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Abstract

The problem of the recursive formulation of the MOESP class of subspace identification algorithms

is considered and two novel instrumental variable approaches are introduced. The first one leads to

an RLS-like implementation, the second to a gradient type iteration. The relative merits of both

approaches are analysed and discussed, while simulation results are used to compare their performance

with the one of existing techniques.

1 Introduction

Recursive subspace model identification (RSMI) has been an active area of research for the last ten
years [1, 2, 3, 4, 5]. In particular, the application of these techniques has been recently suggested in
fault detection [6, 7] and adaptive control [8] problems. RSMI methods are mostly inspired by the offline
versions of subspace model identification (SMI) techniques. Now, one of the reasons for the success of
SMI techniques lies in the direct correspondence between geometric operations on matrices constructed
from input-output data and their implementation in terms of well known, stable and reliable algorithms
from the field of numerical linear algebra. However, most of the available batch SMI techniques are based
on tools such as the singular value decomposition (SVD) which are not suitable for online implementation
due to their computational complexity. In fact, in many online identification scenarios it is important to
update the model as time goes on with a reduced computational cost. Thus, the challenging problem with
RSMI is to develop new techniques avoiding the use of such burdensome tools. Furthermore, an unbiased
updating scheme must be worked out in the presence of both measurement and process noise. Historically,
two main approaches to circumvent these difficulties can be distinguished. First, some works proposed
adaptations of SMI algorithms in order to update the SVD [1, 2]. Unfortunately, these algorithms had the
drawback of demanding that the disturbances acting on the system output were spatially and temporally
white, which is obviously restrictive in practice. The second approach [3, 4, 5, 9] relied on the similarities
between RSMI and signal processing techniques for direction of arrival (DOA) estimation and exploited
the so-called Yang’s criterion [10]. In particular, DOA estimation algorithms were adapted in order to
deal with more general types of perturbations than the ones arising in the DOA framework, thanks to
the use of instrumental variables (IV). Thus, in [3], it was first suggested to resort to an IV adaptation
of the projection approximation subspace tracking (PAST) technique [10] to the problem of RSMI, with
the focus on computational efficiency. In [9], recursive versions of the so-called PI and PO MOESP SMI
schemes and an extension of the above recursive techniques to the case of non linear models of the Wiener
type were developed, the main point being the estimation accuracy. [4] is an interesting overview of
the previous contributions. More recently, in [5], the recursive estimation of the observability matrix
was considered from the initial fourth-order criterion of Yang [10], with a gradient type minimization
technique. A convergence proof of the gradient iteration was also provided. Thus, all of the above cited
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RSMI algorithms apply certain updating techniques that avoid application of the SVD while preserving
the unbiasedness of the original batch algorithms.

The aim of this paper is to present some recent developments in the RSMI class of algorithms [11, 12]
for the update of the observability subspace of the model. More precisely, the methods proposed herein are
based on the application to system identification of two particular tracking schemes (respectively [13] and
[14]), for which an IV version has also been developed in order to take into account the presence of input-
output measurement disturbances and process noise in the problem formulation. The main advantage of
these approaches in comparison with the PAST subspace tracking technique and its IV variants used in
[3] is that no approximation is introduced in the formulation of the tracking problem. In fact, in both
cases, the signal subspace is interpreted as the solution of a specific unconstrained optimisation problem.

The paper is organised as follows: Section 2 presents the necessary background about the MOESP class
of SMI algorithms before the development of the corresponding recursive versions. Section 3 introduces the
analogy between the problem of the estimation of the observability matrix in RSMI and signal subspace
tracking in array signal processing. From this relation, the stages necessary to the recursive estimation
of the state-space matrices are stressed on and respectively developed in Section 4 and 5. More precisely,
in Section 4, the update of the observation vector from the new input-output measurements is proposed
thanks to the use of some specific RQ factorization updates. In Section 5, two novel approaches to
the estimation of a basis of the observability subspace are proposed and analysed. In Section 6, the
performance of these two new techniques is analyzed from numerical simulations. Section 7 concludes the
paper.

Throughout the paper, the following notations are used: capital letters are employed for matrices,
roman letters for stacked vectors. As usual, the exponent T and H respectively denote the transposition
and the Hermitian transposition. Each matrix or vector crowned with ˆ is the estimate of the considered
matrix or vector. E[.] denotes the mathematical expectation operator, ‖.‖ the Euclidean norm, ‖.‖F the
Frobenius norm and Imcol(.) defines the subspace spanned by the columns of the studied matrix. δ(s, t)
denotes the Kronecker delta function.

2 Overview of the MOESP algorithms

Consider an n− th order causal linear time-invariant state-space model with l outputs and m inputs,
respectively ỹ and ũ:

x(t + 1) = Ax(t) + Bũ(t) + w(t)
ỹ(t) = Cx(t) + Dũ(t)

(1)

where w ∈ R
n is the process noise. The measured input and output signals are modeled as

u(t) = ũ(t) + f(t)
y(t) = ỹ(t) + v(t)

(2)

with f ∈ R
m and v ∈ R

l the measurement noises (see Figure 1). Each noise is assumed to be zero-mean
white noise and statistically independent of the past noise-free input ũ. Furthermore, the measurement
noises f and v are assumed to be independent of the state x.

+

+f(t) u(t)

ũ(t) System ỹ(t) y(t)

v(t)w(t)

Figure 1: Block schematic illustration of the studied system.

The key problem dealt with by the MOESP class of identification algorithms is the consistent estimation
of the column space of the extended observability matrix Γi, defined as

Γi =
[
CT (CA)T (CA2)T . . . (CAi−1)T

]T
(3)
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from measured input-output samples {u(t), y(t)}. Indeed, from the estimate of the column space of Γi, an
estimate of the matrices A and C can be derived (up to a similarity transformation) in a straightforward
way by exploiting the shift invariance of the column space of Γi. From then on, the estimation of B

and D can be performed in a number of ways, for example by minimising the simulation error over the
identification data set, thus leading to a conventional linear least squares problem (see e.g. [15]) which
can also be recursively updated as described in [3].

The starting point for the estimation of the column space of Γi is the so called ”data equation”. To
define this equation, introduce the following block-Hankel matrices

Yt,i,j =








y(t) · · · y(t + j − 1)
y(t + 1) · · · y(t + j)

...
. . .

...
y(t + i − 1) · · · y(t + i + j − 2)








Ut,i,j =








u(t) · · · u(t + j − 1)
u(t + 1) · · · u(t + j)

...
. . .

...
u(t + i − 1) · · · u(t + i + j − 2)








(4)

where i and j are user defined integers chosen such that j >> i > n. Then, the data equation is compactly
denoted as [16]

Yt,i,j = ΓiXt,j + HiUt,i,j + GiWt,i,j − HiFt,i,j + Vt,i,j
︸ ︷︷ ︸

Bt,i,j

(5)

where Wt,i,j , Ft,i,j and Vt,i,j are defined in the same way than Ut,i,j and Yt,i,j . Hi and Gi are given by

Hi =










D 0 · · · 0
CB D · · · 0

CAB CB · · · 0
...

