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Wae investigate the defining power of finite recursive specifications over the theory with- + {non-"
determinate choice) and - {sequential composition) and A (the state operator) over a finite set of
states, and find that it is greater than that of the same theory withotit state operator. Thus, adding -
the state operator is an essential extension of BPA (the theory of processes: over +,’).. On the'
other hand, applying the state operator.to a regular process again gives-a regular process. As a-
limiting result in the other direction, we find that not all PA-processes (where also parallel
composition |l is-present) can be defined over BPA plus state-operator. ; ‘
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1. INTRODUCTION. , - R

The theory BPA (Basic Process Algebra) is the starting point for a whole range of theories for concurrent
communicating processes (see ¢.g. BERGSTRA & KLOP [BK2]), that can be classified as an algebraic and
axiomatic approach to concurrency (in the vein of CCS, see MILNER [M] or CSP, see HOARE [H]).

BPA has two binary operators: + is alternative composition (non-deterministic choice, as in CCS), and -
is sequential composition (as ; in CSP), and consists of just five simple axioms (see below). We add the
constant  for deadlock, with two extra axioms. In addition, we allow systems of recursive equations over
BPAj (compare the p-operator in CCS or CSP). The defining power of such recursive specifications was
schi_ed in BERGSTRA & KLOP [BK1]. There, it was found that a wider class of processes cah“be_'de,ﬁned
than the class of regular processes, and that the addition of the parallel operator Il (merge, giving the theory
PA) increases the defining power further. "

The state operator A was introduced in BAETEN & BERGSTRA [BB]. It can be used to describe actions
that have a side effect on a state space, and showed itself useful in a range of applications, e.g. for the
translation of computérprograms into process algebra (for instance, sce VAANDRAGER [V]). Now the

question arises if the defining power of BPA is increased by the addition of the state operator. Of course, we
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have to limit ourselves to a finite state space, for otherwise any process becomes definable (see the example
of the queue in [BBJ). In this paper, we answer this question positively.

We obtain the theory of regular processes (finite automata) if we limit ourselves to linear spemﬁcanons
over BPA. We show that applying the state operator t0 a regular process again yields a regular process. On
the other hand, if we are allowed to use the state operator in the recursion, then all processes that are
definable over BPAg, are definable by a linear specification over BPAs + A. Even some processes that are not
definable over BPAs, are definable by a linear specification over BPAs + A. On the other hand, not all PA-
definable processes are definable over BPAs + A. '

2. STATING THE PROBLEM.

2.1 BASIC PROCESS ALGEBRA.

The axiom system BPA consists of the axioms in table 1 below. The signature of BPA consists of a set A =
{a,b.c,...} of constants, called atomic actions, and the operators + (alternative composition) and - (sequential
composition. Often the dot - and parentheses will often be suppressed. - - binds stronger than +. By a process
we mean an element of some algebra sausfymg the axioms of BPA; the X,y,Z in table 1 vary over processes.
Such an algebra is a process algebra (for BPA) e.g. the initial algebra of BPA is one.

X+y=Y+X
(x+y)+z=x+(y+z)
X+X=X .

(X +Yy)Z=XZ+yz
(xy)z = x(yz)

Table 1. BPA.

raae

2.2 EXAMPLE.
a(b + c)d denotes the process whose first abt’ioq is a followed by a choice between b and ¢ and concluding
with d. By axioms Al and A4 we see that a(b + c)d = a(cd + bd). Note, however, that BPA does not

" enable us to prove that a(cd + bd) = acd + abd.

°

2.3 DEADLOCK.

We dlsmngmsh one special constant in A, namely 3. We use this constant to denote deadlock, reached when
no action is possible anymore, the absence of an alternative to proceed. The constant 3 € A ‘has two special
axioms, displayed in table 2 below. We denote the theory BPA + 3, with axioms A1-7, by BPAs.

_'mx+8=i:-‘ . | ]
Tabie 2. Deadlock.

Now we consider recursive specifications over BPAs. We give some definitions.
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2.4 DEFINITIONS.
1. A system of recursion equations Or recursive specification (over BPAg) is a finite set of equations
, E={Xi= si(Xo,....,Xn) 2i=0,...,n},

where the s;(?) are process expressions in the signature of BPAg, possibly containing occurrences of the

recursion variables in X. The variable Xg is the root variable. Usually we will omit mentioning the root

variable when presenting a system of recursion equations, with the understanding that it is the first variable in

the actual presentation. »

2. We will also on occasion use infinitary recursive specifications

E={Xi=si{(X):ie N}, |

but will always state explicitly when that is the case.

