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Abstract
Consider a random simplex [X1, . . . , Xn] defined as the convex hull of independent
identically distributed (i.i.d.) random points X1, . . . , Xn in R

n−1 with the following
beta density: fn−1,β(x) ∝ (1−‖x‖2)β1{‖x‖<1}, x ∈ R

n−1, β > −1.Let Jn,k(β)be the
expected internal angle of the simplex [X1, . . . , Xn] at its face [X1, . . . , Xk]. Define
J̃n,k(β) analogously for i.i.d. random points distributed according to the beta′ density
f̃n−1,β(x) ∝ (1+‖x‖2)−β, x ∈ R

n−1, β > (n − 1)/2.Wederive formulae for Jn,k(β)

and J̃n,k(β)whichmake it possible to compute these quantities symbolically, in finitely
many steps, for any integer or half-integer value of β. For Jn,1(±1/2)we even provide
explicit formulae in terms of products of Gamma functions. We give applications of
these results to two seemingly unrelated problems of stochastic geometry: (i) We
compute explicitly the expected f -vectors of the typical Poisson–Voronoi cells in
dimensions up to 10. (ii) Consider the random polytope Kn,d := [U1, . . . ,Un] where
U1, . . . ,Un are i.i.d. random points sampled uniformly inside some d-dimensional
convex body K with smooth boundary and unit volume. Reitzner (Adv. Math. 191(1),
178–208 (2005)) proved the existence of the limit of the normalised expected f -vector
of Kn,d : limn→∞ n−(d−1)/(d+1)

Ef(Kn,d) = cd · �(K ), where �(K ) is the affine
surface area of K , and cd is an unknown vector not depending on K . We compute
cd explicitly in dimensions up to d = 10 and also solve the analogous problem for
random polytopes with vertices distributed uniformly on the sphere.
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1 Statement of the Problem

1.1 Introduction

It is well known that the sum of angles in any plane triangle is constant, whereas the
sum of solid d-dimensional angles at the vertices of a d-dimensional simplex is not,
starting with dimension d = 3. It is therefore natural to ask what is the “average”
angle-sum of a d-dimensional simplex. To define the notion of average, we put a
probability measure on the set simplices as follows. Let X1, . . . , Xn be independent,
identically distributed (i.i.d.) random points in R

n−1 with probability distribution μ.
Consider a random simplex defined as their convex hull:

[X1, . . . , Xn] := {λ1X1 + · · · + λn Xn : λ1 + · · · + λn = 1, λ1 ≥ 0, . . . , λn ≥ 0}.
For the class of distributions studied here, this simplex is non-degenerate (i.e., has a
non-empty interior) a.s. Let β([X1, . . . , Xk], [X1, . . . , Xn]) denote the internal angle
of the simplex [X1, . . . , Xn] at its (k − 1)-dimensional face [X1, . . . , Xk]. Simi-
larly, we denote by γ ([X1, . . . , Xk], [X1, . . . , Xn]) the external (or normal) angle of
[X1, . . . , Xn] at [X1, . . . , Xk]. The exact definitions of internal and external angles
will be recalled in Sect. 4.1; see also the book [35] for an extensive account of stochas-
tic geometry. We agree to choose the units of measurement for angles in such a way
that the full-space angle equals 1. We shall be interested in the expected values of the
above-defined angles. The special case when μ is a multivariate normal distribution
has been studied in [12,13,21], where the following theorem has been demonstrated.

Theorem 1.1 If X1, . . . , Xn are i.i.d. random points inRn−1 having a non-degenerate
multivariateGaussian distribution, then the expected internal angle of [X1, . . . , Xn] at
the k-vertex face [X1, . . . , Xk] coincides with the internal angle of the regular (n−1)-
dimensional simplex [e1, . . . , en] at its face [e1, . . . , ek], for all k ∈ {1, . . . , n}. Here,
e1, . . . , en denotes the standard orthonormal basis of Rn. The statement remains true
if internal angles are replaced by the external ones.1

1.2 Beta and Beta′ Distributions

In the present paper we shall be interested in the case when μ belongs to one of the
following two remarkable families of probability distributions introduced by Miles
[27] and studied by Ruben andMiles [33]. A random vector inRd has a d-dimensional
beta distribution with parameter β > −1 if its Lebesgue density is

fd,β(x) = cd,β(1 − ‖x‖2)β1{‖x‖<1}, x ∈ R
d , cd,β = �(d/2 + β + 1)

πd/2�(β + 1)
. (1)

1 In [21], the theorem has been established by two different methods for internal angles and only in the
special case when k = 1 and the Gaussian distribution is isotropic. The same proofs apply to arbitrary k’s.
The full proof of Theorem 1.1 in the isotropic case can be found in [13, Thm. 4.1]. The case of the non-
isotropic Gaussian distribution has been settled in [12, Thm. 4.17]. The Gaussian simplex can be viewed
as the limiting case of the so-called beta simplex as β → +∞. For beta simplices and polytopes, results
closely related to Theorem 1.1 can be found in [20, Thms. 1.6, 1.12, and 1.13].
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Here, ‖x‖ = (x21 + · · · + x2d )
1/2 denotes the Euclidean norm of the vector x =

(x1, . . . , xd) ∈ R
d . Similarly, a random vector in R

d has beta ′ distribution with
parameter β > d/2 if its Lebesgue density is given by

f̃d,β(x) = c̃d,β(1 + ‖x‖2)−β, x ∈ R
d , c̃d,β = �(β)

πd/2�(β − d/2)
. (2)

The following particular cases are of special interest:

(a) The beta distribution with β = 0 is the uniform distribution in the unit ball
B
d := {x ∈ R

d : ‖x‖ ≤ 1}.
(b) The weak limit of the beta distribution as β ↓ −1 is the uniform distribution on

the unit sphere Sd−1 := {x ∈ R
d : ‖x‖ = 1}; see [19]. In the following, we write

fd,−1 for the uniform distribution on S
d−1, and the results of the present paper

apply to the case β = −1.
(c) The standard normal distribution on R

d is the weak limit of both beta and beta′
distributions (after suitable rescaling) as β → +∞; see [20, Lem. 1.1].

(d) The beta′ distribution f̃n−1,n/2 onRn−1 with β = n/2 is the image of the uniform
distributionon theupper half-sphereSn−1+ under the so-calledgnomonic projection
[18, Prop. 2.2]; see also [17] for further applications of this observation.

1.3 Expected Internal Angles

Let X1, . . . , Xn be independent random points in R
n−1 distributed according to the

beta distribution fn−1,β , where β ≥ −1. Their convex hull [X1, . . . , Xn] is called
the (n − 1)-dimensional beta simplex. We shall be interested in the expected internal
angles of these random simplices, denoted by

Jn,k(β) := Eβ([X1, . . . , Xk], [X1, . . . , Xn]),

for all n ∈ N and k ∈ {1, . . . , n}. By definition, Jn,n(β) = 1 for all n ∈ N. Similarly, let
X̃1, . . . , X̃n be independent random points in Rn−1 distributed according to the beta′
distribution f̃n−1,β , where β > (n − 1)/2. Their convex hull [X̃1, . . . , X̃n] is called
the (n−1)-dimensional beta ′ simplex and its expected internal angles are denoted by

J̃n,k(β) := Eβ([X̃1, . . . , X̃k], [X̃1, . . . , X̃n])

for all n ∈ N and k ∈ {1, . . . , n}. Again, we define J̃n,n(β) = 1 for all n ∈ N. Note
that the subscripts n, respectively k, refer to the number of vertices of the simplex,
respectively, of the face of interest, rather than to the corresponding dimensions. By
exchangeability, for both beta and beta′ simplices, it does not matter which face with
k vertices to take. Hence, the expected sum of internal angles at all k-vertex faces of
the corresponding simplex is
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Jn,k(β) :=
(
n

k

)
Jn,k(β), J̃n,k(β) :=

(
n

k

)
J̃n,k(β).

The triangular arrays Jn,k(β) and J̃n,k(β) appeared in [20] together with the closely
related arrays In,k(α) and Ĩn,k(α) that are essentially the expected external angles
of beta and beta′ simplices; see Theorems 1.2 and 1.3, below. It has been shown in
[20] that many quantities appearing in stochastic geometry can be expressed in terms
of In,k(β), Ĩn,k(β) and Jn,k(β), J̃n,k(β). An incomplete list of such quantities is as
follows:

(a) The expected f -vectors of beta and beta′ polytopes. The beta polytopes are defined
as random polytopes of the form Pβ

n,d := [Z1, . . . , Zn], where Z1, . . . , Zn are

i.i.d. random points in R
d with distribution of the form fd,β . The beta′ polytope

P̃β
n,d is defined similarly.

(b) Expected internal and external angles of beta and beta′ polytopes, and, more
generally, expected intrinsic conic volumes of their tangent cones.

(c) Expected f -vector of the zero cell of the Poisson hyperplane tessellation and
expected f -vectors of the random polytopes in the half-sphere; see [17] for a
detailed study of these models.

(d) Expected f -vector of the typical Poisson–Voronoi cell.
(e) Constants appearing in the work of Reitzner [30] on the asymptotics of the

expected f -vectors of random polytopes approximating smooth convex bodies.
(f) External and internal angles of the regular simplex with n vertices at its k-vertex

faces. These coincide with the corresponding expected angles of the random
Gaussian simplex [13,21], and are given by In,k(+∞) := limβ↑+∞ In,k(β) and
Jn,k(+∞) := limβ↑+∞ Jn,k(β), respectively.

While there exist explicit formulae for In,k(α) and Ĩn,k(α) (see Sect. 1.4), no general
formulae are known for Jn,k(β) and J̃n,k(β) except in some special cases. For example,
we have J3,1(β) = 1/2 because the sum of angles in any plane triangle equals half the
full angle. For general n ∈ N, it always holds that Jn,n(β) = 1 and Jn,n−1(β) = n/2,
and all these formulae are valid in the beta′ case, too. A general combinatorial formula
for J̃n,k(n/2)was derived in [17], where it was used to compute the expected f -vector
of the Poisson zero polytope. For n = 4 and n = 5, explicit formulae for Jn,k(β)

were derived in [16] by a method not allowing for an extension to higher dimensions.
The main results of the present paper can be summarised as follows. In Sect. 2, we
derive a formula which enables us to compute Jn,k(β) and J̃n,k(β) symbolically for
half-integer β, and numerically for all admissible β. The main work for this formula
has been done in [17,20], while themain contribution of the present paper is its explicit
statement and demonstration of some consequences. The latter will be done in Sect. 3,
where we apply the formula to compute (among other examples) the expected f -
vectors of typical Poisson–Voronoi cells and the constants that appeared in the work
of Reitzner [30] on random polytopes approximating convex bodies, in dimensions
up to 10.

