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Recursive state and parameter 
estimation of COVID‑19 circulating 
variants dynamics
Daniel Martins Silva* & Argimiro Resende Secchi

COVID‑19 pandemic response with non‑pharmaceutical interventions is an intrinsic control problem. 
Governments weigh social distancing policies to avoid overload in the health system without 
significant economic impact. The mutability of the SARS‑CoV‑2 virus, vaccination coverage, and 
mobility restriction measures change epidemic dynamics over time. A model‑based control strategy 
requires reliable predictions to be efficient on a long‑term basis. In this paper, a SEIR‑based model is 
proposed considering dynamic feedback estimation. State and parameter estimations are performed 
on state estimators using augmented states. Three methods were implemented: constrained 
extended Kalman filter (CEKF), CEKF and smoother (CEKF & S), and moving horizon estimator (MHE). 
The parameters estimation was based on vaccine efficacy studies regarding transmissibility, severity 
of the disease, and lethality. Social distancing was assumed as a measured disturbance calculated 
using Google mobility data. Data from six federative units from Brazil were used to evaluate the 
proposed strategy. State and parameter estimations were performed from 1 October 2020 to 1 July 
2021, during which Zeta and Gamma variants emerged. Simulation results showed that lethality 
increased between 11 and 30% for Zeta mutations and between 44 and 107% for Gamma mutations. 
In addition, transmissibility increased between 10 and 37% for the Zeta variant and between 43 and 
119% for the Gamma variant. Furthermore, parameter estimation indicated temporal underreporting 
changes in hospitalized and deceased individuals. Overall, the estimation strategy showed to be 
suitable for dynamic feedback as simulation results presented an efficient detection and dynamic 
characterization of circulating variants.

The first official cases of COVID-19 were dated in December 2019 in Wuhan, China. Its spread worldwide in 
later months resulted in a pandemic classification from the World Health Organization (WHO) on 11 March 
 20201. The first official case in Brazil was reported two weeks earlier, on 26 February 2020, from a man returning 
to São Paulo from  Italy2. Social distancing presents effective mitigation over virus  spread3; however, it generates 
negative impacts on the economy and on the mental health of the  population4. Vaccination is a control action 
that progressively reduces virus transmissibility aiming for disease elimination defined by zero community 
 infections5. Nonetheless, vaccination coverage is delimited by the vaccine acceptance rate, which makes its goal 
unfeasible even if vaccination provides 100% efficacy against transmission.

The SARS-CoV-2 virus is highly mutable, with thousands of variants documented since its origin in Decem-
ber  20196. Mutations might change system dynamics; thus, model updating is required for reliable predictions. 
Genomic surveillance of SARS-CoV-2 virus in Brazil indicated four predominant circulating variants from 
February 2020 to July 2021. B.1.1.33 and B.1.1.28 were predominant from the pandemic beginning to September 
2020; the Zeta variant (P.2), which originated in Rio de Janeiro, was predominant from October 2020 to February 
2021; and the Gamma variant (P.1), which originated in Amazonas, was predominant from mid-February 2021 
to July  20217. In the pandemic modeling, the dynamics from each variant correspond to a set of parameters that 
must be estimated to ensure an accurate prediction over an extended period of analysis.

Modeling epidemiological evolution by a compartmental model is standard for control-oriented models 
since its simplicity suits real-time  applications8–12. Optimality is usually defined to mitigate virus spread within 
health system capacity, while an input or manipulated variable is correlated to contagion rate. The input vari-
able is discrete for a definition based on previously implemented government restrictive  measures8,10,11; and 
continuous for a definition based on mobility  data12 or possible government measures (e.g., complete lockdown 
and no countermeasures)9. Nonetheless, model parameters are not constrained to functions of the manipulated 
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variables. Olivier et al.8 defined several compartmental model parameters as time-varying functions. Köhler 
et al.9 described hospitalized parameters as a function of the state variables. Morato et al.10 used a three-step 
parameter estimation of contagion, recovery, and mortality rates.

Mobility data is regarded generally in models focused on the  forecast13–19. There are many available database, 
among which there are data related to local infection probability and restrictive government measures. For 
instance, SafeGraph details node-related information fit for a network  model13. Facebook details geographic 
movement metrics suitable for spatial  models14,15. Apple and Google detail location mobility trends correlated 
to government measures which are used  coupled16,17 or  standalone18,19. In addition, mobility dynamics might be 
identified and described on time-varying functions from previous government  measures20,21.

Virus mutations and vaccination coverage affect model dynamics, adding uncertainties to the system. There 
are examples of recursive state and parameter estimation applications in the COVID-19 pandemic. Sun et al.22 
estimated parameters at each discrete time with a grid search, while Menda et al.23 estimated them with a neu-
ral network. Liao et al.24 and Morato et al.10 estimated parameters with moving horizon estimation based on 
a least-square method followed by a regressive method; moreover, the  latter10 proposed an additional moving 
average on the estimation structure. Tsay et al.25 estimated unmeasured states with an unscented Kalman filter. 
Zhu et al.26 estimated states and parameters into an augmented state with an extended Kalman filter (EKF). 
Song et al.27 estimated states with an EKF and parameters with a proposed strategy based on maximum likeli-
hood. State and parameter estimations in the literature focused on overall system dynamics. The authors used 
estimation strategies to estimate unmeasured states, capture reinfection dynamics or adjust model parameters 
for more accurate estimations. Hence, virus mutations and vaccination dynamics have not been study objects 
with similar estimation strategies.

Transmissibility, severity of the disease, and lethality are three properties of interest for study in an epidemio-
logical model. They are defined by the probability of an infected individual moving from one given compartment 
to another. Marziano et al.28 proposed an age-structured model to analyze the Italia epidemic evolution during its 
first wave for possible outcomes from easing restrictive measures. The transmissibility was a function of google 
mobility data, the probability of developing severe disease was a fitting parameter per age group, and the lethality 
was defined as a function of the latter and hospitalized data. Kemp et al.21 proposed a compartmental model with 
fitting parameters for each probability of split in the model configuration to analyze herd immunity in Austria, 
Luxemburg, and Sweden. The transmissibility was a function of mobility fitted for each previous government 
measure, while other parameters were fitted as constants for each wave of COVID-19 infection.

In this work, we propose a comprehensive compartmental model for detecting epidemiological dynamics 
in terms of transmission, severity of the disease, and lethality equivalent to vaccine efficacy studies. Classical 
vaccination coverage modeling through a SIR-based model supposes the vaccinated state is 100% immune to 
reinfection; however, recent literature contradicted this  assumption29. The modeling through correlated vac-
cination parameters is an alternative formulation to comprehend the vaccine dynamics. Hence, it is suitable 
for analyzing vaccine efficacy or intervention measures. The proposed model considers a recursive estimation 
approach in which simplifying assumptions focuses on detecting the aforementioned dynamics with parameter 
estimation. Model accuracy is improved using temporal prevalence distributions from the seroprevalence survey 
EPICOVID19-BR in the first wave of the pandemic. The proposed estimation strategy identifies COVID-19 
variant emergence and characterizes its dynamics on epidemiological evolution based on dynamic feedback, 
which is suitable for online applications.

