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Abstract

Social interaction is an important topic in human tra-

jectory prediction to generate plausible paths. In this pa-

per, we present a novel insight of group-based social in-

teraction model to explore relationships among pedestri-

ans. We recursively extract social representations super-

vised by group-based annotations and formulate them into

a social behavior graph, called Recursive Social Behavior

Graph. Our recursive mechanism explores the representa-

tion power largely. Graph Convolutional Neural Network

then is used to propagate social interaction information in

such a graph. With the guidance of Recursive Social Be-

havior Graph, we surpass state-of-the-art method on ETH

and UCY dataset for 11.1% in ADE and 10.8% in FDE in

average, and successfully predict complex social behaviors.

1. Introduction

Forecasting the future trajectory of humans in a dynamic

scene is an important task in computer vision[28, 16, 31,

32, 33, 42, 44, 20]. It is also one of the key points in au-

tonomous driving and human-robot interaction, which ex-

plores dense information for the following decision making

process. A main challenge of trajectory forecasting lies in

how to incorporate human-human interaction into consider-

ation to generate plausible paths [2, 13, 3, 6, 27, 26].

Early works have made a lot effort to solve the prob-

lem. Social Force [14, 28] abstracts out different types of

force, such as acceleration and deceleration forces to han-

dle it. In recent years, great progress has been made in

deep learning, which inspired researches start working on

Deep Neural Networks based methods. Some researches

[2, 13, 34, 18, 17] modified Recurrent Neural Networks

(RNNs) architecture with particular pooling or attention

mechanism to integrate information between RNNs.

†Cewu Lu is corresponding author, member of Qing Yuan Research

Institute and MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai

Jiao Tong University, China.

Figure 1. Examples of distant unrelated human-human interac-

tions. Images are in chronological order from left to right. The

top three images show that two people (with red circle) walk to

the same destination from opposite directions. The bottom three

images show people with left red circle are following the person

in right red circle with little impact from people in blue circle.

Although great improvements have been made, there still

exists challenges. Force based models[28] utilize the dis-

tance to compute force, and will fail when the interaction is

complicated. And for pooling methods [2, 13], the distance

between two person at a single timestep is used as a crite-

rion to calculate the strength of the relationship. Attention

method in [18, 34] also meet the same problem that Eu-

clidean distance are used in their method to guide the atten-

tion mechanism. In general, these learning methods try to

use distance to formulate the strength of influences between

different agents, but ignore that distance-based scheme can-

not handle numerous social behaviours in human society.

Fig. 1 shows two typical examples. The top three images

show that two people walk to the same destination from

opposite directions. The bottom three images show three

pedestrians walk along the street while another three person

stand still and talk with each other. Even though pedestri-

ans in red circles in these two scenes are in a great distance,

they show a strong relationship.

In this paper, we aim to explore relationships among

pedestrians beyond the use of distance. To this end, we

present a new insight of group-based social interaction

modeling. A group can be defined as a set of people with
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Figure 2. Examples of groups and interaction in groups. Red and

blue circles are different groups. The direction of arrow represents

the direction of influence in interaction.

similar movements, behaviours, purpose or destinations. As

shown in Fig. 2, each color represents a group and the re-

lations are annotated with arrows to show the directionality

of interactions. Further, such groups in a scene can be for-

mulated as a graph, which is a common structure for feature

propagation. Additionally, we argue that social relationship

representation is too complicated and cannot well be cap-

tured by hand-crafted methods.

To model this novel insight, we present a neural network

to recursively extract social relationships and formulated

them into a social behavior graph, called Recursive Social

Behavior Graph (RSBG). Each pedestrian is considered as

a node with features that takes historical trajectories into

consideration. Those nodes are connected by relational so-

cial representations which are considered as the edges of

the graph. We use group annotations to supervise the gen-

eration of social representation, which is the first time so-

cial related annotations are used to help neural networks to

learn social relationships as far as we know. Moreover, a

recursive mechanism is introduced. We recursively update

individual trajectory features in interaction scope by social

representations, in turn, better individual features are used

to upgrade social representations. To propagate features

guided by RSBG, our system works under a framework of

Graph Convolutional Neural networks (GCNs).

