
Department of Informatics
University of Bergen
Norway

Master of Science Thesis

Recursive Time-Frequency Reassignment

Geir Kjetil Nilsen

2007





Acknowledgements

I would first of all like to thank Prof. Hans Munthe-Kaas for making it possible
for me to work with signal processing and for sharing his wide knowledge on our
frequent meetings at Matematisk Institutt. I am grateful for his support and for
the many doors he has opened for me.

I would like to thank Øyvind Lunde Rørtveit for his ever-ready attitude to
help and discuss problems. Also thanks to Christine Drengenes and Joakim
Grahl-Knudsen for reading the thesis.

Finally, I would like to thank Bjørn Harald Fotland for his company through
5 years at Institutt for Informatikk, and my parents for supporting me in every
thinkable way.

Geir Kjetil Nilsen
Bergen, 2007

i





Contents

Acknowledgements i

Summary vii

1 Basic Definitions 1

1.1 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Time-Frequency Uncertainty . . . . . . . . . . . . . . . . . . . . 1
1.4 Q Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Analytic Signals and The Analytic Associate . . . . . . . . . . . 2
1.7 Instantaneous Frequency . . . . . . . . . . . . . . . . . . . . . . . 2
1.8 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.9 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . 4
1.10 The z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.11 The Bilinear Transform . . . . . . . . . . . . . . . . . . . . . . . 4
1.12 The Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . 4

1.12.1 The Fast Fourier Transform (FFT) . . . . . . . . . . . . . 5

2 An Overview of Time-Frequency Analysis (TFA) with Focus on Reassignment 7

3 Linear and Bilinear Systems for Time-Frequency Representations (TFRs) 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Frequency Representations . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . 11
3.2.2 The Constant Q Transform, Logarithmic Frequency Scale

& Multiresolution . . . . . . . . . . . . . . . . . . . . . . 12
3.3 TFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 The Spectrogram . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 The Scalogram . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 The Wigner-Ville Distribution (WVD) . . . . . . . . . . . 14

3.4 Cohen’s Class of TFRs . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 The Affine Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 A Recursive Linear System for TFRs 17

iii



Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 A Second Order Recursive System . . . . . . . . . . . . . . . . . 18

4.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 The Generalized Window Function . . . . . . . . . . . . . 20

4.4 General Solution of the kth Order Ordinary Differential Equation 20

4.5 Time-Frequency Resolution . . . . . . . . . . . . . . . . . . . . . 20

4.5.1 Optimum Time-Frequency Resolution Balance . . . . . . 21

4.6 The Output of the Recursive System is Analytic . . . . . . . . . 21

4.7 Multiresolution & Frequency Scale . . . . . . . . . . . . . . . . . 22

4.8 The TFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.9 Non-linear Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.9.1 Time-Domain Signal Shape Invariance . . . . . . . . . . . 23

4.10 Discretization of the Recursive Linear System . . . . . . . . . . . 23

4.11 Linear Implicit Recursions – the Difference Equation . . . . . . . 24

4.12 Optimal Time-Frequency Resolution Balance in the Discrete Case 24

5 The Time-Frequency Reassignment Method 27

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 The Reassignment . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 The Reassignment Coordinates and their Relation to Phase . . . 30

5.5 Theoretical Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5.1 Perfect Localization of Impulses & Chirps . . . . . . . . . 31

5.6 Computing the Partial Derivatives of the Phase . . . . . . . . . . 32

5.6.1 The Finite Difference Method . . . . . . . . . . . . . . . . 32

5.6.2 The Cross Spectral Method . . . . . . . . . . . . . . . . . 33

5.6.3 The Method of Auger and Flandrin . . . . . . . . . . . . 34

6 Recursive Time-Frequency Reassignment 37

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Recursive Reassignment . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 The Partial Phase Derivatives in the Recursive System . . . . . . 38

6.3.1 The Transfer Function for the New Frequency Coordinate 38

6.3.2 The Transfer Function for the New Time Coordinate . . . 39

6.4 Discretization of the Time and Frequency Reassignment Filters . 39

6.4.1 The Frequency Reassignment Filter . . . . . . . . . . . . 39

6.4.2 The Time Reassignment Filter . . . . . . . . . . . . . . . 42

6.4.3 The Discretized Expressions for the Reassignment Coor-
dinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Recursive Reassignment Eliminates the Time Delay in the RTFRs 43

6.6 Time-Domain Shape Invariance . . . . . . . . . . . . . . . . . . . 43

6.6.1 Bidirectional Filtering . . . . . . . . . . . . . . . . . . . . 43

6.6.2 Complex Coefficient Filters . . . . . . . . . . . . . . . . . 44

6.6.3 From Complex Filters to Real Filters . . . . . . . . . . . . 44

6.6.4 Bidirectional Calculation of the Reassignment Coordinates 45

7 Algorithms, Numerical Results, Concluding Remarks & Further Work 47

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



Contents

7.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.1 Producing the RTFRs . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Producing the RRTFRs . . . . . . . . . . . . . . . . . . . 48

7.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4 Concluding Remarks & Further Work . . . . . . . . . . . . . . . 51

Appendix 63

Bibliography 73

v





Summary

Time-Frequency Analysis (TFA) is the name of a scientific field for which the
agenda is to provide joint time-frequency representations (TFRs) of time-series.
TFA has numerous applications, ranging from the obvious visualization of sig-
nals with both time and frequency as coordinates, to being the basis for more
sophisticated algorithms such as the phase vocoder [11].

In this thesis, a fast algorithm for producing TFRs is proposed. The re-
sulting TFRs have optional time-frequency resolutions up to optimality. The
method exploits that implementations of recursive linear systems compared to
non-recursive linear systems yields a substantial reduction in the computational
cost. As these TFRs rise from recursive linear systems, they are here reffered to
as Recursive TFRs (RTFRs).

A theory connecting the RTFRs to the Short-Time Fourier Transform (STFT)
spectrograms will be presented. It is shown that the RTFRs are a special case
of the STFT spectrograms via an special infinite window function. The theory
reveals that the RTFRs suffer from the same uncertainty as the regular spectro-
grams. This invites for combining the RTFRs with a recent method called time-
frequency reassignment. The extra computations needed in the reassignment
method turns out to be available through simple modifications of the transfer
function describing the recursive system. This has the implication that the Re-
assigned RTFRs (RRTFRs) can be computed with the same complexity as the
RTFRs. It has the main implication of making time-frequency reassignment well
suited for real-time implementations.

The theory connecting the RTFRs to the STFT spectrograms also expanded
the literature resources used in this thesis. It was recently1 discovered that the
idea of using an infinite window function with the STFT is not new [2, 34, 35, 39,
40]. Some of these had also developed recursive implementations based on the
same type of STFT window functions. Nevertheless, exploiting these recursive
structures in use with the reassignment method is new. The main contribution of
original work in this thesis is hence called recursive time-frequency reassignment.

The thesis is organized as follows: Chapter 1 gives the most basic defini-
tions, while Chapter 2 presents an overview of the basic principles behind time-
frequency analysis, focusing on the fundamental limitation called time-frequency

1September, 2007
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Summary

uncertainty and the method known as time-frequency reassignment.
In Chapter 3 a summary of well-known TFRs is presented. Chapter 4 intro-

duces the proposed recursive system for producing TFRs. The theory in Chapter
4 was developed independently of any other, but was slightly updated according
to the new literature mentioned above. As the theory is presented using con-
tinuous mathematics, the end of Chapter 4 deals with important discretization
issues done in a manner not found elsewhere.

In Chapter 5 the time-frequency reassignment method is presented from scratch,
while in Chapter 6 the time-frequency reassignment method is brought into the
recursive system described in Chapter 4.

Chapter 7 consists of three sections. The first section is regarding implemen-
tation issues, while the second section gives numerical results. The last section
gives concluding remarks, and ideas for further work.

A journal paper based on the results in this thesis has been submitted to IEEE
Transactions on Signal Processing. The paper is attached to this thesis, and can
be found in the Appendix.
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Chapter 1
Basic Definitions

This chapter summarizes the basic terminology required in the following chap-
ters. It is, however, assumed that the reader is familiar with the most used
concepts trough signal processing, system theory and/or differential calculus.
For introductory material, see for instance [22, 24, 32, 45].

1.1 Bandwidth

The classical definition of the bandwidth, ∆ω, of a filter, h(t), is the second
moment of its squared magnitude response

∆ω =

∫
ω2|H(ω)|2dω
∫
|H(ω)|2dω

, (1.1)

and is thus a measure of its extent in frequency.

1.2 Duration

The classical definition of the time duration, ∆t, of a filter, h(t), is the second
moment of its magnitude squared

∆t =

∫
t2|h(t)|2dt
∫
|h(t)|2dt

, (1.2)

and is therefore a measure of its time extent.

1.3 Time-Frequency Uncertainty

The time-frequency uncertainty for a time-domain filter, h(t), is given by the
product

∆t∆ω, (1.3)

where ∆t and ∆ω represents h(t)’s duration and bandwidth defined in (1.1) and
(1.2), respectively. Thus, the lower the uncertainty value, the higher accuracy.
On the other hand, the term time-frequency resolution is defined as a quantity
inversely proportional to the time-frequency uncertainty. Hence, the greater the
resolution value, the higher accuracy.

1



1 Basic Definitions

1.4 Q Factor

The Q factor of a filter is a measure of the sharpness of its response. As Q
increases, the range of frequencies compared with its centre frequency becomes
more narrow. The Q factor is defined as

Q =
ω0

∆ω
, (1.4)

where ω0 is the centre frequency of the magnitude response, and ∆ω is the
bandwidth.

1.5 Hilbert Transform

The Hilbert Transform, H{x(t)} of a signal x(t) can be defined as

H{x(t)} =
1

π

∫
∞

−∞

x(τ)

t − τ
dτ, (1.5)

when the integral exists. There are subtle mathematical issues regarding the
existence of the above integral. The interested reader can consult [20] for a
excellent survey. The Hilbert Transform shows up in a number of situations; it
might be used implicitly or explicitly in time-frequency analysis as it is related
to the concept of analytic signals.

1.6 Analytic Signals and The Analytic Associate

Given a real, continuous time-domain signal, x(t), its continuous complex ana-
lytic associate, z(t), of the real variable t is defined

z(t) = x(t) + iH{x(t)}. (1.6)

Signals z(t) that satisfy (1.6) are called analytic. The effect of taking the complex
modulus of an analytic signal gives the envelope effect illustrated in figure (1.1).
This has the effect of removing the oscillations from the waveform by encapsulat-
ing it. In general, analytic signals contains no negative frequency components.
A complex coefficient filter can be such that the real and imaginary parts of its
output form an approximate Hilbert Transform pair, i.e. the filter will produce
complex analytic output from real input.

1.7 Instantaneous Frequency

The instantaneous (radian) frequency, ωi(t), of a complex continuous analytic
time-domain signal z(t) of the real variable t is defined

ωi(t) =
∂

∂t
arg{z(t)} (1.7)

where the arg{} operator represents the complex argument. If the signal z(t) in
(1.7) is not analytic, it must first be replaced by its analytic associate defined in
(1.6).

2



1.8 Group Delay
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Figure 1.1: The signal (stipulated blue), and the complex modulus of its analytic asso-
ciate (red).

At this point is important to emphasize that, by definition, instantaneous
frequency is only physically meaningful when z(t) just has one single frequency
component present at any time instant. For instance, as shown by [15], if z(t)
consists of two frequency components with equal amplitudes, the instantaneous
frequency will be the mean of the two frequencies. Worse, if the amplitudes are
not equal, the instantaneous frequency will vary periodically with the difference
frequency of the two. As the number of components increase, the behaviour
turns more and more chaotic. This limitation is the reason why this function
generally cannot be used as a meaningful TFR.

1.8 Group Delay

The group delay, tg(ω), of a complex continuous analytic frequency-domain sig-
nal Z(ω) of the real variable ω is defined

tg(ω) = − ∂

∂ω
arg{Z(ω)} (1.8)

If z(t) is not analytic, it must as above be replaced by its analytic associate. This
quantity is the dual of instantaneous frequency; it gives the time as a function
of frequency. As with the instantaneous frequency, the group delay is also only
physically meaningful for component signals.

3



1 Basic Definitions

1.9 The Laplace Transform

The Laplace Transform, H(s) = L{h(t)}, of a continuous time-domain signal
h(t) of the real variable t is defined

H(s) = L{h(t)} =

∫
∞

−∞

h(t)e−stdt. (1.9)

with the complex variable s = σ + iω.

1.10 The z-Transform

The z-Transform, H(z) = Z{h(n)}, of a discrete time-domain signal h(n) of the
real variable n is defined

H(z) = Z{h(n)} =

∞∑

n=0

h(n)z−n. (1.10)

The z-transform is the Laplace Transform’s discrete counterpart. The complex
variable z can therefore be seen to be z = esT , where T is the sampling period.

1.11 The Bilinear Transform

The Bilinear Transform is a mapping of the continuous, complex Laplace-domain
variable, s, to the continuous complex z-domain variable z. The mapping can
be derived in many ways, but they are all related to fact that they are finite
approximations to z = esT .

The simplest approximation is by using the first order Taylor series expan-
sion. This gives s = (1 − z−1)/T which is the first order finite difference. This
makes sense, since multiplication by s in the Laplace-domain corresponds to
differentiation in the time-domain.

The best approximation of a function by a rational function of given order is
known to be the Padé approximant. The first order Padé approximant gives the
definition of the Bilinear Transform

s =
2(1 − z−1)

T (1 + z−1)
. (1.11)

1.12 The Discrete Fourier Transform (DFT)

The DFT, X(m), of a discrete signal x(n) of the real variable n, consisting of N
samples is defined

X(m) =

N−1∑

n=0

x(n)e
−2πinm

N (1.12)

where m = 0, 1, . . . , N − 1 is a real, discrete variable.

4



1.12 The Discrete Fourier Transform (DFT)

1.12.1 The Fast Fourier Transform (FFT)

The FFT is a fast algorithm implementing the DFT in (1.12) [7]. The algorithm
exploits Danielson-Lanczos Lemma [41], and applies a Divide and Conquer strat-
egy to yield a computational complexity of O(N log N). This opposed to O(N2)
as direct implementation of (1.12) would require.