123



906 Discrete & Computational Geometry (2021) 66:902–937

1.4 Expected External Angles

The following two theorems define the quantities In,k(α) and Ĩn,k(α) and relate them
to the expected external angles of beta and beta′ simplices. They are special cases of
Theorems 1.6 and 1.16 in [20], respectively.

Theorem 1.2 Let X1, . . . , Xn be i.i.d. random points inRn−1 with beta density fn−1,β ,
β ≥ −1 (which is interpreted as the uniform distribution on the sphere Sn−2 if β =
−1). Then, for all k ∈ {1, . . . , n}, the expected external angle of the beta simplex
[X1, . . . , Xn] at its face [X1, . . . , Xk] is given by

E γ ([X1, . . . , Xk], [X1, . . . , Xn]) = In,k(2β + n − 1),

where for α > −1/k we define

In,k(α) =
∫ +π/2

−π/2
c1,(αk−1)/2(cosϕ)αk

(∫ ϕ

−π/2
c1,(α−1)/2(cos θ)α dθ

)n−k

dϕ. (3)

Theorem 1.3 Let X̃1, . . . , X̃n be i.i.d. randompoints inRn−1with beta′ density f̃n−1,β ,
where β > (n − 1)/2. Then, for all k ∈ {1, . . . , n}, the expected external angle of the
beta′ simplex [X̃1, . . . , X̃n] at its face [X̃1, . . . , X̃k] is given by

E γ ([X̃1, . . . , X̃k], [X̃1, . . . , X̃n]) = Ĩn,k(2β − n + 1),

where for α > 0 we define

Ĩn,k(α) =
∫ +π/2

−π/2
c̃1,(αk+1)/2(cosϕ)αk−1

(∫ ϕ

−π/2
c̃1,(α+1)/2(cos θ)α−1 dθ

)n−k

dϕ.

(4)

Usually, it will bemore convenient to workwith angle sums rather thanwith individual
angles, which is why we introduce the quantities

In,k(α) :=
(
n

k

)
In,k(α), Ĩn,k(α) :=

(
n

k

)
Ĩn,k(α). (5)

Note that In,n(α) = Ĩn,n(α) = 1.

2 Main Results

2.1 Algorithm for Computing Expected Internal-Angle Sums

In the next proposition we state relations which enable us to express the quantities
Jn,k(β) through the quantities In,k(α). The proof will be given in Sect. 4.2, where
we shall also discuss similarity between these relations and McMullen’s angle-sum
relations [23,24] for deterministic polytopes.
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Proposition 2.1 For every n ∈ {2, 3, . . .}, k ∈ {1, . . . , n − 1}, and every β ≥ −1 the
following relations between the quantities In,m(α) and Jm,k(β) hold:

∑
s=0,1,...
n−s≥k

In,n−s(2β + n − 1)Jn−s,k

(
β + s

2

)
=

(
n

k

)
, (6)

∑
s=0,1,...
n−s≥k

(−1)s In,n−s(2β + n − 1)Jn−s,k

(
β + s

2

)
= 0. (7)

Similarly, for every n ∈ {2, 3, . . .}, k ∈ {1, . . . , n − 1}, and for every β > (n − 1)/2,
the quantities Ĩn,m(α) and J̃m,k(β) satisfy the following relations:

∑
s=0,1,...
n−s≥k

Ĩn,n−s(2β − n + 1)J̃n−s,k

(
β − s

2

)
=

(
n

k

)
, (8)

∑
s=0,1,...
n−s≥k

(−1)s Ĩn,n−s(2β − n + 1)J̃n−s,k

(
β − s

2

)
= 0. (9)

We now explain how these relations can be used to compute the quantities Jn,k(β)

and J̃n,k(β). Since the results in these two cases are similar to each other, we restrict
ourselves to Jn,k(β) and state the results for J̃n,k(β) at the end of the section. First of
all, we have J1,1(β) = 1. Assume that for some n ∈ {2, 3, . . .}we are able to compute
(symbolically or numerically) the quantities Jm,k(γ )with arbitrarym ∈ {1, . . . , n−1},
k ∈ {1, . . . ,m}, and γ ≥ −1/2. We are going to compute the quantities Jn,k(β)

with k ∈ {1, . . . , n} and β ≥ −1. If k = n, we trivially have Jn,n(β) = 1. For
k ∈ {1, . . . , n − 1} we use the formula

Jn,k(β) =
(
n

k

)
−

n−k∑
s=1

In,n−s(2β + n − 1)Jn−s,k

(
β + s

2

)
, (10)

which follows from (6) by separating the term with s = 0. Note that on the right-
hand side we have the quantities of the type In,n−s(γ ) (which are just trigonometric
integrals; see Sect. 1.4) and the quantities Jn−s,k(β + s/2) which are already assumed
to be known by the induction assumption since n − s < n.

The above recursive procedure allows us to express Jn,k(β) as a polynomial in the
variables Im,�(2β + n − 1) with 1 ≤ � < m ≤ n. Note that all terms have the same
β-parameter 2β + n − 1. For example, for n = 4 we obtain

J4,1(β) = 3 − 2I4,3(3 + 2β) − I4,2(3 + 2β) + I4,3(3 + 2β)I3,2(3 + 2β),

J4,2(β) = 6 − 3I4,3(3 + 2β) − I4,2(3 + 2β) + I4,3(3 + 2β)I3,2(3 + 2β),

J4,3(β) = 4 − I4,3(3 + 2β), J4,4(β) = 1.
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We simplified the first line by using that In,1(α) = 1. Also, note that, in fact, I3,2(α) =
3/2 and I4,3(α) = 2. More generally, we shall prove the following:

Theorem 2.2 For every β ≥ −1, n ∈ N, and k ∈ {1, . . . , n}, Jn,k(β) equals

n−k∑
�=0

(−1)�
∑

In,n1(2β + n − 1)In1,n2(2β + n − 1) . . . In�−1,n�
(2β + n − 1)

(
n�

k

)
,

where the second sum is taken over all integer tuples (n0, n1, . . . , n�) such that n =
n0 > n1 > · · · > n� ≥ k.

The following equation, which follows from (6) and (7) by taking the arithmetic mean,
is more efficient for computational purposes since it contains less terms than (10):

Jn,k(β) = 1

2

(
n

k

)
−

�(n−k)/2∑
s=1

In,n−2s(2β + n − 1)Jn−2s,k(β + s). (11)

For example, the first few non-trivial values of the internal-angles vector

Jn,•(β) := (Jn,1(β), . . . , Jn,n(β))

are given by

J4,•(β) = (2 − I4,2(2β + 3), 3 − I4,2(2β + 3), 2, 1),

J5,•(β) =
(
3

2
− I5,3(2β + 4)

2
, 5 − 3I5,3(2β + 4)

2
, 5 − I5,3(2β + 4),

5

2
, 1

)
,

J6,•(β) =
(
3 − I6,2(2β + 5) + I4,2(2β + 5)I6,4(2β + 5) − 2I6,4(2β + 5),

15

2
− I6,2(2β + 5) + I4,2(2β + 5)I6,4(2β + 5) − 3I6,4(2β + 5),

10 − 2I6,4(2β + 5),
15

2
− I6,4(2β + 5), 3, 1

)
.

Generalising these formulae, we can prove the following

Theorem 2.3 For every β ≥ −1, n ∈ N, and k ∈ {1, . . . , n} we have that 2Jn,k(β) −
δn,k is equal to

�(n−k)/2∑
�=0

(−1)�
∑

In,n1(2β+n−1)In1,n2(2β+n−1) . . . In�−1,n�
(2β+n−1)

(
n�

k

)
,

where δn,k is Kronecker’s delta, and the sum is taken over all integer tuples
(n0, n1, . . . , n�) such that n = n0 > n1 > · · · > n� ≥ k and such that n − ni
is even for all i ∈ {1, . . . , �}.
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The quantities J̃n,k(β) can be computed in a similar manner. We put J̃1,1(β) = 1
and then use the recursive formula

J̃n,k(β) =
(
n

k

)
−

n−k∑
s=1

Ĩn,n−s(2β − n + 1)J̃n−s,k

(
β − s

2

)

which follows from (8). Alternatively, one can use the more efficient formula

J̃n,k(β) = 1

2

(
n

k

)
−

�(n−k)/2∑
s=1

Ĩn,n−2s(2β − n + 1)J̃n−2s,k(β − s),

which follows from (8) and (9) by taking their arithmetic mean. The next two theorems
are similar to Theorems 2.2 and 2.3. We omit their straightforward proofs.

Theorem 2.4 For every β > (n − 1)/2, n ∈ N, and k ∈ {1, . . . , n}, J̃n,k(β) equals

n−k∑
�=0

(−1)�
∑

Ĩn,n1(2β − n + 1)Ĩn1,n2(2β − n + 1) . . . Ĩn�−1,n�
(2β − n + 1)

(
n�

k

)
,

where the second sum is taken over all integer tuples (n0, n1, . . . , n�) such that n =
n0 > n1 > · · · > n� ≥ k.

Theorem 2.5 For every β > (n − 1)/2, n ∈ N, and k ∈ {1, . . . , n}, 2J̃n,k(β) − δn,k

equals

�(n−k)/2∑
�=0

(−1)�
∑

Ĩn,n1(2β−n+1)Ĩn1,n2(2β−n+1) . . . Ĩn�−1,n�
(2β − n+1)

(
n�

k

)
,

where δn,k is Kronecker’s delta, and the sum is taken over all integer tuples
(n0, n1, . . . , n�) such that n = n0 > n1 > · · · > n� ≥ k and such that n − ni
is even for all i ∈ {1, . . . , �}.

