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Abstract

We present a new approach to learning sparse, spatiotempo-
ral codes in which the number of basis vectors, their orienta-
tions, velocities and the size of their receptive fields change
over the duration of unsupervised training. The algorithm
starts with a relatively small, initial basis with minimal tem-
poral extent. This initial basis is obtained through conven-
tional sparse coding techniques and is expanded over time by
recursively constructing a new basis consisting of basis vec-
tors with larger temporal extent that proportionally conserve
regions of previously trained weights. These proportionally
conserved weights are combined with the result of adjusting
newly added weights to represent a greater range of primi-
tive motion features. The size of the current basis is deter-
mined probabilistically by sampling from existing basis vec-
tors according to their activation on the training set. The re-
sulting algorithm produces bases consisting of filters that are
bandpass, spatially oriented and temporally diverse in terms
of their transformations and velocities. The basic methodol-
ogy borrows inspiration from the layer-by-layer learning of
multiple-layer restricted Boltzmann machines developed by
Geoff Hinton and his students. Indeed, we can learn multiple-
layer sparse codes by training a stack of denoising autoen-
coders, but we have had greater success using L1 regularized
regression in a variation on Olshausen and Field’s original
SPARSENET. To accelerate learning and focus attention, we
apply a space-time interest-point operator that selects for pe-
riodic motion. This attentional mechanism enables us to effi-
ciently compute and compactly represent a broad range of in-
teresting motion. We demonstrate the utility of our approach
by using it to recognize human activity in video. Our algo-
rithm meets or exceeds the performance of current state of the
art activity-recognition methods.

Introduction
This work focuses on learning sparse, over-complete spa-
tiotemporal codes in the spirit of Olshausen and Field (Ol-
shausen and Field 1997), Hyvärinen et al (Hyvärinen, Hurri,
and Väyrynen 2003), and others. Our initial investigation
into this area was inspired by the work of Cadieu and Ol-
shausen (Cadieu and Olshausen 2008) on learning trans-
formational invariants from the statistics of natural movies.
We adopt a generative model similar to that of Olshausen
and Field (Olshausen and Field 1997) and an alternating-
optimization algorithm analogous to the analysis-synthesis

model proposed by Mumford (Mumford 1994) and used by
Olshausen and field in their SPARSENET implementation.

Following the trend in sparse coding, we substitute L1-
regularized least-squares algorithms for the conjugate gra-
dient solver used in SPARSENET. In particular, we develop
several variants of the one-at-a-time coordinate-wise descent
algorithm of Friedman et al (Friedman et al. 2007) and ex-
periment with the feature-sign algorithm of Lee et al (Lee
et al. 2007). We also employ various methods for shaping
the variance of the activations — the coefficients of the basis
vectors in solutions to the least-squares problem — to ensure
that all of the basis vectors are contributing.

Spatiotemporal bases that span more than a few frames of
video have large numbers of weights and are slow to train.
We present an algorithm that accelerates sparse coding by
recursively constructing basis vectors, adjusting only a frac-
tion of the weights at any given time. The resulting bases
exhibit a wide range of orientations, scales and velocities,
and outperform bases trained in a conventional manner.

We found it to be the case that interesting motion is quite
rare even in videos selected for illustrating motion, and so
we experimented with several interest-point operators to ex-
tract 3-D patches more likely to contain motion of the sort
characteristic of human behavior. We use the space-time
interest-point operator of Dollár et al (Dollár et al. 2005) as
a filter for extracting space-time volumes that exhibit peri-
odic motion, and then use large collections of these volumes
for learning sparse codes.

To evaluate our approach, we applied the resulting sparse
codes to recognizing human activity. We adapted software
developed by Piotr Dollár and performed the initial testing
on his facial-expression dataset (Dollár et al. 2005) and the
Weizmann human-action dataset (Gorelick et al. 2007). We
then took codes trained on data from these two datasets and
applied them to the KTH human-action dataset (Schuldt,
Laptev, and Caputo 2004) achieving recognition error com-
parable to state-of-the-art methods. In leave-one-out experi-
ments where we both trained and tested on the KTH dataset,
our approach meets or exceeds the performance of current
state-of-the-art methods.