5





Chapter 2
An Overview of Time-Frequency Analysis

(TFA) with Focus on Reassignment

”Visible Patterns of Sound”. The title was published in SCIENCE [25] in No-
vember 1945. It became clear that Bell Telephone Laboratories had held their
cards strategically tight from the beginning of the war. It was time to bring true
pictures of sound to public attention. The machine called the ”spectrograph”
was an analog device capable of visualizing sound. Deaf could now use the tele-
phone, and for those who already could speak, it could help them improve their
speech. The possibilities were endless and potentially revolutionary. This very
first approach of automatically producing images of sound was the beginning of
TFA.

The legendary 1946 article, ”Theory of Communication” [13] by Gabor, was
the first paper to put the workings of the spectrograph into strict mathematical
terms [28]. His work could be seen as a digital approximation of the spectrograph
device, and was a framework for representing one-dimensional signals in two
dimensions, with time and frequency as coordinates.

Gabor’s work was influenced by a fundamental result of Heisenberg [18, 42].
This principle is important in quantum mechanics, and states that the exact
velocity and position of a particle cannot simultaneously be known. Gabor
extended this to time and frequency, and derived an analogous principle. For
all measurable continuous functions, it is true that its time extent multiplied by
its frequency extent always is greater or equal to a certain constant. Since this
product therefore cannot be infinitesimal, there will always be a uncertainty in
time or frequency. The term time-frequency uncertainty was therefore given to
this product.

Gabor’s principle has the consequence that any physical signal must occupy
at least a minimum area in the time-frequency plane. Gabor went on to show
that for Gaussians this minimum is achieved exactly. This suggested that by
expanding signals in Gaussian elementary components (named Gabor logons),
one will have a time-frequency representation (TFR) optimally localized in both
time and frequency.

However, Gabor did not characterize this representation as a set of short
Fourier Transforms applied on a segmented signal. Much later the equivalence
between Gabor’s expansion and the Short-Time Fourier Transform (STFT) using

7



2 An Overview of Time-Frequency Analysis (TFA) with Focus on Reassignment

a Gaussian window function was realized. The modulus squared of the STFT
was established as the spectrogram, and became the most popular and efficient
way of computing TFRs using the Fast Fourier Transform (FFT) algorithm. The
STFT will be discussed in greater detail in Chapters 3, 4 and 5. However, the
spectrogram in accordance with Gabor’s result, will always be smeared in time
if the time uncertainty is chosen too high. In the same way, it will be smeared in
frequency if it is chosen too low. Since the frequency uncertainty is proportional
to the reciprocal of the time uncertainty, the same smearing occurs the other
way around.

Despite this fundamental difficulty, Ackroyd [1] used Rihaczek’s [26] complex
energy density theory and was able to show that the spectrogram can be writ-
ten as a double convolution between the energy densities of the signal and the
window. This conveyed insight into the internal structure of the spectrogram:
the energy density of the analyzed signal can be seen smoothed by the energy
density of the STFT window function.

In 1989 Cohen published a review [6] on TFA. His work could be seen as
an unification of all the TFA theory stemming from many different branches in
science. He found a general formula reducible to most of the TFRs known at that
time. The class corresponding to all the members of this formula is today called
Cohen’s class. The spectrogram was shown to be just one of these members. It
became evident that not only was the spectrogram a smoothed version of the
complex energy density function of Rihaczek, but all members of Cohen’s class
were smoothed versions of the TFR called the Wigner-Ville Distribution.

A possible solution counteracting the smoothing of the spectrogram was pro-
posed by Kodera et al. [21] in 1976. This was the invention of what is today
known as time-frequency reassignment. Kodera et al. proposed a clever en-
hancement reversing the effect of the smoothing. The crucial step is to reassign
each point in the spectrogram to new coordinates better fitting with the true
energy density of the analyzed signal. It was shown that the reassigned coordi-
nates were related to the definitions for the instantaneous frequency and group
delay of the analyzed signal. These coordinates were also shown to be related
to the partial derivatives of the STFT phase. However, Kodera et al. only used
approximate finite differences to compute these partial derivatives.

Various researchers have continued the development of the method [3, 8, 12,
21, 23]. These developments apply particularly to the spectrogram, but also in
general to other members of Cohen’s class. Auger and Flandrin’s [3, 8] gener-
alization of the reassignment method lead to an important discovery. The reas-
signment coordinates for the spectrogram were found to be computed efficiently
and exactly via only two extra STFTs. Nelson [23] independently derived the
same results for the spectrogram, but calculated the reassignment coordinates
by his approximative cross spectral method discussed in Section 5.6.2.

Although introduced in the 1970s, the reassignment method is still not widely
used. The main reason is speculated to be implementation difficulties before
Auger and Flandrin’s generalization [8]. Another possible reason is the irre-
versibility, i.e. when the reassignment method is applied, one cannot get back
the original signal because the phase information corresponding to the reas-
signed spectrogram is lost. Ongoing research by Fulop and Fitz [29] concerning

8



the phase corrections that must be made to attain reversibility, is promising.
Relatively fresh papers on the subject of reassignment are still being published,
widening its applications and users. For instance, Plante, as well as Nelson,
[10, 23] used the method to analyze speech signals. Hainsworth [16, 17] for both
review and analysis, together with an in-depth thesis regarding musical tran-
scription. Fulop and Fitz [28], and Auger and Flandrin [8] also regarding imple-
mentation issues. This thesis further expands the applications of time-frequency
reassignment. It will be seen that the proposed recursive time-frequency reas-
signment algorithm is especially well suited for real-time implementations.

9





Chapter 3
Linear and Bilinear Systems for

Time-Frequency Representations (TFRs)

3.1 Introduction

The process of producing a two-dimensional TFR from a one-dimensional signal
must involve some form of filtering. As will be demonstrated in this chapter,
well-known TFRs can be modelled by either linear or bilinear systems.

3.2 Frequency Representations

A time-domain signal x(t) can be transformed into the complex frequency-
domain signal X(ω). The operation connecting the domains is called the Fourier
Transform.

3.2.1 The Fourier Transform

The Fourier Transform of a signal x(t) can be defined as

X(ω) =

∫
∞

−∞

x(t)e−iωtdt. (3.1)

This well-known transform takes a time-domain signal completely into the dual
frequency-domain. The frequency-domain representation makes it possible to
study all frequencies present in the signal. The Fourier transform can be re-
garded as inner products between the analyzed signal x(t) and all possible fre-
quency shifted complex exponentials. The complex exponential in the Fourier
transform is often called the Fourier basis. The inner products with the Fourier
basis identify the amplitude and phase of each individual frequency component
occurring in the transformed signal.

To be practical as a visual frequency representation, the Fourier transformed
signal is usually studied in terms of its amplitude information. The power spec-
trum is defined as the complex modulus squared of (3.1)

|X(ω)|2. (3.2)

11



3 Linear and Bilinear Systems for Time-Frequency Representations (TFRs)

As the inner products are linear operations, the Fourier transform can be re-
garded as a linear system. On the other hand, if one considers the power spec-
trum it must rather be regarded as a bilinear system because of the modulus
squared operation.

3.2.2 The Constant Q Transform, Logarithmic Frequency Scale & Multiresolution

Frequency representations are frequently used to analyse musical signals. Since
musical signals often are harmonic, it can be convenient to have a logarithmic
frequency scale such that the perceived sounds better correspond with the vi-
sual representation. Within this context, as introduced by [5], the Constant Q
transform is closely related to the Fourier transform. The spacing of the Fourier
basis in the frequency-domain can be chosen logarithmically, and its extent can
be made dependent of its centre frequency. Hence, the Q value can be chosen
to be constant, thus the name constant Q. Visually, this implies a Fourier basis
with narrow frequency-domain extent on low frequencies (i.e. wide time-domain
extent), and wide frequency-domain extent on high frequencies (i.e. narrow
time-domain extent). This setup is related to the human auditory system, and
it will yield frequency dependent resolution in the frequency domain; that is,
multiresolution. Multiresolutional analysis is especially well suited for musical
signal, as sounds of low frequency often are close in frequency, while sounds of
high frequency often are close in time.

For the same reasons as with the Fourier transform, the Constant Q transform
can be regarded as a linear system, and the belonging power spectrum as a
bilinear system.

3.3 TFRs

There is a wide range of material available on the topic of Fourier analysis (see
for instance [19]), and in this brief introduction it is assumed that the reader
is familiar with the basic concepts. From now the focus will be on creating a
hybrid representation involving time and frequency simultaneously.

3.3.1 The Spectrogram

The Fourier basis can be combined with a window function W(t) that localizes its
time-domain extent. This basically means that the infinite time-domain extent
of the Fourier basis is reduced. Hence, the inner products now become time-
dependent, and this is exactly the definition of convolutions. The result is usually
called the Short-Time Fourier Transform (STFT). The STFT of the signal x(t)
can be defined

X(t, ω) = eiωt

∫
∞

−∞

x(τ)W(t − τ)e−iωτdτ (3.3)

The TFR called the spectrogram is defined as the modulus squared of (3.3)

|X(t, ω)|2. (3.4)

As (3.3) can be regarded as linear convolutions between the input signal x(t)
and frequency shifted windows, the STFT is nothing else than a linear system.
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3.3 TFRs

The spectrogram, on the other hand, must be seen as a bilinear system for the
same reasons as with the power spectrum.

The main limitation of the STFT spectrogram is its blurry appearance. Even
for single component, steady state signals, the spectrogram is smoothed because
of the fixed window function. This will be discussed in detail in Section 3.3.4,
while a possible solution to the problem is introduced in Chapter 5.

The idea of combining the constant Q property with the spectrogram would
yield a generalization first presented by [44] in 1978. The window function will
be such that its bandwidth is dependent on the centre frequency ω. This is, in
fact, the first step in the direction of the invention of Wavelet theory [36]. By
introducing a ω-factor inside the argument of the window function, and recalling
the scaling theorem of Fourier analysis, it becomes evident that this modified
STFT can be made constant Q. In addition one might choose the frequencies ω
logarithmically for the same reasons as pointed out earlier.

3.3.2 The Scalogram

The Continuous Wavelet Transform (CWT) of a signal x(t) can be defined as

X(t, s) =
1
√

|s|

∫
∞

−∞

x(τ)Ψ

(
t − τ

s

)

dτ, (3.5)

with Ψ(t) being called the Wavelet basis. The fundamental idea with the CWT
is that the frequency shifting operation which occurs in the STFT is replaced
by a frequency scaling operation. Recall that the windowed Fourier basis in
the STFT is of constant duration with an increasing number of oscillations as
higher frequencies are analyzed. With the CWT the duration of the Wavelet
basis decreases as higher frequencies are analyzed, but the number of oscillations
remains the same. The factor in front of the integral is to ensure that the energy
of the Wavelet, Ψ(t), is normalized for all scales. The important difference
is that scaling automatically yields constant Q analysis. The CWT is thus a
generalization of the constant Q STFT.

This transform yields no TFR, but rather a Time-Scale Representation (TSR).
The TSR called the scalogram is defined as the modulus squared of (3.5)

|X(t, s)|2. (3.6)

The CWT can be seen as linear convolutions between the input signal signal x(t)
and scaled Wavelets. The CWT therefore also forms a linear system. However,
as with the power spectrum and the spectrogram, also the belonging scalogram
must necessarily be seen as a bilinear system.

Like the spectrogram, also the scalogram suffers from blurring in the time-
scale plane. This is caused by the same reason and will be explained in Section
3.5.

The applications and theory of Wavelets are enormous, and the CWT is only
one of many related transforms. Nevertheless, the TSR produced by the CWT
is the only one well suited for visual inspection. For a practical guide refer to
[36], or [14] for a more extensive reference.

13



3 Linear and Bilinear Systems for Time-Frequency Representations (TFRs)

3.3.3 The Wigner-Ville Distribution (WVD)

The WVD1 was first introduced by E. Wigner in 1932 in context of quantum
mechanics [43], and later independently developed by J. Ville for signal analysis
[30, 38]. The WVD of a analytic signal x(t) can be defined as

X(t, ω) =

∫
∞

−∞

x⋆(t − 1

2
τ)x(t +

1

2
τ)e−iωτdτ, (3.7)

where ⋆ denotes complex conjugation. The WVD is different from both the
(constant Q) STFT and the CWT. Instead of using a predefined window, such
as W(t) in (3.3), or the predefined Wavelet, such as Ψ(t) in (3.5), the WVD can
be seen as taking the time-reversed version of the analyzed analytic signal x(t)
as the window [8]. The WVD therefore introduce bilinearity coincidentally with
the convolutions, meaning that this system is inevitably bilinear.

Since the window now is dependent on the analyzed signal, the WVD does
not suffer from blurring in the time-frequency plane. However, the bilinearity
also has the major drawback of introducing non-negliable cross-terms when the
analyzed signal contains more than one component. The cross-terms are spawned
from the bilinearity like 2xy in (x+ y)2. It is easily verified that the cross-terms
will be highly oscillatory. As discussed in the next section, the cross-terms can
be reduced at the expense of re-introducing blurring!

3.4 Cohen’s Class of TFRs

Cohen [6] showed that a large class of TFRs – now called Cohen’s class – can be
written in the general form

X(t, ω) =
1

4π

∫ ∫ ∫

x⋆(t − 1

2
τ)x(t +

1

2
τ)Φ(θ, τ)e−iθt−iτω+iθudθdτdu, (3.8)

where x(t) is the analytic input signal, and where the function Φ(θ, τ) is called
the kernel function specified in the Doppler-lag domain. The expression in (3.8)
reduces to the WVD in (3.7) if Φ(θ, τ) = 1 is chosen. It can also be shown that
with the kernel function

Φ(θ, τ) =

∫

W
⋆(u − 1

2
τ)W(u +

1

2
τ)e−iθudu, (3.9)

equation (3.8) precisely reduces to the spectrogram in (3.4).

It is evident that Cohen’s general expression (3.8) also involves the same bi-
linearity on the input signal x(t) as seen in the WVD. This must seemingly
introduce cross-terms in all the members of Cohen’s class. However, as the
cross-terms are highly oscillatory, smoothing can serve to reduce them. This is
equivalent to choosing the kernel function in (3.8) to be a function with low-pass
characteristics in the time-frequency domain. Indeed, this is the case with the
spectrogram kernel function in (3.9). The spectrogram can for these reasons be
seen as a smoothed version of the WVD. That is, the cross-terms are traded

1Distribution and representation is used interchangly in the literature.
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3.5 The Affine Class

with a blurry representation. In fact, all members of Cohen’s class can be seen
as smoothed versions of the WVD.