...
...

...
CAi−2B CAi−3B · · · D










Gi =










0 0 · · · 0
C 0 · · · 0

CA C · · · 0
...

...
...

...
CAi−2 CAi−3 · · · 0










(6)

and
Xt,j =

[
x(t) x(t + 1) · · · x(t + j − 1)

]
. (7)

On the basis of this data equation, a number of versions of MOESP were developed in order to work out
accurate estimates of the column space of the observability matrix from the available input-output data.
The algorithms mainly differ according to the assumptions on the disturbances acting on the system
generating the data. A summary of the considered MOESP identification algorithms is given in the
following. Note that the consistency results corresponding to each of the considered algorithms implicitly
assume appropriate persistency of excitation conditions (see the cited papers for details).

The elementary MOESP (EM) scheme [17]: this scheme relies on the (restrictive) assumption that
an estimate of the system matrices [A,B,C,D] (up to a similarity transformation) is available. In this
case, an estimate Ĥi of Hi can be constructed. Then, the Hankel input-output data matrices verify

Zt,i,j = Yt,i,j − ĤiUt,i,j = ΓiXt,j + Bt,i,j + (Hi − Ĥi)Ut,i,j . (8)

Assume that f, w equal zero and v is a zero-mean white noise independent of the input u. Then, if a
consistent estimate of [A,B,C,D] is available, a consistent estimate of Imcol(Γi) can be obtained via an
SVD of Zt,i,j .

The ordinary MOESP (OM) scheme [17]: in this case, no a priori estimate of the quadruple [A,B,C,D]
is necessary. The OM scheme considers the RQ factorization of the compound matrix

[
Ut,i,j

Yt,i,j

]

=

[
R11(t) 0
R21(t) R22(t)

] [
Q1(t)
Q2(t)

]

,

[
Q1(t)
Q2(t)

]
[
QT

1 (t) QT
2 (t)

]
= I (9)

with t = t + i + j − 2. Then, a consistent estimate of the column space of Γi is provided via an SVD of
the matrix R22(t) under the same assumptions on the perturbations stated for the EM scheme.
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Remark 1. Both the EM and OM schemes try to remove the term HiUt,i,j from Yt,i,j. The difference

lies in the way the matrix Hi is estimated. In the first case, Ĥi is constructed from consistent estimates
of [A,B,C,D]. In the second, the estimation of Hi is made from the following projection calculated via
the RQ factorization (9) [18]:

Yt,i,jΠ
⊥

U = Yt,i,j − ĤLS
i Ut,i,j = R22(t)Q2(t) (10)

where Π⊥

U denotes the orthogonal projection onto the nullspace of Ut,i,j and ĤLS
i the unconstrained min-

imizing argument of ‖Yt,i,j − HiUt,i,j‖
2
F
.

The past input past output (PI/PO) MOESP schemes [19]: these schemes consider the following RQ
factorization 



Ut+i,i,j

Ξt,i,j

Yt+i,i,j



 =





R11(t) 0 0
R21(t) R22(t) 0
R31(t) R32(t) R33(t)









Q1(t)
Q2(t)
Q3(t)



 (11)

with t = t + 2i + j − 1 and where Ξt,i,j = Ut,i,j in the PI scheme, while Ξt,i,j = [UT
t,i,j Y T

t,i,j ]
T in the PO

scheme. In the PI scheme (see [20] for details), a consistent estimate of the column space of Γi is provided
via an SVD of the matrix R32(t) under the assumptions that f ≡ 0, w ≡ 0 and v is an ergodic sequence
satisfying E[u(t)v(s)T ] = 0 ∀(t, s). Likewise, the PO scheme supplies reliable estimates from the same
SVD if f ≡ 0 and (v, w) are ergodic sequences satisfying

E[

[
v(t)
w(t)

]
[
v(s)T w(s)T

]
] =

[
L K

KT M

]

δ(s, t) (12)

which are furthermore independent from the input u. Finally, note that both the PI and the PO schemes
can deliver unbiased estimates of the column space of Γi in the presence of a zero mean white input
measurement vector f provided that the noise free input ũ is also a realization of zero mean white noise
(see [16] for details).

As mentioned in the previous paragraphs, the actual extraction of the column space of Γi from
respectively Zt,i,j , R22(t) and R32(t), can be carried out in a very simple way by means of a singular
value decomposition of these matrices. While this task is easily accomplished in a batch implementation
of the identification algorithms, when the problem of recursive operation is considered, the SVD turns
out to be the most burdensome step of MOESP from a computational point of view.

In many online applications, it is essential to perform a recursive adaptation of the model parameters:
it is then necessary to develop efficient techniques in order to update the matrix estimates.

3 Recursive subspace identification

The problem we are concerned with is the recursive estimation of a state-space realization from the
updates of the perturbed input-output data u(t) and y(t). In the light of the discussion of the previous
Section, the main issue of the recursive implementation of the MOESP class is the recursive update of
Γi. Thus, it is essential to define a suitable and efficient computational scheme for the extraction of
its column space, without performing the full singular value decomposition at each time step. To this
purpose, consider the Hankel matrices (4) and assume that, at time t̄ + 1, new data samples y(t̄ + 1) and
u(t̄ + 1) are acquired. Then, each of the previous matrices are modified by the addition of a column,
which is respectively denoted with yi(t̄ + 1) and ui(t̄ + 1)

yi(t̄ + 1) = [yT (t + j) · · · yT (t + i + j − 1)]T ∈ R
li×1 (13)

ui(t̄ + 1) = [uT (t + j) · · ·uT (t + i + j − 1)]T ∈ R
mi×1 (14)

From the state-space representation (1) and (2), it is easy to show that the output vector is given by

yi(t̄ + 1) = Γix(t̄ − i + 2) + Hiui(t̄ + 1) + Giwi(t̄ + 1) − Hifi(t̄ + 1) + vi(t̄ + 1)
︸ ︷︷ ︸

bi(t̄+1)

, (15)
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where the stacked noise vectors are defined in the same way as ui(t̄+1) and yi(t̄+1). The main objective
is to work out an approach to the estimation of a basis for the column space of matrix Γi with a reduced
computational cost. In the array signal processing field, several adaptive algorithms were suggested as
SVD alternatives to estimate the signal subspace [21, 22]. These techniques are based on the following
data generation model

z(t̄ + 1) = Γ(θ)s(t̄ + 1) + b(t̄ + 1), (16)

where z(t̄ + 1) ∈ C
nz×1 is the output of the nz sensors of the antenna array at time t̄ + 1, Γ(θ) ∈ C

nz×n

the steering matrix for a direction of arrival vector θ, s(t̄ + 1) ∈ C
n×1 the vector of the n (n < nz)

random impinging waves and b(t̄ + 1) ∈ C
nz×1 the measurement noise. The connection between the

RSMI problem and the above model from array signal processing becomes apparent by writing (15) as

zi(t̄ + 1) = yi(t̄ + 1) − Hiui(t̄ + 1) = Γix(t̄ − i + 2) + bi(t̄ + 1). (17)

The analogy between (16) and (17) is also obvious (see Table 1). This expression stresses on both steps

Subspace Identification Array Signal Processing
zi(t̄ + 1) ∈ R

li×1 z(t̄ + 1) ∈ C
nz×1

Γi ∈ R
li×n Γ(θ) ∈ C

nz×n

x(t̄ − i + 2) ∈ R
n×1 s(t̄ + 1) ∈ C

n×1

bi(t̄ + 1) ∈ R
li×1 b(t̄ + 1) ∈ C

nz×1

Table 1: Relations between array signal processing and subspace identification

required to recursively estimate the state-space matrices of the system:

• the update of the”observation vector” zi from the input-output measurements

zi(t̄ + 1) = yi(t̄ + 1) − Hiui(t̄ + 1) (18)

• the estimation of a basis of Γi from this observation vector

zi(t̄ + 1) = Γix(t̄ − i + 2) + bi(t̄ + 1). (19)

These steps are respectively discussed in Section 4 and Section 5.

