
Jypo=3 Z [ZkTwAk lzkle]'
2,5

This functional is coincident with the loss function described
in [6] for the case of scalar Z,, with A, = 1.

B. An Off-Line Prediction Error Method

The scheme of [13, p. 92] is here restated and generalized
to handle the case when A, is a known function of 6.

The basic iteration is a gradient-type nonlinear program-
ming algorithm

9i+1 = ai_piMi—lgi (2)

where 0, is the parameter vector estimate at theithiteration,

= (J;18,)" is the gradient vector,' p; is a step size parameter
to accelerate the algorithm (e.g., initially p; > 1,but p; — 1 as
i — 00), and M, (short for M,,) can here be chosen to have
the following attractive properties:

i1} M, >0, for all i
ii) E[Mya] = E[Jijo]
o1 1 o
iii) P Mo, — " Jie,  ast— oo (if possible).

We do not select M; = Jj, as in the Newton-Raphson
method since its calculation is cumbersome and condition
(1) above is not satisfied in general. The convenient expres-
sions for g; and an M; to satisfy the above properties are

!

gl =Jio,= Y [ZheMadZue +

%d’:{w. - %“klé;] (3)

M, =Myo= Y [(Zuo) Ao Zhs) + 1duebhia]  (4)

k=1
where
_, 0 _, CA
o el ) ol )]
oA . OA i~
I‘uo:Lkw/\kw [ 0:;'? Aklf)lzklﬂ T ao(k,l)g Aklﬂlzklﬂ]' (Sb)

C. Motivation and Verification for M; Selection

To motivate the above selections of M, first consider the
Gaussian case when it is reasonable to replace Jjjy, by the
Fisher information matrix E[(J;5,)"(J}j6,)] as in the Gauss-
Newton method [12]. It is immediate that this selection
satisfies (i) above, and in fact

E[‘];’M] E[ x|6 )T( 1]6)]

Thus (i) holds, as can be shown by direct manipulation. In
fact, the direct manipulations do not exploit the Gaussian
assumption, and thus (i) and (ii) hold with this selection for

! The following convention is adopted throughout the paper: ¢f/c0.
where f# and 0 arc vectors, denotes a matrix with ijth element ¢ /e0t
where " and 09" are the ith and jth components of § and 0, respectively.
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M, without the Gaussian assumption. Now it is not appro-
priate to work with M; as the expected value of some
quantity, and so some sample approximation ideas (not
developed here) lead to the convenient expression for M; as
in (4). Via the tedious derivations in [13, p. 269] it is
immediate that E[M,,], where M, is given from (4), is
identical to E[(J35,)"(J316,)), and so this selection for M; also
satisfies (1) and (ii) above.

As for (iii), under the reasonable stability assumption that
forallk, I, somea>0,and 0 < f < 1,

ST A-13 =T A-13 k-1
cov[Zie Axig' Zujer Zio Ane Zye) < op*

then application of lemma 3.1 of [9] yields the asymptotic
ergodicity conditions (1/t)M, s — E[(1/t)M ], (1/tW 36—
E[(1/t}},] as t — oo, and (iii) follows from (i1). As noted in
[9], when the signal generating system and one-step-ahead
prediction conditioned on 8 are linear systems with impulse
responses w(-, ) satisfying ||w(k, !)| < af*~"1(k — I) and
with no uncontrollable or unobservable modes, and the
input to the signal generating system comprises a sequence
of independent random variables with bounded fourth
moments, then this condition is satisfied, and (iii) holds.