2.2 Relations in Matrix Form

Let us write the relation (7) in the form

n∑
m=k

(−1)n−m
In,m(2β + n − 1)Jm,k

(
β + n − m

2

)
= δnk,

where δnk denotes Kronecker’s delta. Introducing the new variable γ := β+(n−1)/2
that ranges in the interval [(n − 3)/2,+∞), we can write

n∑
m=k

(−1)n−m
In,m(2γ )Jm,k

(
γ − m − 1

2

)
= δnk . (12)
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This relation has the advantage that now the J-term does not contain n, which allows
to state it in matrix form. Take some N ∈ N, γ ≥ (N − 3)/2, and introduce the N ×N
matrices A and B with the following entries;

An,m :=
{

(−1)nIn,m(2γ ) if 1 ≤ m ≤ n ≤ N ,

0 otherwise,

Bm,k :=
{

(−1)mJm,k(γ − (m − 1)/2) if 1 ≤ k ≤ m ≤ N ,

0 otherwise.

Note that both A and B are lower-triangular matrices with 1’s on the diagonal. Then,
(12) states that AB = E , where E is the N × N identity matrix. Since this implies
that BA = E , we arrive at the following relation which is dual to (12):

n∑
m=k

(−1)n−m
Jn,m

(
γ − n − 1

2

)
Im,k(2γ ) = δnk (13)

for all γ ≥ (N − 3)/2. Similar arguments apply in the beta′ case. Switching back to the
original variableβ,we arrive at the following resultwhich is the dual of Proposition 2.1.

Proposition 2.6 For every n ∈ {2, 3, . . .}, k ∈ {1, . . . , n − 1}, and every β ≥ −1 we
have

∑
s=0,1,...
n−s≥k

(−1)s Jn,n−s(β)In−s,k(2β + n − 1) = 0. (14)

Similarly, for every n ∈ {2, 3, . . .}, k ∈ {1, . . . , n − 1}, and for every β > (n − 1)/2,
we have

∑
s=0,1,...
n−s≥k

(−1)s J̃n,n−s(β)Ĩn−s,k(2β − n + 1) = 0. (15)

2.3 Arithmetic Properties of Expected Internal-Angle Sums

At the moment, we do not have a general formula for Jn,k(β) and J̃n,k(β) which
is “nicer” than what is given in Theorems 2.2, 2.3, 2.4, and 2.5. Still, we can say
something about the arithmetic properties of these quantities. First we state what we
know about In,k(α).

Theorem 2.7 Let α ≥ 0 be integer, n ∈ N, and k ∈ {1, . . . , n}.
(a) If α is odd, then In,k(α) is rational.
(b) If α is even, then In,k(α) can be expressed in the form r0+r2π−2+r4π−4+· · ·+

rn−kπ
−(n−k) (if n − k is even) or r0 + r2π−2 + r4π−4 + · · · + rn−k−1π

−(n−k−1)

(if n − k is odd), where the ri ’s are rational numbers.
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Using the above theorem together with the results of Sect. 2.1, we shall prove the
following result on the Jn,k(β)’s.

Theorem 2.8 Letβ ≥ −1be integer or half-integer. Let also n ∈ Nand k ∈ {1, . . . , n}.
(a) If 2β + n is even, then Jn,k(β) is a rational number.
(b) If 2β + n is odd, then Jn,k(β) can be expressed as q0 + q2π−2 + q4π−4 + · · · +

qn−kπ
−(n−k) (if n − k is even) or q0 + q2π−2 + q4π−4 + · · · + qn−kπ

−(n−k−1)

(if n − k is odd), where the qi ’s are rational numbers.

Symbolic computations we performed with the help of Mathematica 11 strongly sug-
gest that in the case when n − k is odd, part (b) can be strengthened as follows:

Conjecture 2.9 If both 2β +n and n− k are odd, then Jn,k(β) is a number of the form
qπ−(n−k−1) with some rational q.

Conjecture 2.9 states that Jn,k(β) has sometimes much simpler form than the one
suggested by Theorems 2.2 and 2.3. For example, when computing J7,2(−1), we can
use the formula

J7,2(−1) = 1

2

(
7

2

)
− I7,5(4)J5,2(0) − I7,3(4)J3,2(1),

which follows from (11). The involved values are given by

J5,2(0) = 1692197

282240π2 , J3,2(1) = 3

2
,

I7,5(4) = 7 − 2144238917

190270080π2 , I7,3(4) = 7 + 1250163908136617

30981823488000π4 − 1692197

60480π2 ,

so that, a priori, we expect J7,2(−1) to be a linear combination of 1, π−2, π−4 over
Q. A posteriori, it turns out that J7,2(−1) = 113537407/(16128000π4) is a rational
multiple of π−4, while the remaining terms cancel. We were not able to explain this
strange cancellation using Theorems 2.2 and 2.3. It is therefore natural to conjecture
that there is a “nicer” formula for Jn,k(β) than the ones given in these theorems. The
results for the quantities Ĩn,k(α) and J̃n,k(β) are analogous. We state them without
proofs.

Theorem 2.10 Let α > 0 be integer, n ∈ N, and k ∈ {1, . . . , n}.
(a) If α is even, then Ĩn,k(α) is rational.
(b) If α is odd, then Ĩn,k(α) can be expressed in the form r0 + r2π−2 + r4π−4 +· · ·+

rn−kπ
−(n−k) (if n − k is even) or r0 + r2π−2 + r4π−4 + · · · + rn−k−1π

−(n−k−1)

(if n − k is odd), where the ri ’s are rational numbers.

Theorem 2.11 Let n ∈ N and k ∈ {1, . . . , n}. Let also β > (n − 1)/2 be integer or
half-integer.

(a) If 2β − n is odd, then J̃n,k(β) is a rational number.
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(b) If 2β − n is even, then J̃n,k(β) can be expressed as q0 + q2π−2 + q4π−4 + · · · +
qn−k−1π

−(n−k−1) (if n − k is odd) or q0 + q2π−2 + q4π−4 + · · · + qn−kπ
−(n−k)

(if n − k is even), where the qi ’s are rational numbers.

In the case when k is even, our symbolic computations suggest the following stronger
version of (b):

Conjecture 2.12 If both 2β − n and k are even, then J̃n,k(β) is a number of the form
qπ−(n−k) (if n − k is even) or qπ−(n−k−1) (if n − k is odd) with some rational q.

3 Special Cases and Applications

In this section we present several special cases of the above results and their appli-
cations to some problems of stochastic geometry. The symbolic computations were
performed using Mathematica 11. For the vector of the expected internal angles we
use the notation

Jn,•(β) = (Jn,1(β), . . . , Jn,n(β)).

3.1 Internal Angles of Random Simplices: Uniform Distribution on the Sphere

Let X1, . . . , Xn be i.i.d. randompoints sampled uniformly from the unit sphereSn−2 ⊂
R
n−1. Recall that the expected sum of internal angles of the simplex [X1, . . . , Xn] at

its k-vertex faces is denoted by Jn,k(−1). Clearly,

J1,•(−1) = (1), J2,•(−1) = (1, 1), J3,•(−1) =
(
1

2
,
3

2
, 1

)
. (16)

The first two non-trivial cases, n = 3 and n = 4 (corresponding to simplices in
dimensions 3 and 4), were treated in [16]:

J4,•(−1) =
(
1

8
,
9

8
, 2, 1

)
,

J5,•(−1) =
(

−1

6
+ 539

288π2 ,
539

96π2 ,
5

3
+ 539

144π2 ,
5

2
, 1

)
.

The method used there did not allow for an extension to higher dimensions. Using
Mathematica 11 and the algorithm described in Sect. 2.1 we recovered these results
and, moreover, obtained the following

Theorem 3.1 We have

J6,•(−1) =
(

25411

7340032
,
233445

1048576
,
5155

3584
,
23075

7168
, 3, 1

)
,

J7,•(−1) =
(
1

6
+ 113537407

48384000π4 − 2144238917

1141620480π2 ,
113537407

16128000π4 ,
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−7

6
+ 113537407

24192000π4 + 2144238917

114162048π2 ,
2144238917

76108032π2 ,

7

2
+ 2144238917

190270080π2 ,
7

2
, 1

)
,

J8,•(−1) =
(

76136856565967

1454662679640670208
,

29503701837953231

1454662679640670208
,
5899486844923

16647293239296
,

1146031403475

584115552256
,
418431615

84672512
,
1603846783

254017536
, 4, 1

)
,

J9,•(−1) =
(

− 3

10
− 1581133359667623075371927

218521780048552780800000π4

+ 2819369438967901759

1739761680384000000π6 + 3585828150520517221

975094112225376000π2 ,

2819369438967901759

579920560128000000π6 ,

1581133359667623075371927

21852178004855278080000π4 + 2819369438967901759

869880840192000000π6 + 2

− 25100797053643620547

975094112225376000π2 ,
1581133359667623075371927

14568118669903518720000π4 ,

−21

5
+ 1581133359667623075371927

36420296674758796800000π4 + 25100797053643620547

325031370741792000π2 ,

25100797053643620547

325031370741792000π2 , 6 + 3585828150520517221

162515685370896000π2 ,
9

2
, 1

)
,

J10,•(−1) =
(

7142769685117513413611137831

13319284084760520585863454122835968
,

15207860904181118336356297648935

13319284084760520585863454122835968
,

9440668036340000013447895

198472799133666166452518912
,
240195630998707566620445

441541266148311827480576
,

65392213852270069737

23659801379879256064
,
177147685252097540771

23659801379879256064
,

8199101438535

705117028352
,
29352612289095

2820468113408
, 5, 1

)
.

3.2 Internal Angles of Random Simplices: Uniform Distribution in the Ball

Let X1, . . . , Xn be i.i.d. random points sampled uniformly from the unit ball Bn−1.
The expected sum of internal angles of the simplex [X1, . . . , Xn] at its k-vertex faces is
Jn,k(0). The values of Jn,k(0) for n = 1, 2, 3 are the same as in (16). For simpliceswith
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n = 4 and n = 5 vertices (corresponding to dimensions d = 3 and 4), the following
results were obtained in [16] by a method not extending to higher dimensions:

J4,•(0) =
(

401

2560
,
2961

2560
, 2, 1

)
,

J5,•(0) =
(

−1

6
+ 1692197

846720π2 ,
1692197

282240π2 ,
5

3
+ 1692197

423360π2 ,
5

2
, 1

)
.