3. A process Po (in a certain process algebra) is a s_olmion of a speciﬁcatioh E if there are processes p1,... in

this process algebra such that substituting processes Pi for variables Xj yields only true statements.

4. Suppose that the right hand side of a recursion ec}uation Xi= s;(?) is in normal form w.r.t. applications
v (ﬁ'bm left to right) of axioms A4 and AS in table 1. Such a recursion equation is guarded if every occurrence

of every Xj (= 0,...,n) in si(X) is preceded (guarded) by an atom from A; more precisely, every occurrence

of Xjisina subexpression of the form a-s' for some atom a and expression §'. For instance, the equation X

= aX + YDY is not guarded, as the first occurrence of Y is unguarded; but the recursion equation X = c(aY +

ZbX) is guarded. , '

If the right hand side of an equation is not in normal form w.r.t. A4 and AS, it is said to be gnarded if it
is so after bringing the right handsxde into normal form. ' :

Now we can use guarded recursive specifications to define pro¢ésses. It is obvious that not every

specification can be used to determine a process (as every process satisfies the equation X = X), but
guardedness is a sufficient criterion to guarantee unique solutions in several algebras (see e:g. BERGSTRA &
KLOP [BK2]). We will assume in the sequel that every guarded recursive specification has a unique solution
(also for infinitary specifications!), and we say this process is defined by the specification.

2.5 TRACE CONSISTENCY.

. We will also need a way to tell when two process expression cannot give the same process. Certainly, two
processes that are equal, must be able to perform the same sequences of actions (must have the same traces).
Actually, this criterion is sufficient for our purposes. We will now give an operational semantics for process
expressions that yields the traces of such an expression. This semantics is given by means of action rules
(first given for process algebra in VAN GLABBEEK [G], but appearing earlier in many places, see e.g.

PLOTKIN[P]). -

2.6 ACTION RULES. _ , : »
Foreachae A, we define two predicates on process expressions: -8, isabinaryrelation,and 2> ¥isaunary . _
relation. Their intuitive meaning is as follows: ‘

« x 3, y means that x can perform an a-step and evolve into y;

+ x 2> ¥ means that X can perform an a-step and terminate successfully.
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The formal definition of these predicates is given in the following table 3. The last lines give rules for
recursion: the idea is that if we know that an action relation holds for the right-hand side of an equation, we
can infer it holds for the left-hand side, the recursion vanable A more exact treatment can be found in [G].

a3y

x3Hx = x4y B x&HV = x+yHV
y3y = xy Sy yHV = xay B
xS x = xyDHxy xBHV = xydy
Si E—>y=>Xi.§—)y sii)\/=>Xi-a—)\/

Table 3. Action mles for BPAj + recursion.

2.7 STATE OPERATOR.
Now we add the state operator to the signature of BPAg. This operator was introduced and used in BAETEN
' & BERGSTRA [BB]. Let S be some finite set (the state space). Then As is a unary operator On processes, for
eachse S. If X is some process, then Ag(x) denotes process X in state S. Then, if x is able to execute an
‘action a, the result will be a certain action, and it will have a certain effect on the state. Thus, the state
operator comes with two functions:
action: Ax S — A, that gives the result of the execution of an action;
effect: Ax S — S, that gives the state resulting from the execution of an action.
We will always require that action(3, s) = § and effect(3,s) = s, for any s € S (i.e. §is iner).
For examples and more motivation, see [BB] or [V]. _
The state operator has axioms SOl 3, displayed in table 4. Here s € S, a € A and X,y are arbitrary

processes.

As(a) = action(a,s) s01
As(ax)= action(a,s) Aeffect(a,s)(x) SO2°
As(x +y)=As(X) +Asly)  SO3

Table 4. State Operator.