First, we describe the proposed compartmental model assumptions and parameter identification of the first 
wave of the pandemic. Then, we describe the implemented state and parameter estimation strategies. Next, we 
show numerical results from simulations on several Brazilian federative units and analyze the estimated param-
eters. Finally, we make our conclusions and discuss possible future works.

Mathematical model
Predicting the dynamics of an epidemiological evolution is of utmost importance to control its spread in a 
population. Modeling by a SIR-based model is conventional in control applications because of its simplicity and 
real-time applicability. The SARS-CoV-2 virus, however, presents high mutability, which affects model parameters 
over time. In addition, a relevant percentage of the population has been getting vaccinated in 2021, which also 
affects those parameters. Both uncertainty sources were irrelevant in the early stages of the COVID-19 pandemic, 
but their systematic increase make long-term forecasts unreliable. Hence, an accurate system estimate over an 
extended analysis period requires state feedback. In this work, the state feedback was done by simultaneous state 
and parameter estimation using an augmented vector.

In this section, a compartmental model is adapted to improve estimation performance considering data 
availability in Brazil. The model in Equation (1) was adapted from the SIDARTHE model proposed by Giordano 
et al.30 Hence, it assumes homogeneous states without age structure or the effect of vaccination coverage. The 
estimated parameters α0 , xc , and xm related to transmissibility, severity of the disease, and lethality, respectively, 
are described later in this section. These parameters correlate with the dynamics analyzed in COVID-19 vaccine 
effectiveness  studies31–34. We have selected a federative unit per Brazilian region to evaluate epidemic progression 
countrywide, but the southeast region, the most populated one, is an exception with two units. Amazonas (AM) 
was chosen for the north region; Mato Grosso do Sul (MS) for the central-west; Rio Grande do Norte (RN) for 
the northeast; Rio Grande do Sul (RS) for the south; Rio de Janeiro (RJ) and São Paulo (SP) for the southeast. 
The total population Ni from each federative unit i consists of the following compartments:

• Susceptible (S): individuals prone to infection;
• Exposed (E): individuals infected in the incubation period, while they are not infectious;
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• Infected (I): undetected asymptomatic individuals;
• Quarantined (Q): detected asymptomatic individuals who self-quarantine after detecting the disease;
• Ailed (A): undetected symptomatic individuals;
• Recognized (R): detected symptomatic individuals who self-quarantine after detecting the disease;
• Threatened (T): individuals hospitalized in nursery or intensive care units (ICU);
• Healed detected ( Hd ): detected individuals cured without treatment;
• Deceased (D): individuals deceased due to the disease;
• Healed with treatment ( Ht ): individuals cured after a hospitalization period;
• Healed undetected ( Hu ): individuals cured of the disease without being detected.

 

 where all states are fractions of a total population Ni , informed by the Ministry of Health of  Brazil2. ν is the 
infection rate, ρ is the incubation rate, and p is the fraction of infected individuals who remain asymptomatic. 
ε and θ are the detection rates of I and A, respectively. � , �d , κ , κd , and σ are the recovery rates of I, Q, A, R, and 
T, respectively. τ is the mortality rate, whereas µ and µd are severe illness rates of A and R, respectively. Fig. 1 
shows a scheme of the state transitions.

The analysis of several cases studies within a larger region provides spatial dynamics concerning virus spread. 
The chosen federative units for the study are known to be heterogeneous among each  other35–37 since Brazil is 
a large country where there were several different outbreaks dates, local government policies, and population 
behavior. Brazilian spatial epidemic progression  studies35,36 indicated multiple initial outbreaks spread progres-
sively to neighboring territories. The numerous government policies and population behavior are pointed out 
by the higher variance of the first wave duration of Brazilian states when compared to the United States and 
India  variances37.

The healed compartment from the Giordano et al.  model30 is subdivided into three compartments: Hd , 
Hu , and Ht . Ht is a measurable state by the Brazilian severe acute respiratory syndrome (SARS)  database38,39. 
Hd is an unmeasured state because the Brazilian SARS database accounts only for the hospitalized indi-
viduals, and the Ministry of Health of Brazil only provides recovered estimate countrywide. However, 
the cumulative confirmed cases provided by the latter are composed mainly of Hd for any analysis post 
the first wave. Hu is an unmeasured state containing most post-infection individuals for all studied fed-
erative units. The closed system assumption of the compartmental model leads to the following constraint: 
S + E + I + Q + A+ R + T +Hd + D +Ht +Hu = 1 ; thus, we substituted Equation (1k) by Equation (2).

(1a)
dS

dt
= −νS

(1b)
dE

dt
= νS − ρE

(1c)
dI

dt
= pρE − (�+ ε)I

(1d)
dQ

dt
= εI − �dQ

(1e)
dA

dt
= (1− p)ρE − (θ + µ+ κ)A

(1f)
dR

dt
= θA− (µd + κd)R

(1g)
dT

dt
= µA+ µdR − (σ + τ)T

(1h)
dHd

dt
= �dQ + κdR

(1i)
dD

dt
= τT

(1j)
dHt

dt
= σT

(1k)
dHu

dt
= �I + κA
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The additional state E corresponds to a natural time delay of the system, which is usual in control-oriented 
 models8,11 and forecasts to a lesser  extent20,40,41. Presymptomatic infected individuals are within this state as 
(1− p)E , but their infection rate is assumed insignificant to simplify parameter estimation.

Reinfections play a significant role in the resurgence of COVID-19 infection waves since new lineage might 
evade immunity from previous  infections42.  Gamma43 and  Delta44 mutations allow them to infect individuals 
recovered from other variants. Hence, reinfections from natural immunity decrease are assumed negligible to 
the emergence of another variant. The latter, however, can not be forecasted as they happen in occasional events. 
Hence, S in the model Equation (1) is unconnected with healed compartments Hu , Ht , and Hd , and the reinfec-
tion dynamics are assumed to be comprised in the state estimation.

The infection rate is simplified into a single parameter to guarantee observability. Hence, infections caused 
by presymptomatic and detected infected are assumed to be insignificant compared to infections caused by 
undetected infected. In addition, the same infection rate is applied to symptomatic and asymptomatic, although 
the first is acknowledged as more  infectious45.

where α is the contagion rate, consisting of the probability that a susceptible individual contracts the disease 
from possible contact with an infectious individual. It is a function of non-pharmaceutical interventions (NPI), 
vaccination coverage, and circulating variants. NPI and vaccination mitigate virus spread in the short-term, while 
virus mutations might affect its transmissibility, as happened for the  Gamma43 variant.