Preprocessing
We apply several preprocessing steps to the data prior to its
use in learning sparse codes or inferring coefficients to re-



construct a 3-D patch as a sparse, linear combination of basis
vectors. First, we apply a linear transform to each frame so
that the pixels are uncorrelated (spatially) and their variances
equal. This whitening step is used to remove correlations in
the data that a learning algorithm would otherwise have to
account for and typically are not of interest. Some neuro-
scientists believe the primate early visual system employs a
gain-control mechanism whereby the response of each cell
is normalized by the integrated activity of its neighbouring
cells. Brady and Field (Brady and Field 2000) provide a
good case that such a mechanism reduces cell-response vari-
ability both within and between scenes, as well as reduc-
ing the entropy of the response distribution resulting in a
more efficient transfer of information. We therefore apply a
method of local-contrast normalization which simulates this
neural mechanism and thereby reduces undesirable variabil-
ity in postprocessing. These two preprocessing steps, image
whitening and local contrast normalization, provide a very
rough approximation to the information being transferred by
the optic tract leading from the retina and ultimately entering
the striate cortex.

We found it difficult to efficiently learn useful spatiotem-
poral codes from random 3-D patches extracted from video,
and so we experimented with several interest-point operators
to extract space time volumes likely to contain motion of the
sort characteristic of human behavior. We use the space-time
interest-point operator of Dollár et al (Dollár et al. 2005) as a
filter for extracting space-time volumes that exhibit periodic
motion, and collect a large set of these volumes for learn-
ing sparse codes. Each video is first convolved with a 2-D
Gaussian smoothing kernel applied along the spatial dimen-
sions. The result is then convolved with a quadrature pair
of 1-D Gabor filters applied temporally. A detector is tuned
to respond whenever the variation in local image intensities
contain periodic frequency components. The response func-
tion for the detector is defined as follows:

R = (I ∗ g ∗ h1)2 + (I ∗ g ∗ h2)2

where g(x, y;σ) is the 2-D smoothing kernel,
{h1, h2} is the quadrature pair determined by
h1(t; τ, ω) = − cos(2πtω)e−t2/τ2

and h2(t; τ, ω) =
− sin(2πtω)e−t2/τ2

. Following (Dollár et al. 2005), we
set ω = 4/τ , and thus σ and τ correspond, respectively, to
the spatial and temporal scale of the detector. A 3-D patch
or cuboid is extracted at each local maxima of the filter
response function using non-max-suppression to control for
overlap.

We also experimented with an interest point detector de-
veloped by Laptev and Lindeberg (Laptev and Lindeberg
2003). Laptev and Lindeberg extend the idea of Harris-
corner detectors in the spatial domain (Harris and Stephens
1988) to space-time interest points characterized by strong
variation in both the spatial and temporal dimensions, e.g.,
the abrupt change in velocity when a ball is kicked. They
do so by expanding a linear scale-space representation of
the image with a matrix of first-order spatial and temporal
derivatives, and searching for regions with significant eigen-
values. The method is extended to be scale invariant by ap-
plying a normalized spatiotemporal Laplace operator. We

found the Laptev and Lindeberg detector to be too restric-
tive for activity recognition and the Dollar et al detector to
include most if not all of the points detected by Laptev and
Lindeberg while excluding most irrelevant motion.

Sparse Coding
Olshausen and Field (Olshausen and Field 1996) present
their method of learning a sparse basis to represent natural
images as solving the following optimization problem:

B∗ = arg min
B

〈min
A

‖X − AB‖2
2 + λS(A)〉 (1)

where X is an M×L data matrix consisting of M cuboids of
L pixels each, B is an N ×L matrix of N basis vectors, A is
an M×N matrix of coefficients intended to reconstruct X as
a linear combination of the basis vectors, S(A) is a sparsity
penalty, and λ is a constant that trades reconstruction error
for sparsity. For many standard penalty functions, the objec-
tive function is convex in A if we hold B fixed and convex
in B if we hold A fixed, and so solutions to Equation 1 are
often solved using an iterative process in which each itera-
tion consists of two steps: In the first step, we fix the coeffi-
cients and solve for the basis vectors subject to a set of lin-
ear constraints that control for the size of the basis weights.
In the second step, we fix the basis vectors and solve for
the coefficients in an attempt to reconstruct the input mod-
ulo some variant of weight penalty designed to encourage
sparsity. Learning consists of alternating between these two
steps until convergence or some performance threshold is
achieved.