D. Recursive Prediction-Error Algorithm

Here we work with ¢ as arunning variable ratherthanas a
fixed constant and consider a sequence of estimates 6,
0,, -+, 8, for each t. Let us introduce the notation z, to
denote 2,,,,,...,_, and likewise for A, ¢, u, and J'. Also
denote

= _ 0Z118,0, - 8,_0

‘T 00
In order to achieve an on-line algorithm from the above
ofl-line scheme, the following approximations are in-
troduced. They are not justified in this section but are rather
presented as heuristics.
Rewriting (3) as

6 =8 -1

[ ’ ~T -1~ T
1o, = Ji- 118, + Zuig, /\.pofzqm + %d’xw,- - %ﬂ:w.«
set J;_ s, to zero with the implicit assumption that 8, is

chosen to minimize J,_ ;o over 6 as in the Newton-Raphson
method. Then an estimate J;,, is given from

T =T — 13 14T 1
Jie = Z:|oiA;|oi EAT z¢:|o.- — 2H40;-

Now approximate Zy, by Z, (recall 2, £ Z,p,4,...4,,) and
likewise for Z', A, ¢, u, and J', since on the assumption that 0,
converges, the approximations are good ones as t— 0.
Similarly, employing Z; and ¢, in (4) rather than Z;,, and
dus, approximate M, and M, . Let us denote the
approximations by M, and M, _,, respectively.

With the above approximations, the recursive prediction
error algorithm is simply

@Hl:at—potAl(j;)T (6)
where with the definitions (5)
= 3TA7 1%+ b7 — b,

Ji (7)
Ml = Ml'l + (2;)TAI_’(§;) + %¢!¢IT‘

8)

g e p—— B I
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A further manipulation using the matrix inversion lemma
and the definition P, = M, ! leads to the more convenient
algorithm.

E. RPE Algorithm

B,=0,_, - p, PIGYA %+ 40— 4] 09)
where
P¥ =P, —P_4(Z)'S @)y,
S, = A+ G)P,_(z) (10a)
P,= P — Pt¢(2+ ¢[P.¢) ¢ PF.  (10b)

[See also definition (5).] In the absence of a priori knowledge,
the initial conditions of (9) and (10) are usually chosen as
0, = 0 and P, = ol where a is a large positive number.

F. Remarks

1) A special case of some importance is the one in which
the weighting matrix A, is independent of 6. For this case
the RPE algorithm simplifies as

ér = al—l - p,P,_l(E;)TS,_IE, Je
P,=P_, - P:—l(z;)TSl—l(E;)Pl-l’
S, = Al + (E;)Pt‘l(z)T‘

Notice that the crucial intermediate results in the
simplification procedure are

Pr(z;)TAt_l = P:—l(z;)TSx-l,

2) In the case of single-input/single-output system repre-
sented by

P, = P¥.

X,+1 = Fx, + Gy, + Bu, + K¢,
Ve = BTXU =yt g

where {¢,} is an innovations sequence with constant covar-
iance, the RPE algorithm is coincident with the recursive
approximate maximum likelihood algorithm RML2 of [6]
and [7] for which extensive simulation results are available.
There are similarities in the derivation, but the method of [6]
can not be immediately generalized to the vector case given
here.

3) To avoid numerical difficulties in the RPE algorithm,
square root filtering versions (or fast square-root versions
[15]) are used in practice. Stochastic approximation versions
are also readily defined [16].

4) Let us introduce the notation R,=7y,P; ! for any
decreasing scalar sequence y, satisfying the assumptions,
Y, %= 00, 32, ¥(t) < co (or more generally, A.6-A.9
of [10]). Then (9) and (10) with p, = 1 can be reorganized
with minor variations as

ar = Z)r—l - )’rR:I[(E;)TAr— ‘El + %d): - %#;r] (lla)
R,= R,y +2[(Z)'A () + 3.8 + 61 —R,_,] (11b)

where the introduction of 81 ensures that R, > 61 for some
6 >0 and all ¢t if Ry > éI. Usually the new step size y, is
chosen with v, > 1/t initially and y, — 1/t as t - co.
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1I1. AsymptOoTiC EQUIVALENCE TO OFF-LINE
IDENTIFICATION

The aim of this section is to apply the theory of [8]-[11]to
show that under reasonable conditions, the RPE algorithm
is asymptotically equivalent to an off-line prediction error
minimization, and to thereby justify the RPE scheme.