Experiments on multiple human trajectory benchmark,

including two datasets in ETH[31] and three datasets in

UCY[21], show the superior of our model in accuracy im-

provement. Our contributions can be summarized as fol-

lows:

1. We propose Recursive Social Behavior Graph, a novel

graph representation for social behaviour modeling,

and a recursive neural network to generate it. The net-

work is designed to extract latent pedestrian relation-

ships and is supervised by group annotations, which is

the first time that social related annotations annotated

by experts are introduced in prediction tasks.

2. We first introduce GCNs to integrate human social be-

haviours in dynamic scenes for prediction task, which

leads to greater expressive power and higher perfor-

mance.

3. We conduct exhaustive experiments in several video

datasets. By applying our proposed approach, we

are able to achieve 11.1% improvement in ADE and

10.8% in FDE comparing with state-of-the-art method.

2. Related Work

Human trajectory forecasting. Human trajectory fore-

casting is a task to predict possible trajectories of a person

according to his historical trajectory and vision based fea-

tures, such as his current actions and surroundings. With

the maturity of human understanding and trajectory track-

ing techniques[30, 6, 10, 12, 11], numerous studies has

been done in this field[28, 16, 31, 32, 33, 42, 44, 20, 5].

Early researches [28, 39, 20] try to build mathematical

models to predict the trajectory. For example, Energy

Minimization[39] model constructs a grid graph with costs

on each edges, formulates trajectory prediction as a short-

est path problem and solves it by Dijkstra algorithm. IRL

proposed by Abbeel et al. [1] has been used for trajectory

prediction in [20], which models human behaviour as a se-

quential decision-making process.

With the development of neural networks, many predic-

tion methods [22, 2, 13, 17, 34, 35, 41] based on deep learn-

ing has been proposed, and focused on different insights to

solve this problem. Alahi et al. [2] modified vanilla LSTM

structure using a novel pooling mehtod to propagate human

interactions in crowd scenes. Gupta et al. [13] and Li et

al. [22] applied a Generative Adversarial Network in their

prediction framework to explore the multimodality of hu-

man behaviours. Sadeghian et al. [34] and Liang et al. [25]

extracted rich information from context for more accurate

predictions. All these researches have made a huge break-

through.

Human-human interactions in trajectory forecasting.

Human object interaction (HOI) [9, 36, 24, 40, 23] brings

abundant information for scene understanding. Thus,

human-human interaction is critical to predict future tra-

jectories correctly. Early researches, such as Social

Forces[14], modeling human-human interactions in dy-

namic scenes by various types of forces. However, as some

key parameters are highly based on prior knowledge, such

as force definition, they cannot handle sophisticated and

crowd scene with all kinds of pedestrians who may act to-

tally different.

Recent years, Recurrent Neural Network (RNN) has

shown great power for sequence problems[4, 7, 8, 29, 19].

However, single RNN based architecture cannot deal with

human-human interaction. Alahi et al. [2] proposed Social-

LSTM which applies social pooling after each time step in

vanilla LSTM to integrate social features. Gupta et al. [13]

improved social pooling to capture global context. These

661



pooling methods use distance between two person as a cri-

terion to calculate the strength of the relationship. Further,

[34, 18] introduced attention mechanism to propagate so-

cial features, but they also meet the problem that the atten-

tion are highly restricted by distance. Sadeghian et al. [34]

using Euclidean distance between target agent and other

agents as a reference to permute these agents for permu-

tation invariant before attention mechanism, while Ivanovic

et al. [18] using Euclidean distance to build a traffic agent

graph to guide attention mechanism. Thus these methods

cannot handle the situations described in Fig. 1 very well.

Recently, Huang et al. [17] proposed a Graph Attention

(GAT) based network to propagate spatial and temporal in-

teractions between different pedestrians without particular

supervision for attention mechanism. Although this method

is not restricted by distance, but the attention mechanism

cannot handle sophisticated scenes because of the lack of

supervision and may fail in certain cases as discussed in

Sec. 4.2 in [17].