Mumford (Mumford 1994) describes this iterative process
as an analysis-synthesis loop, which he conjectures plays
an important role in early visual processing. In the case of
learning a sparse code for natural images, the first step —
solving for the basis vectors — constitutes a form of anal-
ysis which produces an explanation in the form of a gener-
ative model of the data; we call this the analysis step. The
second step —- solving for the coefficients — corresponds
to synthesizing the data from a given fixed basis; we call this
the synthesis step.

Olshausen and Field (Olshausen and Field 1997) im-
plemented a version of this analysis-synthesis loop which
learns a sparse, over-complete code whose basis vectors cor-
respond to filters that are bandpass and oriented and that re-
semble Gabor functions. The original Olshausen and Field
work assumed a Cauchy prior on the coefficients, introduced
a differentiable regularization term to implement this prior,
and used a conjugate-gradient solver in the synthesis step:

minimizeA J(A|B) =

‖X − AB‖2
2 + λ

∑
i,j

log(1 + A2
i,j) (2)

In the analysis step, they fix the coefficients and take one
step of gradient descent toward solving the following mini-
mization:

minimizeB J(B|A) = ‖X − AB‖2
2

Without imposing some constraint, this procedure will cause
the basis weights to grow without bound. Olshausen and



Field deal with this by adapting the L2 norm of each ba-
sis vector independently so the coefficients are maintained
at an appropriate level and the separate variances over the
training data in the activation of basis vectors are approx-
imately equal.1 Their implementation of this algorithm is
called SPARSENET.

L1 Regularization
In the last few years, there has been a great deal of work in
machine learning and statistics using L1 regularization to in-
duce sparsity. Since the L1 term is not differentiable, much
of the effort has gone into developing new algorithms for
solving the corresponding optimization problem. We have
experimented extensively with the method of one-at-a-time
coordinate-wise descent (Friedman et al. 2007) to solve for
the coefficients in the synthesis step. Instantiations of this
method are called coordinate-descent algorithms and solve
the following alternative to the optimization in Equation 2:

minimizeA J(A|B) = ‖X − AB‖2
2 + λ‖A‖1 (3)

where ‖A‖1 =
∑

i,j |Ai,j |. In these experiments, we started
with the basic SPARSENET algorithm and substituted a L1-
regularized coordinate-descent algorithm for the conjugate-
gradient solver used by Olshausen and Field. We call the
algorithm LASSONET in homage to SPARSENET and the
acronym LASSO (for Least Absolute Selection and Shrink-
age Operator), which has become a catchall term describing
a class of methods for estimating least-squares parameters
subject to an L1 penalty. Convergence using coordinate de-
scent is much faster than the original Olshausen and Field
algorithm, but still relatively slow in working with large
datasets and thousands of basis vectors.

Lee et al (Lee et al. 2007) describe a method for learning
sparse codes that works by alternating between solving an
L1-regularized least-squares problem and an L2-constrained
least-squares problem. To solve the first they introduced
the feature-sign algorithm based on the insight that once the
signs of the coefficients are known, the problem reduces to
a standard, unconstrained quadratic optimization problem,
which can be solved efficiently. They guess the signs by
performing line searches using a conjugate gradient solver.
To solve the L2-constrained least-squares problem, they re-
duce the number of optimization variables considerably by
solving the Lagrange dual using Newton’s method.