Consider now the ordinary differential equation (ODE)
associated with the recursions (11)

dir 0(t, t) = R~ Y(z, ) f[O(z, 1), 1] (12a)
;—z R(t, t)=G[O(z, t), t] + 6] — R(z, 1),  R(0,t)> 4l
(12b)

where t is here a fixed parameter and with (z, t)abbreviated
as 6 (not the true 0):

f(g, l) = - E{(E;IB)TAt—IOI 2x](} + %¢1[8 - %“rTIB} (13)
G(0, t) = E{(Z116) " Aute' (Zito) + 30110 bllo}- (14)

Applying the theory of Ljung (Section V of [10]), which
works with the limiting form of the ODE as t - oo under
conditions ensuring the existence of the various limits, gives
immediately the following convergence result.

A. Convergence Result

_ The recursions (11) converge almost surely to the set
D, = {6|lim,_, f(6, t) = O} if the following hold.

1) 8, € D, for all t where D, is the set of all  such that the
predictor generating Z,, and the equations generating the
intermediate variables Z;, ¢,, etc. are exponentially stable. (If
6, ¢ D, for some t, then it should be projected into D, e.g., by
reducing the step size.)

2) The prediction error Z, is asymptotically stationary
and bounded above? for all 6 € D,.

3) The reasonable regularity conditions (A.3-A.5 of [10])
on the functions which define the recursions (11) and on the
predictor equations, including the equations for the inter-
mediate variables, are satisfied for all 9, € D, when 2) holds.
(These conditions can be checked before applying the RPE
algorithm.)

4) The ODE (12a) and (12b) (parameterized by t) is
asymptotically stable in the limit ast — oo forall0(z,t) € D,.

B. Remarks

1) The stability of (12a) and (12b) is investigated via the
Lyapunov function V(, t) — V(6*, t) where with 0(z, t)
again abbreviated as 0 (not the true 0),

V(6, t) = JE{Zfjg A s 2y + log det A} (15)

and V(0*, t)denotes the global minimum value (assumed to
be unique) of V(6, t) with respect to 6. Here, with an
assumption that A, is uniformly bounded below, the
function V(6, t) — V(6*, 1) is positive definite for all t and

2 At the expense of some additional regularity conditions, this require-
ment (condition A.2 of [10]} can be relaxed so that Gaussian noise models
are not excluded.
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6 € D,. Note that in the limit as t — oo, the function V{0, t)

tends to infinity for 6 outside the boundary of D,. With
appropriate differentiability assumptions

V’(e’ l) = E{(E;IO)TAJBIEAO + -2l¢l|0 - %VITIB}T

= _fT(oa t) (16)

and

:—T ViO(z, t), t] = V'[0(x, t), ] % 0(z, ty

= —fT[0(z, t), )R~ Y(x, ) f[0(z, t), ). (17)

Since R~ !(z, t) is a positive definite matrix for all 7, ¢, as well
as for t — oo, the function V(6, t) — V(6*, t) is decreasing
outside the set D (t) = {6 f(6, t) = 0} which coincides with
the set of stationary points of (12a) and (12b). Therefore, in
the limit as t — oo, 6(t, t) converges to the set D (which is a
subset of D,).

2) Inorder to establish the relation between the set D, and
the set of local minima of J,,, we require an asymptotic
ergodicity condition?

i 1 o
lim [? Jyo — E . J:l@” =0, with probability 1.
1~
(18)
Also, we require an additional condition that
| - .
lim = Y V(6, k)= lim V(6, t) (19)
a0 k=1 t—o0

which is ensured if V(0, t)is uniformly bounded from above
for allt,and lim, ., V{6, t)exists. Under the conditions (18),
(19) the following relation can be derived

1 .
lim " Jiye = lim V(0, ),

1= a0

with probability 1 (20)

t— o0
and hence the set D, is coincident with the set of local
minima of J .

3) For the case when J s has a unique minimum, the RPE
algorithm is then, under the conditions of the convergence
result and (18) and (19), asymptotically equivalent to any
off-line prediction error scheme. For this case, the RPE
estimate has the attractive features of the off-line estimate as
outlined in [8] and [9].