Graph Neural Network. Graph Neural Network (a.k.a.

GNN) and its variants[38] are born to handle data repre-

sented in the Euclidean space. GNNs can be categorized

into different types, and among them Graph Convolutional

Networks (GCNs)[15] have been widely used in different

computer vision tasks. For instance, Gao et al. [12] trains

GCNs in a deep siamese network for robust target localiza-

tion in visual tracking task. STGCN, a variant of normal

GCN, is used by Yan et al. [43] to build a dynamic skeleton

graph for human action recognition. Wang et al. [37] adopts

GCN to match graphs in images. In this paper, we will

show how GCNs propagate social features during human-

human interaction and successfully improve overall accu-

racy on trajectory prediction.

3. Approach

In this section, we propose a social behavior driven

model to enable trajectory prediction from group level. It is

designed to capture the fact that pedestrians in public places

often gather and walk in groups, especially in crowd scenes.

These groups apparently demonstrate remarkable social be-

haviors, such as following and joining, which is important

for trajectory prediction.

3.1. Problem Definition

Following previous works [2, 13], we assume that each

video is preprocessed by detection and tracking algorithm to

obtain the spatial coordinates and specific ID for each per-

son at each timestep. Therefore, at a certain timestep t for

person ID i, we can formulate his/her coordinate as (xt
i, y

t
i),

and the frame-level surrounding information as St
i , e.g. a

top-view or angleview image patch centered on person i at

time t. We observe the coordinate sequences and the in-

stance patch for everyone in time step [1, Tobs] as input, and

forecast the coordinate sequences in [Tobs+1, Tobs+pred] as

output.

3.2. Overview

Given a series of pedestrians together in a scene provided

by a video, the relationship between each pair of them can

be defined by a set

R = {r(i1, i2)|0 ≤ i1, i2 < N, i1 6= i2} (1)

where ix denotes the unique ID for each person in the scene,

N denotes the total number of pedestrians in the scene, and

r(i, j) denotes the relational social representation between

the ith and jth person. With individual representation for

each person fi, the relationship set can be formulated into a

social behavior graph G. We design the individuate repre-

sentation and relational social representation as node and

edge features of G respectively. Thus, a novel recursive

framework is preformed on G to better understand social

relationship, we call it as Recursive Social Behavior Graph

(RSBG). Given the powerful feature from recursive G, we

can predict future trajectory by LSTM model.

In the following sections, we will introduce individual

representation in Sec. 3.3 and relational social represen-

tation in Sec. 3.4. The recursive social behavior graph

(RSBG) will be discussed in Sec. 3.5. Finally, in Sec.

3.6, we introduce how to integrate proposed RSBG into the

LSTM for high quality trajectory prediction.

3.3. Individual Representation

We adopt historical trajectory feature and human context

feature as our individual representation.

Historical Trajectory feature In real social dynamic

scenes, people will act after deciding the path in several sec-

onds as a general rule, which means later trajectories will

largely influence the former ones. By this end, we adopt

a BiLSTM architecture instead of popular vanilla LSTM

[2, 13] to capture individual feature, considering the depen-

dencies of both previous and future steps, which could gen-

erate a more comprehensive representation for individual

trajectory.

Human Context feature To extract frame-level human

instance context information, we use Convolutional Neu-

ral Network (CNN). Specifically, for each spatial position

(xt
i, y

t
i) at timestep t of pedestrian i, we can obtain a image

patch sti from video centered on (xt
i, y

t
i). Therefore, for a

whole historical trajectory of person i, we feed the patch set

Si = {sti, 0 ≤ t < Tobs} into the CNN framework to cal-

culate visual information Vi, which can be represented as

human context feature.
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Figure 3. Overview of our proposed prediction method. For individual representation, BiLSTMs are used to encode historical trajectory

feature, and CNNs are used to encode human context feature. For relational social representation, we first generate RSBG recursively and

then use GCN to propagate social features. At the decoding stage, social features are concatenated with individual features which finally

decoded by an LSTM based decoder.

Finally, we concatenate historical trajectory feature and

context human feature as individual representation. We de-

note the feature map of ith person instance as fi.