4 Update of the observation vector

In order to recursively estimate the observability matrix, it is necessary to determine, at each time
step, an accurate update of the observation vector zi(t̄ + 1). If the matrix Hi(t̄ + 1) was a priori known,
it would be possible to subtract Hi(t̄ + 1)ui(t̄ + 1) from yi(t̄ + 1). Unfortunately, this matrix is unknown
at time t̄ + 1. Two alternative solutions can be considered:

• to use the state-space matrix estimates available at time t̄ to construct Ĥi(t̄) [3] and introduce the
following approximation

ži(t̄ + 1) ≈ yi(t̄ + 1) − Ĥi(t̄)ui(t̄ + 1) (20)

• to avoid the above approximation and compute a quantity which contains the same information as
zi(t̄ + 1) by updating the RQ factorisations (9) and (11) [1, 9, 23].

This second method is developed in the following Subsections (see also [4]), the first one, named ”sub-
traction method”, having already been used in [3, 4, 12].
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4.1 The OM update

The basic idea of this approach is to directly update the RQ factorization of the OM scheme at each
time step. For that purpose, assume that the RQ factorization of the input-output Hankel matrices at
time t̄ = t + i + j − 2 is given by equation (9). At each new sample time, this decomposition can be
updated as

[
Ut,i,j+1

Yt,i,j+1

]

=

[
R11(t̄) 0 ui(t̄ + 1)
R21(t̄) R22(t̄) yi(t̄ + 1)

]




Q1(t̄) 0
Q2(t̄) 0

0 1



 . (21)

A sequence of Givens rotations G(t̄+1) [24] can then be used to annihilate the vector ui(t̄+1) and bring
back the R factor to block lower triangular form

[
R11(t̄) 0 ui(t̄ + 1)
R21(t̄) R22(t̄) yi(t̄ + 1)

]

G(t̄ + 1) =

[
R11(t̄ + 1) 0 0
R21(t̄ + 1) R22(t̄) z̄i(t̄ + 1)

]

. (22)

G(t̄ + 1) is here the matrix ensued from the product of the successive Givens rotations necessary to zero
out ui(t̄ + 1). z̄i(t̄ + 1) is the vector obtained by modifying yi(t̄ + 1) in order to include the information

contained in ui(t̄ + 1) and in the block
[
RT

11(t̄) RT
21(t̄)

]T
.

Since the goal of this calculation is to evaluate equation (18), it is essential to find the existing relation
between z̄i(t̄ + 1) and zi(t̄ + 1). Such relation is defined by the following Proposition.

Proposition 1. Consider the definition of the observation vector zi(t̄+1) (equation (18)) and the vector
z̄i(t̄ + 1) computed with the Givens rotations OM update (22). Then, z̄i(t̄ + 1) = ±zi(t̄ + 1).

Proof. See Appendix A.

On the basis of Proposition 1, the explicit calculation of (18) can be carried out at each time step from an

update of the RQ factorization of the block matrix
[
Y T

t,i,j UT
t,i,j

]T
via an appropriate sequence of Givens

rotations.

4.2 The PI/PO update

The main idea in this algorithm is to update the more complex RQ factorization of the PI/PO schemes
by means of Givens rotations. In this Subsection, the application of this approach to the PI version of
MOESP is proposed (see [4] for details and an illustration of the PO update).

Consider the PI MOESP described in Section 2. At the generic time instant t̄, the RQ factorization
of the data matrix is given by (11) where, in this case, t̄ = t + j + 2i− 1. Assume now that the following
new set of input-output data vectors becomes available

uf
i (t̄ + 1) =

[
u(t + i + j)T . . . u(t + 2i + j − 1)T

]T
(23)

yf
i (t̄ + 1) =

[
y(t + i + j)T . . . y(t + 2i + j − 1)T

]T
(24)

and define the vector of past input data available at time t̄ + 1 as

up
i (t̄ + 1) =

[
u(t + j)T . . . u(t + i + j − 1)T

]T
. (25)

Then, a new column is added to the data matrices and the decomposition must be written as





R11(t̄) 0 0 uf
i (t̄ + 1)

R21(t̄) R22(t̄) 0 up
i (t̄ + 1)

R31(t̄) R32(t) R33(t̄) yf
i (t̄ + 1)











Q1(t̄) 0
Q2(t̄) 0
Q3(t̄) 0

0 1







. (26)

Givens rotations are then used twice to update the factorization. They are first applied in order to zero
out the elements of vector uf

i (t̄ + 1), bringing the R factor to the form




R11(t̄ + 1) 0 0 0
R21(t̄ + 1) R22(t̄) 0 z̄p

i (t̄ + 1)

R31(t̄ + 1) R32(t̄) R33(t̄) z̄f
i (t̄ + 1)



 . (27)
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Subsequently, the elements of z̄p
i (t̄ + 1) are zeroed in a similar way, to give





R11(t̄ + 1) 0 0 0
R21(t̄ + 1) R22(t̄ + 1) 0 0

R31(t̄ + 1) R32(t̄ + 1) R33(t̄) ¯̄zf
i (t̄ + 1)



 . (28)

Then it is easy to show that the “square” of block R32(t̄ + 1) can be written as

R32(t̄ + 1)RT
32(t̄ + 1) = R32(t̄)R

T
32(t̄) + [z̄f

i (t̄ + 1)][z̄f
i (t̄ + 1)]T − [¯̄zf

i (t̄ + 1)][¯̄zf
i (t̄ + 1)]T . (29)

Thus, in this case, the subspace estimate at time t̄ + 1 is related to the one at time t̄ via the combination
of an update and a downdate.

Remark 2. Note that the PI/PO scheme, which is possibly the most accurate one, suffers from the
highest computational cost. Therefore, the OM scheme (see Subsection 4.1) seems to provide an adequate
compromise solution between the subtraction approach (see equation (20)) and the PI/PO update (see
Subsection 4.2).