4) The above convergence results are perhaps significant
only in that they tell us that the particular recursive approxi-
mate prediction error algorithm of the previous section is
one that should be studied more closely, since under various
reasonable conditions, the recursive scheme leads to the
same result as an off-line minimization.

5) Specializations of the above convergence theory for
the case of scalar ARMA models is given in [7].

IV. RELATION TO THE MODIFIED EKF ALGORITHM
In this section we demonstrate that the RPE algorithm of
Section 1I specialized for the case of linear innovations

3 Interpretations in terms of asymptotic stability of models is given in
[8] and [9].
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TABLE 1

Eq. No. Modified EKF Algorithm RPE Algorithm?

(Tl) aﬂl—a +l1 §|¢l=91+l1.5|

(T2) - = (C,P} + D PSS! L¥ = PHC,W, +D)sp !

or
L‘t — Pt\P s- 1
(T3) S,=A+D,PD] Sr=A+ \PTP‘\!‘
+[D, (P’)TC'] + [p(PHYCT)"
(T~4) P:zﬂ—(-(" 1 )3 W (A—KC)W+(M KD)
+ (M, - K, D P,
P,H—AP + M, P} - K,S, LT
(T5) P, =P} LSLT P, =P - 13SILYT

+ With modified time indexes.

models can be derived from the modified EKF of Ljung [3].
In fact, the modified EKF is an RPE algorithm with a
particular way of computing the search direction. As shown
below, neglecting terms which asymptotically approach
zero in the EKF leads to a simpler RPE algorithm, viz,, the
appropriate specialization of the schemes of Section I1.

The linear innovations model under consideration is
described by

X,+1 = A(O)x, + B(0)u, + K(0)z,, (21a)
= C(0)x, + ¢ (21b)

where x,, z,, and u, are vectors of dimensions n, m, and p,
respectively, and the sequence {¢,} consists of independent
random vectors with zero mean and covariance

xo=0

Efe,el} = Ad,,. (22)

The prediction error £, = Z, is given from
5‘1+1 = A(;‘r + Btux + Krér (23)
:91 =2z, — er\‘r (24)

with the abbreviations A(8,) = A,, etc., where 8, is the
estimate of § at time ¢ and X, is the estimate of x,.

The modified EKF algorithm* [3] associated with the
model (21a), (21b) and (22) is given by (23) and (24) and the
recursions in Table 1, as is the RPE algorithm for compari-
son. The following definitions apply:

M, = M(a,, 5(,, Uy, éx)

0
=28 [A(0)x, + B(O)u, + K(6),)o -, (25)
P J .
D, = D(O,, x,) = % [C(B)x,](,:o’ (26)
o%, 5 \" .
ng‘bf§\yr=_ 20, = (C,W, +D,)". (27)

In the algorithms, the estimate 9, is constrained such that
|A[A, — K,C/]| < 1 for all i, t where 1[X] denotes the
eigenvalues of X. Note that the quantities L,, S,, and P} are

4 More precisely, this is a modified one step ahead predictor algorithm.

g e - e -

parallel to L¥, S* and P¥. The quantity P?(P})~
parallel to W,.

! is roughly

A. Remarks

1) The computational burden associated with the RPE
algorithm is less in equations (T.3) and (T.4) of Table I than
for the EKF scheme. (The difference for each iteration is
mnr + m*n + mr? multiplications where n, m, and r are the
state, measurement, and parameter vector dimensions, re-
spectively. The number of multiplications in the RPE equa-
tions of Table 1 is 3(rm* + r’m)+n’(r + m)+rm+
2mnr + r*. Withm = 1, r = 2, and n = 4, for example, there
is a reduction of 17 percent in the number of multiplications
in going from the EKF scheme to the RPE scheme. With
m = n = r = 4, the reduction is of 26 percent.)