3.4. Relational Social Representation

Most of the existing social models [2, 13, 18, 34] meets

a limitation that they use the distance of pedestrians as a

strong reference to build social representation. However,

relational social behavior is complicated and can’t be easily

modeled by a single hand-crafted feature. Therefore, we

directly annotate social relationship and learn what is social

relationship.

Relationship Labeling In order to supervise training,

we introduce social related annotations. In the annota-

tions, pedestrians are separated into groups according to the

videos, which can be reconstructed into adjacency matri-

ces, using 0/1 to represent whether two pedestrians are in

the same group.

We invite experts who have sociology background to

judge relationship of two pedestrians. In the annotation pro-

cess, experts determine a group of people on the basis of not

only physical rules such as velocity, acceleration, direction

and relative distance between people, but also sociological

knowledge. Considering the group information is dynamic

to some extent in a real scene, we split the whole scene into

time periods, which is small enough in response to dynamic

changes in relationship. Experts annotate the interactions

for each time period.

Feature Design For an N people scene, we can construct

a feature matrix F ∈ R
N×L where each row represents a

feature of a certain person, L represents for feature length.

Then we define a relation matrix R

R = softmax(gs(F)go(F)
T) ∈ R

N×N (2)

where gs(·) and go(·) are two fully connected layer network

function to map F to two different feature space, we call

them subject feature space and object feature space respec-

tively. It is because the pedestrian graph is directional, we

need these two functions to guarantee non-commutativity.

By integrating subject feature and object feature with an in-

ner product for every ordered pair, an relational embedding

matrix R can response the relationship between any pair

of pedestrians. Our relationship labeling provides ground

truth of R: 0/1 to represent whether two pedestrians are in

the same group.

3.5. Recursive Social Behavior Graph

We design a recursive mechanism to further advance

our representations R and F. First, our individual social

representation F should consider the interaction persons

around it. Second, we hope the relationship model based

on stronger individual social representation. We have the

recursive update as

Rk = softmax(gs(Fk)go(Fk)
T) ∈ R

N×N (3)
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Fk+1 = fc(Fk +RkFk) (4)

where fc represents fully connection operation and k is the

depth of the recursion. For initialization, features in F0

are historical trajectories in global coordinate. Formula 4

combines the original information of every person extracted

in depth k and interaction information according to groups

represented by Rk, which gives an information-rich tensor

for the next relational embedding in depth k + 1.

In our experiments, we set k = 0, 1, 2 to extract three

relation matrices (R0,R1,R2), and fuse them together by

Ra = Avg(R0,R1,R2), where Ra contains recursive re-

lational features from three stages, and can be viewed as an

adjacency matrix for the following graph convolution. We

use Cross Entropy Loss here to calculate the loss between

ground truth R and Ra.

With Ra generated recursively, Recursive Social Behav-

ior Graph (RSBG) is defined as following:

GRSB = (V, E) (5)

V = {vi = ti|0 ≤ i < n} (6)

E = {ei1i2 = Ra(i1, i2)|0 ≤ i1, i2 < n, i1 6= i2} (7)

where ti represents the relative historical trajectory for the

ith person and Ra(i1, i2) represents the float in row i1 col-

umn i2 in Ra. By mapping individual trajectory and re-

lational social representation as vertices and edges respec-

tively, RSBG provides abundant information for following

trajectory generation process.

3.6. Trajectory Generation

Graph Convolution Previous works using specially de-

signed pooling method [2, 13] or attention model [18, 34]

to propagate social interaction information. In our work, we

first introduce Graph Convolutional Network (GCN) to inte-

grate messages guided by RSBG, since GCNs have demon-

strated powerful capabilities in processing graph-structured

data.

Here, we use GCNs as a message passing scheme to ag-

gregate high-level social information from adjacency nodes,

according to GRSB :

hm
i =

∑
j∈[0,N),j∈N

vm−1
j eij

∑
j∈[0,N),j∈N

eij
(8)

vmi = fupdate(h
m
i ) = ReLU(fc(hm

i )) (9)

Formula.8 passes the interaction along weighted edges in

Ra. The aggregated features from adjacent nodes are nor-

malized by the total weights of adjacent nodes, as a com-

mon practice in GCNs, in order to avoid the bias due to the

different numbers of neighbors owned by different nodes.