We note that in [BB] alsoa generalized‘ state operator is defined. We remark that the results in this paper
could also have been obtained using the generalized state operator. We also give the action rules for the state
operator, in table 5..

x3 X', action{a,s) # 8 = A,s(xfi:: n(a,_)_’ A»anect(a,S)\A )]

x 35+, action(a,s) #8 = A J(x)2ton(@s), y

----—Table‘-S;-Ac.ti‘en--rules fbpthe state operator. N e __.. S

2.8 THE QUESTION.
Now we ¢an state the central question of this paper as follows:
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Let E be a guarded recursive specification over BPAg with root variable X.

Let a finite state space S with action, effect.be given, and let s € S.

Is As(X) again the solution of a guarded recursive specification over BPAs ?

We will show in section 3 that the answer is 1o, and so the state operator increases the defining power of

BPAs. Moreover, we will show in section 4:

Let E be a linear recursive specification over BPAg with root variable X.

Let a finite state space S with action, effect be given, and let s € S.

Then Ag(X) is again the solution of a linear recursive specification over BPAs.

Thus, the state operator applied to a regular process again gives a regular process (a regular process isa

process defined by a linear specification). On the other hand, we will:show:

All BPAg-definable processes, and some that are not even BPAs-definable,

can be defined by a linear recursive specification over BPAs + A.

Not all pfocesses can be defined over BPAg + A, however, as we will also show:
There is a PA-definable process that is not BPAs + A-definable. |

We see that the defining power of BPAg + A does not give all of the defining power of PA.

3. SOLVING THE PROBLEM.

3.1 DEFINITION.
Let a,b € A be two distinct atoms different from 8, and consider the followmg guarded recursive
specification:

C=aDC

D=b+aDD.
This is a well-known specification (se¢ €. g. BERGSTRA & KLOP [BKZ]) which has as solution-the counter C
(interpret a as "add one” and b as "subtract one"). Note that this process has infinitely many different
subprocesses, since subprocess D™ C, reached after executing a n times, has a trace beginning with n b's,
_ but no trace beginning with n+1 b's. This observation immediately gives the following lemma.

3.2 LEMMA.
Not every guarded recursive specxﬁcanon over BPA gives a regular process.

3.3 MERGE.
In order to define the processes we want to discuss in the sequel, it will be useful to extend the theory BPA

with the merge operator I, parallel composmon Asa semantics for merge we use arbztrary interleaving. In-
_order to givea ﬁmte axiomatisation- of merge, we use an auxiliary operator IL (Ieft-merge) Now, xLy means

the same as x lly (the patallel but interleaved, executlon of x andy), but with’ the: restriction’ thax the firststep

-must come from X. For more about these issues, see .8. BERGSTRA & KLOP [BKZ]
The theory PA has operators +,-, 1, L and adds axioms 'M1-4 of table 4 below. to the axioms A1-5 of

BPA. The-theory PAs adds constant 8 and axioms A6-7 to this.
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xlly=xLy+ylLx M1
allx=ax M2
axlLy=a(xlly) M3
x+ylz=xlz+ylz M4
Table 6. PA.

We also give an operational semantics for PA, by means of the action rules in table 7.

xS x = xllySxly xSV = xllydy
y3y = xllySxly' yHV = xllySx
Table 7. Action rules for PA.

3.4 DEFINITION.
Now let C be the process defined in 3. 1 and let d € A be different from &,b,8. Define the process P by:
P=Cld.
P is just like the counter, except that once in its existence, it can do the action d. The moment, when this
action will be executed, is completely undetermined, however. In the sequel, we will show that P cannot be
defined over BPAg, but can be defined over BPAS + A

3.5 THEOREM.
PcanbedeﬁqedoverBPAs+l.

PROOF: Consider the following guarded recursive specification over BPA:
Ci=aDy1Cqy+dCy
Di=b+aDyDy+dDy
This specification always adds a d-possibility to the one in 3.1, and the solution can be seen to be Clld®,
where d® is the solution of X = d-X.
Now, define S = {0,1}, and let the functions action and effect be trivial (ie. actlon(a s)=a&
effect(a,s) =$§) except in two cases:
1. action(d,0) = &; '
2. effect(d,1) = 0

CLAM: P = 7;1(01).