2) Kalman filters with an adaptive Kalman gain have
been studied by a number of authors; see for example {5].
The RPE scheme of this section appears to be the most
straightforward approach with guaranteed convergence. In
this case the model is (21a), (21b) where A(6), B(), and C(0)
are in fact independent of 8 and are known, and the columns
of K(6) go to make up 6. The RPE algorithm of this section is
relatively simple since 4, = 4, B,= B, C,=C, D,= 0, and

= (0/00)K(0),Jo=4, It is coincident with the RML2
scheme [6] and [7] for single input-single output signal
models with unknown “moving average” parameters asso-
ciated with the noise but with known autoregressive par-
ameters and known moving average parameters associated
with known inputs.

3) The convergence analysis for the EKF algorithm is
given in [3] and the asymptotic equivalence of the two
schemes for the special case when C(0) = 0"H, A(0) = F +
(G + K)0"H, K(0) = K, and B(0) = B is pointed out. This
theory is now generalized for the innovations model (21a)
and (21b) along somewhat different lines so as to yield an
alternative derivation of the RPE algorithm.

B. Derivation of RPE Algorithm via EKF Theory

The EKF algorithm can be reexpressed in terms of W,
where W,= W,— W, W = P*(P*)" ' Setting

CWP} =0, CWPWICI=0

* The matrix W, is defined by (T.4) of the RPE algorithm, but with 4,,
etc., evaluated using EKF 6,.
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then yields the RPE algorithm. The details are as follows.
From the definition of W,and the EKF algorithm,

W1 = (4, —K,C)W, + (M, — K,D,)
+ Pl+l (Pz+1) - (P‘S)—l] (28)
and
Wr+1_( KC)W PH—I[(PHl)_l_(Pta)—l]'
(29)

Rewriting S, in terms of W yields after a tedious derivation,

S,=A+Y¥YIP¥, - (C,W,PPWICT
+ C,W,P}DT + D,PWTCT). (30)
Similar treatment for L, and P} gives

L:P?\P,S,—l—(P?W,TC,TS,—I) (31)

P}, = P} — PV,S;7'WTP? + (P?¥,S.'C,W, P}

+ P2WICTS; 'WT P} — PXWTCTS7'C,W,P?).

(32)
Setting C, W,P3 =0 and C,W,P3WTCT =0 in (30), (31),

and (32) leads to the RPE algorithm with P} = P* L, = L*
and §, = S*.

C. Justification

The terms C, W,P3 and C ,W,P3W'CT approach zero
asymptotically as the following lemma shows. Now since the
calculation of these terms adds considerably to the calcula-
tions, it makes sense to try a scheme in which they are set to
zero. Of course, the resulting RPE algorithm will have a
somewhat different search direction than the modified EKF
scheme viewed as an RPE algorithm, but the heuristics that
lead to the algorithm can only be justified by a convergence
analysis and experimental verification. The convergence
analysis of the previous section, of course, specializes to yield
that the REP scheme of this section converges under
reasonable conditions not restated here. Also since RML2 of
[6] and [7] belongs to the class of algorithms here and is well
studied experimentally, we have reasonable experimental
confirmation of the usefulness of the heuristics above.

Lemma: Let the matrices (4, — K,C,), (M, — K,D)), C,,
and D, be bounded above uniformly in r. Then with
|A{4, - K,.Cl| <1,

1) P} >0, ast—oo
2) C,W,P3 -0 and C W PIWICT -0,
Proof Outline: 1) From the EKF equations
S,=A+D,P}D] + D(P})'C + C,P{D]
= A+ WTPP, — (CPI)PY) M (C.P)

as t — oo.

where

¥, 2 [C,P2(P?)"! + D]".

N ;- i T e
AR o e T AN e ek o e

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

Hence
S, <A+ 9PV,
Define
P,,,=P,— P95 '9TP,
S;=A+¥7P,¥,

For each t where P, = P},
(P;+1—P)_(PHl_P:a):P?@r(Sr_l

and, therefore, P, > P? > 0.
Applying the matrix inversion lemma yields
P, = P7' + ¥,A "W which in turn implies that®

-5, WIP >0

-1

?
Pi=|P3'+ Y AT -0, ast—oo.
k=0

Since P, > P? > 0, then P> >0 as t —» 0.