NPI dynamics are inserted into a compartmental model by time-varying  functions20, independent 
 variables9,11,12, or time-varying parameters estimated over  time24,25. We focused on these last two as they are 
better suited to a control-oriented model. First, we separated social distancing from other NPI by defining α 
according to Equation (4).

where u ∈ [0, 1] is the manipulated variable related to social distancing and α0 is the estimated contagion rate. 
The linearity applied over α and u in Equation (4) gets the correct direction between the contagion rate and 
social distancing. NPI unrelated to social distancing (e.g., mass gathering restrictions and mask requirements) 
are comprised in α0.

Social distancing is measurable by Google mobility data as percentage changes concerning a baseline defined 
from data sets before the COVID-19  outbreak46. Google mobility data are divided into six categories: recrea-
tion, essentials, parks, transit, workplace, and resident. A linear combination among the two most independent 
categories is used to define u. The similarity was measured by a zero-lag cross-correlation matrix through data 
from all federative units studied between February 2020 and July 2021. The normalized cross-correlation, whose 
results are presented in Supplementary Table S1, was calculated using the xcorr function from MATLAB. The 
absolute difference from zero characterizes the similarity between two signals, where independence is defined. 
The essentials signal had a cross-correlation closer to zero for all categories except itself; however, it is a monthly 
periodic signal while the others are weekly reported. Hence, the cross-correlation closest to zero, disregarding 
essentials, is related to parks and workplace; thus, they were selected to define u. Additionally, u was limited in 
the range [0,1], assuming each mobility category has lower and upper bounds on -100% and 100%, respectively. 
A weighted sum to assimilate location-dependent correlations concerning each mobility category was used to 
evaluate u according to Equation (5).

(2)Hu = 1− S − E − I − Q − A− R − T −Hd − D −Ht

(3)ν = α(I + A)

(4)α = α0(1− u)

Figure 1.  Schematic diagram of the proposed compartmental model.
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where 〈Parks(t)〉 and 
〈

Workplace(t)
〉

 are weekly moving averages of parks and workplace, respectively, and wu 
is the relative weight concerning parks mobility, which is an additional parameter to be estimated in the model 
identification.

The fraction of individuals who do not experience symptoms is defined as p ∈ [0.15, 0.7] according to the 
U.S. Centers for Disease Control and Prevention (CDC)47. Virus mutations, testing policies, and different age 
distribution explain the broad range. The parameter p is not estimated over time because it is not observable 
from available data since there is no classification of symptomatic and asymptomatic. Hence, we defined p = 0.5 
as an intermediate value whose error is mitigated by the state estimator with estimations of I and A. The vaccine 
efficacy against infection is correlated to both α0 and p since it only measures symptomatic cases, according to 
U.S. Food and Drug Administration (FDA).

Following the vaccine efficacy against severe and mild diseases, a parameter xc is defined as the fraction of 
symptomatic individuals who develop severe or mild symptoms. Assuming that severe and mild illnesses imply 
hospitalization, thus xc is the fraction of individuals moving from A and R to T. Summing up Equations (1e) 
and (1f):

which is simplified by assuming µ ≈ µd and κ ≈ κd to:

Thus:

Let us rewrite µ and κ as a probability function of the symptomatic individual to follow their ways, then:

where xk and xθ are the probabilities of an individual in A to recover or to get detected, respectively. The aver-
age rates of severe illness µ̃ and symptomatic recovery κ̃ correspond to properties studied in the literature. In 
this work, we defined µ̃ = 1/5 d−1 and ρ = 1/5.2 d−1 from  CDC47, and κ̃ was based on a study of the detection 
window and test sensitivity of IgG/IgM  tests48. The testing rate is a local and time-dependent property that affects 
both the probabilities xk and xθ . Let us define the correlated parameter xs as the fraction of recovered undetected 
individuals. We have from Equation (1e):

Rewriting Equation (7) for xk:

and substituting it in Equation (6) rewritten for xθ:

Considering that xc and xs represent fractions of the symptomatic infected, then xs + xc ∈ [0, 1] . Locations 
with a steadier testing policy could estimate xs as a constant. However, rapid tests and RT-PCR were not avail-
able in public health services in the early stages of the COVID-19 pandemic in Brazil. Defining xs as a logistic 
equation in the function of time according to:

(5)

u(t) =
−wu�Parks(t)� − (1− wu)

〈

Workplace(t)
〉

− (wuParksmin + (1− wu)Workplacemin)

wu(Parksmax − Parksmin)+ (1− wu)(Workplacemax −Workplacemin)

=
−wu�Parks(t)� − (1− wu)

〈

Workplace(t)
〉

− (wu(−100)− (1− wu)(−100))

wu(100− (−100))+ (1− wu)(100− (−100))

=
−wu�Parks(t)� − (1− wu)

〈

Workplace(t)
〉

+ 100

200

d(A+ R)

dt
= (1− p)ρE − (µ+ κ)A− (µd + κd)R

d(A+ R)

dt
= (1− p)ρE − (µ+ κ)(A+ R)

xc =
µ

µ+ κ

(6)xc =
(1− xk − xθ )µ̃

(1− xk − xθ )µ̃+ xkκ̃

(7)xs =
κ

µ+ θ + κ
=

xkκ̃

(1− xk − xθ )µ̃+ xθ θ̃ + xkκ̃

xk =
xsxθ θ̃ + (1− xθ )xsµ̃

(1− xs)κ̃ + xsµ̃

(8)xθ =
(1− xc − xs)κ̃µ̃

(1− xc − xs)κ̃µ̃+ (1− xc)xs θ̃ µ̃+ xcxs θ̃ κ̃

(9)xs = axs

(

1−
aζ

1+ exp
(

−bζ (t − cζ )
)

)
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where axs , aζ , bζ , and cζ are identified model parameters. The definition of Equation (9) is based on heuristics 
that xs is initially high and decreases progressively to a steady state following test availability to the population. 
These model parameters also comprises uncertainties regarding test policy.

Analogous to xs , we define the fraction of recovered undetected asymptomatic individuals xa from Equa-
tion (1c) as:

where xid is the probability of detecting the disease in an asymptomatic individual. Defining xa similarly to xs , 
we have:

where axa is an additional identified model parameter. Equations (9) and (10) have linear dependence between 
xs and xa to avoid overfitting of an excessive number of model parameters. The ratio axa/axs comprises the effect 
of the viral load on the test sensitivity and the test probability between symptomatic and asymptomatic infected 
individuals. Related uncertainties are assumed to be mitigated by state estimation among the states I, Q, A, and R.