PROOF: First we establish that Ao(C1) =C:
AN = A AlDLCa) J.S 1AIP4\ = 3° lnln1 C4), and

’\'U\VU"“"'U\'-’IVUT‘"V = SR gl V2 Rt
~ Ag(Dy"#1:C1) =bAg(D1™Cy) + Ao(D1M+2-C1) +Ao(D1™+1-Cq) =
' ~ =bAg(D1M™C1) + aAo(D1™2:Cy), foreach ne N.
' -Thus, M(C1) and C are both solutions of the same mﬁmtary guarded recursive specxﬁcauon, and mustbe
equal. . -
Then we establish the claim:
) A(C1) = aA1(D1-C1) + dAo(C+), and
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M(DyM+1-C1) = b-Aq(D1"Cq) + a:Aq(D1"+2-C1) + d-Ao(D1 n+1.C4q), foreachne N.
On the other hand, we find

P=Clld=Cld+dLC= (a:D-C)lLd + d-C =a(D-Clid) +d-C,and

pn+t-Clid = (b-D"-C + a-D™2-C)lLd + dlL pn+1-C =

_ =b-(D"-Clld) + a-(D"+2-Clid) + d-Dn+1-C, foreachn e N.
Using the previous result, we find that A1(C1) and P are both solutions of the same infinitary guarded
recursive specification, and so must be equal.
This finishes the proof of the claim, and also the proof of the theorem.

Now we turn to the proof that P cannot be defined over BPAs. We first need some preliminary facts.

3.6 DEFINITION. 7
A gixarded recursive specification is in restricted Greibach Normal Form (testricted GNF) if each equation is
oftheform X =80or X=a1-0q4 +... + 80k, '

where k>1, each aj € A - {5}, and each oy is either

i. nothing (so the term consists just of an atomic action);

ii. a recursion variable;

ii. the product of two recursion variables.

37LEMMA.
Each guarded recursiVe specification over BPAg is equivalent to one in restricted GNF.

PROOF: See BAETEN, BERGSTRA & KLOP {BBK].

3.8 NOTE.
The BPAg-specifications above are all in restricted GNF. Note that as a consequence of lemma 3.7, each
subprocess of a process given by a recursive specification, can be represented by a finite product of recursion
variables. Using the axioms of the state operator, As applied to an equation X = ag'0q + ... + a0k in
. restricted GNF yields
As(X) = action(a1,s)As(ay) + ... + action(ak,s)-As(c),
again the same format, and €ach subprocess has the form Ag(X1-X2"...°Xn)-

3.9 THEOREM.

P cannot be defined over BPAs.

PROOF: Suppose, for a contradiction, that the guarded recursive specification E over BPAj; defines process
P. By 3.7, we may suppose that E is in restricted GNF. We may also suppose that superfluous equations are

removed (an equation is superfluous if its recursion variable cannot be accessed by executing a number of

‘actions, starting from the root variable). From the definition of the counter it is apparant, that never infinitely
many b-actions can be executed consecutively. Thus, starting from any recursion variable, only finitely many -
consecutjve b-actions are possible. Let M be the maximum number of b-actions, any recursion variable can
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perform. We also derive from the definition of the counter that in any situation, an unlimited number of a-

actions is possible.
Now, starting from the root variable of E, perform 3m a-actions. Then we have a process
X1-Xz..."Xn,

a finite product of recursion variables. Since no d-action has taken place yet, X1 must be able to do a d-
action. On the other hand, the whole process must be able to perform 3m b-actions. Of these, X1 can
perform at most m. Thus, after X1 has performed its maximum number of b-actions, it must terminate, so
that X2 can start on the next series of b-steps. But since after the b-actions of X1 no d-action has taken place
yet, X2 must be able to do a d-action.

Now go back to X1. After it has done the d-action, it is replaced in the product by at most 2 recursion
variables. Together, they can perform at most 2m D-steps, so they must terminate, after doing their
maximum number of b-steps. But next, X2 can perform a second d-step, and we have reached a
contradiction, for P. may only do one d-step. '

This finishes the proof of the theorem, and so we have proved that the state operator extends the defining
power of BPAs.

4. OTHER RESULTS. ,

First, we turn to regular processes. A regular process (or a finite automaton) is a process that has only finitely

many subprocesses. A well-known result is that the regular processes are exactly the processes that are the

solution of a finite linear recursive specification. A linear equation is an equation of the form X=3or
X=a1Xq+. .+akXk+b1+...+bm

where k+m > 1, and each aj,bje A - {3}. Notice that this only differs from restricted GNF, in that we do not -

allow products of two recursion variables. But we know already that the defining power differs considerably:

the counter is not a regular process, so cannot be defined by a linear specification, but it has a specification in

restricted GNF, see 3.1.