Remark 3. It is interesting to point out that schemes for the update of the observation vectors similar
to the ones discussed above can be derived by computing explicitly the projections associated with the RQ
factorisations computed in the OM and PI/PO cases and applying the matrix inversion lemma to such
expressions. To our best knowledge, this approach has been followed independently in [5] for the OM and
PI/PO schemes and in [25] for the OM update.

The first step of the problem, i.e., the reliable update of the observation vector, is now achieved.
Henceforth, consider the second stage of the RSMI problem, that is the recursive estimation of the
observability matrix.

5 Update of the observability subspace

The most important step in RSMI is the recursive update of the observability subspace. In [3, 4], it
was proposed to exploit the close relationship between array signal processing and SMI to derive efficient
SVD alternatives. More precisely, the PAST algorithm [10] and its instrumental variables modification
IVPAST [3] were applied and modified to derive an effective update of the signal subspace. In particular,
an optimisation problem was considered with respect to a fourth-order cost function so as to retrieve
the signal subspace from I/O data, the efficient recursive solution of which required the introduction of
an approximation, in order to reduce the optimisation task to an exponentially weighted least-squares
problem. The aim of this Section is therefore to review in greater detail the PAST and IVPAST techniques
and to introduce two novel approaches to the problem of updating the observability subspace of the
identified models.

5.1 Overview of PAST and IVPAST

5.1.1 PAST

Consider a random vector z ∈ R
nz , and study the following unconstrained criterion (known as Yang’s

criterion)

V (W ) = E
∥
∥z − WWT z

∥
∥

2
(30)

with a matrix argument W ∈ R
nz×n, nz > n that, without loss of generality, is assumed to have full rank

(=n). Let the eigenvalue decomposition of Rz = E[zzT ] be given as

Rz = QΛQH (31)

with Q = [q1, . . . , qnz
], Λ =diag(λ1, . . . , λnz

). Furthermore, assume that Rz is positive definite. The
eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . ≥ λnz

. Then, the following theorem holds [10]:
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Theorem 1. The global minimum of V (W ) is attained if and only if W = QnT where Qn contains the
n dominating eigenvectors of Rz and T is an arbitrary unitary matrix. Furthermore, all other stationary
points are saddle points.

This theorem allows to formulate the problem of computing the n dominating eigenvectors of a positive
definite matrix as an unconstrained optimization problem. In particular, if the expectation operator in
(30) is replaced with a finite summation and a suitable forgetting factor λ is introduced, the cost function
V becomes

V (W (t)) =

t∑

k=1

λt−k
∥
∥z(k) − W (t)WT (t)z(k)

∥
∥

2
(32)

and it is possible to derive a practical recursive algorithm, along the lines described below. Theorem 1 is
also applicable to (32) if Rz is replaced with

R̂z(t) =

t∑

k=1

λt−kz(k)zT (k). (33)

The key idea of PAST is to replace WT (t)z(k) in (32) with

h(k) = WT (k − 1)z(k). (34)

This so-called projection approximation results in the criterion

V̄ (W (t)) =

t∑

k=1

λt−k ‖z(k) − W (t)h(k)‖
2

(35)

which is quadratic in W (t), and is minimized by

W (t) = R̂zh(t)R̂−1
h (t) (36)

with obvious definitions of the involved matrices. It is further assumed that the involved inverse exists.
When the matrix inversion lemma is applied to (36), an efficient RLS-like algorithm is easily derived (see
[10]).

Remark 4. With the PAST criterion, the signal subspace is obtained by minimizing the modified cost
function V̄ (W ) instead of V (W ). Hence, the estimated column-subspace is slightly different from the
one reachable with the original cost function. Theoretically, the columns of W minimizing the criterion
V (W ) are orthonormal. Even if this property is not necessary to extract the state-space matrices, the
minimization of V̄ (W ) leads to a matrix having columns that are not exactly orthonormal. This property
evolves during the recursive minimization since, under some conditions, the minimizer of V̄ (W ) converges
to a matrix with orthonormal columns [10]. This evolution can be interpreted as a slow change of basis,
which implies that it is not possible to guarantee that Γi(t) and Γi(t− 1) are expressed in the same state-
space coordinates. This might represent a problem in the estimation of the state space realization Â, B̂, Ĉ

and D̂, and particularly so whenever RSMI techniques are used for change detection purposes (see, e.g.,
[6, 7]).

Remark 5. In [10] a gradient based approach to the optimisation of (30) was also proposed. Indeed, the
gradient of V (W ) with respect to W has the simple expression

∇V (W ) = [−2Rz + RzWWT + WWT Rz]W, (37)

which can be used to implement a gradient update rule (either iterative or recursive) for the subspace
estimate. This approach has been followed in [5] for the update of the observability subspace.
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5.1.2 IVPAST

An IV generalization of PAST has been proposed in [3], in order to deal with situations in which the
measurements of z are affected by noise with arbitrary and unknown covariance matrix. In this scenario,
it is assumed that the cross correlation matrix Rzξ associated with z and an instrumental variable vector
ξ ∈ R

γ×1 has a low rank (= n) structure
E[zξT ] = ΓΦ (38)

where Γ ∈ R
nz×n,Φ ∈ R

n×γ both have full rank n (nz, γ ≥ n). Then, considering the criterion (due to
Gustafsson)

VIV (W (t)) =
∥
∥Rzξ(t) − W (t)WT (t)Rzξ(t)

∥
∥

2

F
(39)

the following result can be introduced [3]:

Theorem 2. Let Rzξ(t) have the SVD
Rzξ(t) = QΣV T . (40)

Then the global minimum of VIV (W (t)) is obtained if and only if W (t) = QnT where Qn contains the
n dominating left singular vectors of Rzξ(t) and T is an arbitrary unitary matrix. All other stationary
points are saddle points.

Applying the projection approximation approach, a recursive algorithm can be derived (see [3]).

As was pointed out in Remark 4, the PAST algorithm and its IV versions are based on an approxi-
mation. In order to avoid this difficulty, two novel algorithms, inspired from array signal processing, are
respectively introduced in Subsections 5.2 and 5.3.

5.2 RSMI using the Propagator Method

5.2.1 The Propagator Method

The propagator [14] is a linear operator used in array signal processing to provide the decomposition
of the observation space into a noise and a signal subspace. In order to understand the key point of this
method, consider again the sensor array signal model (16). Assuming that the steering matrix Γ is of full
rank, n rows of Γ are linearly independent, the others being expressed as a linear combination of these n

rows. Under this hypothesis, and after a reorganization of the sensors outputs so that the first n rows of
Γ are linearly independent, it is possible to partition the steering matrix according to

Γ =

[
Γ1

Γ2

]
} ∈ C

n×n

} ∈ C
nz−n×n . (41)

The propagator [14] is the unique linear operator P ∈ C
n×nz−n defined as

Γ2 = PHΓ1. (42)

From [12] and [26], on the basis of the similarity between (16) and (17) (see Table 1) and under the
hypotheses that the order n is a priori known and that {A,C} is observable, the extended observability
matrix can be decomposed in the following way

Γi =

[
Γi1

Γi2

]
} ∈ R

n×n

} ∈ R
li−n×n (43)

where Γi1 is the block of the n independent rows and Γi2 the matrix of the li − n others. Thus, there is
a unique P ∈ R

n×li−n such as
Γi2 = PT Γi1 . (44)