Finally, we define a parameter xm analogous to vaccine efficacy against lethality as the fraction of threatened 
individuals who decease. We define it from Equation (1g) as:

Rewriting Equation (11) as a function of a death probability xe:

and isolating xe give us:

where σ̃ is the average recovery rate from hospitalization and τ̃ is the average mortality rate. These parameters 
depend on healthcare demand, medical resources, notification delay, virus mutations, vaccine coverage, and 
testing policy. Nonetheless, they are simplified as constants to allow future estimations since, by assumption, 
uncertainties are mitigated by the state and parameter estimation.

The definition of parameters equivalent to vaccine efficacy against transmissibility, severity of the disease, and 
lethality as functions of state transition rates give comprehensive information about the virus spreading dynam-
ics. The model uncertainties are outweighed by better parameter estimations by considering a fewer number of 
estimated parameters. The definition of xc and xm yields additional flexibility in the model formulation. Minor 
changes applied over α0 , xm , and xc can express specific vaccine dynamics on the model. Hence, their definition 
comprehends an alternative implementation of vaccination in compartmental modeling.

The Ministry of Health of  Brazil2 provides accumulated data on confirmed cases, deceased, and their respec-
tive incidences for each federative unit and county. The Brazilian SARS  database38,39 provides clinical data from 
patients with a severe acute respiratory syndrome which comprehend confirmed and suspected cases of COVID-
19 and other diseases. It notifies the period of hospitalization, evolution date, the confirmation status of COVID-
19, among other information. Summing up all confirmed COVID-19 patients per each federative unit i gives 
observability on Ti and Ht,i . In addition, overall means of hospitalized evolution between April 2021 and July 2021 
were used to define σ̃ and τ̃ . Both databases are daily measured; hence sampling time Ts = 1 d. Average testing 
rates ε̃ and θ̃ are location-dependent; however, we assumed that correlated uncertainties are comprehended in 
aζ ,i , bζ ,i and cζ ,i . Hence, we defined ε̃ = θ̃ = 1 d−1 to suit sampling time. In summary, the monitored variable yi 
is defined as:

where xi =
[

Si Ei Ii Qi Ai Ri Ti Hd,i Di Ht,i

]T.
EPICOVID19-BR provides additional data over temporal distributions in Brazil. It surveyed COVID-19 

prevalence in cities from all regions on different  timelines49,50. Let us consider the prevalence estimations from 
federative units given by Marra and  Quartin51 based on three phases of EPICOVID19-BR. Furthermore, if we 
assume �̃ = κ̃ = 1/15 d−1 , then we can correlate states Hd,i and Hu,i with test sensitivity. EPICOVID19-BR did 
not test hospitalized  patients49 and used an IgM and IgG antibody test more sensitive 15 days after the appearance 
of  symptoms48. Hence, the state transition model f(xi , ui) for each federative unit i is defined in Equation (14).

xa =
�

�+ ε
=

xid �̃

xid �̃+ (1− xid)ε̃
↔ xid =

xaε̃

�̃+ xa(ε̃ − �̃)

(10)xa = axa

(

1−
aζ

1+ exp
(

−bζ (t − cζ )
)

)

(11)xm =
τ

σ + τ

xm =
xe τ̃

(1− xe)σ̃ + xe τ̃

(12)xe =
xmσ̃

(1− xm)σ̃ + xmσ̃

(13)yi(k) = h(xi) =







Qi(k)+ Ri(k)+ Ti(k)+Hd,i(k)+ Di(k)+Ht,i(k)
Di(k)
Ti(k)
Ht,i(k)
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Each federative unit i under study has prevalence distribution from EPICOVID19-BR formulated as Equa-
tion (15) for each phase j ∈ {1, 2, 3} , assuming a test sensitivity of 100% during Tp days followed by a sudden 
decay to zero.

where prevalence bounds Prei,j,min and Prei,j,max can be found in Supplementary Table S251, and Tp = 50 was the 
arbitrated value for the detection window. t(Nep,1) = 14 May 2020 , t(Nep,2) = 4 June 2020 , t(Nep,3) = 21 June 2020 
are initial dates from the first, second and third phases of EPICOVID19-BR, respectively, while Ntotal,1 = 8 
and Ntotal,2 = Ntotal,3 = 4 correspond to their respective duration in days, and Hall,i = Hu,i +Hd,i +Ht,i . 
In the early stages of the pandemic outbreak, recovered individuals are approximately null; thus, we defined 
Hd,i(Nep,j+k−Tp) = Ht,i(Nep,j+k−Tp) = Hu,i(Nep,j+k−Tp) = 0∀

{

Nep,j + k < Tp|j ∈ {1, 2, 3}
}

.
Gene sequences reported in  GISAID7 indicate Zeta variant appearance in mid-October 2020. Hence, 

the identification step is bounded at t(Nf ) = 1 October 2020 to guarantee the steady circulation of vari-
ants B.1.1.28 and B.1.1.33. The lower bound aims at an imported infection neglectful in the system when 
[

Ii(t0,i) Qi(t0,i) Ai(t0,i) Ri(t0,i) Ti(t0,i) Hd,i(t0,i) Di(t0,i) Ht,i(t0,i) Hu(t0,i)
]T

≈ 0 . Therefore, only Si(t0,i) and Ei(t0,i) 
were considered optimization variables for the model identification. Hospitalized individuals Ti were used to 
define {N0,i|t0,i = t(N0,i)} from the solution of a system composed by Ti(N0,i) > 0.00003 , Tp − Nep,3 − N0,i ≥ 0 , 
N0,i ∈ N , for each federative unit i. The model identification is evaluated through an integral time-squared error 
performance criteria for reducing the contribution of the initial error of imported infections.

The nonlinear optimization problem in Equation (16) was solved for each federative unit i with  IPOPT52 via 
CasADI/MATLAB53.

(14)

dSi

dt
= −νiSi

dEi

dt
= νiSi − ρEi

dIi

dt
= pρEi − (�i + εi)Ii

dQi

dt
= εiIi − �iQi

dAi

dt
= (1− p)ρEi − (θi + µi + κi)Ai

dRi

dt
= θiAi − (µi + κi)Ri

dTi

dt
= µi(Ai + Ri)− (σi + τi)Ti

dHd,i

dt
= �iQi + κiRi

dDi

dt
= τiTi

dHt,i

dt
= σiTi

Hu,i = 1− Si − Ei − Ii − Qi − Ai − Ri − Ti −Hd,i − Di −Ht,i

νi = α0,i(1− ui)(Ii + Ai)

xa,i = axa,i

(

1−
aζ ,i

1+ exp
(

−bζ ,i(t − cζ ,i)
)

)

, xs,i = axs,i

(

1−
aζ ,i

1+ exp
(

−bζ ,i(t − cζ ,i)
)

)