The possibilities branching from this very general theory are numerous. For a
comprehensive reference see [4].

3.5 The Affine Class

Rioul and Flandrin [27] extended Wavelet transforms to a general TSR class now
called the affine class. The implication is that the scalogram can be seen as a
affine smoothed version of the WVD. That is, a frequency dependent smoothing
of the WVD. In other words, the scalogram belongs to the affine class, not to
Cohen’s class.
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Chapter 4
A Recursive Linear System for TFRs

4.1 Introduction

The aim of introducing a different underlying system in context of TFRs is
twofold. Firstly, the computational cost of the system’s implementation should
be low, and secondly, the implementation should be easy. By defining a recursive
linear system with its rational transfer function, the filter order is reduced dras-
tically, and so is the computational cost. Discretized recursive linear systems
are easily implemented in terms of linear implicit recursions.

In the previous chapter it was argued that all the well-known TFA methods
can be modelled by linear or bilinear systems in terms of linear convolutions.
As a motivation, the STFT is again considered. The definition of the STFT is
repeated here for convenience. It is defined

X(t, ω) = eiωt

∫
∞

−∞

x(τ)W(t − τ)e−iωτdτ. (4.1)

The impulse response of this system is easily found to be

h(t) = W(t)eiωt, (4.2)

where W(t) is the window. The magnitude response of (4.2) has its centre
located at ω provided that the window has low-pass characteristics. Moreover,
the magnitude response is also zero for all negative frequencies, so it follows that
(4.2) is analytic. The output of STFT system (4.1) will also be analytic, since
it forms linear convolutions between x(t) and (4.2).

The crucial point is now that by a clever choice of W(t), (4.1) can become a
solution to an ordinary differential equation. The differential will act on the out-
put’s time dimension, and represent a recursion propagating over in the discrete
case as a linear implicit recursion.

This convolutional view, however, makes the discretized spectrogram very
redundant. In other words, the number of samples in the time-dimension will be
equal to the number of samples in the analyzed signal. A more efficient method
avoiding the redundancy is possible. Essentially, this alternative method stems
from viewing (4.1) as a set of windowed Fourier transforms instead. Now one can
introduce a window hop factor not necessarily equal to one, so that the output

17



4 A Recursive Linear System for TFRs

will implicitly be downsampled by the same factor. Anyhow, the redundancy
is, in fact, necessary for the time-frequency reassignment method presented in
Chapter 5 to work. It is therefore appropriate to compare computational cost
with the convolutional view.

4.2 A Second Order Recursive System

It turns out that the simplest recursive system existing, is the preferable choice
for reasons that will be pointed out in Section (6.6.4). First, a second order
recursive system of this kind is considered, then afterwards it is generalized to
order k.

The second order recursive system can be expressed as

∂2

∂t2
y(t, ωp)+2(σp − iωp)

∂

∂t
y(t, ωp)+ (σ2

p − 2iωpσp −ω2
p)y(t, ωp) = σ2

px(t), (4.3)

where y(t, ωp) is the complex, continuous two-dimensional output signal of the
real, continuous variables t and ωp. The input signal, x(t), is a real continuous
one-dimensional signal of the real variable t. The recursion in the continuous
system is represented by the differential acting on the output’s time dimension.
The transfer function of this system is in the Laplace-domain given by

H(s) =
σ2

p

(s + p⋆)2
, (4.4)

where ⋆ denotes the complex conjugate, and the pole p defined as the complex
constant

p = σp + iωp. (4.5)

Note that the constant in the nominator of (4.4) is present just to ensure that
the magnitude response is normalized to unity at ω = ωp. The impulse response
corresponding to (4.3) is therefore

h(t) = L
−1{H(s)} = σ2

pte
−p⋆tu(t), (4.6)

where u(t) is the heaviside step function. Since p is a complex constant, (4.6) is
a causal decaying complex exponential, and the decay rate is controlled by the
real part of p, that is, σp. This constant is thus related to the duration of (4.6)
– or equivalently – the bandwidth of the magnitude response of (4.4). It should
be noticed that (4.6) can be written as

h(t) = σ2
pte

−σptu(t)
︸ ︷︷ ︸

window

eiωpt. (4.7)

The recursive system in (4.3) can therefore be seen as a special case of the STFT
utilizing a causal, asymmetric and infinite window.

Two functions can now be parametrized. Using that σp is related to the
bandwidth of (4.4), and that ωp is the centre frequency of (4.4); let the bandwidth
be the function ∆ω(σp) of σp, and let the centre of the magnitude response be
the function C(ωp) of ωp. Figure (4.1) shows the shape of the magnitude response
and the impulse response together with the relations to the two functions just
defined. Note that the illustrated bandwidth should be taken conceptually.
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4.3 Generalization

(a) Impulse Response (b) Magnitude Response

Figure 4.1: (a) shows the real, and imaginary (stipulated) parts of h(t). The complex
modulus (black) shows the window shape. (b) Magnitude Response for the
same fixed σp and ωp.

4.3 Generalization

The second order transfer function (4.4) has two repeated poles, so its magnitude
response is the product of two single one-pole transfer functions. By using k
repeated poles, the magnitude response is generally raised to the kth power.
The general kth order transfer function Hk(s) is thus

Hk(s) =
σk

p

(s + p⋆)k
. (4.8)

This means that the corresponding impulse response of (4.8) consists of k re-
peated convolutions of first order impulse responses. As a consequence of the
central limit theorem, repeated convolutions of a distribution converges to the
Gauss distribution. This is especially useful because – in accordance with Ga-
bor’s result – the Gauss distribution has the optimal time-frequency resolution.
Introducing the parameter k is therefore equivalent to introducing a optional
time-frequency resolution up to optimality.

Thel ordinary differential equation describing the generalized recursive system
is given by

k∑

j=0

(
k

j

)

(σp − iωp)
j ∂k−j

∂tk−j
y(t, ωp) = σk

px(t), (4.9)

and the corresponding impulse response is given by

hk(t) = L
−1{Hk(s)} = σk

p

tk−1

(k − 1)!
e−p⋆tu(t). (4.10)
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4 A Recursive Linear System for TFRs

4.3.1 The Generalized Window Function

Considering the generalized kth order impulse response (4.10), the generalized
kth order window function is found to be

W
k(t) = σk

p

tk−1

(k − 1)!
e−σptu(t). (4.11)

Even if the extent of (4.11) is infinite for positive t, it decays to zero since
exponential growth always overtakes polynomial growth. It is thus stable for all
orders k. However, convolutions with an infinite window must yield an infinite
result. In the discrete case this is readily omitted by cutting the convolution
after a finite number of time steps. The cutting is feasible since the significant
contribution from the window’s extent is concentrated around relatively small t.

4.4 General Solution of the kth Order Ordinary Differential Equation

The solution of the kth order differential equation in (4.9) is a system consisting
of one linear convolution between x(t) and (4.10) per ωp. Equation (4.10) can
be parametrized with ωp so that the solution can be written

yk(t, ωp) =

∫
∞

−∞

x(τ)hk(t − τ, ωp)dτ (4.12)

=

∫
∞

−∞

x(τ)Wk(t − τ)eiωp(t−τ)dτ (4.13)

= eiωpt

∫
∞

−∞

x(τ)Wk(t − τ)e−iωpτdτ (4.14)

The recursive system is thus equivalent with the STFT via the infinite window
function in (4.11). The power of the recursive approach – seen from a computa-
tional point of view – comes from that (4.14) is equivalent to (4.9), and that the
discretized version of (4.9) can be computed efficiently in terms of linear implicit
recursions.

4.5 Time-Frequency Resolution

Applying the classical definitions for bandwidth (1.1) and duration (1.2) to (4.10)
or (4.8) yields no time-frequency resolution at all. This is because the second mo-
ment of |Hk(s)|2|s=iω does not converge. Appropriate definitions were proposed
by [35]. The bandwidth is given as the duration of a rectangular window with
height equal to max{|Hk(s)|2|s=iω} and energy equal to the energy of H(s)|s=iω

∆ω =
1

max{|Hk(s)|2|s=iω}

∫
∞

−∞

|Hk(s)|2ds|s=iω, (4.15)

and equivalently for ∆t

∆t =
1

max{|hk(t)|2}

∫
∞

−∞

|hk(t)|2dt. (4.16)
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4.6 The Output of the Recursive System is Analytic

Since max{|Hk(s)|2|s=iω} = 1, and as using Parseval’s formula yields the integral
in (4.15) to be written in terms of (4.16), the bandwidth can be written

∆ω = 2π

∫
∞

−∞

|hk(t)|2dt =
2πσp [2(k − 1)]!

[(k − 1)!]2 22k−1
. (4.17)

By differentiating |hk(t)|2 and setting it equal to zero yields max{|hk(t)|2}

∂

∂t
|hk(t)|2 = 0 ⇔ t =

k − 1

σp
⇒ max{|hk(t)|2} =

[

(k − 1)k−1σpe
−(k−1)

(k − 1)!

]2

.

(4.18)

The duration is finally found to be

∆t =
[2(k − 1)]!

σp (k − 1)2(k−1) e−2(k−1)22k−1
. (4.19)

Using k = 1 yields the time-frequency uncertainty ∆t∆ω = π/2, while using the
optimum Gaussian window would yield ∆t∆ω = π. As the number of repeated
poles in (4.8) increases, the time-frequency resolution approaches the optimum.
The convergence is fast enough to yield ∆t∆ω = 3.077 when k = 5.

4.5.1 Optimum Time-Frequency Resolution Balance

The bandwidth parameter σp is cancelled in ∆t∆ω and has therefore nothing to
do with the overall time-frequency uncertainty nor resolution. It has, however,
the purpose of balancing the trade-off between resolution in time and resolution
frequency. Setting ∆t = ∆ω and solving for σp yields

σp =
(k − 1)!√

2π(k − 1)(k−1)e1−k
. (4.20)

Using this value for σp can therefore therefore be regarded as the optimal choice
given that resolution is equally important in both domains.

4.6 The Output of the Recursive System is Analytic

The system in (4.9) clearly has analytic output, since it is a special case of
the STFT. However, this can also be shown mathematically. Rewriting (4.12)
slightly yields

yk(t, ωp) =
σk

p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) cos [ωp(t − τ)]x(τ)dτ (4.21)

+
iσk

p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) sin [ωp(t − τ)]x(τ)dτ

= Xk
R(t, ωp) + iXk

I (t, ωp), (4.22)

and using that
H{cos [ωp(t − τ)]} = sin [ωp(t − τ)], (4.23)
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4 A Recursive Linear System for TFRs

equation (4.21) can be written

yk(t, ωp) =
σk

p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) cos [ωp(t − τ)]x(τ)dτ (4.24)

+
iσk

p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) 1

π

∫
∞

−∞

cos [ωp(t − τ)]

t − τ ′
dτ ′x(τ)dτ

=
σk

p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) cos [ωp(t − τ)]x(τ)dτ (4.25)

+
i

π

∫
∞

−∞

iσk
p

(k − 1)!

∫
∞

−∞

(t − τ)k−1e−σp(t−τ) cos [ωp(t − τ)]x(τ)

t − τ ′
dτdτ ′

= Xk
R(t, ωp) + iH{Xk

R(t, ωp)} (4.26)

The output of the kth order recursive system defined by (4.9) is then, in accor-
dance with definition (1.6), analytic.

4.7 Multiresolution & Frequency Scale

The system described above is easily made multiresolutional by ensuring that

Q =
C(ωp)

∆ω(σp)
(4.27)

is constant. That is, by choosing ∆ω(σp) proportional to C(ωp). To have a linear
frequency scale on yk(t, ωp), one can set

C(ωp) = ωp. (4.28)

A logarithmic frequency scale can also be used. For instance, to synchronize
with the well-tempered scale (12-sub-octaves) one may simply choose

C(ωp) = f02
ωp/12 (4.29)

with f0 being the lowest frequency.

4.8 The TFR

The output from the system in (4.9), is as shown a two-dimensional complex an-
alytic function of time and frequency. In analogy with the STFT spectrogram,
one may take the complex modulus squared to compute the non-oscillatory en-
velope’s energy

|yk(t, ωp)|2. (4.30)

The envelope effect was illustrated in Chapter 2. The envelope is, in a sense, an
anti-aliasing filter, as it in the discrete case yields a smooth surface well suited
for visualization (or direct downsampling). The TFR (4.30) is hereby reffered to
as the Recursive TFR (RTFR).
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4.9 Non-linear Phase

4.9 Non-linear Phase

It is well-known that recursive systems have non-linear phase responses. This is,
however, not a serious problem, because the group delay of (4.8) evaluated on
the centre frequency ω = ωp is equal for all ωp. This is due to that a change of
the centre frequency ωp is just a translation along the imaginary axis in (4.8).
Thus, there is no skewness in the time delay per horizontal ”line” in the RTFRs.

The group delay is directly linked to the system order k, meaning that the
higher the system order, the more delay is introduced. It will be seen that the
recursive reassignment method presented in Chapter 6, will eliminate this time
delay completely.

4.9.1 Time-Domain Signal Shape Invariance

The main shortcoming of the RTFRs is their lack of time-domain signal shape
invariance. As a consequence of the non-linear phase, the group delay within the
pass-band of the filters is non-linear. This will cause a distortion in the time-
domain waveforms observable in the RTFRs. As the group delay will be maximal
at ω = ωp, it is expected that the time delay in the RTFRs will be slightly
more prominent on the centre frequency for any component. Nevertheless, a
consequence of the central limit theorem is that when the order k of the system
increases, the group delay in the pass-band is linearized around ωp. This diminish
the time-domain shape invariance when the system order increases. If the TFA
application, however, is especially sensitive for the preservation of time-domain
signal shapes, one solution is to move to the bidirectional RTFRs outlined in the
end of Chapter 6.

4.10 Discretization of the Recursive Linear System

There are several ways of discretizing the transfer function described in (4.8).
Since it can be characterized as a bandpass filter without any undesired high
frequency components, one can put a requirement on the sampling rate, and
then take samples directly. This type of discretization is known as the impulse
invariance method.