Using Mathematica 11 and the above algorithm we recovered these results and, more-
over, obtained the following

Theorem 3.2 We have

J6,•(0) =
(

112433094897

17197049053184
,
29573170815

120259084288
,
6929155

4685824
,
30358275

9371648
, 3, 1

)
,

J7,•(0) =
(
1

6
+ 36051577693123

13519341158400π4 − 621038966291119

325969178895360π2 ,

36051577693123

4506447052800π4 ,−7

6
+ 36051577693123

6759670579200π4 + 621038966291119

32596917889536π2 ,

621038966291119

21731278593024π2 ,
7

2
+ 621038966291119

54328196482560π2 ,
7

2
, 1

)
,

J8,•(0) =
(

54854407266470750437

407304109147506899681280
,
1922620195704749849441

81460821829501379936256
,

1818739186251799

4855443348258816
,
6494630010305885

3236962232172544
,

2403490929

482344960
,
9156320369

1447034880
, 4, 1

)
,

J9,•(0) =
(

− 3

10
− 3825746278401786849105853842941927

513083615323402301904101376000000π4

+ 834997968128824111294853689

434049888937072472064000000π6

+ 25695566187355249503645020401

6950795362764910977640320000π2 ,

834997968128824111294853689

144683296312357490688000000π6 ,

3825746278401786849105853842941927

51308361532340230190410137600000π4

+ 834997968128824111294853689

217024944468536236032000000π6 + 2
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− 25695566187355249503645020401

992970766109272996805760000π2 ,

3825746278401786849105853842941927

34205574354893486793606758400000π4 ,

−21

5
+ 3825746278401786849105853842941927

85513935887233716984016896000000π4

+ 25695566187355249503645020401

330990255369757665601920000π2 ,

25695566187355249503645020401

330990255369757665601920000π2 ,

6 + 25695566187355249503645020401

1158465893794151829606720000π2 ,
9

2
, 1

)
,

J10,•(0) =
(

16173937433865922950599394579005791588389155

9204102262874833628227344732391414668379518140416
,

12688011280876667528205329700413092651546251555

9204102262874833628227344732391414668379518140416
,

32929953220484140728052018125551175

640848401352029148689993712621584384
,

210765193340397846616524118474155

373323101767213558740779093983232
,

371193086109705273947602629

131859245100259540744536064
,
2253773101928857034270262735

298418291542692644842897408
,

15529150935155595

1330783805505536
,
55452665100321675

5323135222022144
, 5, 1

)
.

3.3 Typical Poisson–Voronoi Cells

Let P1, P2, . . . be the points of a Poisson point process onRd with constant intensity 1.
The typical Poisson–Voronoi cell is a random polytope which, for our purposes, can
be defined as follows:

Vd := {x ∈ R
d : ‖x‖ ≤ ‖x − Pj‖ for all j ∈ N}.

The typical Poisson–Voronoi cell is one of the classical objects of stochastic geometry;
see [8,9,15,28,29,35] for reviews and the works of Meijering [25], Gilbert [11], and
Miles [26] for important early contributions. We shall be interested in the expected
f -vector of Vd denoted by

Ef(Vd) = (E f0(Vd),E f1(Vd), . . . ,E fd−1(Vd)),

123



916 Discrete & Computational Geometry (2021) 66:902–937

where fk(Vd) is the number of k-dimensional faces ofVd . To the best of our knowledge,
explicit formulae for the complete vectorEf(Vd) have been known only in dimensions
d = 2 and 3:

Ef(V2) = (6, 6), Ef(V3) =
(
96π2

35
,
144π2

35
, 2 + 48π2

35

)
, (17)

see [35, Thm. 10.2.5] or [28, Eq. (7.13)]. The following formula can be found in the
works of Miles [26, Eq. (75)] and Møller [28, Thm. 7.2]:

E f0(Vd) = 2d+1π(d−1)/2

d2
· �((d2 + 1)/2)

�(d2/2)

(
�((d + 2)/2)

�((d + 1)/2)

)d
. (18)

In fact, there is a more general formula [28, Thm. 7.2] for the expected s-content of
all s-faces of a typical t-face in a d-dimensional tessellation, but it is only the case
s = 0, t = d for which this result yields a formula for some entry of the expected
f -vector of Vd .
For arbitrary d ∈ N and for all k ∈ {0, . . . , d − 1}, it has been shown in [20] (see

Theorem 1.21 and its proof there, with α = d) that

E fk(Vd) = 2
∑

m∈{d−k,...,d}
m≡d (mod 2)

Ĩ∞,m(d)J̃m,d−k

(
m − 1 + d

2

)
, (19)

where

Ĩ∞,m(d) := lim
n→∞ Ĩn,m(d) = c̃1,(dm+1)/2

c̃m1,(d+1)/2
· d

m−1

m

= �((md + 1)/2)

�(md/2)

(
�(d/2)

�((d + 1)/2)

)m
(
√

πd)m−1

m
.

(20)

Taking k = 0, we recover (18). Formula (19), together with the algorithm for com-
putation of J̃n,k(β), allows us to compute E fk(Vd) in finitely many steps. Using
Mathematica 11, we have done this in dimensions d ∈ {2, . . . , 10}. As a result, we
recovered (17) and, moreover, obtained the following

Theorem 3.3 The expected f -vector of the typical Poisson–Voronoi cell is given by

Ef(V4) =
(
1430

9
,
2860

9
,
590

3
,
340

9

)
,

Ef(V5) =
(
7776000π4

676039
,
19440000π4

676039
,
2716500π2

49049
+ 12960000π4

676039
,
4074750π2

49049
,

2 + 1358250π2

49049
− 1296000π4

676039

)
,

Ef(V6) =
(
90751353

10000
,
272254059

10000
,
120613311

4000
,
14930979

1000
,
62611437

20000
,
4053

20

)
,
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Ef(V7) =
(
27536588800000π6

322476036831
,
96378060800000π6

322476036831
,
145800103122713984000π4

139352342399730603

+96378060800000π6

322476036831
,
364500257806784960000π4

139352342399730603
,

1088840823954800π2

1430074210851
+ 729000515613569920000π4

418057027199191809

−96378060800000π6

967428110493
,
544420411977400π2

476691403617
,
544420411977400π2

1430074210851

+2 − 72900051561356992000π4

418057027199191809
+ 13768294400000π6

967428110493

)
,

Ef(V8) =
(
37400492672297766

45956640625
,
149601970689191064

45956640625
,
6850391092580412

1313046875
,

27954881044110648

6565234375
,
17044839181035378

9191328125
,

18843745433119128

45956640625
,
5212716470964

133984375
,
4422456

4375

)
,

Ef(V9) =
(
100837904362675200000000π8

109701233401363445369
,
453770569632038400000000π8

109701233401363445369
,

2852955835216853216138612837266320000π6

134952926502386519274273464063983

+605027426176051200000000π8

109701233401363445369
,

9985345423258986256485144930432120000π6

134952926502386519274273464063983
,

16352535012213243758810504565072375π4

326981148443273530305985029716

+9985345423258986256485144930432120000π6

134952926502386519274273464063983

−423519198323235840000000π8

109701233401363445369
,

81762675061066218794052522825361875π4

653962296886547060611970059432
,

19758536784497995373925π2

2249321131934361056

+27254225020355406264684174275120625π4

326981148443273530305985029716

−3328448474419662085495048310144040000π6

134952926502386519274273464063983

+201675808725350400000000π8

109701233401363445369
,
59275610353493986121775π2

4498642263868722112
,
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2 + 19758536784497995373925π2

4498642263868722112

−5450845004071081252936834855024125π4

653962296886547060611970059432

+475492639202808869356435472877720000π6

134952926502386519274273464063983

−30251371308802560000000π8

109701233401363445369

)
,

Ef(V10) =
(
155696519360438569961130397

1556433053837891712
,
778482596802192849805651985

1556433053837891712
,

363290492786125188681583835

345874011963975936
,
4865451274315354941235930

4053211077702843
,

89845553163656455297282315

111173789559849408
,
23998744131568764316595507

74115859706566272
,

32972345885500895805463345

444695158239397632
,
377982052291467600549815

43234251495496992
,

5889025850448565

13894111602
,
402700265

83349

)
.

Combining (19) with Theorem 2.11, we can say something about the arithmetic struc-
ture of E fk(Vd) for arbitrary dimension d.

Theorem 3.4 Let d ∈ N and k ∈ {0, . . . , d − 1}.
(a) If d is even, then E fk(Vd) is a rational number.
(b) If d is odd, then E fk(Vd) can be expressed as qd−1π

d−1 + qd−3π
d−3 + · · · +

qd−k−1π
d−k−1 (if k is even) or qd−1π

d−1 + qd−3π
d−3 + · · · + qd−kπ

d−k (if k is
odd), where the coefficients qi are rational.

Proof of (a) Let d be even. Recall that �(x) is integer if x > 0 is integer, and is a
rational multiple of

√
π if x > 0 is half-integer. It follows from (20) that Ĩ∞,m(d)

is rational. Also, by Theorem 2.11 (a), J̃m,d−k((m − 1 + d)/2) is rational. It follows
from (19) that E fk(Vd) is rational. ��
Proof of (b) Let now d be odd. The summation in (19) is over odd values of m.
For any such value, Ĩ∞,m(d) is a rational multiple of πm−1. On the other hand,
by Theorem 2.11 (b), J̃m,d−k((m − 1 + d)/2) can be written as a Q-linear com-
bination of π− j , where j is even and satisfies 0 ≤ j ≤ m − d + k. It follows that
Ĩ∞,m(d)J̃m,d−k((m−1+d)/2) is aQ-linear combination ofπ�, d−k−1 ≤ � ≤ m−1,
with � ≡ m − 1 ≡ d − 1 (mod 2). The claim follows. ��
In fact, a closer look at the values collected in Theorem 3.3 suggests the following
conjecture which is a consequence of Conjecture 2.12.