We ran experiments substituting the feature-sign and
Lagrange-dual algorithms for the analysis and synthesis
steps in LASSONET. Solving for the optimal basis vec-
tors B given fixed coefficients A reduces to minimizing
‖X−AB‖2

F — where ‖.‖F is the Frobenius norm — subject
to the constraint that

∑L
i=1 B2

i,j < c for all 1 ≤ i, j ≤ N as-
suming N basis vectors. This constraint on the basis vectors
was introduced for numerical stability and to avoid degener-
ate solutions. In our experience, incorporating the constraint
directly into the objective function, as in the Lagrange-dual
algorithm, is more robust than the adaptive methods used

1A basis vector is said to be activated with respect to a given
cuboid if the associated coefficient in the linear combination of ba-
sis vectors reconstructing the cuboid is non-zero.

(a)

(b)

Figure 1: Graphic (a) depicting a sample of four of the
2048 basis vectors learned by LASSONET in a trial that
performed well on our activity-recognition task. RECUR-
SIVE LASSONET (b) consists of learning a sequence of
models with each successive model having a larger temporal
extent and an increased number of basis vectors.

in SPARSENET, and no additional normalization step is re-
quired to keep the activation variance approximately equal
over all of the basis vectors.

Recursive Sparse Coding
We have considerable experience with learning sparse spa-
tiotemporal codes using different combinations of coding al-
gorithm, interest-point operators for extracting space-time
volumes, and basis vectors of varying spatial and temporal
extent. If the basis vectors are too large, learning is slow
and the resulting codes tend to generalize poorly; if they are
too small, the codes tend to be too general and they dis-
criminate poorly. We are not the first to generate sparse,
spatiotemporal codes from video; van Hateren and Ruder-
man (van Hateren and Ruderman 1998) apply independent
components analysis to obtain codes resembling moving si-
nusoids windowed by Gaussian envelopes (Gabors), and Ol-
shausen (Olshausen 2003) was able to compute convolu-
tion codes that exhibit similar characteristics by applying
matching-pursuit in space and time. The best-performing
codes obtained using LASSONET tend to look very differ-
ent (see Figure 1.a) from those reported by Olshausen and
van Hateren and Ruderman. Spectral analysis of the basis



Figure 2: The center frames of the receptive fields
of 256 out of 2048 basis vectors learned by RECUR-
SIVE LASSONET. The basis vectors capture a wide range
of oriented filters undergoing diverse transformations.

vectors reveals an entirely appropriate distribution of ve-
locities but hardly any spatial orientation — the individual
frames resemble symmetric Gaussians rather than Gabors.

Using our algorithms and training on random 3-D patches
for a considerable duration, we were able to obtain sparse,
spatiotemporal codes that appeared roughly similar to those
reported by Olshausen and van Hateren and Ruderman; they
did not, however, perform particularly well on the activity
recognition task. We noticed, however, that when we ap-
plied any of the three algorithms to learning a (temporally)
degenerate code consisting of a single frame trained using 3-
D cuboids extracted using the Dollár et al filter, we observed
the usual variety of oriented, bandpass filters, but with the
difference that due to the max-suppression step in extracting
interest points a Gaussian envelope fit to the filters tended to
be centrally located in the frame (see Figure 2). This sug-
gested a simple iterative training method that learns a basis
one frame at a time. The function RECURSIVE LASSONET
implements such a frame-by-frame scheme as follows:
• base case — we start a basis B1 consisting of |B1| basis

vectors with a temporal extent of one that code for a single
frame; we use just the center frames from a sample of
cuboids for training;

• recursive step — given the basis Bn−1 which consists
of |Bn−1| vectors, we create a new basis with |Bn| >
|Bn−1| basis vectors; the default method uses a simple ex-
ponential growth model |Bn| = |Bn−1|G, where G > 1
is the exponential growth factor;

• temporal expansion — each basis vector v in Bn is con-
structed from a randomly selected basis vector u in Bn−1;

we increase the temporal extent of u to span 2n−1 frames
by adding two new frames to those of u with randomly
initialized weights that sandwich the frames of u; the
weights from u that reside within this sandwich are called
the conserved region of v;

• proportional weight conservation — apply the chosen
sparse-coding algorithm to adjust the new weights with
the following twist; in the analysis step, hold the weights
in the conserved region constant, but then prior to the syn-
thesis step, rescale all of the basis vectors — including
the weights in the conserved region — to have unit mag-
nitude.