Substituting t = nT in (4.10), where n is the time step, and T = 1/fs is the
sampling period and fs is the sampling frequency, yields

hk(nT ) = σk
p

(nT )k−1

(k − 1)!
e−pnT u(nT ). (4.31)

By now, requiring fs > 2 max {C(ωp)}, no aliasing, in accordance with Nyquist’s
sampling theorem, will occur.
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4 A Recursive Linear System for TFRs

Applying the z-transform on (4.31) gives

Hk(z) = Z{hk(nT )} = σk
p

∞∑

n=0

(nT )k−1

(k − 1)!
e−p⋆nT z−n (4.32)

= σk
p

T k−1

(k − 1)!

∞∑

n=0

nk−1e−p⋆nT z−n (4.33)

= σk
p

T k−1

(k − 1)!

k−1 times
︷ ︸︸ ︷

−z
∂

∂z

1

1 − e−p⋆T z−1
, (4.34)

With an extra scaling factor T for correct normalization, this can be written as

Hk(z) = σk
pT k

∑k
j=1 Ak−1,k−j(e

−p⋆T z−1)j−1 + δ(k − 1)

(k − 1)!(1 − e−p⋆T z−1)k
, (4.35)

where δ(·) represents the Kronecker delta function, and with An,k representing
the Eulerian numbers given by

Ak,n =

n∑

j=0

(−1)j

(
k + 1

j

)

(n + 1 − j)k. (4.36)

Table (4.1) lists the digital filter coefficients for orders k = 1 . . . 5.

4.11 Linear Implicit Recursions – the Difference Equation

Consider the case where k = 2. The second order transfer function H2(z) is thus

H2(z) = σ2
pT

2 e−p⋆T z−1

(1 − e−p⋆T z−1)2
=

Y (z)

X(z)
. (4.37)

This corresponds to a difference equation in the time-domain

Y (z)(1 − 2e−p⋆T z−1 + e−2p⋆T z−2) = σ2
pT

2e−p⋆T X(z)z−1

m
y(n, ωp) = 2e−(σp−iωp)T y(n − 1) − e−2(σp−iωp)T y(n − 2) + σ2

pT
2e−(σp−iωp)T x(n − 1),

(4.38)

with all initial conditions equal to zero. Equation (4.38) is now fully equivalent
with the continuous system in (4.3). For more details regarding implementation
issues, see Chapter 7.

4.12 Optimal Time-Frequency Resolution Balance in the Discrete

Case

To find the optimal time-frequency resolution balance in the discrete case, the
definitions of bandwidth and duration also need to be discretized. Sampling the
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k bn, an

1 b0 = σpT,
a0 = 1, a1 = −e−p⋆T

2 b0 = 0, b1 = σ2
pT

2e−p⋆T ,

a0 = 1, a1 = −2e−p⋆T , a2 = e−2p⋆T

3 b0 = 0, b1 = σ3
p

T 3

2 e−p⋆T , b2 = σ3
p

T 3

2 e−2p⋆T ,

a0 = 1, a1 = −3e−p⋆T , a2 = 3e−2p⋆T , a3 = −e−3p⋆T

4 b0 = 0, b1 = σ4
p

T 4

6 e−p⋆T , b2 = σ4
p

2T 4

3 e−2p⋆T , b3 = σ4
p

T 4

6 e−3p⋆T ,

a0 = 1, a1 = −4e−p⋆T , a2 = 6e−2p⋆T , a3 = −4e−3p⋆T , a4 = e−4p⋆T

5 b0 = 0, b1 = σ5
p

T 5

24 e−p⋆T , b2 = σ5
p

11T 5

24 e−2p⋆T , b3 = σ5
p

11T 5

24 e−3p⋆T , b4 = σ5
p

T 5

24 e−4p⋆T ,

a0 = 1, a1 = −5e−p⋆T , a2 = 10e−2p⋆T , a3 = −10e−3p⋆T ,
a4 = 5e−4p⋆T , a5 = −e−5p⋆T

Table 4.1: A summary of the digital filter coefficients for k = 1...5.

integrals in (4.16) and (4.15) with t = nT , the optimal σp in the discrete case is
found to be

σp =
(k − 1)!√

2πT (k − 1)(k−1)e1−k
. (4.39)

This is worth emphasizing, because in the classical STFT, the time-frequency
resolution balance is only affectable by the chosen number of samples in the
window. On the other hand, here the number of samples in the window will im-
plicitly be infinite, so the time-frequency resolution balance can only be changed
by σp.
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Chapter 5
The Time-Frequency Reassignment Method

5.1 Motivation

As pointed out in Chapter 2, the fundamental limitation of TFRs is Heisenberg’s
(Gabor’s) uncertainty principle [13]. If the bandwidth of (4.8) is chosen too wide,
the duration of the impulse response (4.10) becomes too narrow. Vice versa, if
the bandwidth is chosen too narrow, then the duration of the impulse response
becomes too wide. This affects the uncertainty in both domains: higher accuracy
in one will yield lower accuracy in the other. However, in the middle there must
be a point where the bandwidth and the duration are equal, so the uncertainty
in both domains are equally bad or equally good. The value for σp serving this
property was given in equation (4.39). The uncertainty is, however, independent
of σp, and it was shown that the uncertainty is not minimal for the recursive
filters used. In accordance with Gabor’s results it is necessary to use a Gaussian
for minimal uncertainty. This is not possible within any recursive system. The
reason is that the window in (4.11), or any other window stemming from a
recursive system, cannot be true Gaussian because rational transfer functions
never have perfectly symmetric impulse responses.

Because of the uncertainty principle, it is seemingly impossible for a TFR
to have higher resolution than the one achieved by using the Gaussian window.
This is, however, not the case. The crucial point is that the uncertainty principle
also applies for the analyzed signal. This means that it is not necessary for the
window to be infinitesimal in both domains in order to lower the uncertainty. If
the bandwidth or duration adaptively depends on the analyzed signal’s duration
or bandwidth, the uncertainty will be zero. This resembles the WVD, and,
it is the reason why the WVD provides maximal concentration in the time-
frequency plane. However, the cross-term artefacts discussed in Chapter 3 makes
even the WVD less attractive when the analyzed signal contains more than one
component on a global level.

One related technique used to cancel the uncertainty is time-frequency reas-
signment. This method is also adaptive, but the adaption is not from using a
window with variable bandwidth or duration. It is rather from exploiting that
it is possible to calculate the offset positions of the signal segments captured by
the windows. This information can be used to adjust the precision in the TFR
such that the uncertainty again will be zero. However, if this was the end of the
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5 The Time-Frequency Reassignment Method

story, the uncertainty principle would be false. The limitation of the reassign-
ment method is simply that only one significant signal component can fall inside
one single window. The attractiveness of the reassignment method comes from
that this only pose a limitation on a local level.

5.2 Introduction

The train of thought which ends with the reassignment principle, starts with the
Rihaczek Distribution introduced by [26]. The following will use the spectrogram
as a starting point, this despite that the theory can be generalized to arbitrary
TFRs by using the formulation of [3].

The Rihaczek Distribution [26] of an analytic signal x(t) is defined

Ex(t, ω) = x(t)X⋆(ω)e−iωt, (5.1)

where X(ω) is the Fourier transform of x(t), and ⋆ denotes complex conjugation.
This TFR is today known to be a member of Cohen’s class with the kernel
function Φ(θ, τ) = eiτθ/2. Since all the members of Cohen’s class are smoothed
versions of the WVD, it follows that the (5.1) also is a smoothed version of the
WVD.

Just before the time when the reassignment method was invented, it was shown
[1] that the spectrogram as defined in (3.4), can be written as

|X(t0, ω0)|2 =

∫
∞

−∞

∫
∞

−∞

Ex(t, ω)EW(t0 − t, ω − ω0)dtdω, (5.2)

where Ex and EW are the Rihaczek Distributions of the input signal x(t) and
the window function W(t), respectively.

One single point’s value in the spectrogram is therefore essentially found by
evaluating the two-dimensional convolution between Ex and EW. Since the
Rihaczek Distribution contains cross-terms and is complex valued, it is difficult
to interpret. However, since the window has low-pass characteristics, it follows
that (5.2) is a smoothing operation so that the cross-terms are traded with a
blurry representation. This can be seen as the main reason why the spectrogram
does not sharply reproduce the distribution of the original spectrum.

Equation (5.2) also reveals that one cannot know which part of the integrand
that contributes mostly to the integration. This insight, can, as the next section
shows, be exploited to define a new spectrogram where each point is moved to
new coordinates better fitting with the energy density of the input signal.

5.3 The Reassignment

Kodera et al. [21] proposed a clever procedure reversing the effect of the smooth-
ing in (5.2) without re-introducing cross-terms. Firstly, for each point (t0, ω0)
in the spectrogram, define the set N{(t0, ω0)} consisting of all the points in the
close vicinity of (t0, ω0). Secondly, for each of these sets, define the maximum in-
tensity point (t0, ω0)max . Thirdly, and finally, for each of these sets, reassign and
accumulate all the points onto the maximum intensity point (t0, ω0)max. This
will yield a sharpening effect, counteracting the smoothing from the windowing.
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5.3 The Reassignment

As each point (t0, ω0) in the spectrogram is the result of the two-dimensional
convolution (5.2), it means that each point is a weighted sum of the Rihaczek
Distribution of the input signal inside a region centred at (t0, ω0) with radius
approximately equal to the time-frequency extent of the window. That is, the re-
gion defined by the window’s bandwidth, ∆ω, and duration, ∆t. In other words,
the time-frequency range of the neighbourhood function N{·} must correspond
to the time-frequency extent of the window. In Figure (5.1) this concept is illus-
trated using a Gabor logon. Figure (5.2) shows how the same logon is affected
by the reassignment.

The process just described could simply be implemented by a brute force
strategy, but it turns out that there is a far more sophisticated and efficient way
of doing this.

To find where the contribution to the integral in (5.2) is locally maximal
around the point (t0, ω0), one can start by considering the time and frequency
variables separately. Note that the imaginary part of (5.2) is zero. In the local
domain defined by the bandwidth of the window, the curve through the spec-
trogram in the direction of frequency, around the point (t0, ω0) can be written
as

η(ω, t0, ω0) =

∫
∞

−∞

Re{Ex(t, ω)EW(t0 − t, ω − ω0)}dt. (5.3)

By taking the normalized first moment of (5.3), one gets the point in frequency
which can be seen as the mass center with respect to signal energy inside the
local frequency domain of the window

ω̂i(t0, ω0) =

∫
ωη(ω, t0, ω0)dω
∫

η(ω, t0, ω0)dω
. (5.4)

Note that the local frequency-domain of the window corresponds to its band-
width. This explains the quantity ∆ω in Figure (5.1).

Similarly, in the local domain defined by the duration of the window, the curve
through the spectrogram in the direction of time, around the point (t0, ω0) can
be written as

ξ(t, t0, ω0) =

∫
∞

−∞

Re{Ex(t, ω)EW(t0 − t, ω − ω0), }dω. (5.5)

By taking the first moment,

t̂g(t0, ω0) =

∫
tξ(t, t0, ω0)dt
∫

ξ(t, t0, ω0)dt
, (5.6)

one gets the point in time which can be seen as the mass center with respect to
signal energy inside the local time-domain of the window. The local time-domain
of the window corresponds to its duration. This quantity is also illustrated in
Figure (5.2). Together, (5.4) and (5.6) can be used as new coordinates for each
point in (5.2) such that the magnitude better fits with the input signal’s true
energy.

In other words, it makes sense to define a new reassigned spectrogram, XR(t0, ω0),
where each point (t0, ω0) is the sum of all points in the regular spectrogram with
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5 The Time-Frequency Reassignment Method

new coordinates (t0, ω0). Mathematically, this can be written as

XR(t0, ω0) =

∫ ∫

|X(t′, ω′)|2δ
[
t0 − t̂g(t

′, ω′)
]
δ
[
ω0 − ω̂i(t

′, ω′)
]
dt′dω′, (5.7)

where δ[·] represents the Kronecker delta function.

5.4 The Reassignment Coordinates and their Relation to Phase

Kodera et al. [21] showed that by considering the output of the STFT (4.1) in
polar coordinates,

X(t0, ω0) = a(t0, ω0)e
iφ(t0,ω0), (5.8)

the coordinates defined by (5.4) and (5.6) can be written in terms of the partial
derivatives of the phase φ(t0, ω0). This result is re-derived here for completeness.
Note that in the following equations, the window and its Fourier transform is
only distinguishable by their running variable t or ω.

The frequency reassignment coordinate in (5.4) can be found as follows

ω̂i(t0, ω0) = Re

[∫
ω
∫

Ex(t, ω)EW(t0 − t, ω − ω0)dtdω
∫ ∫

Ex(t, ω)EW(t0 − t, ω − ω0)dtdω

]

(5.9)

= Re

[∫
ω
∫

Ex(t, ω)EW(t0 − t, ω − ω0)dtdω

X(t0, ω0)X⋆(t0, ω0)

]

(5.10)

= Re

[∫
ωe−iωt0X⋆(ω)W⋆(ω − ω0)dω

X⋆(t0, ω0)

]

(5.11)

= Re

[

− 1

iX⋆(t0, ω0)

∂

∂ω0
X⋆(t0, ω0)

]

(5.12)

= Re

[

− 1

ia⋆(t0, ω0)e−iφ(t0,ω0)

∂

∂ω0
a⋆(t0, ω0)e

−iφ(t0,ω0)

]

(5.13)

=
∂

∂t0
φ(t0, ω0). (5.14)

The time reassignment coordinate in (5.6) can likewise be found

t̂g(t0, ω0) = Re

[∫
t
∫

Ex(t, ω)EW(t0 − t, ω − ω0)dωdt
∫ ∫

Ex(t, ω)EW(t0 − t, ω − ω0)dωdt

]

(5.15)

= Re

[∫
t
∫

Ex(t, ω)EW(t0 − t, ω − ω0)dωdt

X(t0, ω0)X⋆(t0, ω0)

]

(5.16)

= Re

[∫
teiω0(t0−t)x(t)W(t0 − t)dt

X(t0, ω0)

]

(5.17)

= Re

[

t0 −
1

iX(t0, ω0)

∂

∂t0
X(t0, ω0)

]

(5.18)

= Re

[

t0 −
1

ia(t0, ω0)eiφ(t0,ω0)

∂

∂t0
a(t0, ω0)e

iφ(t0,ω0)

]

(5.19)

= t0 −
∂

∂ω0
φ(t0, ω0). (5.20)
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The two equations (5.14) and (5.20) resembles the definitions of instanta-
neous frequency (1.7) and group delay (1.8), but since the phase now is a two-
dimensional function of both time and frequency, and in that sense ”local”, [23]
decided to name (5.14) and (5.20) channelized instantaneous frequency and local
group delay, respectively.