Eq.9 accumulates information to update the state of node i,

and fupdate may take any differentiable mapping function

from tensor to tensor. Here, we use a fully connection layer

for mapping with ReLU activation. m represents the depth

of GCNs and h represents intermediate feature. In our ex-

periments, we use a two-layer GCN network to propagate

interaction information which means m = 1, 2. Finally, so-

cial representation for the ith person can be formulated as

ui = v2

i
. Note that we use GCN instead of ST-GCN in [43]

or GAT in [17] since latent relationship have already fully

captured in Relational Social Representation and we only

need to propagate features here.

LSTM decoder With previous encoded individual rep-

resentation features and social representation features, we

propose an LSTM based decoder for trajectory generation,

where the input h0
i = [fi,ui], and the output is Ŷ t

i , repre-

senting the coordinate of person id i in timestep t.

Exponential L2 Loss Previous works [13, 25] using L2

loss to evaluate differences between predicted results and

ground truth. However, this loss function does not highlight

enough on FDE while FDE is a very important indicator to

measure prediction accuracy.

By this end, we propose a novel Exponential L2 Loss

LEL2(Ŷ
t
i , Y

t
i ) = ||Ŷ t

i − Y t
i ||

2 × e
t
γ (10)

which multiples a coefficient growing over time comparing

with L2 loss. Here, Ŷ t
i and Y t

i are predicted and ground

truth coordinate for person i at time t respectively, and γ

is a hyper parameter related to Tpred. In our experiments,

we set it as 20. In Sec. 4.2, we will show Exponential L2

loss gives considerable improvement in FDE metrics and

associated improvement in ADE metrics.

4. Experiments

Performance of our models are evaluated on popular

benchmarks, including ETH [31] and UCY [21]. ETH and

UCY dataset are widely used for human trajectory forecast-

ing benchmark [2, 13, 3, 25, 34]. They contain totally five

pedestrian cases in crowd scenes including ETH, HOTEL,

UNIV, ZARA1 and ZARA2. We use the same configura-

tion for evaluation following previous work [13]. In detail,

we observe trajectories for 3.2sec (8 frames) and predict for

4.8sec (12 frames) at a frame rate of 0.4, and use a leave-

one-out approach for training and evaluation.

Evaluation Metrics. Following previous works [2, 13,

22, 18], we introduce 2 common metrics for testing.

1. Average Displacement Error (ADE): Average L2 dis-

tance between the ground truth and predicted trajecto-

ries.
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Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

Vanilla LSTM 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52

Social LSTM[2] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

Social GAN(1V-1)[13] 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54

PITF[25] 0.88/1.98 0.36/0.74 0.62/1.32 0.42/0.90 0.34/0.75 0.52/1.14

STGAT(1V-1)[17] 0.88/1.66 0.56/1.15 0.52/1.13 0.41/0.91 0.31/0.68 0.54/1.11

RSBG w/ context 0.79/1.47 0.35/0.71 0.68/1.39 0.42/0.89 0.35/0.71 0.52/1.03

RSBG w/o context 0.80/1.53 0.33/0.64 0.59/1.25 0.40/0.86 0.30/0.65 0.48/0.99
Table 1. Comparison with baseline methods on ETH and UCY benchmark for Tpred = 12 (ADE/FDE). Each row represents a method

and each column represents a dataset. 1V-1 means that not use variety loss and sample once during test time according to [13, 17], which

simplifies SGAN and STGAT from multimodal to unimodal.

2. Final Displacement Error (FDE): The L2 distance be-

tween the ground truth destination and the predicted

destination at the last prediction timestep.

Benchmarks. We compare with the following baselines,

some of them represent state-of-the-art performance in tra-

jectory prediction task.

1. Vanilla LSTM: An LSTM network without taking

human-human interaction into consideration.