In a somewhat more sophisticated variant, we use coeffi-
cients obtained from fitting the current basis to the training
data as pseudo counts to construct a proposal distribution for
generating the basis vectors in the temporal expansion step.

Experiments
For exploratory experiments, we used the facial-expression
dataset described by Dollár et al (Dollár et al. 2005). Our
initial experiments in learning to recognize human activity
were performed using the Weizmann human-action dataset
described by Gorelick et al (Gorelick et al. 2007). For com-
paring the performance of our features against other pub-
lished results, we used the KTH human-activity dataset de-
scribed by Schuldt et al (Schuldt, Laptev, and Caputo 2004).
Each dataset is divided into two or more disjoint subsets of
video clips for testing, and each clip is assigned a label that
characterizes its associated activity. The facial-expression
dataset consists of 192 clips, 5 expressions and 4 subsets
divided according to subject and lighting conditions. The
Weizmann dataset consists of 93 clips and 10 activities di-
vided into two subsets featuring different subjects. The
KTH dataset consists of 599 clips of 25 subjects perform-
ing six activities (walking, jogging, running, boxing, hand-
waving and hand-clapping) in four different scenarios (out-
doors, outdoors with scale variation, outdoors with subjects
wearing different clothes and indoors); the KTH dataset is
divided into 25 subsets according to subject.

Methods
As prolog to testing, we learn a basis and then use it to gener-
ate a set of descriptors, one set of descriptors for each video
clip. The following steps are performed in preparation for
testing:

1. whiten and apply local contrast normalization to each
frame of each video clip;

2. extract a sample of cuboids from each video clip using the
method of Dollár et al;

3. using this sample as training data, learn a basis using
LASSONET or RECURSIVE LASSONET;

4. generate a descriptor for each cuboid corresponding to
the coefficients inferred using the L1-regularized least-
squares solver used in the sparse-coding algorithms;

5. optionally, apply singular-value decomposition to a sam-
ple of descriptors to generate a set of principal compo-
nents to reduce the dimensionality of the descriptors;



For testing, we adopt the leave-one-out (LOO) protocol
which was used in the evaluation of the other methods with
which we compare ours. In each round of LOO evaluation
on the KTH dataset, we train on 24 of the 25 subsets and test
on the remaining one. We run ten trials, where each trial is
composed of 25 rounds such that for each disjoint subset sj

of video clips we perform the following steps:
1. use k-means to cluster the descriptors in the comple-

ment Cj = ∪i 6=jsi of sj returning K centroids in-
dexed 1, ...,K, where K is the number of so-called visual
words;

2. for each cuboid in each clip find the centroid closest to the
cuboid’s descriptor and return the centroid’s index;

3. for each clip, construct a vector of length K whose kth
component is the number of cuboids in the clip that map
to the kth centroid; this vector (histogram) is used to rep-
resent the clip as a bag of visual words;

4. to label a clip c in sj with associated histogram hc use the
label of the clip c′ in Cj whose histogram hc′ is nearest
hc according to the χ2 distance metric;

5. the recognition error is just the number of incorrectly la-
beled clips divided by the number of clips in sj ;

We use early stopping to avoid over fitting. Our goal is not
to find a better classifier, but rather to find better features
for classification. For this reason, we use a simple nearest-
neighbor classifier for all of our comparisons.

Results
The following table compares the reported performance
of several approaches to activity recognition on the KTH
dataset using the LOO protocol with our best model obtained
by training with LASSONET and using the feature-sign al-
gorithm to compute descriptors:
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Box 81 98 80 98 88
Clap 80 60 82 86 81

Wave 86 74 84 93 83
Jog 69 60 63 53 70

Run 89 55 73 88 73
Walk 81 84 89 82 91
Mean 81.1 71.8 78.5 83.3 81.0

Our results are most appropriately compared with Dollár et
al (Dollár et al. 2005) and Wang and Li (Wang and Li 2009)
since their work primarily concerns feature selection, and
both our results and their results shown here are based on a
1-NN classifier. Schuldt et al (Schuldt, Laptev, and Caputo
2004) use the space-time interest points of Laptev and Lin-
deberg (Laptev and Lindeberg 2003) and support-vector ma-
chine rather than 1-NN for classification. Dollár et al (Dollár