In the introduction it was mentioned that also the reassignment method has
its limitation. Recall that in the definition of instantaneous frequency (1.7), it
is presumed that the signal only has one (frequency) component at any time
instant. As a consequence of (5.14), the frequency reassignment is only mean-
ingful with the same presumption. It is therefore expected that the frequency
reassignment coordinates will behave chaotic if the (frequency) window is not
able to separate close frequency components. The same statements are also true
for the time reassignment, because (5.20) involves (1.8), and the latter has just
the same limitation.

5.5 Theoretical Efficiency

The theoretical efficiency of the reassignment method was not addressed by its
inventors [21]. Auger and Flandrin [3] much later showed that the method yields
TFRs with perfect localization of chirps and impulses. For completeness, this is
re-derived from the results in [3] below.

5.5.1 Perfect Localization of Impulses & Chirps

If the input signal is defined as an impulse at time instant t1

x(t) = Aδ(t − t1), (5.21)

then the STFT defined by (4.1) is

X(t, ω) = eiωt

∫
∞

−∞

x(τ)W(t − τ)e−iωτdτ

= Aeiωt

∫

δ(τ − t1)W(τ − t)e−iωτdτ

= Aeiωt
W(t1 − t)e−iωt1

= Ae−iω(t1−t)
W(t1 − t). (5.22)

The spectrogram becomes

|X(t, ω)|2 = A2
W

2(t1 − t). (5.23)

The spectrogram is clearly smoothed by the window, because if we perturb t
with an amount smaller than half the duration of W(t), then there will still be
a contribution. However, the frequency reassignment coordinate is

∂

∂t
arg{X(t, ω)} =

∂

∂t
− ω(t1 − t) = ω, (5.24)

and the time reassignment coordinate is

t − ∂

∂ω
arg{X(t, ω)} = t − ∂

∂ω
− ω(t1 − t) = t1. (5.25)
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5 The Time-Frequency Reassignment Method

The reassigned spectrogram is finally found to be found

XR(t0, ω0) =

∫ ∫

|X(t, ω)|2δ
[
t0 − t̂g(t, ω)

]
δ [ω0 − ω̂i(t, ω)] dtdω (5.26)

= A2

∫ ∫

W
2(t1 − t)δ [t0 − t1] δ [ω0 − ω] dtdω (5.27)

= A2

[∫ ∫

W
2(t1 − t)δ [ω0 − ω] dtdω

]

δ [t0 − t1] . (5.28)

The reassigned spectrogram is now independent of the window. A perturbation
on t0 yields no contribution because of the infinitesimal narrow delta function.

Likewise, if the input signal is defined as a chirp

x(t) = Aei(α/2t2+ω1t), (5.29)

then the reassigned STFT spectrogram is found to be

XR(t0, ω0) = 2πA2

[∫ ∫

|X(t, ω)|2δ
[

t0 − ˆtg(t, ω)
]

dtdω

]

δ [ω0 − ω1 − αt0] .

(5.30)

5.6 Computing the Partial Derivatives of the Phase

Three main methods exist for computing the partial derivatives of the phase
φ(t, ω). This section introduce all three, and their shortcomings will be discussed.

5.6.1 The Finite Difference Method

The method used by the pioneer of reassignment, [21], was simply a first order
finite difference approximation to the derivative operators in (5.14) and (5.20),
that is, for (5.14),

∂

∂t0
arg{X(t0, ω0)} ≈ arg{X(t0 + 1, ω0)} − arg{X(t0, ω0)} (5.31)

≈ φ(t0 + 1, ω0) − φ(t0, ω0) (5.32)

= ∆t0φ(t0, ω0). (5.33)

This method has two severe drawbacks. First, note that the phase must be con-
tinuous to be differentiable. When using inverse tangent routines to compute the
argument function, one must expect 2π jump discontinuities. Hence, the phase,
using this method, must be unwrapped by appropriately adding multiples of 2π
to the principal value until the discontinuities are removed. This unwrapping is
not a very reliable operation [23]. See for instance [37] for a constructed situ-
ation (often arising in practice) in which it fails. Second, finite differences are
approximations, so, at least in theory, it can be done better. Finite differences
are easily seen unreliable when the analyzed signal contains high frequencies rel-
ative to the sampling frequency. By taking the z-transform of (5.33) with respect
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to t0, one gets

Z{∆t0φ(t0, ω0)} = Z{φ(t0 + 1, ω0) − φ(t0, ω0)} (5.34)

= φ(z, ω0)z − φ(z, ω0) (5.35)

= φ(z, ω0)(z − 1) = φ(z, ω0)HD(z), (5.36)

(5.37)

which means that the filter acting as the differentiator has the transfer function
given by

HD(z) = z − 1. (5.38)

Taking the complex modulus when z is evaluated on the unit circle yields the
magnitude response of (5.38)

HD(ω) = eiωT − 1 (5.39)

= e
iωT
2 (e

iωT
2 − e

−iωT
2 ) (5.40)

|HD(ω)| = |e iωT
2 ||(e iωT

2 − e
−iωT

2 )| = 2| sin (
ωT

2
)|, ω ∈ [−π, π] (5.41)

On the other hand, the ideal differentiator is found by taking the Fourier trans-
form of the differentiation operator applied to φ(t, ω0)

∫
∞

−∞

∂

∂t
φ(t, ω0)e

−iωtdt = −iωΦ(ω, ω0) (5.42)

= Φ(ω, ω0)HI(ω), (5.43)

meaning that the ideal differentiator filter is given by

HI(ω) = −iω. (5.44)

Taking the complex modulus yields its magnitude response

|HI(ω)| = ω, ω ∈ [−π, π] (5.45)

Comparing (5.41) to (5.45) shows, as asserted, that the finite difference is un-
reliable on high frequencies relative to the sampling frequency. See Figure (5.3)
for a plot of the two.

5.6.2 The Cross Spectral Method

The second method is the one invented and used by [23]. It is called the cross
spectral method, and it provides the solution to the first drawback in the previous
method. The method is best explained by the following few lines

Im{log(a(t0 + 1, ω0)e
iφ(t0+1,ω0)[a(t0, ω0)e

iφ(t0,ω0)]∗)} (5.46)

= Im{log(a(t0 + 1, ω0) + log(eiφ(t0+1,ω0)) + log(a∗(t0, ω0)) − log(eiφ(t0,ω0))}
(5.47)

= Im{log (eiφ(t0+1,ω0)) − log (eiφ(t,ω0))} (5.48)

= φ(t0 + 1, ω0) − φ(t0, ω0) (5.49)

≈ ŵi(t0, ω0) (5.50)
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where ⋆ as usual denotes complex conjugation. Hence, the cross spectral method
avoids the need for an argument function, and thereby also the need for phase-
unwrapping. On the other hand, from a computational point of view, it intro-
duces a costly logarithm function.

5.6.3 The Method of Auger and Flandrin

The third method was introduced by [3] only 12 years ago. It is general enough
to work for all members of Cohen’s class, even though its more computationally
convenient for certain of them. In the spectrogram case, it is basically seen as
two extra STFTs with two slightly modified window functions. It was shown
that the new frequency coordinate (i.e. channelized instantaneous frequency)
can be computed as

ω̂i(t0, ω0) = ω0 + Im

[
XDW(t0, ω0)X

⋆
W

(t0, ω0)

|XW(t0, ω0)|2
]

, (5.51)

where the subscripts is used to distinguish the window functions. XDW is the
STFT using the differentiated window function ∂

∂tW(t), and XW is the STFT
using the unaltered window function W(t). Similarly, the new time coordinate
(i.e. local group delay) can be computed by using with the STFT a time ramped
window function, t × W(t), denoted by XTW,

t̂g(t0, ω0) = t0 − Re

[
XTW(t0, ω0)X

⋆
W

(t0, ω0)

|XW(t0, ω0)|2
]

. (5.52)

This superior method eliminates both drawbacks from the first method. It is
not an approximation, nor does it require phase-unwrapping. It is also compu-
tationally fast since it only require two extra STFTs.

The next chapter pulls the pieces from the previous chapters together, and
brings reassignment into the recursive system. It will be seen that the reassign-
ment coordinates belonging to the recursive system can be computed equally fast
as the RTFRs, and is thus in analogy with the method of Auger and Flandrin.
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5.6 Computing the Partial Derivatives of the Phase

Figure 5.1: Before reassignment is applied to the TFR: the stipulated circle’s height
represents the local frequency-domain of the window, i.e. its bandwidth
∆ω. The width of the stipulated circle represents the local time-domain of
the window, i.e. its duration ∆t. The point (t0, ω0)max is the maximum
intensity point within the local domain described by ∆ω and ∆t. The point
in the center of the window (t0, ω0) is to be reassigned onto the maximum
intensity point (t0, ω0)max.

Figure 5.2: After reassignment is applied to the TFR: all the points in the spectrogram
have collapsed onto the logon’s energy mass centre. Note that if there were
two mass centres so close that one window could not separate them, the
reassignment would not be meaningful. This situation can arise if there
exists two or more maximum intensity points not being neighbours in the
same local domain. Or equivalently, if two signal components are closer
than ∆t in time, or closer than ∆ω in frequency.
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Figure 5.3: The red curve represents the magnitude response of the finite difference
differentiator HD(ω), while the blue stipulated curve represents the ideal
differentiator HI(ω).
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Chapter 6
Recursive Time-Frequency Reassignment

6.1 Introduction

This chapter shows how the reassignment method, presented in Chapter 5, can
be used within the recursive system presented in Chapter 4. It will be shown that
the recursive system has corresponding recursive expressions yielding the time
and frequency reassignment coordinates. As a consequence, the instantaneous
frequency and group delay are found to be computed by linear implicit recursions
as well. The new expressions involve three different transfer functions, where two
of them are related to the other by simple operations.

6.2 Recursive Reassignment

The output from the recursive system defined by its transfer function in (4.8)
can be written as in (4.12). It is repeated here for convenience, but notice that
since the system output is analytic, it makes sense to consider the output in
polar coordinates.

|yk(t, ωp)|eiφk(t,ωp) = yk(t, ωp) =

∫
∞

−∞

hk(t − τ, ωp)x(τ)dτ (6.1)

The squared modulus of (6.1), in accordance with Rihazcek’s theory [26], can be
found by integrating over the energy densities of the analyzed signal x(t) and the
impulse response hk(t). The point is that the time and frequency reassignment
coordinates also here will be the partial derivatives of the phase φk(t, ωp). This
is easily verified by that (6.1) is nothing else than a special case of the STFT
using the special window function given in (4.11).
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6 Recursive Time-Frequency Reassignment

6.3 The Partial Phase Derivatives in the Recursive System

The new frequency coordinate ω̂i(t, ωp) is thus to compute

ω̂i(t, ωp) =
∂

∂t
φk(t, ωp) (6.2)

=
∂

∂t
arg{yk(t, ωp)} (6.3)

=
∂

∂t
Im{log (yk(t, ωp)} (6.4)

= Im{ ∂

∂t
log (yk(t, ωp)} (6.5)

= Im{
∂
∂ty

k(t, ωp)

yk(t, ωp)
}. (6.6)

Similarly, the new time coordinate can be computed

t̂g(t, ωp) = t − Im{
∂

∂ωp
yk(t, ωp)

yk(t, ωp)
}. (6.7)

Equation (6.6) shows that if the output of the recursive system can be differ-
entiated with respect to time, then the new frequency coordinate can be found
by taking the ratio between it and the unaltered output. Likewise, if the output
is differentiated with respect to frequency, then the new time coordinate can
essentially be found by an equivalent ratio. The next section shows that it is
possible to find two new recursive systems implementing the derivative operators
in equations (6.6) and (6.7).

6.3.1 The Transfer Function for the New Frequency Coordinate

Starting from (6.6), and substituting yk(t, ωp) by (6.1), one gets

ω̂i(t, ωp) = Im{
∂
∂t

∫
∞

−∞
hk(t − τ, ωp)x(τ)dτ

yk(t, ωp)
}

= Im{
∫
∞

−∞

∂
∂th

k(t − τ, ωp)x(τ)dτ

yk(t, ωp)
}. (6.8)

To take the derivative with respect to time of the impulse response, is in the
Laplace domain equivalent to a multiplication by the Laplace variable s. Now
one can define a new transfer function Hk

D
(s) corresponding to the system in

the numerator of (6.8)

Hk
D(s) = L{ ∂

∂t
hk(t, ωp)} = sHk(s), (6.9)

and call this the frequency reassignment filter. Note that Hk(s) is the filter
defined in (4.8). Equation (6.8) can finally be written

ω̂i(t, ωp) = Im{yk
D

(t, ωp)

yk(t, ωp)
}, (6.10)

where yk
D

(t, ωp) denotes the kth order frequency reassignment filter defined by
(6.9) applied on the input signal x(t).
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6.4 Discretization of the Time and Frequency Reassignment Filters

6.3.2 The Transfer Function for the New Time Coordinate

Starting from (6.7), and substituting yk(t, ωp) by (6.1), one gets

t̂g(t, ωp) = t − Im{
∂

∂ωp

∫
∞

−∞
hk(t − τ, ωp)x(τ)dτ

yk(t, ωp)
} (6.11)

= t − Im{
∫
∞

−∞

∂
∂ωp

hk(t − τ, ωp)x(τ)dτ

yk(t, ωp)
}. (6.12)

There is no simple relation between the two domains in this case. For the
differentiation of the impulse response with respect to frequency, it is necessary
to formally take the derivative. As it happens, the impulse response of this
system is easily differentiated to yield a simple relation anyway

∂

∂ωp
hk(t, ωp) =

∂

∂ωp
σk

p

tk−1

(k − 1)!
e−(σp−iωp)tu(t) = it

tk−1

(k − 1)!
e−p⋆tu(t) = ithk(t, ωp).