Conjecture 3.5 If both d and k are odd, then E fk(Vd) is a number of the form qπd−k

with some rational q.
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3.4 Random Polytopes Approximating Smooth Convex Bodies

Let U1,U2, . . . be independent random points distributed uniformly in the d-
dimensional convex body K . Denote the convex hull of n such points by Kn,d =
[U1, . . . ,Un]. Asymptotic properties of Kn,d , as n → ∞, have been very much stud-
ied startingwith the work of Rényi and Sulanke [31,32] (see, for example, [15,34]) and
we shall not attempt to review the vast literature on this topic. In particular, regarding
the f -vector of Kn,d , this development culminated in the work of Reitzner who proved
the following result [30, p. 181]. If the boundary of K is of differentiability class C2
and the Gaussian curvature κ(x) > 0 is positive at every boundary point x ∈ ∂K , then

lim
n→∞

E fk(Kn,d)

n(d−1)/(d+1)
= cd,k�(K )

(Vold K )(d−1)/(d+1)
(21)

for every k ∈ {0, 1, . . . , d − 1}, where �(K ) := ∫
∂K κ(x)1/(d+1)dx is the so-called

affine surface area of K , and cd,0, . . . , cd,d−1 are certain strictly positive constants not
depending on K . In [30], (21) is stated without the term involving Vold K , for which
it is necessary to assume that K has unit volume. The general case follows from the
following scaling property of the affine surface area:

�(r K ) = rd(d−1)/(d+1)�(K ), r > 0,

see, e.g., [14, Thm. 3.6] and take p = 1 there.
As Reitzner [30, p. 181] writes, “It would be of interest to determine the vector

cd = (cd,0, . . . , cd,d−1); but we have not succeeded in getting an explicit expression”.
Our aim is to provide explicit expressions for cd for all d ≤ 10. In the following, it
will be convenient to take K := B

d (which is possible since cd does not depend on K )
and use the notation

Cd,k := lim
n→∞

E fk(P0
n,d)

n(d−1)/(d+1)
= cd,k�(Bd)

(Vold Bd)(d−1)/(d+1)
= d · πd/(d+1) · cd,k

�(1 + d/2)2/(d+1)
(22)

for all k ∈ {0, 1, . . . , d − 1}. Here, we recall that P0
n,d = [X1, . . . , Xn] is the convex

hull of n i.i.d. random points X1, . . . , Xn distributed uniformly in the ball Bd . Note
also that the affine surface area of the unit ball coincides with its usual surface area:
�(Bd) = 2πd/2/�(d/2). For d = 2, the value of C2,0 = C2,1 has been identified by
Rényi and Sulanke [31, Satz 3] who proved that

C2,0 = C2,1 = lim
n→∞

E f1(P0
n,2)

n1/3
= lim

n→∞
E f0(P0

n,2)

n1/3
= 2�(5/3)π2/3 3

√
2/3.

If d ∈ N is arbitrary and k = d−1, Affentranger [2] (see his Corollary 1 on p. 366, the
formula for c3 on p. 378, and take q = 0) proved the following formula for Cd,d−1:
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2πd(d−1)/(2(d+1))

(d + 1)! · �(1 + d2/2)�((d2 + 1)/(d + 1))

�((d2 + 1)/2)

×
(

(d + 1)�((d + 1)/2)

�(1 + d/2)

)(d2+1)/(d+1)

.

(23)

Note also that an exact formula for the number of facets of a convex hull of N i.i.d.
points sampled uniformly from the ballBd has been obtained by Buchta andMüller [6]
(see their Theorem 3 on page 760), but it requires some work to analyse its asymptotic
behaviour as N → ∞. In [20, Rem. 1.9], it has been shown that for all d ∈ N and
k ∈ {0, . . . , d − 1},

Cd,k = 2πd(d−1)/(2(d+1))

(d + 1)! · �(1 + d2/2)�((d2 + 1)/(d + 1))

�((d2 + 1)/2)

×
(

(d + 1)�((d + 1)/2)

�(1 + d/2)

)(d2+1)/(d+1)

Jd,k+1(1/2).

(24)

In the special case k = d − 1, (24) reduces to (23) since Jd,d(1/2) = 1. Hug [15,
Corr. 7.1 andp. 209] gave a formula for cd,0 (and, hence, forCd,0)which is equivalent to
the formula for Jd,1(1/2), which will be stated in Theorem 3.8 below. Combining (24)
with the above algorithm for computing Jd,k+1(1/2), we obtain the following explicit
formulae for Reitzner’s constants in dimensions d ≤ 10.

Theorem 3.6 The vectors Cd := (Cd,0, . . . ,Cd,d−1) are explicitly given by

C1 = 2 × (1), C2 = 2 3

√
2

3
π2/3�

(
5

3

)
× (1, 1),

C3 = 35
√

π/3

4
×

(
1

2
,
3

2
, 1

)
,

C4 = 20 · 24/5152/5π12/5�(17/5)

143
×

(
26741

16800π2 , 1 + 26741

16800π2 , 2, 1

)
,

C5 = 676039 · �(13/3)

18000 3
√
10

×
(

2000

52003
,
64003

104006
,
108006

52003
,
5

2
, 1

)
,

C6 = 4390400 · 26/7352/7π30/7�(37/7)

116680311

×
(

1758847651

2458624000π4 ,−1

2
+ 1758847651

2458624000π4 + 108130927981

14717390688π2 ,

108130927981

7358695344π2 ,
5

2
+ 108130927981

14717390688π2 , 3, 1

)
,

C7 = 35830670759 · �(25/4)

420175000 4
√
35

×
(

52521875

44479453356
,
1260026621

14826484452
,

708362065

855374103
,
115870255

39856141
,
371689191

79712282
,
7

2
, 1

)
,
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C8 = 15752961000000 · 64/9352/9π56/9�(65/9)

2077805148460987
×

(
90856752400884977

571643448768000000π6 ,

2

3
+ 3883880966311229933975003293

209349006975455882895360000π4 + 90856752400884977

571643448768000000π6

− 486245776939428578826199

59171148465116379120000π2 ,
3883880966311229933975003293

104674503487727941447680000π4 ,

−7

3
+ 3883880966311229933975003293

209349006975455882895360000π4

+ 486245776939428578826199

11834229693023275824000π2 ,

486245776939428578826199

9861858077519396520000π2 ,
14

3
+ 486245776939428578826199

29585574232558189560000π2 , 4, 1

)
,

C9 = 109701233401363445369 · �(41/5)

726032911411261440 · 32/5 5
√
14

×
(

12004512424128

581660834577748915
,

3683565096070608

581660834577748915
,
17538430231527552

116332166915549783
,
570366050377039

491890769198942
,

1019018617306221

245945384599471
,
1080810073

137168095
,
1131811448

137168095
,
9

2
, 1

)
,

C10 = 434735988912345551929344 · 26/1134/11772/11π90/11�(101/11)

353855725819178568093478175

×
(

549837358580569775037558395

24790385031737592753218912256π8 ,

−3

2
− 301974317327871030169614455148390753674792595873047

6565687677840932855885309667960898754371584000000π4

+ 296364869518522313138595119776890880847603113

11688440195468832553173084766502230425600000π6

+ 549837358580569775037558395

24790385031737592753218912256π8

+ 37401610118391599618484796905719320020269

1946114861053154102938714818796281216000π2 ,

296364869518522313138595119776890880847603113

5844220097734416276586542383251115212800000π6 ,

301974317327871030169614455148390753674792595873047

1313137535568186571177061933592179750874316800000π4

+ 296364869518522313138595119776890880847603113

11688440195468832553173084766502230425600000π6
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+5 − 37401610118391599618484796905719320020269

556032817443758315125347091084651776000π2 ,

301974317327871030169614455148390753674792595873047

1094281279640155475980884944660149792395264000000π4 ,

301974317327871030169614455148390753674792595873047

3282843838920466427942654833980449377185792000000π4

−7 + 37401610118391599618484796905719320020269

278016408721879157562673545542325888000π2 ,

37401610118391599618484796905719320020269

324352476842192350489785803132713536000π2 ,

15

2
+ 37401610118391599618484796905719320020269

1297409907368769401959143212530854144000π2 , 5, 1

)
.

3.5 Random Polytopes with Vertices on the Sphere

Similarly, one can consider random polytopes approximating a convex body K and
having vertices on the boundary of K . Here, we restrict ourselves to the case K = B

d ,
so that we are interested in the random polytope P−1

n,d defined as the convex hull of

n points X1, . . . , Xn chosen uniformly at random on the unit sphere Sd−1, d ≥ 2. In
[20, Rem. 1.9], it has been shown that

C∗
d,k := lim

n→∞
E fk(P

−1
n,d )

n

= 2dπd/2−1

d (d − 1)2
· �(1 + d (d − 2)/2)

�((d − 1)2/2)

(
�((d + 1)/2)

�(d/2)

)d−1

Jd,k+1(−1/2)

(25)

for all k ∈ {0, . . . , d − 1}. In the special case k = d − 1, it was previously shown by
Affentranger [2] (see his Corollary 1 on p. 366 and the formula for c3 on p. 378, this
time with q = −1) and Buchta et al. [7] (see their formula for F̄ (d)

n on p. 231) that

C∗
d,d−1 = 2d−1

d

(
d − 1

(d − 1)/2

)1−d(
(d − 1)2

(d − 1)2/2

)

= 2dπd/2−1

d (d − 1)2
· �(1 + d (d − 2)/2)

�((d − 1)2/2)

(
�((d + 1)/2)

�(d/2)

)d−1

,

(26)

where the second equality follows from the duplication formula for the Gamma func-
tion. This formula for C∗

d,d−1 is a special case of (25) since Jd,d(−1/2) = 1. Using
(25) together with the algorithm for computing Jd,k+1(−1/2), we obtain the following
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Theorem 3.7 The vectors C∗
d := (C∗

d,0, . . . ,C
∗
d,d−1) are explicitly given by

C∗
2 = (1, 1), C∗

3 = (1, 3, 2), C∗
4 =

(
1, 1 + 24π2

35
,
48π2

35
,
24π2

35

)
,

C∗
5 =

(
1,

170

9
,
590

9
,
715

9
,
286

9

)
,

C∗
6 =

(
1, 1 + 679125π2

49049
− 648000π4

676039
,
1358250π2

49049
,

679125π2

49049
+ 3240000π4

676039
,
3888000π4

676039
,
1296000π4

676039

)
,

C∗
7 =

(
1,

4053

40
,
20870479

20000
,
14930979

4000
,
120613311

20000
,
90751353

20000
,
12964479

10000

)
,

C∗
8 =

(
1, 1 + 272210205988700π2

1430074210851
− 36450025780678496000π4

418057027199191809

+6884147200000π6

967428110493
,
544420411977400π2

1430074210851
,
272210205988700π2

1430074210851

+182250128903392480000π4

418057027199191809
− 24094515200000π6

967428110493
,

72900051561356992000π4

139352342399730603
,
72900051561356992000π4

418057027199191809

+48189030400000π6

967428110493
,
13768294400000π6

322476036831
,
3442073600000π6

322476036831

)
,

C∗
9 =

(
1,

2211228

4375
,
1737572156988

133984375
,
4710936358279782

45956640625
,

17044839181035378

45956640625
,
4659146840685108

6565234375
,
6850391092580412

9191328125
,

18700246336148883

45956640625
,
4155610296921974

45956640625

)
,

C∗
10 =

(
1, 1 + 19758536784497995373925π2

8997284527737444224

−5450845004071081252936834855024125π4

1307924593773094121223940118864

+237746319601404434678217736438860000π6

134952926502386519274273464063983

−15125685654401280000000π8

109701233401363445369
,
19758536784497995373925π2

4498642263868722112
,

19758536784497995373925π2

8997284527737444224

+27254225020355406264684174275120625π4

1307924593773094121223940118864

123



924 Discrete & Computational Geometry (2021) 66:902–937

−832112118604915521373762077536010000π6

134952926502386519274273464063983

+50418952181337600000000π8

109701233401363445369
,

16352535012213243758810504565072375π4

653962296886547060611970059432
,

5450845004071081252936834855024125π4

653962296886547060611970059432

+1664224237209831042747524155072020000π6

134952926502386519274273464063983

−70586533053872640000000π8

109701233401363445369
,

1426477917608426608069306418633160000π6

134952926502386519274273464063983
,

356619479402106652017326604658290000π6

134952926502386519274273464063983

+75628428272006400000000π8

109701233401363445369
,

50418952181337600000000π8

109701233401363445369
,
10083790436267520000000π8

109701233401363445369

)
.