It is also easy to verify that

Γi =

[
Γi1

Γi2

]

=

[
In

PT

]

Γi1 = QsΓi1 . (45)

9



This means that the columns of Γi are linear combinations of the columns of Qs. Thus

Imcol{Γi} = Imcol{Qs} (46)

since rank(Γi1) = n. Equation (46) implies, from the knowledge of the propagator P , the ability to find
an expression of the observability matrix in a particular basis. Thus, assuming that the order n is known,
an estimate of the subspace spanned by the observability matrix is available by estimating P . For that
purpose, consider equation (17). After an initial reorganization such that the first n rows of Γi are linearly
independent, the following partition of the observation vector (18) can be introduced

zi(t) =

[
In

PT

]

Γi1x(t) + bi(t) =

[
zi1(t)
zi2(t)

]
} ∈ R

n×1

} ∈ R
li−n×1 (47)

where zi1 and zi2 are the components of zi corresponding respectively to the n rows of Γi1 and li−n rows
of Γi2 (the same symbols are used before and after the reorganization, for the sake of simplicity). In the
ideal, noise-free case, it is easy to show that

zi2 = PT zi1 . (48)

In the presence of noise, this relation holds no longer. An estimate of P can however be obtained by
minimizing the following cost function

Ṽ (P ) = E‖zi2 − PT zi1‖
2, (49)

the uniqueness of P̂ being ensured by the convexity of this criterion, which, in turn, can be guaranteed
by suitable persistency of excitation assumptions.

The criterion (49) is, by definition, quadratic and reduces the determination of the range of Γi to the
estimation of an li− n× n matrix. For example, on the basis of the signal model given in equation (47),
under the assumption that

E
[
bib

T
i

]
= Rbi

=

[
Rbi1

Rbi1
bi2

Rbi2
bi1

Rbi2

]

, (50)

the (asymptotic) LS estimate of PT is given by ([27])

P̂T = Rzi2
zi1

R−1
zi1

(51)

where
Rzi2

zi1
= E

[
zi2z

T
i1

]
=

[
PT Γi1RxΓ

T
i1

+ Rbi2
bi1

]
(52)

and
Rzi1

= E
[
zi1z

T
i1

]
=

[
Γi1RxΓT

i1
+ Rbi1

]
. (53)

Therefore, it is easy to see that the LS solution of the optimization problem defined by (49) leads to
a biased estimate, even when the residual vector bi(t) is spatially and temporally white, i.e., when
Rbi

= σ2
bIli and therefore

P̂T = PT
[
Γi1RxΓ

T
i1

] [
Γi1RxΓT

i1
+ σ2

bIn

]−1
. (54)

This difficulty could be partially circumvented by considering a Total Least Squares (TLS, see [28])
approach to the problem. However this would likely complicate the recursive implementation of the
solution. In order to obtain an unbiased estimate of the signal subspace, an instrumental variable is
introduced in the above criterion so as to make it applicable even if colored disturbances act on the
system, as done in [3].

5.2.2 Instrumental variable identification using the Propagator Method

Since the propagator method is very sensitive to the presence of the noise bi, it is necessary to modify
the criterion (49). This correction is realized by introducing an instrumental variable ξ(t) ∈ R

γ×1 (γ ≥ n)
in (49), assumed to be uncorrelated with the noise but sufficiently correlated with the state vector x(t),
and by defining the new cost function

ṼIV (P̂ ) = E‖zi2ξ
T − P̂T zi1ξ

T ‖2
F . (55)
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Since only a finite number of data is accessible in practice, replacing the expectation operator with a
finite exponentially weighted sum, criterion (55) becomes

ṼIV (P (t)) =

t∑

k=1

λt−k‖zi2(k)ξT (k) − PT (t)zi1(k)ξT (k)‖2
F . (56)

Assuming a suitable instrumental variable can be constructed [12], the minimization of (56) can be realized
in two different ways (named IVPM and EIVPM), according to the number γ of instruments in ξ. Indeed,
if γ = n, it is possible to find a first IVPM algorithm by applying the matrix inversion lemma to the least
squares solution of the optimisation problem associated with criterion (55)

K(t) =
ξT (t)R(t − 1)

λ + ξT (t)R(t − 1)zi1(t)
(57a)

PT (t) = PT (t − 1) + [zi2(t) − PT (t − 1)zi1(t)]K(t) (57b)

R(t) =
1

λ
[R(t − 1) − R(t − 1)zi1(t)K(t)] (57c)

where R(t) = {E[zi1(t)ξ
T (t)]}−1 = R−1

zi1
ξ(t).

In [29], it was argued that the accuracy of the estimates obtained from an instrumental variable
method increases with the number of instruments. It would be interesting to improve the efficiency of
the previous algorithm by increasing the number of used instruments (i.e., γ > n). In that case, the
minimization of the criterion (56) appeals to a technique named the Extended Instrumental Variable
Method [30]. The application of such a technique gives the recursive updating formulae available in [12]
(see also Appendix C), named EIVPM, the main step being

PT (t) = PT (t − 1) + (g(t) − PT (t − 1)Ψ(t))K(t). (58)

Remark 6. From the second iteration on, the update of the estimated subspace is always in the form

Γ̂i =

[
In

P̂T

]

. (59)

This means that, after a short transient period, the recursive estimation is made in the same state-space
basis. This property is an important asset for the extraction of the state-space matrices.

5.3 RSMI based on Projector Tracking

5.3.1 Projector Tracking based subspace identification

As illustrated in [13], a different approach to the solution of the optimization problem associated
with the cost function (30) can be obtained by considering as independent variable the projection matrix
Π = WWT rather than the orthonormal basis W . In particular, it is easy to see that optimising V (W )
in (30) with respect to W is equivalent to optimising

˜̃
V (Π) = E ‖z − Πz‖

2
= tr(Rz) − tr(RzΠ) (60)

with respect to Π, with the constraints Π = ΠT = Π2 and subject to the rank constraint rank(Π) = n.
Tracking of a real, nz × nz projection matrix Π of rank n can be carried out by means of the update rule

Π(φ, t) = G(φ, t)Π(t − 1)G(φ, t)T (61)

where

G(φ, t) =

1∏

k=nz−1

nz∏

l=k+1

Gkl(φkl) (62)

Gkl(φkl) being the Givens rotor (see [24, 31]) with characteristic submatrix

Gkl
2

4

kk kl

lk ll

3

5

=

[
cos(φkl) − sin(φkl)
sin(φkl) cos(φkl)

]

(63)
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and φ = {φkl}. The theoretical foundation for the update rule defined by equation (61) can be found
in Theorem 2 and Corollary 1 of [13], which provide the definition for a simple tracking rule for a time-
varying projection matrix, in terms of incremental rotations implemented by Givens operators (see also
[22]).