(6.13)
Multiplication by t in the time-domain is equivalent to taking the negative of
the derivative with respect to s in the Laplace domain. One can therefore define
a new transfer function Hk

T
(s) corresponding to the system in the numerator of

(6.12)

Hk
T(s) = L{ithk(t, ωp)} = −i

∂

∂s
Hk(s), (6.14)

and call this the time reassignment filter. The new filter coefficients are related
through the differentiation operator applied on the original filters transfer func-
tion, provided that (6.13) holds. If so, (6.14) can in terms of the original transfer
function be written

Hk
T(s) =

ik

σp
Hk+1(s), (6.15)

Equation (6.12) can finally be written

t̂g(t, ωp) = t − Im{yk
T
(t, ωp)

yk(t, ωp)
}, (6.16)

where yk
T
(t, ωp) denotes the kth order time reassignment filter defined by (6.15)

applied on the input signal x(t).

6.4 Discretization of the Time and Frequency Reassignment Filters

This section shows how the two additional systems in the previous section can be
discretized to yield digital filter coefficients. Figure (6.1) shows the magnitude
of the original filter’s impulse response (4.10). Figure (6.2) and (6.3) shows the
magnitudes of the impulse responses of the time and frequency reassignment
filters, respectively.

6.4.1 The Frequency Reassignment Filter

Starting with the kth order frequency reassignment filter

Hk
D(s) = sHk(s) =

sσk
p

(s + p)k
(6.17)
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Figure 6.1: The original filter’s impulse response corresponding to (4.8) for increasing
orders k.

Its impulse response hk
D

(t) is

hk
D(t) = L

−1{Hk
D(s)} =

∂

∂t
hk(t) =

∂

∂t

σk
p tk−1

(k − 1)!
e−p⋆tu(t) (6.18)

=
σk

p tk−2

(k − 2)!
e−p⋆t − p⋆

σk
p tk−1

(k − 1)!
e−p⋆t (6.19)

Sampling hk
D

(t) by t = nT yields

hk
D(nT ) =

σk
p(nT )k−2

(k − 2)!
e−p⋆nT − p⋆

σk
p(nT )k−1

(k − 1)!
e−p⋆nT (6.20)

(6.21)
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Figure 6.2: The frequency reassignment filter’s impulse response corresponding to (6.9)
for increasing orders k.

Taking the z-transform gives

Hk
D(z) = Z{hk

D(nT )} =
σk

pT k−2

(k − 2)!

∞∑

n=0

nk−2e−p⋆nT z−n

−
σk

pp⋆T k−1

(k − 1)!

∞∑

n=0

nk−1e−p⋆nT z−n (6.22)

=
σk

pT k−2

(k − 2)!

k−2 times
︷ ︸︸ ︷

−z
∂

∂z

1

1 − e−p⋆T z−1

−
σk

pp⋆T k−1

(k − 1)!

k−1 times
︷ ︸︸ ︷

−z
∂

∂z

1

1 − e−p⋆T z−1
(6.23)

With an extra scaling factor T for correct normalization, (6.23) can be written
in terms of the original transfer function (4.35)

Hk
D(z) = σpH

k−1(z) − p⋆Hk(z) (6.24)

Equation (6.24) reveals that the actual filtering process essentially can be done
by taking the difference of the outputs of two systems of order k and k − 1.
However, Table (6.1) lists the digital filter coefficients for orders k = 1 . . . 4
which can be used directly instead of via equation (6.24).
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Figure 6.3: The time reassignment filter’s impulse response corresponding to (6.14) for
increasing orders k.

6.4.2 The Time Reassignment Filter

By following the same procedure as in the previous section, the time reassign-
ment filter Hk

T
(s) in (6.15) is easily digitized. The transfer function of the time

reassignment filter is related to the original transfer function by

Hk
T(z) =

ik

σp
Hk+1(z). (6.25)

Thus, the time reassignment filter coefficients for a system of order k are found
by using the coefficients from the original system of order k + 1 except for a
multiplication of the bn coefficients with ik/σp.

Reaching the conclusion that recursive reassignment for a system of order k
is related to three systems of increasing orders k − 1, k and k + 1.

6.4.3 The Discretized Expressions for the Reassignment Coordinates

When discretized, expressions (6.10) and (6.16) becomes

ω̂i(n, ωp) = Im{ yk
D

(n, ωp)

Ωyk(n, ωp)
}, (6.26)

and

t̂g(n, ωp) = n − Im{ yk
T
(n, ωp)

Tyk(n, ωp)
}, (6.27)

where n = 0, 1, . . . now is the discrete time variable, Ω represents the sampling
period i frequency, and T as usual is the sampling period in time.
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k bn, an

1 b0 = −σpp
⋆T

a0 = 1, a1 = −e−p⋆T

2 b0 = σ2
pT, b1 = −σ2

pT (1 + p⋆T )e−p⋆T ,

a0 = 1, a1 = −2e−p⋆T , a2 = e−2p⋆T

3 b0 = 0, b1 = σ3
p

T 2

2 (2 − p⋆T )e−p⋆T , b2 = −σ3
p

T 2

2 (2 + p⋆T )e−2p⋆T ,

a0 = 1, a1 = −3e−p⋆T , a2 = 3e−2p⋆T , a3 = −e−3p⋆T

4 b0 = 0, b1 = σ4
p

T 3

6 (3 − p⋆T )e−p⋆T , b2 = −σ4
p

2T 4

3 p⋆e−2p⋆T , b3 = −σ4
p

2T 3

3 (3 + p⋆T )e−3p⋆T ,

a0 = 1, a1 = −4e−p⋆T , a2 = 6e−2p⋆T , a3 = −4e−3p⋆T , a4 = e−4p⋆T

Table 6.1: A summary of the frequency reassignment filter coefficients for k = 1 . . . 4.

6.5 Recursive Reassignment Eliminates the Time Delay in the

RTFRs

The recursive reassignment method eliminates the group delay introduced by
the recursive filters. The group delay of (4.35) is added to the group delay of
the input signal when it is passed through the system. Since the partial phase
derivative with respect to frequency is nothing else than the ”local” group delay
of the input signal, it follows from (6.12) that it is subtracted to yield zero time
delay in the RTFRs.

6.6 Time-Domain Shape Invariance

As mentioned in section (4.9), the (R)RTFRs can be modified to preserve time-
domain signal shape exactly. This section outlines a possible solution.

6.6.1 Bidirectional Filtering

The reason of the shape invariance is the non-linear phase of the recursive filters.
The following analysis shows how the phase delay vanish to zero if a signal is
filtered bidirectional [31]. Let v(n) be the output signal, x(n) the input signal,
h(n) the causal impulse response, and let ⋆ denote convolution

v(n) = (h ⋆ x)(n)

now time-reversing v(n) to get v(−k) and convolving this with h(n) a second
time to get w(n)

w(n) = (h ⋆ v(−k))(n)
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and then again time-reversing the output w(n) to get the final output y(n)

y(n) = w(−n) = (h ⋆ v(−k))(−n) (6.28)

= (h(−k) ⋆ v)(n) (6.29)

= (h(−k) ⋆ (h ⋆ x))(n) (6.30)

Equation (6.30) shows that bidirectional filtering is the same as filtering with the
impulse response, followed by a second filtering with the time-reversed impulse
response.

By using the z-transform, the effect can be studied easily. The z-transform of
a time-reversed signal x(−n) is

∞∑

n=0

x(−n)z−n =

∞∑

m=0

x(m)zm =

∞∑

m=0

x(m)(z−1)−m = X(z−1) (6.31)

Using the Convolution theorem twice, the z-transform of (6.30) is given by

Y (z) = H(z−1)H(z)X(z) (6.32)

or equivalently, evaluated on the unit circle by setting z = eiω,

Y (ω) = H(e−iω)H(eiω)X(eiω) = |H(eiω)|2X(eiω). (6.33)

As |H(eiω)| is a real function, it follows that the phase response is zero. As
a bonus, the magnitude response is squared, which in turn yields lower time-
frequency uncertainty. The disadvantage is that the number of filter coefficients
doubles, hence, double computational cost.

6.6.2 Complex Coefficient Filters

The filter in (4.8) is a complex coefficient filter (complex filter). Complex filters
were the first time discussed in [33]. If the filter in (4.8) was a real coefficient
filter (real filter), then the system could not produce the analytic output neces-
sary for the reassignment coordinates in (5.6) and (5.4). If complex filters are
executed bidirectional, then the phase information vanish as shown in (6.33).
The output of the filter will therefore be real, so the problem with the reassign-
ment coordinates is reintroduced. The solution lies in the fact that the input
signal itself may first be made analytic, and then real filters can be executed
bidirectional still to produce the necessary analytic output. This scheme will
thus as well preserve the time-domain signal shape because of the zero phase.

Hence, the idea is to first use a Hilbert transformer on the input signal to
produce its analytic associate, then modify the complex filters in (4.8) to be a
real filters.

6.6.3 From Complex Filters to Real Filters

The complex filter described in (4.8), of first order (i.e. k = 1), may be converted
to a real coefficient filter by introducing a conjugate pole p. To ensure that the
magnitude at the center frequency ωp is normalized for all ωp, it is necessary to
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introduce a zero as well. The resulting filter is often called the peak filter [24].
In the Laplace domain it can be written

H(s) =
αs

s2 + αs + Ω2
0

=
αs

(s + p)(s + p⋆)
(6.34)

The corresponding digitized transfer function can easily be found via the Bi-
linear Transform defined in (1.11):

H(z) = H(s)|
s= 1−z−1

1+z−1

=
αs

s2 + αs + Ω2
0

|
s= 1−z−1

1+z−1

(6.35)

=

b0
︷ ︸︸ ︷

1 − 1

1 + tan
(

∆ω
2

) +

b2
︷ ︸︸ ︷(

1

1 + tan
(

∆ω
2

) − 1

)

z−2

1
︸︷︷︸

a0

− 2 cos ωp

1 + tan
(

∆ω
2

)

︸ ︷︷ ︸

a1

z−1 +

(

2

1 + tan
(

∆ω
2

) − 1

)

︸ ︷︷ ︸

a2

z−2

, (6.36)

with centre frequency ωp ∈ [0, π] and bandwidth ∆ω ∈ [0, π].

6.6.4 Bidirectional Calculation of the Reassignment Coordinates

It was pointed out in Chapter 4 that the simplest recursive system there is, also
turns out to be the preferable choice. The following arguments will motivate
this assertion. When moving from the complex filter in (4.8), to the real filter
(6.34), the imaginary part of the poles no longer equals the centre frequency
of the magnitude response. In fact, the filter in (4.8) is the only filter having
this desired property [31]. As a result, one can no longer take the derivative
of the filters impulse response with respect to Im{p⋆} = ωp to find the time
reassignment coordinate. For instance, the new centre frequency of the two-pole

real filter (6.34) is easily seen to be Ω0 = |p| =
√

σ2
p + ω2

p. Its impulse response

is, however, on the form

h(t) =
α

2ωp

[

pe−pt − p⋆e−p⋆t
]

. (6.37)

It reveals that there is no longer a simple (derivative) relationship that can be
used to find the same type of reassignment filters as for the filter in (4.8). Thus,
one must move to an approximative method for computing the reassignment
coordinates. For example by using the cross-spectral method discussed in (5.6.2).

The conclusion of this chapter is that the recursive filter in (4.8)
is preffered over any other recursive filter because it yields simple
reassignment expressions.
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Chapter 7
Algorithms, Numerical Results, Concluding

Remarks & Further Work

7.1 Introduction

All resulting theory in this thesis is implemented in MATLAB. The programs
can be found on the authors website

http://www.ii.uib.no/~geirkn/rrspec/

This chapter starts with explaining the implementations of the algorithms pro-
ducing both the RTFRs described in Chapter 4, and the RRTFRs described in
Chapter 6. Then a few RTFRs and RRTFRs for various signals is shown. A
couple of spectrograms are also shown for comparison. Finally comes concluding
remarks and a discussion regarding ideas for further work.

7.2 Algorithms

7.2.1 Producing the RTFRs

One of the advantages of the RTFRs, is the easy implementation of the algorithm
producing them. No FFTs (1.12.1) are needed, and the prominent part of the
algorithm is the implementation of the standard difference equation describing
the discrete recursive LTI system. In MATLAB, this filtering can be done by
the built-in direct form II transposed implementation of the standard difference
equation

y(n) = b0x(n) + b1x(n − 1) + . . . + bkx(n − k) (7.1)

− a1y(n − 1) − a2y(n − 2) − . . . − aky(n − k)

available through the filter() function. The coefficients b0, . . . , bk, a1, . . . , ak can
be found in table (4.1), or they can be calculated on the fly using the MATLAB
function kcoef() available at the above URL.

The algorithm is thus to execute (7.1) for each frequency in the range of C(ωp).
If the cardinality of the set of chosen frequencies is Ω, and the length of the signal
to analyze is N , the filtering process produces a matrix, say, RTFR(n, ωp), of
size N × Ω.
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To have a linear or logarithmic frequency scale, one chooses C(ωp) according to
(4.28) or (4.29), respectively. For constant Q analysis, the bandwidth given by
(1.1) must be chosen such that (4.27) is constant for all ωp in the range of C(ωp).
The final step is to take the squared magnitude of RTFR(n, ωp) according to
(4.30).

It should also be noted that the RTFRs are especially well suited for real-
time processing. This is due to that the difference equation in (7.1) can be
computed using a cyclic buffer of only kΩ units. However, this is not possible
if the MATLAB function filter() is used. The point is that if the difference
equation (7.1) is implemented explicitly, the innermost loop can iterate over the
frequencies. This means that it is not necessary to keep a history of more than
k time samples in the outermost loop.

A MATLAB implementation of the RTFR is available online as rspec.m at
the above URL.

Computational Cost

If N is the number of samples in the input signal x(n) and k is the order of the
system, then the cost is Ω × 2k × N , that is, O(ΩkN).

This can be compared to the redundant classical spectrogram which cost is
either O(ΩN log N) or O(NΩ log Ω) depending on the implementation.

7.2.2 Producing the RRTFRs

The extra calculations needed to produce RRTFRs from the RTFRs is by imple-
mentation of two extra difference equations. These should be executed for each
ωp in C(ωp) as well. Having the output of these systems, equations (6.26) and
(6.27) can be implemented directly.