Observe that the first entry of each vector is C∗
d,0 = 1 for all d ∈ N. This is

trivial because all points X1, . . . , Xn are vertices of P−1
n,d . Yet, in the above table, the

constant 1 appeared as a result of a non-trivial computation of Jd,1(−1/2). On the one
hand, this gives evidence for the correctness of the algorithm. On the other hand, it
can be used to give an explicit formula for Jd,1(−1/2), as we shall show in the next
section.

3.6 Special Cases: Jn,1(1/2) and Jn,1(−1/2)

There are only few special cases in which we are able to obtain a “nice” formula
for Jn,k(β) or J̃n,k(β). Most notably, in [17] we obtained an explicit formula for
J̃n,k(n/2) which has applications to the expected f -vector of the zero cell of the
Poisson hyperplane tessellation. By a similar method, it is also possible to derive a
combinatorial formula for J̃n,k((n + 1)/2), which will be treated elsewhere. In this
section, we shall prove simple formulae for Jn,1(1/2) and Jn,1(−1/2). Note that
the beta distributions with β = 1/2 and β = −1/2 are natural multidimensional
generalizations of the Wigner semicircle and the arcsine distributions, respectively.

Theorem 3.8 For every n ∈ N we have

Jn,1(1/2) = n(n2 + 1)(n2 + n + 2)π

(n + 3)2n(2n+1)

(
n + 1

(n + 1)/2

)n−1( n2

n2/2

)

123



Discrete & Computational Geometry (2021) 66:902–937 925

= n(n2 + 1)(n2 + n + 2)

2n+1(n + 3)π(n−2)/2

(
�((n + 2)/2)

�((n + 3)/2)

)n−1
�((n2 + 1)/2)

�((n2 + 2)/2)
.

Proof The argument follows essentially the approach sketched by Hug [15, pp. 209–
210]. Consider N i.i.d. points uniformly distributed in the unit ball Bd . Denote their
convex hull by P0

N ,d . As N → ∞, the random polytope P0
N ,d approaches the unit ball.

In particular,EVold P0
N ,d converges to κd , the volume ofBd . The speed of convergence

has been identified by Wieacker [36]; see also [2] for similar results on general beta
polytopes and [1,19] for exact formulae for the expected volume. In particular, it is
known that

κd − EVold P0
N ,d ∼ dκd

2d! · d + 1

d + 3
�

(
d2 + 1

d + 1
+ 2

)

×
(
2
√

π �((d + 3)/2)

�((d + 2)/2)

)2/(d+1)

N−2/(d+1),

(27)

as N → ∞; see, for example Corollary 1 on p. 366 of [2] and the formula for c5 on
p. 378, with q = 0. The left-hand side is closely related to the expected number of
vertices of P0

N ,d via Efron’s identity which states that

E f0(P
0
N ,d) = N · κd − EVold P0

N−1,d

κd
. (28)

Indeed, the N -th point is a vertex of P0
N ,d if and only if it is outside the convex hull of

the remaining N−1 points. Ifwe condition on the first N−1 points, then the probability
that the last point is a vertex is (κd − Vold P0

N−1,d)/κd . Taking expectations proves
Efron’s identity. From (27) and (28) we deduce that

E f0(P
0
N ,d) ∼ d

2d! · d + 1

d + 3
�

(
d2 + 1

d + 1
+ 2

)

×
(
2
√

π �((d + 3)/2)

�((d + 2)/2)

)2/(d+1)

N (d−1)/(d+1),

(29)

as N → ∞. On the other hand, we know from (22) and (24) (where we take k = 0)
that

E f0(P
0
N ,d) ∼ Cd,0N

(d−1)/(d+1)

= 2πd(d−1)/(2(d+1))

(d + 1)! · �(1 + d2/2)�((d2 + 1)/(d + 1))

�((d2 + 1)/2)

×
(

(d + 1)�((d + 1)/2)

�(1 + d/2)

)(d2+1)/(d+1)

Jd,1(1/2) · N (d−1)/(d+1)

(30)

as N → ∞. Equating the constants on the right-hand sides of (29) and (30), resolving
w.r.t.Jd,1(1/2), and simplifying,we arrive at the second formula stated inTheorem3.8.
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The equivalence of both formulae is easily shown using the identity

(
z

z/2

)
= 2z�((z + 1)/2)√

π �((z + 2)/2)
, (31)

which is equivalent to the Legendre duplication formula for the Gamma function. ��
Theorem 3.9 For every n ∈ {2, 3, . . .} we have

Jn,1(−1/2) = 21−nn

(
n − 1

(n − 1)/2

)n−1(
(n − 1)2

(n − 1)2/2

)−1

= n(n − 1)2

2nπ(n−2)/2

(
�(n/2)

�((n + 1)/2)

)n−1
�((n − 1)2/2)

�(((n − 1)2 + 1)/2)
.

We shall give two independent proofs. The first one is based on (25) (which, as was
explained above, generalises (26) obtained independently in [2] and [7]). The second
proof relies, among other ingredients, on a formula due to Kingman [22]. The fact that
all these formulae lead to the same result can be viewed as an additional evidence for
their correctness.

First proof of Theorem 3.9 Recall that P−1
N ,d is the convex hull of N i.i.d. points having

the uniform distribution on S
d−1. By a formula derived in [20], we have

lim
N→∞

E fk(P
−1
N ,d)

N

= 2dπd/2−1
Jd,k+1(−1/2)

d (d − 1)2
· �(1 + d(d − 2)/2)

�((d − 1)2/2)

(
�((d + 1)/2)

�(d/2)

)d−1

.

On the other hand, in the special case when k = 0 we trivially have f0(P
−1
N ,d) = N

a.s. since every point is a vertex. Hence, the right-hand side equals 1 if k = 0, which
yields

Jd,1(−1/2) = d (d − 1)2

2dπd/2−1 · �((d − 1)2/2)

�(1 + d (d − 2)/2)

(
�(d/2)

�((d + 1)/2)

)d−1

.

Replacing d by n completes the proof of the second formula stated in Theorem 3.9.
The equivalence to the first formula follows fromLegendre’s duplication formula (31).

��
The second proof of Theorem 3.9 uses the following observation of Feldman and

Klain [10]. It can be viewed as a special case of a more general result that has been
obtained earlier by Affentranger and Schneider [3].

Theorem 3.10 Let S = [x0, . . . , xd ] ⊂ R
d be a d-dimensional simplex. Let U be a

random vector uniformly distributed on the unit sphere Sd−1 and denote by� = �U⊥
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the orthogonal projection onto the orthogonal complement ofU. Then, the sum of solid
angles at all vertices of S is given by

s0(S) = P[�S is a (d − 1)-dimensional simplex]
2

.

Second proof of Theorem 3.9 Let X0, . . . , Xd , where d = n−1, be i.i.d. random points
in R

d with probability density fd,−1/2. Independently of these points, let U be a
uniform random point on the sphere Sd−1. Consider an orthogonal projection� of the
simplex [X0, . . . , Xd ] onto a random, uniformly distributed, hyperplane L := U⊥.
Then, it follows from Theorem 3.10 and Fubini’s formula that

Jn,1(−1/2) = d + 1

2
· P[�X0 is a not vertex of [�X0, . . . , �Xd ]].

Let us compute the probability on the right-hand side. Let IL : L → R
d−1 be an

isometry with IL(0) = 0. By the projection property of the beta densities (see [19,
Lem. 4.4]) the points

Y0 := IL(�X0), . . . ,Yd := IL(�Xd),

have the density fd−1,0. That is, these points are uniformly distributed in the unit
ball Bd−1. Clearly, these points are i.i.d. We have

P[�X0 is a not vertex of [�X0, . . . ,�Xd ]] = P[Y0 is a not vertex of [Y0, . . . ,Yd ]]
= P[Y0 ∈ [Y1, . . . ,Yd ]] = EVold−1[Y1, . . . ,Yd ]

κd−1
,

where the last equality is Efron’s identity obtained by conditioning on Y1, . . . , Yd and
recalling that Y0 is uniformly distributed in Bd−1. A formula for the expected volume
on the right-hand side is well known from the work of Kingman [22, Thm. 7]:

EVold−1[Y1, . . . ,Yd ] = κd−1

(
d

d/2

)d( d2

d2/2

)−1

21−d

= κd−1
d2(d + 1)

2dπ(d−1)/2

(
�((d + 1)/2)

�((d + 2)/2)

)d
�(d2/2)

�((d2 + 1)/2)
,

where the second equality can be verified using the duplication formula for theGamma
function. Taking everything together and recalling that d = n − 1 completes the
proof. ��
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4 Proofs: Formulae for Internal Angles

4.1 Notation and Facts from Stochastic Geometry

Let us first introduce the necessary notation, referring to the book by Schneider and
Weil [35] for an extensive account of stochastic geometry. A polyhedral cone (or just a
cone)C ⊂ R

d is an intersection of finitely many closed half-spaces whose boundaries
pass through the origin. The solid angle of C is defined as

α(C) = P[U ∈ C],

where U is a random vector having the uniform distribution on the unit sphere of the
smallest linear subspace containing C . For example, the angle of Rd is 1, whereas
the angle of any half-space is 1/2. Let P ⊂ R

d be a d-dimensional convex polytope.
Denote by Fk(P) the set of its k-dimensional faces, where k ∈ {0, 1, . . . , d}. The set
of all faces of P is denoted by F•(P) = ⋃d

k=0 Fk(P). The tangent cone of P at its
face F ∈ Fk(P) is defined as

T (F, P) := {y ∈ R
d : ∃ε > 0 such that f0 + εy ∈ P},

where f0 is any point in the relative interior of F , defined as the interior of F taken
with respect to its affine hull. The internal angle of P at its face F ∈ Fk(P) is defined
by

β(F, P) := α(T (F, P)).