Figure 3: The left plot shows the distribution of velocities
obtained from a spectral analysis of the basis vectors. The
plot on the right approximates the distribution of orienta-
tions.

et al. 2005) use the same interest-point operator as we do —
they introduced the operator in this paper — and a descrip-
tor based on histograms of gradients in x, y and t analogous
to Lowe’s (Lowe 2004) 2-D descriptor. Wang and Li may
gain some advantage from the fact that they crop the region
of the video containing the person performing the activity.
Niebles et al (Niebles, Wang, and Fei-Fei 2008) also use
Dollár’s features, and their results are included as an exam-
ple of how more sophisticated classifiers can leverage spa-
tiotemporal features.

Wang and Li (Wang and Li 2009) is noteworthy as their
weighted sequence descriptor takes into account the tem-
poral ordering of features, which we currently do not in our
simpler bag-of-visual-words model. The results for Dollár et
al and Wang and Li are based on the use of a 1-NN classifier
for comparison purposes. Niebles et al (?) is included as it
also uses the Dollár et al features, but with more sophisti-
cated, unsupervised learning.

We learn competitive models with as many 2048 13×13×
9 basis vectors (80%) and as few as 128 13 × 13 × 5 vec-
tors (79%). The larger bases can be reduced in dimension to
produce descriptors constructed from between 100 and 200
visual words with no appreciable reduction in performance.
We conclude that the intrinsic dimensionality of the best
codes is around 100. The generality of the features learned
in our approach is evident from the fact we can achieve good
human activity classification even when we learn codes from
data sets of a very different character. Following Cadieu and
Olshausen (Cadieu and Olshausen 2008), we learned sparse
codes using video from the BBC Motion Gallery — primar-
ily clips of stampeding wildebeests and stalking leopards —
and then applied these codes to achieve 80% accuracy on the
KTH dataset of human behaviors. We also learned sparse
codes using the considerably smaller Weizmann dataset and
then used these codes to achieve respectable performance
(78.5%) on the KTH dataset.

Since each recursive step generates a new model, RE-
CURSIVE LASSONET produces a sequence of models;
each model in the sequence provides features that can be
used for activity recognition. Here are the results of evaluat-
ing each model in such a sequence on the KTH dataset:



% Errors 0.189 0.202 0.231 0.252 0.289
Residual 0.056 0.062 0.066 0.073 0.065
% Zeros 94.13 92.13 91.21 90.73 92.76
# Vectors 2048 1024 512 256 128

Field Width 13 13 13 13 13
Field Depth 9 7 5 3 1

Each model in this particular sequence was produced by
LASSONET using the feature-sign algorithm for the syn-
thesis step, and the size of the basis was doubled in each
recursive call starting with 128 basis vectors. Each model
in the sequence was trained on 10,000 cuboids organized
in ten epochs over 10 batches of 1,000 cuboids. For test-
ing, we used 256 visual words and, where appropriate, 128
principal components for reducing the dimensionality of the
descriptors. Each model was evaluated on 10 trials of 25
leave-one-out tests with the average recognition error shown
in the first column. The sparsity parameter (λ in Equation 3)
for the first model in the sequence was set to 0.90 and re-
duced by 0.10 for each subsequent model reflecting our ex-
perience in avoiding an ill-conditioned Hessian in comput-
ing the Lagrange-dual algorithm. These parameter settings
were chosen to demonstrate that the method does not require
careful tuning to produce sparse codes that look good and
perform well.

Figure 3 summarizes the spectral analysis of the basis vec-
tors in terms of velocities and orientations. It seems reason-
able to conjecture that this approach works as well as it does
in part for the same reasons that greedy layer-by-layer learn-
ing works in so-called deep networks (Hinton and Salakhut-
dinov 2006; Bengio et al. 2007). Weights trained early in the
process continue to do a good job of reconstructing frames
in the core of the basis vector, while gradient adjustments
concentrate on the outermost frames added in the temporal
expansion step. Vectors that don’t serve to represent new as-
pects of the data can be weeded out by analyzing the degree
to which they are activated during reconstruction.
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