,

xid,i =
xa,i ε̃

�̃+ xa,i(ε̃ − �̃)

xk,i =
xs,ixθ ,i θ̃ + (1− xθ ,i)xs,iµ̃

(1− xs,i)κ̃ + xs,iµ̃
,

xθ ,i =
(1− xc,i − xs,i)κ̃µ̃

(1− xc,i − xs,i)κ̃µ̃+ (1− xc,i)xs,i θ̃ µ̃+ xc,ixs,i θ̃ κ̃
, xe,i =

xm,iσ̃i

(1− xm,i)τ̃i + xm,iσ̃i

�i = (1− xid,i)�̃, εi = xid,i ε̃, θi = xθ ,i θ̃ , κi = xk,iκ̃ , µi = (1− xk,i − xθ ,i)µ̃,

σi = (1− xe,i)σ̃i , τi = xe,i τ̃i

(15)Prei,j,min ≤
1

Ntotal,j

Ntotal,j−1
∑

k=0

(

Hall,i(Nep,j + k)−Hall,i(Nep,j + k − Tp))
)

≤ Prei,j,max
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where identi =
[

Si(t0,i) Ei(t0,i) α0,i axa,i axs,i xc,i xm,i aζ ,i bζ ,i cζ ,i wu,i

]T  , zi are the measured variables and 
Qid,i ∈ R

4×4 is a weight matrix calculated to normalize measurements from the early stages of the pandemic to 
July 2021 according to Equation (17). All numerical integration in the state estimators were solved with  CVODES54 
via CasADI/MATLAB. The initial guess was set as ident0,i = [0.95 0.05 0.1 0.9 0.9 0.02 0.1 0.1 0.1 20 0.5]T . 
Results and location-dependent parameters are shown in Table 1.

State and parameter estimation
State estimation is essential for a model with uncertainties and without measurements from all states. It com-
prehends estimates of unknown properties based on available measures while filtering them to reduce the noise 
effects. The proposed model in Equation (14) has Si , Ei , Ii , and Ai as unmeasurable, Qi , Ri , and Hd,i as unmeas-
ured, and Ti , Di , and Ht,i as measured states. Besides, the sum of the states Qi , Ri , Ti , Hd,i , Di , and Ht,i , which 
represent the confirmed cases, is also a measured variable. Furthermore, the epidemiological model parameters 
have uncertainties related to time-varying NPI, its acceptance from the population, circulating virus variants, and 
vaccine coverage. Hence, a state estimator must accurately forecast the epidemiological evolution of COVID-19 
on each analyzed federative unit i. In this work, we selected the parameters α0,i , xc,i , and xm,i to estimate over 
time. Parameter estimation was performed using an augmented state Xi within a state estimator. The state Xi is 
defined as:

where ψi =
[

α0,i xc,i xm,i

]T are the parameters to be estimated.
Time-varying dynamics from ψi are unknown; thus, we assumed their differential equations equal to zero, 

and they are subject to artificial noise. Therefore, the state transition model F(xi , ui) for the augmented state is:

Measurements in process control usually constraint real-time applicability for state estimators within 
seconds or minutes. Hence, the sampling time Ts = 1 d allows analysis over different state estimation 

(16)

min
identi

Nf
∑

k=N0,i

(k − N0,i + 1)
∥

∥yi(k)− zi(k)
∥

∥

2

Qid,i

Subject to Equation (15) and:

xi(k + 1) = xi(k)+

∫ k+1

k
f(xi(t), ui(t)) dt

yi(k) = h(xi(k))

Si(t0,i) ∈ [0.9, 1], Ei(t0,i) ∈ [0, 0.1], α0,i ≥ 0, axa,i ∈ [0, 0.1], axs,i ∈ [0, 0.1], xc,i ∈ [0, 1], xm,i ∈ [0, 1]

aζ ,i ∈ [0, 1], bζ ,i ∈ [0, 0.25], cζ ,i ≥ 0, xa,i ∈ [0, 1], xs,i ∈ [0, 1], xs,i + xc,i ∈ [0, 1], xa,i ≥ xs,i

(17)Qid,ij,j =
1

(

yj,max − yj,min

)2
, j ∈ {1, 2, 3, 4}

Xi =

[

xi
ψi

]

F(Xi , ui) =

[

f(xi , ui)
0

]

Table 1.  Initial states and parameters of the proposed model for each federative unit i.

AM MS RN RS RJ SP

t0,i 03 April 2020 19 April 2020 19 April 2020 19 April 2020 15 April 2020 27 March 2020

Si(t0,i) 0.9449 0.9997 0.9951 0.9992 0.9762 0.9956

Ei(t0,i) 0.0551 0.0003 0.0049 0.0008 0.0238 0.0044

α0,i 0.1890 0.3953 0.5217 0.2848 0.2628 0.3223

axa,i 1.0000 0.8999 1.0000 0.9999 1.0000 1.0000

axs,i 0.9730 0.8999 0.9370 0.8963 0.9491 0.8861

xc,i 0.0270 0.1001 0.0630 0.1037 0.0509 0.1139

xm,i 0.3796 0.2586 0.4606 0.2833 0.4530 0.2694

aζ ,i 0.2502 0.6539 0.6649 0.6419 0.2207 0.5591

bζ ,i 0.2500 0.0900 0.1654 0.0429 0.2499 0.0540

cζ ,i 39.3836 68.3508 51.2077 71.2191 38.0807 71.0390

σ̃i 0.0782 0.0859 0.0721 0.0822 0.0491 0.0794

τ̃i 0.0672 0.0645 0.0766 0.0614 0.0726 0.0673

wu 0.2604 1.000 1.0000 0.0000 0.7048 1.0000
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strategies. In this work, we evaluated the same scenario for each analyzed federative unit with a constrained 
extended Kalman filter (CEKF)55, a constrained extended Kalman filter and smoother (CEKF & S)56, 
and a moving horizon estimator (MHE)57. We used constrained observers to satisfy the feasible region 
X = {0 ≤ xi ≤ 1, Hu,i ∈ [0, 1], α0,i ≥ 0, xc,i ∈ [0, 1], xm,i ∈ [0, 1], xs,i + xc,i ∈ [0, 1]}.

CEKF is an extension of the Kalman filter for nonlinear models. It uses a first-order Taylor expansion of the 
system model to estimate the current value based on the latest measurement and estimated state. The COVID-19 
data, however, are given in weekly cycles in which weekends have fewer notifications that are updated on working 
days. The CEKF & S is an intermediate option between a regular CEKF and a MHE regarding computational 
time and performance. First, it forwards estimates from a moving horizon with a CEKF followed by backward 
estimation with a smoothing equation. The weekly oscillations are attenuated in the resulting state and in the 
covariance update. The MHE uses a moving horizon of estimates and measured variables in a nonlinear opti-
mization problem, which is solved at each sampling time. This optimization problem has Np times the degrees 
of freedom of the CEKF, where Np is the horizon size. Therefore, it provides better estimation at the cost of a 
significantly higher computational time.