The normal or external cone of F is defined as the polar cone of T (F, P), that is

N (F, P) = {z ∈ R
d : 〈z, y〉 ≤ 0 for all y ∈ T (F, P)}.

The normal of external angle of P at its face F ∈ Fk(P) is defined by

γ (F, P) := α(N (F, P)).

By convention,β(P, P) = γ (P, P) = 1. For a polyhedral coneC ⊂ R
d wedenote by

υ0(C), . . . , υd(C) its conic intrinsic volumes. There are various equivalent definitions
of these quantities, see [4,5] and [35, Sect. 6.5]. For example, we have

υ j (C) =
∑

F∈F j (C)

α(F)γ (F,C), j ∈ {0, . . . , d}.

It is known, see [35, Thm. 6.5.5] or [5, Eq. (5.1)], that for every cone C ⊂ R
d ,

d∑
j=0

υ j (C) = 1. (32)
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Also, the Gauss–Bonnet relation, see [35, Thm. 6.5.5] or [5, Eq. (5.3)], states that

d∑
j=0

(−1) jυ j (C) = 0 (33)

for every d-dimensional polyhedral cone C that is not a linear subspace.

4.2 Proof of Proposition 2.1

Consider the (n − 1)-dimensional random simplices

Pβ
n,n−1 := [X1, . . . , Xn] and P̃β

n,n−1 := [X̃1, . . . , X̃n],

where X1, . . . , Xn (respectively, X̃1, . . . , X̃n) are independent random points inRn−1

with probability density fn−1,β (respectively, f̃n−1,β ). Let G (respectively, G̃) be a

k-vertex face of Pβ
n,n−1 (respectively, P̃

β
n,n−1). Without loss of generality, we can take

G = [X1, . . . , Xk] and G̃ = [X̃1, . . . , X̃k]. The tangent cones of these simplices at
this face are defined as

T β
n,k := {v ∈ R

n−1 : there exists ε > 0 such that g0 + εv ∈ Pβ
n,n−1},

T̃ β
n,k := {v ∈ R

n−1 : there exists ε > 0 such that g̃0 + εv ∈ P̃β
n,n−1},

where g0 (respectively, g̃0) is any point in the relative interior of G (respectively, G̃).
The expected conic intrinsic volumes of the tangent cones T β

n,k and T̃
β
n,k were computed

in [20, Thms. 1.12 and 1.18]. Namely, it was shown there that for all k ∈ {1, . . . , n−1}
and j ∈ {k − 1, . . . , n − 1} we have

Eυ j (T
β
n,k) =

(
n

k

)−1

In, j+1(2β + n − 1) J̃ j+1,k

(
β + n − 1 − j

2

)
, (34)

Eυ j (T̃
β
n,k) =

(
n

k

)−1

Ĩn, j+1(2β − n + 1) J̃ j+1,k

(
β − n − 1 − j

2

)
. (35)

For j /∈ {k − 1, . . . , n − 1} we have υ j (T
β
n,k) = υ j (T̃

β
n,k) = 0, which is due to the

fact that the tangent cones contain the (k − 1)-dimensional linear subspace spanned
by X1 −g0, . . . , Xk −g0 (respectively, X̃1 − g̃0, . . . , X̃k − g̃0). Applied to the tangent
cones T β

n,k and T̃ β
n,k , relations (32) and (33) read as

n−1∑
j=k−1

υ j (T
β
n,k) =

n−1∑
j=k−1

υ j (T̃
β
n,k) = 1,

n−1∑
j=k−1

(−1) jυ j (T̃
β
n,k) =

n−1∑
j=k−1

(−1) jυ j (T̃
β
n,k) = 0.
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Taking the expectation and applying (34) and (35), we arrive at the required rela-
tions (6)–(9). ��
Remark 4.1 It is possible to obtain another proof of Proposition 2.1 usingMcMullen’s
non-linear angle-sum relations [23,24]. These state that for every face F ∈ F•(P) of
an arbitrary polytope P ,

∑
H∈F•(P):F⊂H⊂P

β(F, H)γ (H , P) = 1,

∑
H∈F•(P):F⊂H⊂P

(−1)dim H−dim Pβ(F, H)γ (H , P) = δF,P ,

where δF,P = 1 if F = P , and δF,P = 0 otherwise. Applied to P = Pβ
n,n−1 =

[X1, . . . , Xn] and F = [X1, . . . , Xk], the first relation reads
n∑

m=k

(
n − k

m − k

)
β([X1, . . . , Xk], [X1, . . . , Xm])γ ([X1, . . . , Xm], [X1, . . . , Xn]) = 1.

(36)
To prove (6) of Proposition 2.1, one is tempted to take the expectation of this rela-
tion. This has to be done with care because the relation is non-linear. First of all, by
Theorem 1.2 we have

E γ ([X1, . . . , Xm], [X1, . . . , Xn]) = In,m(2β + n − 1).

The so-called canonical decomposition of beta distributions, see [33] or [20,
Thm. 3.3], implies that the random variables γ ([X1, . . . , Xm], [X1, . . . , Xn]) and
β([X1, . . . , Xk], [X1, . . . , Xm]) are stochastically independent; see [20, Thm. 1.6] for
the statement and [20, Sect. 4.1] for the proof. Finally, [20, Thm. 4.1] with d = m−1,
� = n − m implies that

Eβ([X1, . . . , Xk], [X1, . . . , Xm]) = Jm,k

(
β + n − m

2

)
.

Observe that on the right-hand side we have a quantity different from Jm,k(β) since
the points X1, . . . , Xm are in R

n−1 and do not form a full-dimensional simplex, so
that we cannot directly apply the definition of Jm,k(β). Taking the expectation of (36)
and using the above facts, we obtain

n∑
m=k

(
n − k

m − k

)
In,m(2β + n − 1) Jm,k

(
β + n − m

2

)
= 1.

Recalling that In,k(α) = (n
k

)
In,k(α) and Jn,k(β) = (n

k

)
Jn,k(β), we arrive at (6). The

proofs of (7)–(9) are similar.
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4.3 Proof of Theorem 2.2

We use induction over n. The claim is true for n = k = 1 since J1,1(β) = 1 and
I1,1(2β) = 1. Assume that, for some n ≥ 2, the claim is true for all quantities Jm,k(γ )

withm ∈ {1, . . . , n−1}, k ∈ {1, . . . ,m}, γ ≥ −1. In particular, Jm,k(β + (n−m)/2)
equals

m−k∑
�=0

(−1)�
∑

m=m0>···>m�≥k

Im,m1(2β + n − 1) . . . Im�−1,m�
(2β + n − 1)

(
m�

k

)
.

By (10), we have

Jn,k(β) =
(
n

k

)
−

n−1∑
m=k

In,m(2β + n − 1)Jm,k

(
β + n − m

2

)
.

Using the induction assumption, we obtain

Jn,k(β) =
(
n

k

)
−

n−1∑
m=k

m−k∑
�=0

(−1)�
∑

m=m0>···>m�≥k

In,m(2β + n − 1)

× Im,m1(2β + n − 1) . . . × Im�−1,m�
(2β + n − 1)

(
m�

k

)

=
(
n

k

)
−

n−k∑
�′=1

(−1)�
′−1

∑
n=n0>···>n�′≥k

In,n1(2β + n − 1)

× In1,n2(2β + n − 1) . . . × In�′−1,n�′ (2β + n − 1)

(
n�′

k

)
,

where we used the index shift �′ = �+1, (n1, . . . , n�′) = (m0, . . . ,m�). Note that
(n
k

)
can be interpreted as the term corresponding to �′ = 0. This completes the induction.

�
Theorem 2.3 can be established analogously by using (11) instead of (10).

5 Proofs: Arithmetic Properties

In this section we prove Theorems 2.7 and 2.8. The proofs of Theorems 2.10 and 2.11,
being analogous to the proofs of Theorems 2.7 and 2.8, are omitted.
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5.1 Proof of Theorems 2.7 and 2.8

Recall from Sect. 2.1 that we can express Jn,k(β) through the quantities of the form

In,k(α) =
(
n

k

) ∫ +π/2

−π/2
c1,(αk−1)/2(cosϕ)αk

(∫ ϕ

−π/2
c1,(α−1)/2(cos θ)α dθ

)n−k

dϕ,

α ≥ 0, where

c1,β = �(3/2 + β)√
π �(β + 1)

, β > −1.

In Propositions 5.4 and 5.6 we shall establish the arithmetic properties of In,k(α) for
integer α ≥ 0. Taken together, these propositions yield Theorem 2.7.

Lemma 5.1 Let β > −1.

(a) If β is integer, then c1,β is rational.
(b) If β is half-integer, then c1,β is a rational multiple of π−1.

Proof Just recall the following two facts: (i)�(x) is integer if x > 0 is integer; (ii)�(x)
is a rational multiple of �(1/2) = √

π if x > 0 is half-integer. ��
Lemma 5.2 If k ≥ 1 is an odd integer, then

∫ ϕ

−π/2(cos θ)k dθ can be represented as
a linear combination of the functions 1, sin ϕ, sin 3ϕ, . . . , sin kϕ with rational coeffi-
cients.

Proof We have

(cos θ)k =
(
eiθ + e−iθ

2

)k
=

∑
m=±1,±3,...

qme
imθ =

∑
m=1,3,...

2qm cosmθ

for some rational numbers qm satisfying qm = q−m and vanishing for m > k. By
integration it follows that

∫ ϕ

−π/2
(cos θ)k dθ =

∑
m=1,3,...

2qm

∫ ϕ

−π/2
cosmθ dθ

=
∑

m=1,3,...