Now we solve the second problem in 2.8.

4 1 THEOREM.
Let E be a linear recursive specification over BPAs with root variable X1. Let a finite state space S with
functions action, effect be given, and let So € S. Then Agy(X1) is again the solution of a linear recursive

specification over BPAs.
PROOF: Let E have variables X1,...,Xn. We will define a new linear recursive specification F with variables

: Y,s,tori-1, snands e S. Now, leti,s be given. Lei E have e

- Xi=a1 X“+ +akx,k+b1+ .+ bm.

uation

- Then, F-will have equation . ... B o . I _
Yi,s = action(a1,s) Yjy effect(ay,s) + - + action(ak,s)-ij,eﬁed(ak;s) +action(by,8) + ... + action(bm,Ss).
We see that after removing summands that are equal to 3, F becomes a linear recursive specification. It is
obvious that the Ag(X;) satisfy specification F, and thus As(Xj) = Yi,s, in particular Agq(X1) = Y1,sq. This
finishes the proof.
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Thus, the state operator applied to the solution of a linear specification gives a process, that again can be
given by a linear specification. The situation changes drastically if we allow the state operator in the recur-
sion, i.e. consider linear specifications over BPA5 + . First, we have the following theorem. .

4.2 THEOREM. : _
Let the process X be definable over BPA3. Then X is also definable by a linear specification over BPA3 + A

'PROOF: Let a recursive specification E over BPA§ be given. We may suppose E is in restricted GNF. We
have to define a linear specification over BPAs + A that has the same solution. Let E = {Xj = si : i=0,...,n}.

As we saw in 3.6, each summand in each ; has one of the following three forms:

1. a single atomic action, a; o

2. the product of an atomic action and a recursion variable, a-X;;

3. the product of an atomic action and two recursion variables, a-Xj Xk.

Now we introduce new atoms:

1. an atom (a,i) if atomic action a occurs in Si singly (a summand of type 1);

2. an atom (a,1,]) if atomic action a occurs in Si in the product a-Xj (type 2);

3. an atom (a,i,},K) if atomic action aoccurs in S; in the product a-XjXx (type 3).

Now we define the state operator. The state space is {0,...,n}, and the action, effect functions are trivial ex-

cept in the following cases: '

i. action((a,i),m) = action({a,i.j),m) = action((a,i,j,k),m) = Sifi=m

ii. action((a,i%i) = action({a,i.i)i) = action((@.ijk).i) = a;

iii. effect({a,ipi) = j, effect({a,iik)i) = k.

Then we consider the following linear recursive equation:

X = Seype 1 (@) + Ziype 2 (@)X + Zeype 3 @LIKIA(X).

cLamM: Ag(X) = Xo.

PROOF: The proof is easier to follow if we take a specific example. So take E to be:

Xo=2a-Xg +b +cX1-Xo

_ X1 =bXo'Xy1 +b.

Then the linear equation becomes:

X = (,0) +(b,1) +(a,0,0»-X + (¢,0,1 ,0021(X) + (b,1,0,1)A0(X).
Now we show that for each sequence by...bn of 0's and 1's we have Xb4:Xop'---Xop = MopoMpp.10---9Aby (X),
by showing they sausfy the same infinitary recarsivé specification. We give the equations for the processes
AbpoAbn.1--0Aby (X). We use the abbreviation App.--bq(X) for AopoAbp.10---°Mby (X). Let © be any sequence of
0's and 1's; Then:. | B o | -

Aoho(X) = Ag(b + 8 + 8Ao(X) + CAgeA1(X) +3Agoho(X)) = b + a-As0(X) + cAg01(X), and

 AgoM(X) = Ag(B+ b+ 5M(X) + 5R1eA1(X) + BMeho(X)) = b+ Dot olX). |

This finishes the proof of the claim, and also the proof of the theorem.

Next, we will give an example of a process, that is not definable over BPAs, but is definable by a linear
specification over BPAj + A. In fact, we will show more than that it is not definable over BPAg: we will
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show that there is no recursive specification over BPAs such that a state operator applied to its solution yields
this process.