The error covariance matrix P0,i and the initial estimated state X0,i of each federative unit i are defined at 
tf = 1 October 2020 . x0,i and y0,i can be found in Supplementary Table S3, while ψ0,i is shown in Table 1. The 
matrix P0,i was defined as P0,i = 10 diag

(

diag
(

[

3xT0,i ψ
T
0,i

][

3xT0,i ψ
T
0,i

]T
))

 , the covariance matrix of process noise 
Qk,i was defined as Qk,i = P0,i , and the covariance matrix of observation noise Rk,i was defined as 
Rk,i = 1000 diag

(

diag
(

y0,i y
T
0,i

))

.
Let us define the model with uncertainties:

where ωk,i ∼ N(0,Qk,i) and vk,i ∼ N(0,Rk,i) are the process and measurement noises, respectively.
The linearization of Equation (18) into a state-space model yields: 

where the output matrix Hk,i and the state transition matrix φk,i are defined as:

 whose analytical expressions for these Jacobian matrices can be found in Supplementary Equation S1. We remark 
that Equation (19b) is equivalent to h(Xi(k|k − 1)) as it is a linear function.

The initial conditions for each federative unit i were defined as X0,i = Xi(Nf |Nf ) , and P0,i = PNf |Nf ,i 
for all state estimators. All simulations with state estimation started at tf = 1 October 2020 and ended at 
tsim = t(Nsim) = 1 July 2021 . The performance of the state estimation was evaluated using the mean absolute 
percentage error (MAPE) calculated for each output {yj|j ∈ {1, 2, 3, 4}} as:

CEKF. For the sake of notation simplicity, the subscript i, denoting each federative unit, was suppressed 
from the description of the estimators. For the CEKF, the optimization problem in Equation  (20) to update 
X(k|k) at each discrete time k corresponds to a quadratic programming, which was solved at each iteration with 
 qpOASES58 via CasADI/MATLAB.

(18)
Xi(k|k − 1) = Xi(k − 1|k − 1)+

∫ k

k−1
F(Xi(t), ui(t)) dt + ωk−1,i

yi(k|k − 1) = h(Xi(k|k − 1))+ vk,i

(19a)Xi(k|k − 1) = φk−1,i Xi(k − 1|k − 1)

(19b)yi(k|k − 1) = Hk,i Xi(k|k − 1)

(19c)Hk,i =

(

∂h(Xi(k|k − 1))

∂Xi

)

Xi(k|k−1)

(19d)φk,i = exp
(

Gk,i Ts

)

(19e)Gk,i =

(

∂F(Xi(k|k), ui(k))

∂Xi

)

Xi(k|k),ui(k)

MAPEj =
100

Nsim − Nf

Nsim−Nf
∑

k=1

∣

∣

∣

∣

zj(k)− yj(k)

zj(k)

∣

∣

∣

∣
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The state covariance matrix Pk|k was updated via the Riccati equation in discrete time as follows:

Thereafter, the discrete-time is advanced to k + 1 , and Equations (20) and (21) are solved again to update 
X(k|k) and Pk|k.

CEKF & S. The CEKF & S was implemented according to the formulation from Salau et al.56 The state estima-
tion was initially done Np − 1 times with the CEKF from the previous section.

The Rauch-Tung-Stribel (RTS) smooth  equations59 were applied from t(Np) to the simulation end (tsim) . Each discrete time 
started with an additional CEKF iteration to calculate X(k|k) and Pk|k . Let us define XS(k) = X(k|k) , PSk = Pk|k , 

P̃k|k =

[

PT
k−Np|k−Np

PT
k−Np+1|k−Np+1

· · · PT
k|k

]T

 , and X̃(k|k) =
[

X(k − Np|k − Np)
T
X(k − Np + 1|k − Np + 1)T · · · X(k|k)T

]T for 

estimating backward with the Rauch-Tung-Striebel (RTS) smooth  equations59. Solving Equation (22) for {j ∈ [1,Np]|j ∈ N} , 

yields the solution XS(k − Np) and PSk−Np
 , which is the initial conditions X(k − Np|k − Np) = XS(k − Np) and 

Pk−Np|k−Np
= PSk−Np

 for forward estimation until the current step k through Np iterations of the CEKF.

State and covariance estimations from each step are used to update their respective values in the vectors 
X̃(k|k) and P̃k|k (k|k). Two horizon sizes Np = 7 and Np = 28 were used in the simulations to evaluate the effect 
of Np on the estimator performance.

MHE. The MHE was implemented according to the formulation from Rawlings et  al.60 The past hori-
zon Np = min

(

k − Nf ,Np,0

)

 at each discrete-time k, where Np,0 is the given horizon size for the estimator. 
Hence, we can set the initial condition for the optimization problem in Equation (23) as Pk−Np−1|k−Np−1 and 
X(k − Np − 1|k − 1) . The state is updated at each discrete time k with the solution of Equation (23) through 
 IPOPT52 via CasADI/MATLAB.

w h e re  Xk =
[

X̂(k − Np|k)
T X̂(k − Np + 1|k)T · · · X̂(k|k)T

]T
 a re  t h e  e s t i m at e d  s t a t e s  a n d 

X̂(k − Np − 1|k) = X(k − Np − 1|k − 1) . The state covariance matrix Pk|k is updated via the Riccati Eqs. (21).
The MHE gives estimations over a horizon Np based on the initial conditions Pk−Np−1|k−Np−1 and 

X(k − Np − 1|k − 1) . Current estimations at a discrete time k are X̂(k|k) and Pk|k . The advance in discrete time 

(20)

min
X(k|k)

∥

∥y(k|k)− z(k)
∥

∥

2

R−1
k

+ �X(k|k)− X(k|k − 1)�2
P−1
k−1|k−1

Subject to:

X(k|k − 1) = X(k − 1|k − 1)+

∫ k

k−1
F(X(t), u(t))dt

y(k|k) = Hk X(k|k)

X(k|k) ∈ X

(21)Pk|k = φk−1Pk−1|k−1φ
T
k−1 − φk−1Pk−1|k−1H

T
k

[

HkPk−1|k−1H
T
k + Rk

]−1
HkPk−1|k−1φ

T
k−1 +Qk−1

(22)

X(k + 1− j|k − j) = X(k − j|k − j)+

∫ k+1−j

k−j
F(X(t), u(t))dt

Pk+1−j|k−j = φk−jPk−j|k−jφ
T
k−j +Qk−j

Ck−j = Pk−j|k−jφ
T
k−j

[

Pk+1−j|k−j

]−1

XS(k − j) = X(k − j|k − j)+ Ck−j

[

XS(k + 1− j)− X(k + 1− j|k − j)
]

PSk−j = Pk−j|k−j + Ck−j

[

PSk+1−j − Pk+1−j|k−j

]

CT
k−j

(23)

min
Xk

∥

∥

∥
X̂(k − Np|k)− X(k − Np|k)

∥

∥

∥

2

P−1
k−Np−1|k−Np−1

+

k
∑

j=k−Np+1

∥

∥

∥
X̂(j|k)− X(j|k)

∥

∥

∥

2

Q−1
j−1

+

k
∑

j=k−Np

∥

∥y(j|k)− z(j)
∥

∥

2

R−1
j

Subject to:

X(j|k) = X̂(j − 1|k)+

∫ j

j−1
F(X(t), u(t))dt

y(j|k) = Hj X(j|k)

X̂(j|k) ∈ X

j ∈ [k − Np, k], j ∈ N
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is carried out by solving Equations (23) and (21) based on previous estimations from k − Np − 1 to k − 1 . The 
MHE was implemented with Np,0 = 7.