2) Under the conditions of the lemma, (T.4) of the EKF
algorithm ensures that P? -0 as P2 — 0. Therefore,
C,P? + D,P}=C,W,P} + D P = \PTP3 CWp-0
as t — oo. But, under the condmons of the lemma, W, and,
hence, ¥, are bounded above, giving that WTP} -0 as
t — co. The results 2) follow.

V. FURTHER SIMPLIFICATIONS

In this section we restrict attention to the innovations
signal models of {4] and [5]:

X4y = (F + GO)x, + Kz, + Bu,
2, =0Ox, + ¢

where x,, z,, and u, are vectors of dimensions n, m, and p,
respectively, and the sequence {¢} consists of independent
random vectors with zero mean and known covariance. The
unknown parameter clements are organized into an un-
known m x n matrix @ =[6,60, --- ,] or as a vector

= [676% --- 67).

The algorithm defined by the model (33) and (34) and by
an appropriate scheme for estimating # contains as a
subclass of algorithms the output error identification
methods and the model reference adaptive schemes. The
adaptive observers are also closely related. The detailed
reference list is found in [4].

Let © and 8 denote estimates’ of ©, 0; then the prediction
equations are

Xpo1=F%, +

(G+K ?/Bu, + KE, (35a)
3, = 0%, g =

(35b)

-‘Z,

SIf

P AT 4 oo

M8

k

[}

then a modification like the one introduced in (11b) is required.
" The estimate is time varying in the RPE algorithm, but for simplicity
of notation the subscript t is omitted.

L — e —
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Using the RPE scheme for estimating 8 we need to
calculate ¥,. In this case, ¥, & —(85,/00)" is readily cal-
culated by taking derivatives in (35a) and (35b) and intro-
ducing the definitions

n

npv] = 2% ‘nx[éf]- 0 \" 36

r"“é@‘i o= 5@—, : ( )
A. Algorithm for ¥,
- ¥

Wi, =FW: g(\lﬂ)f (P = exT + OW Wi=0

(37)

fori=1,2,---,mwheree;is azero vector of appropriate size
m save that the ith element is unity, and

(\PI)T =m]

nxm
()T (¥) - (7))

Motivated as in the scalar measurement case where
RML.2 algorithm [6] and [7] is employed for calculating ¥',,
we demonstrate a parallel simplification for the multi-
variable model of (35a) and (35b). The simplification re-
places ¥, by an estimate ¥, with the property that,if®, - ©

as t —» o0, then ¥, » ¥, as t - oo, and also that the conver-
gence theory of Section I1I is unchanged by the substitution
of ¥, for ¥,, as it demands that ¥,y — W, as t - oo for all
0 € D,.

The calculation of P, is simplified in the sense that it
requires less computational burden than for the direct
scheme of (37). The computational saving is illustrated after
the presentation of the algorithm and its convergence
analysis.

B. Algorithm for ¥,

(38)

¥i,, = (F + GO + Kz + Bi (39a)
P = [(F) (Y- (D)) (39b)
where
a1 = (F + GOy — Gez/u/] (40a)
2- [] o — (10" (40b)
U U,

and n, = 0, ¥, = Ofori = 1,2, ---,m. The matrices [¥], [ni],
and [(z))"(&)7] are of dimensions nxm,nx (m+ p),and
m x (m + p), respectively.

C. Rationale

Introducing g as the forward shift operator, we have that
(37) in operator notation is

(V)" = Dlg™")ekT = dilg™')&7 (41)

where df(g™!) is the ith column of D(g™')=
[1,, — ©(gl, — F)"'G]™!, and also that (40a) and (40b) in
operator notation is

- oo 23]

If now di(g~ ) is independent of ¢, as when § has converged
to 6, then postmultiplying (35a) and (35b) by d/ (¢™ ") and

(42)
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Fig. 1. Simplified RPE scheme.
reorganizing in terms of (41) and (42) gives recursions for ¥;
as

i.1=(F + GO + Kz + Bii. (43)
To indicate that (43) is an approximation, ¥; is replaced

by ¥i. Fig. 1 depicts the algorithm where W(g™ ') is a
known subsystem with parameters F, G, K, and B.