4.3 DEFINITION.
Let us define another copy of a counter, with different names:
G=eHG
H=f+eHHG.
(ab,efe A-{d} are all distinct). Then define
B=CIlG.
As shown in [BK1], B can be considered as a bag (not order-preserving channel) over two elements, with
a,e the input actions, and b,f the output actions. An aliernative specification for the bag, in one equation, is
the following:
B=a:(bliB) +e-(fliB).
It was shown in [BK1], that B cannot be defined over BPA. We strengthen this result in the following
theorem.

4.4 THEOREM.
There is no recursive specification over BPAj with root variable X, and a finite state space S with functions

action, effect, and s € S, such that As(X) = B.

PROOF: Suppose not, so there is a guarded recursive specification E over BPA§ with root variable X, and
there is a finite state space S with element s and functions action, effect such that As(X) = B. We may sup-
pose that E is in restricted GNF and has no superfluous equations. We see that for each s € S and each re-
cursion variable Y As(Y) can perform only finitely many b-actions and finitely many f-actions. Let m be the
maximum number of b or f-steps any As(Y) can do. Letk be the cardinality of S.

Now, starting from A(X), perform m(k+2) a-actions and m(k+2) e-actions. Then, we have a subpro-
cess of the form ' ‘ ’

' AKX Xics 1 Xk42"--- %)
for certaint € S and recursion variables Xj (i = 1,...,n). Note that this product must contain at least k+2 fac-
tors, since this process can do m(k+2) b-actions and m(k+2) f-actions, and each variable can account for at
most m. Now we will "eat up" the variables X1,...,Xk+1 in k+1 different ways.

In the first way, we keep on doing b-actions. After at most M of them, X1 will terminate. We continue
with b-actions, until Xk, 1 terminates. Then, we have a process Ag;(Xk+2"..."Xn).

In the second way, we do b-actions until Xk terminates. Then, we do f-actions until X1 terminates.
Again, we have a process Agp(Xk+2'..."Xn). In general, for i=1,..k+1, we do b-actions until Xk, 2.j termi-
nates. Then, we continue doing f-actions until Xk, 1 terminates. Then, we have a process Ag;(Xk+2"..."Xn)-

- We have found s1, ..Sk+1 € S butsince S contains only k elements, at least two of these must be equal,
- say sj=§ with i<j. But then we have a contradiction, for Agi(Xk42"..Xn) = Xsi(Xk+2-...-Xn), and
Agi{Xks2":-"An) can perform less consecutive b-actions and more consecutive f-actions than Asi(Xk.,.g-...*Xn).

This finishes the proof.
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4.5 THEOREM.
B is definable by a linear recursive specification over BPAg +A.

PROOF: We need two new atoms, b* and {*. The state space is S = {0,1,B,F}, where 0 is the starting state,
and 1 is the state where the job is finished, in this state the state operator becomes inert. We list the non-triv-
ial cases of functions action, effect: ' '
i. action(b*,O) = action(f*,0) = &;
ii. action(b*,B) = b, effect(b*,B) = 1;
ii. action(f*,F) = f, effect(f*,F) = 1.
Then we consider the following linear recursive equation:
X = a-Ag(X) + eAr(X) + b* X+ *X.

CLAIM: Ao(X) = B.

PROOF: Let Bnm be the subprocess of B where counter C stands at n (i.c. there is a trace beginning with n

b's, but o trace beginning with n+1 b's) and counter G stands at m. Let ABn Fm be any sequence of A-oper-

ators, in which Ag occurs exactly n times, A occurs exactly m times, and which further consists of a number

of occurrences of A1. We will show that Bn,m = AgeAgn Fm(X), by showing they satisfy the same infinitary
 recursive specification. We will calculate this specification for the AgoAgn Fm(X): '

Case 1: n=0, M=0. (Since the A1 are inert, we might as well leave them out.)