Simulation results and discussion
In this section, we present the results from simulations for federative units Amazonas (AM), Mato Grosso do 
Sul (MS), Rio Grande do Norte (RN), Rio Grande do Sul (RS), Rio de Janeiro (RJ) and São Paulo (SP). States and 
parameters were estimated from 1 October 2020 to 1 July 2021. Confirmed cases ( y1 ) and deceased ( y2 ) measures 
were obtained from the Ministry of Health of  Brazil2, whereas hospitalized ( y3 ) and healed with treatment ( y4 ) 
were obtained from the Brazilian SARS  database38,39. The input variable ui , calculated using Google mobility 
data, is presented in Fig. 2 for each federative unit.

All three state estimators drove the estimation toward the measure zi for each federative unit, as shown in 
Table 2 with MAPE results smaller than 5%. Hence, COVID-19 dynamic evolution on regional populations was 
captured despite the model assumptions. The tuning of P0,i and Qk,i based on ψ0,i values resulted in better esti-
mates of y2 and y4 , and higher estimation error on y3 for all studied cases. Using the same tuning formulation for 
all analyzed federative units implied some suboptimal sets of tuning parameters. Table 2 lets us identify the worst 
estimation from CEKF followed by CEKF & S and MHE according to expectations. Moreover, the increase in 
horizon size Np from 7 to 28 showed loss of estimation accuracy of the CEKF & S. The lack of long-term correla-
tion for estimating state and parameter backward is probably a cause for this result; however, additional studies 
are required to verify the existence of other sources. The time evolution of output measures from all federative 
units can be found in Supplementary Figs. S1–S5, except for Amazonas, which is shown in Fig. 3.

Amazonas had only two coronavirus waves identifiable through y3 , as can be seen in Fig. 3, unlike other 
analyzed federative units. GISAID  data7 indicated that variants B.1.1.33, B.1.1.28, and a local B.1.378 were 
significantly circulating from 1 October 2020 to 4 December 2020 when the first Gamma variant sequence was 
identified. Hence, the predominant circulation of the Zeta variant starting in mid-October 2020, was quickly 
overlapped by the Gamma variant resulting in a single wave. The estimated parameters, presented in Figs. 4-6, 
represent this profile specifically with MHE estimations and indicate that CEKF & S with Np = 7 had closer 

Figure 2.  Time evolution of input variable related to social distancing.

Table 2.  Mean absolute percentage error for simulation with state estimation for each federative unit i.

State Estimator AM MS RN RS RJ SP

y1

CEKF 0.40 0.59 1.05 1.49 0.56 0.61

CEKF & S ( Np = 7) 0.34 0.51 0.90 1.10 0.51 0.52

CEKF & S ( Np = 28) 0.45 0.56 0.98 1.19 0.66 0.64

MHE ( Np = 7) 0.32 0.45 0.85 0.99 0.49 0.48

y2

CEKF 0.37 0.42 0.31 0.35 0.36 0.29

CEKF & S ( Np = 7) 0.34 0.37 0.28 0.32 0.35 0.28

CEKF & S ( Np = 28) 0.38 0.39 0.30 0.33 0.36 0.28

MHE ( Np = 7) 0.34 0.33 0.27 0.30 0.32 0.25

y3

CEKF 3.94 3.57 2.05 3.66 1.98 2.35

CEKF & S ( Np = 7) 3.14 2.48 1.55 2.53 1.52 1.60

CEKF & S ( Np = 28) 3.58 2.55 1.45 2.57 1.62 1.55

MHE ( Np = 7) 2.52 1.66 1.26 2.07 1.06 1.25

y4

CEKF 0.21 0.21 0.21 0.17 0.11 0.12

CEKF & S ( Np = 7) 0.20 0.18 0.16 0.15 0.11 0.11

CEKF & S ( Np = 28) 0.25 0.19 0.16 0.17 0.14 0.13

MHE ( Np = 7) 0.18 0.16 0.15 0.16 0.10 0.11
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parameter estimations with MHE than CEKF & S with Np = 28 . It is important to emphasize that MHE was 
applied with Np = 7 , which could explain this similarity.

All other federative units also had an overlap of the Zeta and Gamma waves; however, there were higher 
periods with the circulation of the Zeta variant. Figs. 4–6 infer rougher parameter estimation from CEKF & S 
with Np = 28 , despite having a larger horizon. The moving horizon with estimated states backward and forward 
might smooth estimations overall, but each estimate still considers a single measure. Further studies on the effects 
of Np in CEKF & S are required, but these were not the subject of this work. Since MHE provided better state 
and parameter estimations, descriptions henceforth are related to these estimates.

Age distribution and local healthcare do not explain the discrepancy between xc,i and xm,i among the analyzed 
federative units observed in Figs. 5 and 6. This discrepancy points out the violation of the model assumption 
considering the complete identification of hospitalized individuals infected by COVID-19. Some case studies 
presented higher xc,i altogether with lower xm,i , which do not affect the infection fatality rate (IFR) but indicate 
underreporting of COVID-19 cases among hospitalized individuals. Amazonas, Rio Grande do Norte, and Rio 
de Janeiro presented testing policies focused on more severe hospitalizations. The IFR calculus defined in Equa-
tion (24) highlights this dynamic.

The results in Fig. 7 indicate a guaranteed underreporting of deaths in Amazonas. In addition to Figs. 5 
and 6, the xm,i decrease shows that underreporting of hospitalized individuals in Rio de Janeiro and Rio Grande 
do Norte reduced over time. The lethality evaluation of a variant by xm,i is unfeasible because it decreased in 
Rio Grande do Norte and Rio de Janeiro due to testing policy. In addition, its peaks in Mato Grosso do Sul, Rio 
Grande do Sul, and São Paulo are explained by delayed notifications after an overload of the health system, which 
temporarily increases mortality. Hence, we used IFRi to conclude that the Zeta variant increased lethality from 
11% in Rio de Janeiro to 30% in Rio Grande do Norte based on IFRi(t0,i) calculated with values from Table 1. In 
addition, α0,i estimation indicates that the Zeta transmissibility increased from 10% in Rio de Janeiro to 37% in 
Rio Grande do Norte.