The coefficients for the first difference equation is found in Table (6.1), given
system order k. The result of this filtering process is applied with (6.26) to get
an additional matrix, say RCIF(n, ωp). Coefficients for the second difference
equation is found by using the relation in (6.25). This second filtering process
together with (6.27) should produce yet another matrix, RLGD(n, ωp), say.

Note that as an alternative, one can filter the input signal with three systems of
increasing order. Then equation (6.24), and (6.25) can be applied on the outputs
for use within (6.26) and (6.27). This approach makes Table (6.1) superfluous.

The matrix representing the RRTFR, say, RRTFR(n, ωp), can now be pro-
duced by a mapping of all the points in |RTFR(n, ωp)|2 using RCIF(n, ωp) and
RLGD(n, ωp) as new coordinates. Considering (5.7), the mapping is simply to
move and accumulate all points (n, ωp) in |RTFR(n, ωp)|2 onto new coordinates
given by [RLGD(n, ωp),RCIF(n, ωp)]. This can be written mathematically as

RRTFR(n, ωp) =
∑

n′

∑

ω′

p

|RTFR(n′, ω′

p)|2δ
[
n − RLGD(n′, ω′

p)
]
δ
[
ωp − RCIF(n′, ω′

p)
]
,

(7.2)
where δ[·] represents the discrete Kronecker delta function.

A MATLAB implementation of the RRTFR is available online as rrspec.m at
the above URL.
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Computational Cost

The calculations of RCIF(n, ωp) and RLGD(n, ωp) thus have the same computa-
tional cost as the RTFR(n, ωp). The implementation of (6.26) and (6.27) requires
only constant time per sample. The additional mapping involves at a maximum
N ×Ω iterations. On average less, because when a point is zero it is meaningless
to reassign it. This gives a total of 7k × Ω × N , which also is O(ΩkN).

This can be compared to the classical reassigned spectrogram using the method
of Auger and Flandrin which cost is either O(ΩN log N) or O(NΩ log Ω).

7.3 Numerical Results

7.3.1 Synthetic Data

The synthetic signal used in this section is a superimposition of two sinusoids
close in time, two sinusoids close in frequency, and one quadratic chirp.

Figure (7.1) shows the ideal time-frequency representation for this synthetic
signal. Note that this is just an illustration made from the a priori known
times and frequencies. In the following figures, the same signal is analyzed
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Figure 7.1: Ideal TFR

using the RTFR algorithm. Figure (7.3) shows the 1st order (k=1) RTFR,
while Figures (7.4) through (7.6) results from using increasing orders k. The
bandwidth parameter σp is chosen according to (4.39) for optimal time-frequency
resolution balance.
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The theoretical time-frequency resolution was in Chapter 4 shown to be a
function of k approaching the optimum as k increases. It is evident from these
figures that the time-frequency resolution increases with k. This is especially
easy to see in the regions where the two sinusoids are close in time or close in
frequency. The higher the time-frequency resolution, the better the windows in
(4.11) can separate close components in time and frequency.

The next figures shows the reassigned versions using the RRTFR algorithm.
Figure (7.7) shows the 1st order RRTFR, while figures (7.8) through (7.10)
results from using increasing orders k. The bandwidth parameter σp is chosen
according to (4.39) for optimal time-frequency resolution balance. It is seen that
the 1st order RRTFRs are of little value. However, when the order increases,
the quality becomes close to the ideal situation.

The next two Figures (7.11) and (7.12) shows how the 4th order RTFRs are
affected by choosing the bandwidth parameter σp too low and too high, respec-
tively. It is clear that the optimal time-frequency resolution balance provides
the best trade-off given that accuracy in time and frequency are equally impor-
tant. The next two Figures (7.13) and (7.14) shows how the 4th order reassigned
versions are affected by the same choices of σp.

The reassignment works best if the time-frequency resolution balance is opti-
mal. The presumption of only one significant component per window (discussed
in Chapter 5) is most likely satisfied in both time and frequency when the uncer-
tainties are simultaneously minimal. Comparing the ideal TFR in Figure (7.1)
with the 4th order RRTFR (using optimal time-frequency resolution balance) in
Figure (7.10) shows that the latter is close to the ideal situation.

The 4th order RRTFR in Figure (7.10) can be compared to the classical reas-
signed spectrogram using various finite windows. Figure (7.15) is the result of
using the Hamming window of 1/4 of the analyzed signal’s number of samples.
Figures (7.16) and (7.17) results from using the Hanning window and the Black-
man window (same length), respectively. The classical spectrograms are com-
puted using the Time-Frequency Toolbox available at http://tftb.nongnu.org/.

The figures in this section have shown that for the synthetic signal there is a
very little difference between the classical reassigned spectrograms and the 4th
order RRTFRs. It is evident that the RRTFRs of 4th order is highly competitive
with the classical reassigned spectrograms.

Time-Domain Shape Invariance

The problem of time-domain shape invariance discussed in Sections 4.9 and 6.6
can be illustrated by taking a Gabor logon as the input signal with the RTFR
algorithm. Figure (7.2) shows the resulting RTFRs using increasing system
orders. It is evident that the time-domain shape invariance decreases as the
system order increases.

7.3.2 Real Data

Moving to real data yields difficulty when the spectrograms are to be compared.
The main reason is that the ideal situation is not known. In Figures (7.18) and
(7.19) a real signal recorded from the authors accordion is analyzed using the 4th
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Figure 7.2: Gabor logons are processed with the RTFR algorithm using increasing sys-
tem orders: the time-domain shape invariance diminishes as the system
order increases. This is seen by that the Gabor logon approaches its true
symmetric shape when the system order increases.

order RRTFR algorithm. For comparison, the classical reassigned spectrogram
using the Hamming, Hanning and Blackman windows are also shown. The time-
frequency resolution in the classical spectrograms are balanced by trial and error.
It is evident from these figures that the RRTFRs of 4th order at least can compete
with the classical reassigned spectrograms. More research is required to draw a
theoretical conclusion. See Section 7.4.

7.4 Concluding Remarks & Further Work

Utilizing a recursive linear system for making TFRs has the benefit of requir-
ing lower computational cost than of non-recursive linear systems. In addition
these systems are easily implemented by implicit linear recursions. The recur-
sive filter proposed has been chosen for several reasons. Firstly, it is a com-
plex analytic filter. This means that the TFRs can be visualized in terms of
their envelope. Secondly, the filter order is directly linked to the time-frequency
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resolution. As the number of poles increases, the time-frequency resolution ap-
proaches the Gaussian optimum. Thirdly, the optimal time-frequency resolution
balance is readily achieved by choosing the bandwidth/duration according to
(4.39). Fourthly, the proposed filter also lead to simple time-frequency reassign-
ment coordinate expressions. Three filters of increasing order has been shown
to be sufficient to calculate the time and frequency reassignment coordinates.
It has the main implication of making time-frequency reassignment well suited
for real-time processing. As a side-effect, the proposed filter happens to form
the basis for a special case of the STFT utilizing a causal, asymmetric, infinite
window.

The fourth order (and higher orders) filters yields highly competitive TFRs
compared to the classical reassigned spectrograms.

As the reassignment coordinates essentially are the instantaneous frequency
and the group delay of the analyzed signal, a side-effect is that the results in
Chapter 6 also can be regarded as new instantaneous frequency and group delay
estimators. Hainsworth [17] used Cramer-Rao Bound methods to show that the
group delay and instantaneous frequency estimators using Auger and Flandrin’s
[3] method introduce a bias when they are discretized. This was not predicted
in their theory because it was derived in continuous mathematics. It leads to
the contradictory claim that the discretized instantaneous frequency and group
delay estimators are dependent on the window. Further research is required to
find out what impact the infinite windows used in this thesis has on the proposed
estimators.

The true optimum bandwidth depends adaptively on the analyzed signals in-
stantaneous frequency, and the true optimum duration depends on the analyzed
signals group delay. An idea is therefore to dynamically update the bandwidth
parameter according to the instantaneous frequency which in turn is measurable
through the frequency reassignment filter.

Another idea is to see if it is possible to calculate non-redundant reassigned
spectrograms. In other words, such that the reassigned spectrograms are implic-
itly downsampled by a constant factor.

A related idea is to see if it is possible to develop an inverting transform such
that the original signal can be recovered from the RTFRs (and/or RRTFRs).
This should be possible by utilizing the same special window in the regular
inverse STFT, but can inverse filters be found to yield a recursive inversion as
well?
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Figure 7.3: 1st order (k=1) RTFR
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Figure 7.4: 2nd order (k=2) RTFR
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Figure 7.5: 3rd order (k=3) RTFR
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Figure 7.6: 4th order (k=4) RTFR
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Figure 7.7: 1st order (k=1) RRTFR
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Figure 7.8: 2nd order (k=2) RRTFR
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Figure 7.9: 3rd order (k=3) RRTFR
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Figure 7.10: 4th order (k=4) RRTFR
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Figure 7.11: 4th order (k=4) RTFR with too low σp
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Figure 7.12: 4th order (k=4) RTFR with too high σp
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Figure 7.13: 4th order (k=4) RRTFR with too low σp
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Figure 7.14: 4th order (k=4) RRTFR with too high σp
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Figure 7.15: Classical Reassigned Spectrogram using the Hamming Window
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Figure 7.16: Classical Reassigned Spectrogram using the Hanning Window
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Figure 7.17: Classical reassigned spectrogram using the Blackman Window
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Figure 7.18: 4th order (k=4) RRTFR (top), classical reassigned spectrogram using the
Hamming window(bottom).
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Figure 7.19: Classical reassigned spectrogram using the Hanning window (top), classi-
cal reassigned spectrogram using the Blackman window (bottom).
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Recursive Time-Frequency Reassignment

Geir Kjetil Nilsen

Abstract—A fast time-frequency reassignment algorithm

for a special case of the Short-Time Fourier Transform

(STFT) spectrogram is presented. The algorithm is based

on introducing recursion into the linear system describing

the regular STFT.

Index Terms—STFT, spectrogram, linear implicit recur-

sion, time-frequency analysis, reassignment.

I. INTRODUCTION

The idea of calculating the STFT in terms of linear

implicit recursions is not new [3], [4], [5], [7], [6]. Chen

et al. [7] was the first to utilize a causal, infinite window

function to compute the STFT recursively, although

Friedlander et al. [1] several years earlier used the same

window function with the Gabor transform for transient

detection. Žnidar [4] developed a perfect reconstruction

filter bank based on the same type of underlying filters,

but did not at that point characterize this as a STFT with

an infinite window. Tomažic and Žnidar [3], [5] together

developed a fast recursive STFT algorithm based on

the same concept. The main difference from [7] was

that their algorithm has a general window hop of N

rather than one. It was also shown that as the number

of repeated poles on the window increases, the Gabor

uncertainty approached the optimal Gaussian uncertainty.

Amin and Feng [6] at the same time generalized the

STFT with arbitrary infinite windows using cascading

G. K. Nilsen is at the Department of Computer Science, University

of Bergen, Norway, e-mail: geirkn@ii.uib.no

(IIR) filter structures. Unser [24] also employed these

windows as wavelets.

The main issues concerning the STFT are computa-

tional efficiency, time-frequency resolution and stability

of the inversion. Here the main concerns will be the first

two. The Fourier transform of these infinite windows

contains not only zeros, but also poles. The number of

poles will be seen to offer a computational cost to time-

frequency resolution tradeoff. Moreover, the implemen-

tation will be easy in terms of linear implicit recursions.

The method known as time-frequency reassignment

has shown to yield TFRs with superior time-frequency

resolution. The pioneers of the method, Kodera et al.

[10], was influenced by the complex energy density

theory of Rihaczek [12]. It was shown by Ackroyd [21]

that the STFT spectrogram could be expressed as a dou-

ble convolution over time and frequency. The integrand

expression involved the energy densities corresponding

to both the window and the signal. This conveyed an

important insight into the structure of the spectrogram:

the reason why the spectrogram does not sharply repro-

duce the distribution of the original spectrum is that the

energy density of the analyzed signal is smoothed by

the energy density of the window. This lead Kodera et

al. [10] to propose an enhancement of the spectrogram

reversing the smoothing from the windowing. The main

idea was to reassign each point in the spectrogram with

new coordinates better fitting with the energy density of

the analyzed signal.

The result was seemingly a TFR beating Gabor’s

November 20, 2007 DRAFT



2

uncertainty principle. Of course this contradicton had a

natural explanation. It is best understood by noting that

the new coordinates for the reassignment are related to

the instantaneous frequency (IF) and group delay (GD)

of the analyzed signal. The definition of IF is only

physically meaningful when the signal contains only one

frequency component at any given time instant. If the

signal consists of two frequency components with equal

amplitudes, the IF will be the mean of the two frequen-

cies. Even worse, if the amplitudes are not equal, the

IF will vary periodically with the difference frequency

of the two. As the number of components increase,

the behaviour turns more and more chaotic [20]. The

reassignment method applied on the spectrogram will

therefore fail if more than one significant signal com-

ponent falls into one single window in the STFT. Thus,

the reassignment method is based on a presumption not

taken into account in the uncertainty principle. However,

the attractiveness of the method comes from the fact that

this is only a local limitation. The method have been

used and discussed in several areas of research [11],

[9], [17], [18]. The reason why it has not been widely

used is speculated to be its irreversibility, i.e. when the

method is applied, the resulting TFR cannot be used to

recover the original signal. This is because the phase

information does no longer correspond to the reassigned

magnitude. However, recent research by Fulop and Fitz

[16] concerning the phase corrections that must be made

to attain inversion, is promising.

The reassignment coordinates were shown by Kodera

et al. to be related to the partial derivates of the STFT

phase. Kodera et al. did, nevertheless, only use ap-

proximative finite differences which also requires use

of the unreliable operation known as phase-unwrapping

[22]. Nelson [11] invented his approximative cross-

spectral method making phase-unwrapping superfluous.

However, Auger and Flandrin [2] generalized the reas-

signment to all the members of Cohen’s class [15], and

it was shown that the reassignment coordinates for the

STFT spectrogram can be computed exactly by two extra

STFTs using two modified windows.