At each time step, the elements of vector φ, i.e., the angles which represent the projector update, are
determined according to the gradient rule

φkl = −µ
∂

˜̃
V (Π(φ))

∂φkl

(64)

where µ is the gain of the gradient iteration. The gradient of ˜̃
V (Π(φ)) is given by [13]

∂
˜̃
V (Π(φ))

∂φkl

=

nz∑

i=1

(Πl,iR̂z i,k − Πk,iR̂z i,l) (65)

where Πi,j and R̂z i,j are respectively the (i, j) elements of Π and R̂z.

5.4 Instrumental variable Projector Tracking

In order to provide a more general formulation of the projector tracking approach to RSMI, an
instrumental variable version of the algorithm has to be developed. For, note that the cost function (39)
can be written in terms of the projection matrix Π = WWT as

˜̃
VIV (Π) = ‖Rzξ − ΠRzξ‖

2
F

= tr
[
(Rzξ − ΠRzξ)(Rzξ − ΠRzξ)

T
]

(66)

so that letting R = RzξR
T
zξ

˜̃
VIV (Π) = tr(R) − tr(RΠ) (67)

which has the same structure as the cost function of the PAST problem (see equation (39)). Therefore,
a projector tracking approach can be followed also in the IV case, along the lines of the previous Subsec-
tion, thus leading to the definition of instrumental variable subspace identification algorithms based on
projection tracking ideas, which in the following will be termed IVPT and EIVPT. In addition, in the
light of Theorem 2 in [32], one can work directly with Rzξ without forming R explicitly. More precisely,
taking into account that Π = WWT , the recursion for the update of the signal subspace at time t can be
outlined as follows:

1. Use the new input-output data to update the RQ factorisation as in Sections 4.1-4.2 or the subtrac-
tion as in (20) (possibly using a forgetting mechanism).

2. From a suitable choice of IVs, compute R̂zξ = zξT .

3. On the basis of R̂zξ = zξT and the previous estimate Π̂(t − 1) compute φkl according to

φkl = −µ

nz∑

i=1

(Π̂l,iR̂zξ i,k − Π̂k,iR̂zξ i,l). (68)

4. Update the subspace estimate Ŵ (t) according to

Ŵ (t) = G(φ, t)Ŵ (t − 1), (69)

with G(φ, t) as defined in equation (62).

5. Compute matrices A and C, and (possibly) initialise the recursion for B and D.

6. Update the projector estimate Π̂.
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Remark 7. As pointed out in [13] in the framework of direction of arrival problems for the approach to
projector tracking, the algorithm lends itself naturally to a modification for blockwise processing of data,
by suitably choosing the number of data that are used at each time step in the estimation of Rz. The same
holds for the instrumental variable version of projector tracking proposed herein, in which a blockwise
estimate of Rzξ can be used.

Remark 8. It has been mentioned in Remark 5 that Yang’s criterion (30) (as well as its IV counterpart
(39)) can be optimised using a gradient iteration. This approach was applied to RSMI in [5], where a
recursive algorithm consisting of a PO update of the observation vector plus a gradient iteration over (30)
was proposed. It is interesting to point out the major differences between the projection tracking method
proposed herein and the algorithm of [5]. First of all, in [5] the effect of noise is treated at the observation
vector level, while in the EIVPT algorithm this is done in the subspace update step. In addition, while
the PT update of the observability subspace relies on unitary operations and therefore guarantees the
orthonormality of the computed subspace, this is not the case when the estimate is updated using the
direct gradient iteration described in Remark 5.

5.5 Complexity of the propagator and the projector methods

The main goal of recursive identification techniques is to update the estimated model during the
operation of the system, at the same time as the data are collected. This condition implies that the
identification has to be carried out with a reduced computational cost. Thus, it is interesting to compare
the complexity of EIVPM and EIVPT with other existing techniques. Table 2 introduces the overall
computational complexity of PAST, EIVPAST, PM, EIVPM, PT and EIVPT. These values concern only
the recursive estimation of the observability matrix. It is shown that the computational cost of PM and

Algorithm Complexity
PAST O(nli)

EIVPAST O(mli2)
PM O(nli)

EIVPM O(mli2)
PT O(mli2)

EIVPT O(mli3)

Table 2: Overall complexity comparison of several recursive subspace identification algo-
rithms.

EIVPM is comparable to the one of PAST and its by-products, while the current implementation of
EIVPT is characterised by a higher computational cost. This complexity, however, does not restrict the
online applicability of EIVPT.

5.6 On the equivalence of the propagator and the projector methods

The aim of this Section is to assess the relative merits of the proposed estimation techniques. In
particular, two aspects of their performance will be investigated. First of all, since it has been noted in
the previous Section that the propagator method without instrumental variables leads to biased estimates,
while the projector method, based on the direct optimization of Yang’s criterion, is consistent [10, 32],
it is necessary to somehow evaluate the importance of the bias introduced by the propagator technique.
Subsequently, when coming to the analysis of the instrumental variable versions of both approaches (which
are both consistent), it is interesting to check whether the propagator and the projector techniques are
equivalent only to first order or also to second order.

5.6.1 Propagator and projector methods

The main result on the relationship between the propagator and the projector methods is given in the
following Proposition.
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Proposition 2. The criterion (60) can be equivalently expressed as a function of the propagator P as

˜̃
V (Π) = E

∥
∥
∥

[
In + PPT

]−1
P

[
PT z1 − z2

]
∥
∥
∥

2

+ E
∥
∥
∥

[

PT P
[
PT P + Ili−n

]−1
− Ili−n

] [
PT z1 − z2

]
∥
∥
∥

2

(70)

or
˜̃
V (P ) = tr(Rz) − tr(Rz

[
In

PT

]
[
In + PPT

]−1
[In P ]). (71)

Proof. See Appendix B.

Note that equation (71) can be evaluated numerically as a function of the true and estimated propagator
P in order to assess the effect of bias. Precisely, since the LS solution of the propagator estimation
problem can be written in closed form (see equations (51)-(53)), the difference between the optimal value
of the cost function, which is given by tr(Rb2), and the one attained using the propagator method can be
computed.

Example 1. Consider the simple signal model given by

zi(t) =

[
1
2

]

x(t) + bi(t) (72)

where x and bi are (independent) realizations of white noise with zero mean and variance 1 and σ2

respectively. According to equation (54) the estimate of the propagator is given by

P̂T =
2

1 + σ2
. (73)

In order to assess the performance of the propagator method the following approach has been followed: first,
the increase in Yang’s cost function with respect to the global minimum has been assessed, along the lines
outlined above; then, a Monte Carlo simulation has been carried out, in order to compare the distribution
of the estimate of P obtained by the two approaches. In Table 3 the loss of performance associated with
the use of the propagator method in a noisy framework is measured in terms of Yang’s cost function, for
increasing values of the noise variance σ2. As can be seen from the Table, the normalised performance
loss is relatively small1, in the sense that even in the presence of bias, the estimate of the observability
subspace provided by the propagator method still matches fairly well the actual subspace. On the other

Noise variance σ2 V̂ −V o

V o

0.01 0.008
0.05 0.0392
0.1 0.0768

Table 3: Optimal PAST cost vs optimal cost attained via the propagator method.

hand, the results of the Monte Carlo iterations (a number N=1000 of replications has been carried out)
are illustrated in the histograms given in Figure 2. It is interesting to note that while the bias present
in the propagator estimates appears clearly, and is obviously increasing with σ2, the propagator and the
PAST estimates of P have very similar second order properties.