2qm(sinmϕ − sin(−mπ/2))

m
,

which proves the claim. ��
Lemma 5.3 If k ≥ 0 is an even integer, then

∫ ϕ

−π/2(cos θ)k dθ can be represented as
a linear combination of the functions π, ϕ, sin 2ϕ, sin 4ϕ, . . . , sin kϕ with rational
coefficients.
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Proof We have

(cos θ)k =
(
eiθ + e−iθ

2

)k
=

∑
m=0,±2,±4,...

qme
imθ = q0 +

∑
m=2,4,...

2qm cosmθ

for some rational numbers qm satisfying qm = q−m and vanishing for m > k. By
integration it follows that

∫ ϕ

−π/2
(cos θ)k dθ = q0 ·

(
ϕ + π

2

)
+

∑
m=2,4,...

2qm

∫ ϕ

−π/2
cosmθ dθ

= q0 ·
(

ϕ + π

2

)
+

∑
m=2,4,...

2qm(sinmϕ − sin(−mπ/2))

m
,

which proves the claim since sin(−mπ/2) = 0 for even m. ��
Proposition 5.4 If α ≥ 1 is an odd integer, then In,k(α) is rational for all n ∈ N,
k ∈ {1, . . . , n}.
Proof Note that c1,(α−1)/2 is rational by Lemma 5.1. Using Lemma 5.2 and the formula
sin t = (eit − e−it )/(2i) we can write

∫ ϕ

−π/2
c1,(α−1)/2(cos θ)α dθ = a +

∑
m=1,3,...

am sinmϕ = a +
∑

m=±1,±3,...

a′
m ie

imϕ,

for some a, am, a′
m ∈ Q. The sums in the above equality, as well as all sums in this

proof, have only finitely many non-zero terms.

Case 1: Let k ∈ {1, . . . , n} be odd. Then, c1,(αk−1)/2 is rational by Lemma 5.1, and
we can write

c1,(αk−1)2(cosϕ)αk = c1,(αk−1)/2

(
eiϕ + e−iϕ

2

)αk

=
∑

�=±1,±3,...

b�e
i�ϕ

with some rational numbers b�. Taking everything together, we arrive at

In,k(α) =
(
n

k

) ∫ +π/2

−π/2

⎛
⎝ ∑

�=±1,±3,...

b�e
i�ϕ

⎞
⎠

⎛
⎝a +

∑
m=±1,±3,...

a′
m ie

imϕ

⎞
⎠
n−k

dϕ.

When multiplying out the terms under the integral sign, we obtain a finite Q-linear
combination of the terms of the form eisϕ (with odd s) and ieisϕ (with even s). The
integral of a term of the former type is a rational number since

∫ +π/2

−π/2
eisϕ dϕ = eisπ/2 − e−isπ/2

is
∈ Q, s ∈ {±1,±3, . . .}.
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The integrals of the terms of the latter type, with s �= 0, are also rational since
∫ +π/2

−π/2
ieisϕ dϕ = eisπ/2 − e−isπ/2

s
∈ Q, s ∈ {±2,±4, . . .}.

Finally, the term iei0ϕ must have coefficient 0 since its integral is purely imaginary
and we know a priori that In,k(α) is real. Hence, In,k(α) is rational.

Case 2: Let k ∈ {1, . . . , n} be even. Then, αk is also even and c1,(αk−1)/2 is a rational
multiple of 1/π by Lemma 5.1. We can write

c1,(αk−1)/2(cosϕ)αk = c1,(αk−1)/2

(
eiϕ + e−iϕ

2

)αk

= 1

π

∑
�=0,±2,±4,...

b�e
i�ϕ

with some rational numbers b�, where the sum contains only finitely many non-zero
terms. Taking everything together, we arrive at

In,k(α) =
(
n

k

) ∫ +π/2

−π/2

⎛
⎝ 1

π

∑
�=0,±2,±4,...

b�e
i�ϕ

⎞
⎠

⎛
⎝a +

∑
m=±1,±3,...

a′
m ie

imϕ

⎞
⎠
n−k

dϕ.

When multiplying out the terms under the sign of the integral, we obtain a finite Q-
linear combination of terms of the form π−1eisϕ (with even s) and iπ−1eisϕ (with
odd s). The integral of the term π−1ei0ϕ is 1. By the same analysis as in Case 1, the
integrals of all terms with s �= 0 are purely imaginary and hence must cancel since
we know a priori that In,k(α) is real. Hence, In,k(α) is rational. ��
Proof of Theorem 2.8 (a) Let n ∈ N, k ∈ {1, . . . , n}, and let β ≥ −1 be such that
2β + n is even. Our aim is to prove that Jn,k(β) is rational. This is done by induction.
The claim is trivial for n = 1, 2, 3. Assuming that, for some n ≥ 4, the statement has
been established for all Jm,k(γ ) with m ∈ {1, . . . , n − 1}, we recall that by (10),

Jn,k(β) =
(
n

k

)
−

n−k∑
s=1

In,n−s(2β + n − 1)Jn−s,k

(
β + s

2

)
.

The numbers In,n−s(2β + n − 1) are rational by Proposition 5.4, whereas the terms
Jn−s,k(β + s/2) are rational by induction assumption, for all s ∈ {1, . . . , n − k}. ��
Nextwe are going to analyse In,k(α) for evenα ≥ 0. To this end, we need the following

Lemma 5.5 Consider the integral T (s, p) = (1/π)
∫ +π/2
−π/2 eisϕ(ϕ/π)p dϕ, where s is

an even integer and p ≥ 0 is integer.

(a) If p is even, then T (s, p) can be represented as q0+q2π−2+q4π−4+· · ·+qpπ−p

with rational qi ’s.
(b) If p is odd, then T (s, p) can be represented as i(q0 + q2π−2 + q4π−4 + · · · +

qp−1π
−(p−1))/π with rational qi ’s.
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Proof For s = 0 the statement is trivial since T (0, p) = 0 for odd p and T (0, p) =
2−p/(p + 1) for even p. Let s �= 0 be even. For p = 0 we have T (s, p) = 0. For
integer p ≥ 1 the statement follows by induction using the formula

T (s, p) = 1

π is

∫ +π/2

−π/2
(ϕ/π)p deisϕ =

(
(ϕ/π)p

π is
peisϕ

)∣∣∣∣
ϕ=+π/2

ϕ=−π/2
+ ip

πs
T (s, p − 1),

which is obtained by partial integration. ��
Proposition 5.6 If α ≥ 0 is even, n ∈ N, and k ∈ {1, . . . , n}, then In,k(α) can be
expressed in the form r0 + r2π−2 + r4π−4 + · · · + rn−kπ

−(n−k) (if n − k is even) or
r0 + r2π−2 + r4π−4 + · · · + rn−k−1π

−(n−k−1) (if n − k is odd), where the ri ’s are
rational numbers.

Proof Note that c1,(α−1)/2 is a rational multiple of 1/π by Lemma 5.1. Using
Lemma 5.3 and the formula sin t = (eit − e−it )/(2i) we can write∫ ϕ

−π/2
c1,(α−1)/2(cos θ)α dθ = a′ + ϕa′′

π
+

∑
m=2,4,...

a′′′
m

π
sinmϕ

= a′ + ϕa′′

π
+

∑
m=±2,±4,...

am
π

ieimϕ,

for some a′, a′′, a′′′
m , am ∈ Q. Recall that αk is even and hence c1,(αk−1)/2 is a rational

multiple of 1/π by Lemma 5.1. Thus, we can write

c1,(αk−1)/2(cosϕ)αk = c1,(αk−1)/2

(
eiϕ + e−iϕ

2

)αk

= 1

π

∑
�=0,±2,±4,...

b�e
i�ϕ

with some rational numbers b�, where we recall the convention that the sums contain
only finitely many non-zero terms. Taking everything together, we arrive at

In,k(α) =
(
n

k

) ∫ +π/2

−π/2

⎛
⎝ 1

π

∑
�=0,±2,±4,...

b�e
i�ϕ

⎞
⎠

×
⎛
⎝a′ + ϕa′′

π
+

∑
m=±2,±4,...

am
π

ieimϕ

⎞
⎠
n−k

dϕ.

When multiplying everything out, we obtain a representation of In,k(α) as a finite
Q-linear combination of terms of the form

1

π

(
i

π

)b ∫ +π/2

−π/2
eisϕ

(
ϕ

π

)p

dϕ =
(

i

π

)b
T (s, p),

where s is even, p ≥ 0 and b ≥ 0 are integers with p + b ∈ {0, . . . , n − k}. If
both p and b are even, then by Lemma 5.5 (a) the term is a Q-linear combination of
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1, π−2, π−4, . . . , π−(p+b). If both p and b are odd, then by Lemma 5.5 (b) the term is
aQ-linear combination of 1, π−2, π−4, . . . , π−(p+b). If the parities of p and b differ,
then the term is purely imaginary and can be ignored since we a priori know that
In,k(α) is real, which implies that all such terms must cancel. ��
Proof of Theorem 2.8 (b) Let n ∈ N, k ∈ {1, . . . , n}, and β ≥ −1 be such that 2β + n
is odd. We prove by induction that Jn,k(β) can be expressed as q0+q2π−2+q4π−4+
· · · + qn−kπ

−(n−k) (if n − k is even) or q0 + q2π−2 + q4π−4 + · · · + qn−kπ
−(n−k−1)

(if n − k is odd), where the qi ’s are rational. The statement is trivial for n = 1, 2, 3.
Assume that, for some n ≥ 4, the statement has been established for Jm,k(γ ) with
m ∈ {1, . . . , n − 1}. Recall from (11) that

Jn,k(β) = 1

2

(
n

k

)
−

�(n−k)/2∑
s=1

In,n−2s(2β + n − 1)Jn−2s,k(β + s).

By Proposition 5.6, In,n−2s(2β + n − 1) can be expressed in the form r0 + r2π−2 +
r4π−4 + · · · + r2sπ−2s with rational ri ’s. On the other hand, by the induction
assumption, we can write Jn−2s,k(β + s) in the form q ′

0 + q ′
2π

−2 + q ′
4π

−4 +
· · · + q ′

n−2s−kπ
−(n−2s−k) (if n − k is even) or q ′

0 + q ′
2π

−2 + q ′
4π

−4 + · · · +
q ′
n−2s−kπ

−(n−2s−k−1) (if n − k is odd) with rational q ′
i ’s. Multiplying everything

out, we obtain the required statement. ��
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