In Section II the special case of the STFT yielding

a recursive linear system is presented using a new

formulation. Section III shows that the time-frequency

reassignment coordinates can be computed by simple

modifications of the transfer functions describing the

recursive system. In Section IV, the computational cost

is briefly discussed and a couple of classically and

recursively computed spectrograms are compared.

II. THE STFT SPECIAL CASE

The STFT is the continuous version of the Gabor

transform [8]. It can be regarded as a set of linear

convolutions,

y(t, ω) = eiωt

∫

∞

−∞

x(τ)W(t − τ)e−iωτdτ, (1)

between the input signal x(t) and the impulse responses

given by

h(t, ω) = W(t)eiωt, (2)

where W(t) is the finite window. The spectrogram is

defined as the complex modulus squared of (1).

Classical implementations of the STFT are hence

based on the convolution theorem and FFTs. This ap-

proach, however, makes the spectrogram redundant. A

faster method avoiding the redundancy is also possible.

Essentially, this alternative method stems from viewing

(1) as a set of windowed Fourier transforms instead. Now

one can introduce a window hop factor not necessarily

equal to one, so that the output will implicitly be

downsampled by the same factor. Redundancy is, in

fact, necessary for the reassignment method presented in
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Section III to work. It is therefore appropriate to compare

computational cost with the convolutional view.

The crucial point is that by a clever choice of W(t),

(1) can become a solution to an ordinary differential

equation. The differential will act on the time dimension,

and represent a recursion propagating over in the discrete

case as a linear implicit recursion.

If the window is defined

W k(t) =
σk

p tk−1

(k − 1)!
e−σptu(t), (3)

with k to be explained subsequently, then the impulse

response (2) can be written

hk(t, ωp) =
σk

p tk−1

(k − 1)!
e−σpteiωptu(t) = W

k(t)eiωpt.

(4)

The transfer function of (4) is given by

Hk(s) =
Y k(s)

Xk(s)
=

σk
p

(s + p⋆)k
, (5)

where ⋆ denotes complex conjugation, and the pole p is

a complex constant defined by

p = σp + iωp. (6)

It is evident that (5) is a rational with one pole raised to

the kth power. This means that (4) consists of k repeated

convolutions of first order impulse responses.

To apply the filter in (4), it is to be convoluted with

the input signal x(t) for each ωp

yk(t, ωp) =

∫

∞

−∞

x(τ)hk(t − τ, ωp)dτ. (7)

The STFT in (1) is equivalent to (7) using the special

window in (4), but (7) is also a solution to the kth order

ordinary differential equation

k
∑

n=0

(

k

n

)

(σp − iωp)
n ∂k−n

∂tk−n
y(t, ωp) = σk

px(t), (8)

with all initial conditions equal to zero. The power of the

recursive approach – seen from a computational point

of view – is that (7) is equivalent to (8), and that the

discretized version of (8) can be computed efficiently in

terms of linear implicit recursions.

Reasonable definitions for the bandwidth and the du-

ration of (5) and (4), respectively, were proposed by [3].

The classical definition of bandwidth cannot be applied,

because the second moment of |H(s)|2|s=iω does not

converge. The bandwidth using this definition gives

∆ω =
2πσp[2(k − 1)]!

[(k − 1)!]222k−1
, (9)

and the duration is found to be

∆t =
[2(k − 1)]!

σp (k − 1)
2(k−1)

e−2(k−1)22k−1
. (10)

The time-frequency resolution is inversely proportional

to the uncertainty ∆t∆ω. Using k = 1 yields ∆t∆ω =

π/2, while using the optimum Gaussian window yields

∆t∆ω = π. As the number of repeated poles (k) in

(5) increases, the time-frequency resolution approaches

the optimum. This is a direct consequence of the central

limit theorem, readily understood through the repeated

convolutions in (4). The convergence is fast enough to

yield ∆t∆ω = 3.077 when k = 5.

The real part of the pole in (6) controls the decay rate

of the exponential. This parameter can therefore be used

to balance the tradeoff between time and frequency res-

olution. The optimum time-frequency resolution balance

is found by setting ∆ω = ∆t, and solving for σp. It is

given by

σp =
(k − 1)!√

2π(k − 1)(k−1)e1−k
. (11)

Note that the balancing parameter σp is cancelled in

∆t∆ω, so it has nothing to do with the time-frequency

resolution (or uncertainty).

Quite simple, one can also get constant Q analysis by

choosing σp such that ωp is proportional to ∆ω.
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A. Discretizing the Recursive System

Using the impulse invariant discretization method

[19], equation (4) can be sampled such that the sampling

period T is sufficiently small in Nyquist sense. The

digitized transfer function can be written

Hk(z) = σk
pT k

∑k
j=1 Ak−1,k−j(e

−pT z−1)j−1 + δ(k − 1)

(k − 1)!(1 − e−p⋆T z−1)k
,

(12)

with An,k representing the Eulerian numbers given by

Ak,n =
n

∑

j=0

(−1)j

(

k + 1

j

)

(n + 1 − j)k. (13)

Table (I) lists the coefficients for orders k = 1 to k = 5.

Increasing k also means increasing the number of filter

coefficients, so the parameter k gives a tradeoff between

computational cost and time-frequency resolution. The

implementation can now simply be done by using these

coefficients with the standard difference equation1

y(n) =
k

∑

j=0

bjx(n − j) −
k

∑

j=1

ajy(n − j) (14)

for each chosen ωp.

In the classical STFT, the number of samples in the

window is used to balance time-frequency resolution

tradeoff. However, the window length in the special case

is implicitly infinite, so the time-frequency resolution

balance can only be influenced by the parameter σp.

The optimum time-frequency resolution balance is in the

discrete case found to be

σp =
(k − 1)!√

2πT (k − 1)(k−1)e1−k
. (15)

III. RECURSIVE REASSIGNMENT

The reassignment method also fits well within a re-

cursive system. In analogy with Auger and Flandrin’s

method [2], this section shows that if the recursive

1For instance available through the MATLAB function filter().

k bn an

1 b0 = σpT a0 = 1, a1 = −e−p⋆T

2 b0 = 0, b1 = σ2
pT 2e−p⋆T a0 = 1, a1 = −2e−p⋆T , a2 = e−2p⋆T

3 b0 = 0, b1 = σ3
p

T3

2
e−p⋆T , a0 = 1, a1 = −3e−p⋆T ,

b2 = σ3
p

T3

2
e−2p⋆T a2 = 3e−2p⋆T , a3 = −e−3p⋆T

4 b0 = 0, b1 = σ4
p

T4

6
e−p⋆T , a0 = 1, a1 = −4e−p⋆T ,

b2 = σ4
p

2T4

3
e−2p⋆T , a2 = 6e−2p⋆T , a3 = −4e−3p⋆T ,

b3 = σ4
p

T4

6
e−3p⋆T a4 = e−4p⋆T

5 b0 = 0, b1 = σ5
p

T5

24
e−p⋆T , a0 = 1, a1 = −5e−p⋆T ,

b2 = σ5
p

11T5

24
e−2p⋆T , a2 = 10e−2p⋆T , a3 = −10e−3p⋆T ,

b3 = σ5
p

11T5

24
e−3p⋆T , a4 = 5e−4p⋆T , a5 = −e−5p⋆T

b4 = σ5
p

T5

24
e−4p⋆T

TABLE I

SUMMARY OF FILTER COEFFICIENTS FOR ORDERS k = 1...5

filter in (5) is used, the reassignment coordinates can be

computed in terms of linear implicit recursions as well.

Kodera [10] showed that the coordinates for the re-

assignment are related to the partial derivatives of the

phase of the STFT. However, the partial derivates also

match the definitions of IF and GD. As IF and GD are

only defined for analytic signals, it is necessary for the

output of the STFT to be analytic. This is also the case,

because the real and imaginary parts of the complex

impulse response in (2) forms a Hilbert transform pair.

Convolutions with (2) will have the same property, and

therefore also be analytic.

The chosen recursive filter must therefore be a com-

plex analytic filter. The impulse response in (4) is

analytic because (5) does not form pairs of conjugate

poles. Moreover, the filter in (5) is the only recursive

filter with the property that the imaginary part of its

pole also is its center frequency [23]. This means that

the recursive filter in (5) leads to simple reassignment

expressions, as well as being the basis for a special case

of the STFT.

Since the recursive system in (5) can be interpreted as
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the STFT, it makes sense to use the expressions found by

Kodera et al. [10] involving the partial phase derivatives.

The reassignment coordinates can be expressed as

ω̂i(t, ωp) =
∂

∂t
φ(t, ωp) = Im

[

∂
∂t

yk(t, ωp)

yk(t, ωp)

]

(16)

and

t̂g(t, ωp) = t− ∂

∂ωp

φ(t, ωp) = t− Im

[

∂
∂ωp

yk(t, ωp)

yk(t, ωp)

]

,

(17)

where yk(t, ωp) represents the output from the kth order

recursive system described by (5) or (7).

The differentiation of yk(t, ωp) with respect to time

propagates over in the transfer function of the recursive

system as a multiplication by s in the Laplace domain.

The new frequency coordinate in (16) can therefore be

found by applying the frequency reassignment filter

Hk
D(s) = sHk(s), (18)

to the input signal x(t), and then use the output in

the denominator of (16). The differentiation of yk(t, ωp)

with respect to frequency also yields a simple relation.

The new time coordinate in (17) can be found by

applying the time reassignment filter

Hk
T(s) = −i

∂

∂s
Hk(s), (19)

to the input signal x(t), and then use the output in the de-

nominator of (17). The kth order recursively reassigned

spectrogram yk
R(t, ωp) can be expressed as

yk
R(t, ω) =

∫ ∫

|yk(t′, ω′)|2δ
[

t − t̂g(t
′, ω′)

]

·δ [ω − ω̂i(t
′, ω′)] dt′dω′, (20)

where δ[·] represents the Kronecker delta function.

A. Discretizing the Recursive Reassignment Filters

Using the same discretization method on (18) and

(19) yields corresponding digital transfer functions. The

relation between the frequency reassignment filter (18)

and the original filter (5) is in the discrete case given by

Hk
D(z) = σpH

k−1(z) − p⋆Hk(z), (21)

while the relation between the time reassignment filter

(19) and the original filter (5) is found to be

Hk
T(z) =

ik

σp

Hk+1(z). (22)

The discrete reassignment filters are all related to three

systems of orders k − 1, k and k + 1. This means that

Table (I) or equation (12) can be used to find all the

needed filter coefficients, and then equations (21) and

(22) can be applied on the outputs. When discretized,

the reassignment coordinates in (16) and (17) becomes

ω̂i(n, ωp) = Im

[

yk
D

(n, ωp)

Ωyk(n, ωp)

]

(23)

and

t̂g(n, ωp) = n − Im

[

yk
T
(n, ωp)

Tyk(n, ωp)

]

, (24)

where Ω denotes the sampling period in frequency (i.e.

the uniform difference between adjacent chosen frequen-

cies ωp), while yk
D

(n, ωp) and yk
T
(n, ωp) represents the

outputs after (21) and (22) are applied, respectively.

It should also be noted that the complex divison

in (23) and (24) can be avoided by multiplying both

numerators and denominators by the complex conjugate

of yk(n, ωp).

The discrete kth order recursively reassigned spectro-

gram yk
R(n, ωp) can now be expressed as

yk
R(n, ωp) =

∑

n′

∑

ω′

p

|y(n′, ω′

p)|2δ
[

n − t̂g(n
′, ω′

p)
]

·δ
[

ωp − ω̂i(n
′, ω′

p)
]

.

(25)

Equation (25) simply means to map and accumulate each

point in |y(n, ωp)|2 onto the new coordinates defined by

(23) and (24).
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IV. COMPUTATIONAL COST AND NUMERICAL

RESULTS

The recursively reassigned STFT computed by the

method presented in the previous section costs O(ΩkN)

operations, where Ω is the cardinality of the set of chosen

frequencies, the magnitude of the constant k controls

the time-frequency resolution, and N is the number of

samples in the analyzed signal. This can be compared

to the classically reassigned STFT spectrogram using

the method of Auger and Flandrin [2]. Its cost is either

O(ΩN log N) or O(NΩ log Ω).

The recursive time-frequency reassignment algorithm

presented in this paper makes time-frequency reassign-

ment well suited for real-time implementations. As seen

by (14), a cyclic buffer of kΩ units is the only required

storage space.

The recursive reassignment method is also seen to

eliminate the GD introduced by the recursive filters. The

GD of (12) is added to the GD of the input signal when

it is passed through the system. Since the partial phase

derivative w.r.t. frequency is nothing else than the ”local”

GD of the input signal, it follows from (17) that it is

subtracted to yield zero GD in the TFRs.

A MATLAB implementation of the recursively

reassigned spectrogram can be found online at

http://www.ii.uib.no/˜geirkn/rrspec/

The synthetic signal used in the following figures is a

superimposition of two sinusoids close in time, two si-

nusoids close in frequency, and a quadratic chirp. Figure

(1) shows the ideal time-frequency representation for this

synthetic signal. Note that this is just an illustration made

from the a priori known times and frequencies. Figure

(2) shows the 4th order reassigned spectrogram. This

can be compared to the classical reassigned spectrogram

using the Hanning window in Figure (3).
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Fig. 1. The ideal TFR.
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Fig. 2. The 4th order (k=4) reassigned spectrogram.

V. CONCLUSION

A fast algorithm for computing a special case of

the reassigned STFT spectrogram has been presented.

The corresponding STFT windows offer a tradeoff be-

tween computational cost and time-frequency resolution.

The optimum time-frequency resolution balance is also

found by an explicit formula. The proposed algorithm

makes time-frequency reassignment well suited for real-
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Fig. 3. Classical reassigned spectrogram using the Hanning window.

time implementations. The special windows have been

pointed out by Chen et al. [7] to overcome the boundary

effects associated with finite windows. As a conse-

quence, undesired frequency-domain sidelobes will van-

ish. Hainsworth [18] used Cramer-Rao Bound methods

to show that the GD and IF estimators using Auger

and Flandrin’s [2] method introduce a bias when they

are discretized. This was not predicted in their theory

because it was derived in continuous mathematics. It

leads to the contradictory claim that the discretized IF

and GD estimators are dependent on the window. Further

research is required to find out what impact the special

windows in this paper has on the proposed IF and GD

estimators.

Geir K. Nilsen November 8, 2007
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