D. Convergence Analysis

As already noted, with @ € D, independent of time, the
recursions (39) and (40a) and (40b) are identical to (37),
which means that the stability analysis associated with the
ordinary differential equation of the RPE algorithm as
t — oo is unaffected by the simplification. We conclude that

-the convergence analysis of an earlier section remains valid

for the simplification.

E. Computational Burden

The computational burden associated with equations (39)
and (40a) and (40b) is less than for equations (37). As an
indication, the calculation of ¥, requires n®(4m? + mp) +
n[2m® + 2m*(p + 1) + mp] + (m> + m?p) multiplications
for each iteration, while the calculation of ¥, requires
n’m + 2n*m? + nm? multiplications, where n, m, and p are
the state, measurement, and input vector dimensions, re-
spectively. Observe that in (39) and (40a) and (40b) the
number of multiplications is proportional to n?, and in (37)
it is proportional to n*. Withm = 2, n = 10, and p = 1, for
example, there is a reduction of 24 percent in the number of
multiplications in going from (37) to (39) and (40a) and
(40b). With m = 2, n = 20, and p = 1, the reduction is 30
percent.

F. Remarks

1) For scalar measurement models a further
simplification to this algoritm is possible as follows. Let
d;j(q™ ') be the ijth element of

D(g™") = [I. ~ ©(gl, ~ F)7'G] ™",
then (38) and (41) imply

Ty .
Ju(q‘ﬂl)“rr dlm(q_l)x:T

: (44)
(g7 R

(¥) =m l
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With m = 1 the matrix D(g™!) is reduced to d,,(¢g” ') =
(1/[t — 6"(gl, — F)" 'G]), and (¥,)" is given by d (g~ ")xT.
If T is chosen as

5=~
which is always possible, then (¥,)" is determined by
(‘PI)T= [-'dll(q_l)zr—l _dl1(‘1_1)Z:—n.|d11(q—1)“:—1
cody (g o |dia (@) dya(gT )]
"1 | BBy
ﬂ:T‘n,,H'V:Yz—: S Y

where a,= —d, (g7 ")z,-,, Bl =dyi(q” "Jui-,, and
y, = dy,(¢” ');,. Thus the calculation of ¥, is reduced to the
calculation of «,, §,, and y,, and their time shifts. It turns out
that this class of algorithms contains the RML2 algorithm of
[6] and [7].

There appears to be no corresponding simplification for
the vector measurement case unless there is available an
explicit expression for D(g 1), since the computation of a,,
B, and v, is done in terms of the coefficients of d;j(g™ ).

However, for multivariable signal models described by
A(q™")2,= B(q~*)u, + C(q~")s, where

A@ ) =I+A4,g7" "+ + A, 9"

Bl@')=B,qg '+ -+ B,q ™ Clg7)=1+Ciq '+
-+ + C, g~ ", the transfer function matrix D{g~ ') coincides
with [C(g~ )]~ !. For this case it is possible to use canonical
forms where C(g~!) is a diagonal matrix (canonical forms1I
and IIT of [17, p. 94]) and thus to have an explicit expression
for D(g~'). Notice that these canonical forms reduce the
computation but at the same time lead to a less accurate
parameter estimate [17, p. 108].

2) For scalar measurement models (® = 67), no external
input (B=0), and no internal feedback (G = —K), the
system model is reduced to MA model, and the predictor is
simply the familiar set of equations

2y z‘r—n,l urT—l ulT—m,lél—l éx—n‘]’

= [arat—-l o

%,., = F%, + K&, (45a)
(45b)

The calculation of ¥,, or rather ¥,, employed in the RPE
algorithm is achieved as

z,=0"%, + &,

¥,,,=(F— K0P, + K&, (46)
In this case D(q~ ') = [1 + 07(ql, — F)"'K]™,

z, = D(q_l)zl’

and z, = D™ '(q" )¢, and thus z, is simply the pseudoinno-
vation &, It is this fact that allows us to achieve the very
simple algorithm for W,, or rather its estimate ¥,. This
algorithm is coincident with the corresponding RML2
algorithm.