Amazonas faced oxygen shortage on the Gamma variant wave, which implicated in mortality increase beyond 
virus mutations. Nonetheless, estimates of α0,i had an increase of 84% over its initial value, while xc,i had an 
increase of 67% . In addition, its estimations on xc,i are smoother, which allowed identifying the increase in the 
severity of the disease ranging from 36% in Rio Grande do Sul to 71% in São Paulo. The analysis through IFRi 
indicated a lethality increase between 44% in Rio Grande do Norte and 107% in Amazonas for the Gamma vari-
ant. Moreover, transmissibility increased between 43% in Rio de Janeiro and 119% in Rio Grande do Sul based 
on first-wave values of α0,i from Table 1. Further investigation on IFRi points out variant spread countrywide, 
being Amazonas its source. The Gamma variant spread initially to the farthest case study from Amazonas: Rio 
Grande do Sul. Afterward, it spread to the Brazilian economic center, São Paulo, and thereafter to the rest of the 
federative units at a similar rate. The quicker propagation of the Gamma variant to the farthest location from 
Amazonas, Rio Grande do Sul, is explained by a less rigid NPI highlighted by the highest α0,i estimate. São Paulo 
had only the fourth highest α0,i among the studied cases. However, it was the second to significantly contract the 

(24)IFRi = (1− p)xc,ixm,i

Figure 3.  Time evolution of measures and estimated outputs from Amazonas (AM).
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Gamma variant, which enforces the theory that it spread countrywide afterward and corroborates its classifica-
tion as a super-spreader city par excellence by Nicolelis et al.35 Overall, α0,i more clearly indicated the emergence 
of circulating variants in the system. Finally, IFRi decreased in later times for most federative units until 1 July 
2021, indicating that vaccination coverage does reduce mortality in infected individuals.

The circulating variant dynamics assumed the unique circulation of the lineage, whose uncertainty was 
reduced by a manual definition of the analysis period for each variant. Most studied cases had the Zeta wave 
overlapped by the Gamma variant; thus, dynamic estimations are expected to be lower or equal to the actual 
value. The Zeta evaluation period was defined in the last 15 days before Gamma variant emergence. The Gamma 
variant estimations are expected to be more accurate since it was predominant over some time for all cases stud-
ies. The Gamma evaluation period was defined from the first stationary point after variant emergence to the end 
of the simulation.

Figure 4.  Time evolution of estimated contagion rate α0 from all analyzed federative units.

Figure 5.  Time evolution of estimated fraction of symptomatic individuals who develop mild and severe 
symptoms xc from all analyzed federative units.
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The computational time of the three state estimators was evaluated throughout the average simulation time 
among all analyzed federative units for 273 d, from 1 October 2020 to 1 July 2021. Simulation time was measured 
by the tic and toc functions in MATLAB. All simulations were carried out on an AMD Ryzen 5 5600X 3.70 GHz in 
a sequence to mitigate computational noises. The average simulation time was 25.4 s for CEKF, 136.7 s for CEKF 
& S with Np = 7 , 498 s for CEKF & S with Np = 28 , and 10265 s for MHE. Even the average execution time of 38 
s per sampling time for the MHE implies real-time applicability of the state estimators with the selected tuning 
in the COVID-19 pandemic scenario since all of them have execution times lower than the sampling time Ts = 1 
d. CEKF & S performance and computational time were between the CEKF and the MHE, which enforce it as 
an alternative for processes with faster sampling times.

The definition of a compartmental model inherits limitations regarding the closed system and homogeneous 
compartment assumptions. In addition, all numerical results are dependent on the initial condition, which was 
determined from a nonlinear optimization in this work. Age distribution was neglected in the model formulation 
to aim for real-time applicability and fulfill available data of confirmed cases. Model assumptions uncertainties 
are mitigated by the state and parameter estimation; however, they do not guarantee realistic estimations. For 
instance, the mitigation of the variants reinfection mostly through compartments Si and Hu,i instead of estimated 
parameters α0,i , xc,i , xm,i is a consequence of the tuning. Hence, a fine-tuning procedure may be required for 
severe assumption violations to avoid unrealistic estimations. Mitigation of multiple uncertainties in the model 
formulation is achieved by a conservative tuning concerning small dynamic changes. Hence, smooth vaccination 
coverage and gene sequence dynamics might be noise to the estimator. Data quality also limits a more aggres-
sive tuning for state estimators, such as sudden data updates of underreporting for cases and deceased (e.g., Rio 
Grande do Norte on 23 July 2021). Nonetheless, the proposed method allowed the study of overall dynamics in 
each studied case.

Figure 6.  Time evolution of estimated fraction of threatened individuals who decease xm from all analyzed 
federative units.

Figure 7.  Time evolution of IFR considering estimated parameters.
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Conclusion
In this work, we proposed a mathematical model able to identify underreported cases of COVID-19 from hos-
pitalized and deceased individuals by comparing the fraction of symptomatic individuals who develop severe 
or mild symptoms, the fraction of threatened individuals who decease, and the infection fatality rate among 
analyzed federative units. In addition, the model identified circulating variant dynamics in the aforementioned 
parameters, and characterize them under some assumptions. We remark that this model is suitable for control 
strategies, assuming there are available hospitalized data.

The performance among estimators confirmed MHE as a more suitable state estimator for COVID-19 due to 
daily sampling time. Nonetheless, CEKF & S presented reasonable estimations for comparison, and a significant 
reduction in computational time, which make it applicable in real-time applications.

Parameter estimations identified a lethality increase ranging from 11 to 30% and a transmissibility increase 
between 10 and 37% for the Zeta mutation. In addition, we found that the Gamma mutations caused a lethality 
increase ranging from 44 to 107% and a transmissibility increase between 43 and 119% . The estimation strategy 
successfully detected and estimated dynamics affected by the emergence of COVID-19 variants, which improves 
model accuracy for further predictions. Moreover, an initial decrease in lethality due to vaccination was also 
observed. Hence, the parameter estimation within recursive state estimation can deal with dynamic uncertain-
ties from the COVID-19 pandemic.

Future works account for implementing an economic model predictive control and studies on inserting 
vaccination into the proposed model. Delta variant has been predominant in Brazil since August 2021. It was 
disregarded from an initial analysis because its mutation highly increases contagion among vaccinated people, 
which are measured. Therefore, a model comprising vaccinated individuals should generate better estimations 
of Delta dynamics.

Data availability
The data sets used in this study are publicly available in the Ministry of Health of Brazil (https:// covid. saude. 
gov. br/)2; Brazilian SARS database (https:// opend atasus. saude. gov. br/ datas et/ srag- 2020 and https:// opend atasus. 
saude. gov. br/ datas et/ srag- 2021-e- 2022)38,39; and Google LLC (https:// www. google. com/ covid 19/ mobil ity/)46.
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