2. Social LSTM: Approach in [2]. Each pedestrian is

modeled by an LSTM, while hidden states of pedes-

trians in a certain neighbourhood are pooled at each

timestep using Social Pooling.

3. Social GAN: Approach in [13]. Each pedestrian is

modeled by an LSTM, while hidden states of all pedes-

trians are pooled at each timestep using Global Pool-

ing. GAN is introduced to generate multimodal pre-

diction results.

4. PITF: Approach in [25]. Each pedestrian is modeled

by a Person Behavior Module, while person-scene and

person-objects interactions are modeled by a Person

Interaction Module.

5. STGAT: Approach in [17]. Pedestrian motion is mod-

eled by an LSTM, and the temporal correlations of in-

teractions is modeled by an extra LSTM. GAT is intro-

duced to aggregate hidden states of LSTMs to model

the spatial interactions.

6. RSBG: The method proposed in this paper. We report

two different versions of our model: RSBG w/ context

and RSBG w/o context, which represents using and

not using human context feature respectively.

Discussion. Some of previous works [13, 34, 17] focused

on multimodal prediction (a.k.a. generating multiple trajec-

tories for each single person), which does make sense in

real scene. However, as discussed in [18], the BoN eval-

uation metric in their experiments harms real-world appli-

cability as it is unclear how to achieve such performance

Method ADE FDE

w/o BiLSTM 0.51 1.04

ours 0.48 0.99
Table 2. Ablation study of BiLSTM for individual representation

(Tpred = 12). Model in the first row uses LSTM as historical

trajectory encoder instead of BiLSTM.

online without a prior knowledge of the lowest-error tra-

jectory. Therefore, we mainly focus on unimodal predic-

tion (gives one certain prediction result) to avoid question-

ing evaluation metric, which means that we test the perfor-

mance of Social GAN and STGAT using their 1V-1 model

according to [13, 17]. We will also report the multimodal

prediction results of our method, however, due to the limita-

tion of space, these results will be shown in supplymentary

file.

We will show our solid experiment results in Sec. 4.1,

ablation study in Sec. 4.2, and qualitative analysis in Sec.

4.3.

4.1. Quantitive Analysis

Our method is evaluated on the popular ETH & UCY

benchmark with ADE and FDE metrics for Tpred = 12.

Experimental results is shown in Tab. 1. The results show

that the performance of our model surpasses state-of-the-art

methods on both ADE and FDE on most subsets. We reach

an improvement of 11.1% and 10.8% in ADE and FDE in

average respectively comparing with STGAT.

There is a special case that our method failed compar-

ing with STGAT in UNIV dataset. The reason may be that

there are a number of scenes in UNIV dataset where the

number of pedestrians is huge (20 or more), while in other

datasets this circumstances almost nonexist. When we ap-

ply a leave-one-out approach for training and evaluation on

UNIV dataset, the RSBG generator will not be trained on

huge groups but will be tested on these, which may lead to

a performance degradation. Thus, this failure case may be

caused by the unbalanced data distribution in leave-one-out

test.

Note that the experiment results show that when human
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Figure 4. Comparisons between our model with STGAT(1V-1) and SGAN(1V-1) in three challenging social scenarios. We choose joining,

following and collision avoidance here as three common social cases. For a better view, only key trajectories is presented.

context features are applied in our model, the performance

will get worse in some subsets. This may also caused by the

leave-one-out test since context feature changes a lot in dif-

ferent scenarios. Results in ETH dataset show that context

features may be helpful for prediction in certain cases.

4.2. Ablation Study

BiLSTM encoder Comparing with most previous works

[13, 17], we use BiLSTMs to encode historical trajectory

of a single person rather than LSTMs, considering that later

trajectories will influence the former ones as discussed in

Sec. 3.3. To prove the effect of BiLSTM, we replace BiL-

STM encoders by LSTM encoders in our model while other

modules remain the same, and compare it with our full

model. As shown in Tab. 2, BiLSTM encoders bring 5.9%

in ADE and 4.8% in FDE improvement in average.