5.6.2 IV propagator and projector methods

When considering the instrumental variable versions of the propagator and projector methods, it can
be easily concluded, by means of arguments not unlike those given in [29] for the analysis of conventional
IV algorithms, that the IVPM and EIVPM algorithms can lead to unbiased estimates of P (and there-
fore of the observability subspace), i.e., that the introduction of instrumental variables in the propagator
approach makes it equivalent (to first order) to all the methods based on Gustafsson’s criterion. Unfor-
tunately the comparison between the second order properties of the estimators based on the IVPM and

1Note, in passing, that one might also use σ
2 as an upper bound for V̂ −V

o

V o .
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Figure 2: Distribution of the asymptotic estimates of P in Example 1, using the PM and
PAST algorithms.

EIVPM approaches is not as simple, and for the time being the only evidence of second order equivalence
of the EIVPM and EIVPT methods can be derived experimentally by means of Monte Carlo simulations.
Future work will aim at validating theoretically the simulation results illustrated in the following Example
2.

Example 2. Consider again the data generation model described in Example 1, where each component
of the residual b is now given by the autoregressive model

b(t + 1) = 0.5b(t) + η(t) (74)

where η(t) is a realization of zero-mean white Gaussian noise with variance σ2 = 0.1. The propagator
P has been estimated using both the IVPM and the IVPAST techniques, by choosing as instrumental
variable a filtered version of the state sequence x. As in the previous example, N = 1000 replications of
the estimation procedure for the propagator have been carried out, on the basis of data sets of 200 samples
each. The results are summarised in Figure 3, from which it is apparent that the two approaches are
entirely equivalent.

Remark 9. It should be mentioned that the presented recursive schemes can be extended to the PO EIV
errors in variables algorithm and to the estimation of the linear part of Wiener type nonlinear models,
along the lines of [4].

6 Simulation results

In this Section, the performance of the propagator and projector methods are illustrated with two
simulation studies. In particular, the identification of a time invariant system and of a time-varying
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Figure 3: Distribution of the asymptotic estimates of P in Example 2, using the IVPM and
IVPAST algorithms.

system are considered and the relative merits of the two algorithms are compared and discussed.

6.1 An LTI system

Consider the linear time invariant system described by the equations

x(t + 1) =

[
0.7 0
0 −0.5

]

x(t) +

[
2
1

]

ũ(t) + w(t)

ỹ(t) =
[
1 2

]
x(t) + 0.05ũ(t)

u(t) = ũ(t) + f(t)

y(t) = ỹ(t) + v(t).

(75)

The input ũ, a zero-mean white Gaussian noise sequence with variance 1, is contaminated with a zero-
mean white Gaussian noise sequence f with variance 0.1. Colored measurement noise v is added to the
noise free output ỹ, generated as

v(t) =
1

1 + 0.8q−1
e(t) (76)

where e is a zero-mean white Gaussian noise with variance 0.1. Finally, a zero-mean white Gaussian
process noise w is added with variance 0.1.

The above system has been used in order to carry out a comparison between the algorithms proposed
in this paper (EIVPM and EIVPT) and the EIVPAST algorithm (see [3]). For the sake of completeness,
two different situations have been considered. In the first one the observation vector zi is estimated with
the subtraction method (see equation (20)), while in the second case, zi is determined using the OM
update (according to Proposition 1). In each situation, the estimated eigenvalues and principal angles
between the exact and estimated observability subspace are plotted.

In EIVPM, the forgetting factor is fixed as 0.999. For the projector method, this value is chosen
as 0.99, while for EIVPAST a forgetting factor of 0.999 is used2. Concerning the initialization of the
identification algorithms, the model matrices are randomly generated in a neighbourhood of the true
system matrices, i.e., with a possible deviation of 0.3 from the true values of the elements of the matrices.
Finally, the i, γ and µ parameters respectively equal 8, 8 and 0.002.

In Figure 4, the results obtained by combining the three observability subspace estimation schemes
with the subtraction approach for the update of the observation vector are shown. Similarly, the combi-
nation of the three algorithms with the OM update leads to the results presented in Figure 5.

As can be seen from the Figures, all the considered approaches to the RSMI problem yield consistent
estimates: the estimated eigenvalues converge to the true ones and the same holds for the estimate of the

2The values of the forgetting factors have been chosen in order to optimise the performance of each algorithm.

16



0 100 200 300 400 500 600 700 800 900

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

System eigenvalues 

E
ig

en
va

lu
es

 

Samples 

Eigenvalues estimated with EIVPM 

Eigenvalues estimated with EIVPT 

Eigenvalues estimated with EIVPAST 

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

Principal angle estimated with EIVPM  

Principal angle estimated with EIVPT 

Principal angle estimated with EIVPAST 

Samples 

P
rin

ci
pa

l a
ng

le
s 

Figure 4: Estimated eigenvalues and principal angles calculated with EIVPT, EIVPM and
EIVPAST methods using subtraction technique for the estimation of the observation vector.

Time invariant case.
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Figure 5: Estimated eigenvalues and principal angles calculated with EIVPT, EIVPM and
EIVPAST methods using the OM update technique for the estimation of the observation

vector. Time invariant case.

observability subspace. On the other hand, in the considered example, the proposed algorithms show a
better performance in terms of transient behaviour with respect to EIVPAST: the slower convergence of
EIVPAST is most likely due to the projection approximation.

6.2 A time-varying system

The second simulation study analyses the tracking capabilities of the projector and the propagator
methods. For, the above system (75) has been modified in order to present a continuous evolution of its
eigenvalues, starting from one third of the simulation duration. In fact, the eigenvalues of A change from
{−0.5, 0.7} to {−0.65, 0.8}. In this case, the forgetting factor has been reduced to 0.995 for the EIVPM
algorithm, and it has been kept equal to 0.99 in the case of EIVPT. The results (see Figure 6) show that
both techniques present interesting abilities to track variations in the system parameters.

6.3 Comments and discussion

During the simulation study it has been noticed that EIVPM and the projector technique each present
specific limitations. As far as EIVPM is concerned, under some particular input conditions, the estimation
of eigenvalues in the range [−0.2, 0.2] is less accurate. The first studies seem to show that this lack of
accuracy is due to the use of the extended instrumental variable technique, this problem being brought
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Figure 6: Estimated eigenvalues and principal angles calculated with EIVPT, EIVPM and
EIVPAST methods using the OM update technique for the estimation of the observation

vector. Time varying case.

out with EIVPAST. Some numerical improvements, based on the works of Porat and Friedlander [33], are
currently studied. On the other hand, the projector method seems to be dependent on the initialization
accuracy. Indeed, convergence problems may arise if the initialization of the system matrices is too far
from the true values. This difficulty can be circumvented with a good offline initialization.