3) Without giving the details here, it is of interest that the
RPE algorithm for this special case with ¥, replaced by P, is
in fact identical to the algorithm one would achieve using
ELS ideas to a somewhat unconventional nonminimal

crnw = wein s e e - - —
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Fig. 2. RPE scheme achieved via extended least squares.

model. The conventional model for ¢, consists of the innova-
tions model for z, followed by the whitening filter is not
suitable for application of extended filtering ideas since &, is
not expressed directly as a linear function of the unknown
parameters. However, in the case of scalar z, and &,, there is
no loss of generality reversing the concatenation, and so
achieving an unconventional model for £, in which &, is
expressed directly as a linear function of the unknown
parameters. For this model, the ELS approach leads to the
RPE algorithm above. Fig. 2 depicts the situation.

VI. CONCLUSIONS

The procedure of Séderstrom [6] to construct a recursive
approximate maximum likelihood parameter identification
algorithm for scalar observations from a special class of
parameterized linear signal models and the convergence
analysis due also to Soderstrom, Ljung, and Gustavsson [7]
do in fact have very useful generalizations for more general
prediction error indexes and innovations signal models. In
the derivation of the off- and on-line prediction error
schemes, there is a key role for convenient derivation of the
Fisher information matrix by Goodwin and Payne [13].

The convergence theory is useful to justify the steps
leading to the recursive prediction error schemes for it
indicates that under reasonable conditions, the recursive
scheme leads asymptotically to the same result as an off-line
minimization. Couching the convergence results in these
terms, there is immediately available a theory from Ander-
son, Moore, and Hawkes [9] of what happens when the
signal generating system is not in the assumed mode] set.

A crucial restriction on the prediction error schemes
proposed is that the pseudoinnovations z, and its parameter
sensitivity matrix (vector) z; be available. These quantities
certainly are readily caiculated on-line for the class of signal
models of [4], [5] and the more general ones discussed in the
paper, but for certain minimum variance control, or certain
filtering problems, the sensitivity matrix may not be readily
calculated. Further study for such cases is at present under
way using approximations to the sensitivity matrix.

The simplifications possible for the recursive prediction
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error scheme and the computational effort comparisons of
the paper, suggest that these algorithms have some inherent
advantage over the extended Kalman filters derived by
augmenting the state variable of innovations models with
the unknown parameter vector, asin Ljung[3]. Further case
studies could confirm or dispél such a conclusion.

In a later paper, the RPE schemes of this paper (including
RML2 algorithm) are modified so as to avoid the stability
test at each iteration as a necessary step to ensure conver-
gence. The simulation studies of this later paper further
support the approach developed here.
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Artificial Intelligence Programming Languages
for Computer Aided Manufacturing
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Abstract—Eight Artificial Intelligence programming languages
(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP,
POP-2, AL, and QLISP) are presented and surveyed, with examples
of their use in an automated shop environment. Control structures are
compared, and distinctive features of each language are highlighted.
A simple programming task is used to illustrate programs in SAIL,
LISP, MICROPLANNER, and CONNIVER. The report assumes
reader knowledge of programming concepts, but not necessarily of
the languages surveyed.
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1. INTRODUCTION

ARLY INTEREST in computers and computing
Etended to revolve around the high speeds at which
numerical calculations could be performed for such tasks as
discrete analysis, simulation, payroll handling, and the like.
These first applications were supported by such languages as
FORTRAN, ALGOL, and COBOL. Today, numerical
tasks are still prevalent, and thereis a host of new languages.
However, there has been a growing interest in the applica-
tion of computers to computations which are less numeric
and more symbolic in nature, in particular in applications in
which the key problems are not the speed of multiply and
divide hardware, but rather in the forms of data storage and
control that are needed to carry out complex decision
making and planning tasks.
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