Ao(X) = aAgorg(X) + eAooAr(X) +8A0(X) + 8Ao(X) = a'MékélX)‘+ e-AooAF(X).
Case 2: n=0, m>0. T , ' o )
Agehgm(X) = ahoerst Fm(X) + € AgoArme1(X) + S AgeArm(X) + f-AgeArm-1oA1(X) =
o = a:Agohgt Fm(X) + eAooAEme(X) + FAgoAFma(X).
Case 3: n>0, m=0. Just like case 2. :
Case 4: n>0, m>0. _
Aoorgn Fm(X) = aAgoAgn+1,Fm(X) + &-AooABn,Fme1(X) + b-Agegn-1,Fmer(X) + fAgeAgn Fm-10A1(X) =

, _=a-Agohn+1,Fm(X) + 8-AgeAgn Fm+1{X) + b-AgeAsn-1,Fm(X) + fAgoAsn,Fm-1(X).
Since the processes Bn,m sausfy the same infinitary specification, we have proved the claim, and ﬂxei'eby the
. theorem.

Finally; we give an example of a PA-definable process, that is not definable over BPAg + A. This proves the
last claim in 2.8: not every process is definable over BPAs + A.

. 4.6 DEFINITION.
We call éprocess P uniformly _ﬁhitely brariching if there is some natural number n such that for every sub-
process ¢ of p (i.e. every process reachable from p by use of action relations) there are at most N processes
- q' such that q 2, @ (for some atom a). (In other words: the branching degree of the process is uniformly

4.7 LEMMA. . ,
Every BPAj + A-definable process is uniformly finitely branching.
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PROOF: In [BK1], it is proved that every BPA-definable process is uniformly finitely branching. The proof is
easy: every subprocess of a process defined by a recursive specification over BPA (or BPAg, for that matter)
is given by a product of recursion variables, and every step possible from this process is determined by the
first variable in the product. But they in turn are determined by the equation for this variable, in which only a
finite sum occurs. The uniform bound is the maximum number of summands in any equation of the specifi-
cation.

Then, this result extends to BPA + A, if we realize that applying the state operator to a term can only de-
crease the branching degree (by renaming into ), but can never increase it .

Then, if we combine lemma 4.7 with the following result bf BERGSTRA & KLOP [BK1], we have finished

the proof of the last ciaim in 2.8:
the solution of the PA-equation X = a + b-(X-cll X-d) is not uniformly finitely branching.

5. CONCLUSIONS. v

We have shown that the defining power of the state operator, a natural addition to the operators of basic pro-
cess algebra, is considerable. Applying the state operator to a BPA-process sometimes gives a process that is
not BPA-definable. On the other hand, applying the state operator to a regular process gives again a regular
process. If we allow the state operator inside the recursion, even more processes become definable, for in-
stance the bag, although there still remain PA-processes that are not definable. '

5.1 The following remarkable result, that strengthens theorem 4.4, was communicated to us by VAAN- -
DRAGER [V2]. It concerns the process queué. A (FIFO) queue Q (over two elements) is given by the fol-
lowing infinitary recursive specification, with variables Qg, with G a sequence of b’s and f's. (Again, a and
e are two different input actions, with corresponding output actions b,t)

Qe=aQp+eQ 7
Qbo = a"Qoob + e-Qupgt + b Qo for any sequence G
Qs = a-Qigb + & Qtof + Qo for any sequence ©.

Now it was shown in BAETEN & BERGSTRA [BB], that Q cannot be defined over PA. VAANDRAGER [V2]
- shows that Q can be defined by a linear recursive specification over BPAs + A. He uses the following

s'peciﬁcaﬁon._ ‘

« out is a new atom;

«take S ={0,B,F,1} (1 agéin inert), with the functions trivial except for the following cases:

i. action(out,B) = b, effect(out,B) = 1;-action(out,F) =1, effect(out,F) = 1;

ii. action(b,F) = f, effect(b,F) = F; action(f,B) =b, effect(f,B) = F;

iii. action(out,0) = 5. .

Q=20(X)
X = a-Ag(X) + e-Ar(X) + outX.
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5.2 Obviously, we can repeat all the questions in this paper with the theory PA in the place of BPA (or still
other theories). Most of these questions we leave as open problems. The main question, does the state oper-
ator add to the defining power of PA, was answered in the positive in 5.1 above. ‘

Of course, the subject matter of this paper has many connections with formal language theory: all our re-
sults can be translated to that setting, and well-known examples in formal language theory can be translated to
our sefting. As an example, we can define a process with finite traces a"b"+c" (for each n € N), that will not
be BPA-definable (roughly, context-free means BPA-definable), but is definable over BPAs + A ([V2)).
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