7 Concluding remarks

In this paper, two new recursive subspace model identification algorithms, named EIVPM and EIVPT,
have been proposed. In both cases, the problem of estimating the observability subspace of the system
from input-output data is formulated as a specific unconstrained optimization problem adapted from
signal processing. Furthermore, the performance of the projector and propagator methods have been
compared with those of the EIVPAST recursive identification algorithm on simulation examples. The
good results, both in terms of accuracy and speed of convergence, have been highlighted. Future work
will aim at further exploring the issues related with the convergence of the class of RSMI algorithms.

A Proof of Proposition 1

In order to prove Proposition 1, let
[
R22(t̄) z̄i(t̄ + 1)

]
= R22(t̄ + 1). (77)

Thus, from (77), it holds that

R22(t̄ + 1)RT
22(t̄ + 1) = R22(t̄)R

T
22(t̄) + z̄i(t̄ + 1)z̄T

i (t̄ + 1), (78)

and note that, from Remark 1

Yt,i,j+1Π
⊥

U = Yt,i,j+1
︸ ︷︷ ︸

h

Yt,i,j yi(t̄ + 1)
i

−Ĥi Ut,i,j+1
︸ ︷︷ ︸

h

Ut,i,j ui(t̄ + 1)
i

= R22(t̄ + 1)Q2(t̄ + 1). (79)

Then, from (79)

R22(t̄ + 1)RT
22(t̄ + 1) =

[[
Yt,i,j yi(t̄ + 1)

]
− Ĥi

[
Ut,i,j ui(t̄ + 1)

]]

[[
Yt,i,j yi(t̄ + 1)

]
− Ĥi

[
Ut,i,j ui(t̄ + 1)

]]T
=

=
[

Yt,i,j − ĤiUt,i,j

] [

Yt,i,j − ĤiUt,i,j

]T

+

+
[

yi(t̄ + 1) − Ĥiui(t̄ + 1)
] [

yi(t̄ + 1) − Ĥiui(t̄ + 1)
]T

.

(80)
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Finally,
R22(t̄ + 1)RT

22(t̄ + 1) = R22(t̄)R
T
22(t̄) + zi(t̄ + 1)zT

i (t̄ + 1). (81)

Thus, by exploiting (78) and (81), it holds that

z̄i(t̄ + 1) = ±zi(t̄ + 1). (82)

B Proof of Proposition 2

First of all, consider the parameterization of observability matrix introduced in equation (45) (see
Subsection 5.2.1) where Γi1 can be chosen equal to In without loss of generality. Since Γi ∈ R

li×1 has
full column rank, a thin QR factorization can be applied

Γi =

[
In

PT

]

= QR (83)

with Q ∈ R
li×n and R ∈ R

n×n. Then
[

In

PT

]

R−1 = Q. (84)

Since Q is an orthogonal matrix

QT Q = R−T
[
In + PPT

]
R−1 = In, (85)

and therefore
[
In + PPT

]
= RT R. (86)

The above computations make it possible to express the projector Π = QQT associated with the observ-
ability subspace as a function of the propagator P , as follows:

Π = QQT =

[
In

PT

]

(RT R)−1 [In P ] . (87)

Then, with (85)

Π =

[
In

PT

]
[
In + PPT

]−1
[In P ] =

=

[ [
In + PPT

]−1 [
In + PPT

]−1
P

PT
[
In + PPT

]−1
PT

[
In + PPT

]−1
P

]

.

(88)

It is now possible to express the criterion (60) as a function of the propagator P :

˜̃
V (Π) = E ‖z − Πz‖

2
=

= E

∥
∥
∥
∥
∥

[
z1

z2

]

−

[ [
In + PPT

]−1 [
In + PPT

]−1
P

PT
[
In + PPT

]−1
PT

[
In + PPT

]−1
P

] [
z1

z2

]
∥
∥
∥
∥
∥

2

=

= E

∥
∥
∥
∥
∥

[

z1 −
[
In + PPT

]−1
z1 −

[
In + PPT

]−1
P z2

z2 − PT
[
In + PPT

]−1
z1 − PT

[
In + PPT

]−1
P z2

]∥
∥
∥
∥
∥

2

.

(89)

By applying the matrix inversion lemma to
[
In + PPT

]−1
, equation (89) becomes

˜̃
V (Π) = E

∥
∥
∥
∥
∥

[

P
[
Ili−n + PT P

]−1
PT z1 −

[
In + PPT

]−1
P z2

z2 − PT z1 + PT
[

P
[
Ili−n + PT P

]−1
PT z1 −

[
In + PPT

]−1
P z2

]

]∥
∥
∥
∥
∥

2

. (90)

By using the above results obtained with the matrix inversion lemma, it follows that

P
[
PT P + Ili−n

]−1
=

[
In + PPT

]−1
P. (91)
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Then

˜̃
V (Π) = E

∥
∥
∥
∥
∥

[ [
In + PPT

]−1
P

[
PT z1 − z2

]

z2 − PT z1 + PT
[
In + PPT

]−1
P

[
PT z1 − z2

]

]∥
∥
∥
∥
∥

2

=

= E
∥
∥
∥

[
In + PPT

]−1
P

[
PT z1 − z2

]
∥
∥
∥

2

+ E
∥
∥
∥

[

PT P
[
PT P + Ili−n

]−1
− Ili−n

] [
PT z1 − z2

]
∥
∥
∥

2

.

(92)

The above equation shows that there is a connection between the propagator criterion (49) and Yang’s
cost function. In particular, it is easy to see that Yang’s cost function could be interpreted as a ”weighted”
version of the propagator cost function.

From a practical point of view, however, it might be interesting to assess in a quantitative way the
loss of performance in the estimation process which is caused by the use of the propagator method. For,
note that according to equation (60) Yang’s criterion can also be written as

˜̃
V (Π) = tr(Rz) − tr(RzΠ), (93)

and, recalling (87),

˜̃
V (P ) = tr(Rz) − tr(Rz

[
In

PT

]
[
In + PPT

]−1
[In P ]). (94)

C The EIVPM algorithm

PT (t) = PT (t − 1) + (g(t) − PT (t − 1)Ψ(t))K(t)

g(t) =
[

Ĉzi2ξ
(t − 1)ξ(t) zi2(t)

]

Λ(t) =

[
−ξT (t)ξ(t) λ

λ 0

]

q(t) = Ĉzi1ξ
(t − 1)ξ(t)

Ψ(t) =
[
q(t) zi1(t)

]

K(t) = (Λ(t) + ΨT (t)M(t − 1)Ψ(t))
−1

ΨT (t)M(t − 1)

Ĉzi1ξ
(t) = λĈzi1ξ

(t − 1) + zi1(t)ξ
T (t)

Ĉzi2ξ
(t) = λĈzi2ξ

(t − 1) + zi2(t)ξ
T (t)

M(t) =
1

λ2
(M(t − 1) − M(t − 1)Ψ(t)K(t))

with M(t) = (Ĉzi1ξ
(t)ĈT

zi1ξ
(t))

−1
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