Exponential L2 Loss Because L2 Loss treats all

timesteps in prediction phase as equivalent, it does not high-

light enough on FDE while an accurate final position of a

pedestrian is very important for trajectory prediction. Thus,

we introduce Exponential L2 Loss to train the model. We

represent four different settings of hyper parameter γ in Tab.

3 (∞ means using L2 Loss). By using a proper γ = 20, the

average error rate is reduced by 4.0% and 4.8% for ADE and

FDE in average respectively. However, if the loss overem-

phasize FDE by setting γ to small, it will bring an adverse

effect according to the third row in Tab. 3.

Value ADE FDE

γ = ∞ 0.50 1.04

γ = 50 0.49 1.01

γ = 20 0.48 0.99

γ = 5 0.52 1.06
Table 3. Ablation study for Exponential L2 Loss (Tpred = 12).

We represent four various settings of hyper parameter γ here to

show the influence of different degrees of emphasis on FDE. γ =

∞ means using L2 Loss.

4.3. Qualitative Analysis

Socially acceptable trajectory generation. One great

challenge for human trajectory forecasting is to generate so-

cially acceptable results as mentioned in [13]. Due to the

diversity of social norms, we compare our methods with

state-of-the-art approach STGAT and SGAN in three com-

mon social cases: joining, following and collision avoid-

ing. Visualization results are shown in Fig. 4. We choose

three challenging scenes that the slope of these trajectories

changes frequently, which brings difficulties for prediction.

For joining case in row 1, our model successfully predict

the fact that the man and the lady will join together after

being separated by other pedestrians. SGAN do not capture

this relation while prediction by STGAT gives a wrong join-

ing direction and destination. The following scene in row 2

shows that our model have learned a common norm that
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Figure 5. Figure (a)-(f) show relational social representation in RSBG. Different trajectories are marked by different colors and the di-

rection is shown by arrows (Dots refer to pedestrians standing still). The range of color is from red to blue linearly, where red means

strong relationship while blue means week relationship. The black trajectories are the target pedestrians. Figure (A)-(C) are real scenes

corresponding to (a)-(c), (d), (e)-(f) respectively. Some pedestrians are not shown in RSBG because they are missing in the tracking files

given by the dataset.

people are more inclined to following others if their starting

point and destination are similar. Previous works do not ex-

ploit the latent social norm. Further, our model also gives a

reasonable prediction in collision avoidance case in row 3.

Although results from other methods avoid the conflict, pre-

dicted trajectories of the bottom agent point out that these

models fail to predict his destination comparing with our

method.

Social representation in RSBG. We visualize the social

representation derived from RSBGs and analyze the latent

group among these weights in Fig. 5. For a clear view, we

show edge weights of key agents here.

Figure (a)-(c) show three relational social representa-

tion weights centered on three different person in the same

scene. In this swarming and collision avoiding case, tar-

get person in (a) and (c) show a strong following tendency

while target in (b) is more likely to avoid the collision, ac-

cording to these visualized weights of edges in RSBG. This

shows strong consistency with the behavior in our actual

scenarios. Further, notice that the weights among these

three targets are high, which infers that these three pedestri-

ans are in a group.

Figure (d)-(f) show strong relationships between two dis-

tant pedestrians RSBG captured. In these three cases, the

target agent gives more interest to those who he may have a

conflict with rather than the pedestrians close to him. Par-

ticularly in case (f), RSBG figures out that there is an ex-

tremely high probability for the target person to collide with

the approaching pedestrian even though he is the farthest

one. These cases show that our method can successfully

capture potential social relationships without influenced by

the distance.

5. Conclusion

This paper studied human-human interactions among

pedestrians for better trajectory prediction results. We pro-

posed a novel structure called Recursive Social Behavior

Graph, which is supervised by group-based annotations, to

explore relationships unaffected by spatial distance. To en-

code social interaction features, we introduced GCNs which

can adequately integrate information from nodes and edges

in RSBG. Further, we used a plausible Exponential L2 Loss

instead of common used L2 Loss to highlight the impor-

tance of FDE. We showed that by applying a group-based

social interaction modeling, our model learns more latent

social relations and performs better than distance-based

methods.
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