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The problem

min
x∈IRn

f(x) (1)

f : IRn → IR nonlinear, twice-continuously differentiable and bounded below

No convexity assumption

(1) results from the discretization of some infinite-dimensional problem on a

relatively fine grid for instance (n large)

−→ Iterative search of a first-order critical point x∗ (s.t. ∇f(x∗) = 0)
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Basic trust-region algorithm

At iteration k (at xk):

1 Define a local model mk(xk + s) of f around xk (Taylor’s model)

2 Compute a candidate step sk that (approximately) solves

(
minimize

s∈IRn mk(xk + s)

subject to ‖s‖ ≤ ∆k

3 Compute f(xk + sk) and ρk =
f(xk)−f(xk+sk)

mk(xk)−mk(xk+sk)

4 Update the iterate xk and the trust-region radius ∆k

xk+1 =


xk + sk if ρk ≥ η1

xk if ρk < η1
∆k+1 =

8
<

:

max(α2‖sk‖, ∆k) if ρk ≥ η2

∆k if ρk ∈ [η1, η2)
α1‖sk‖ if ρk < η1

where 0 < η1 ≤ η2 < 1 and 0 < α1 < 1 < α2
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Dominating cost per iteration

Computation of f(xk + sk) and its derivatives

Numerical solution of the subproblem


minimize

s∈IRn mk(xk + s)
subject to ‖s‖ ≤ ∆k

Assume now that

A set of alternative simplified models of f is known

−→ how can we exploit this knowledge to reduce the cost

of solving the trust-region subproblem?
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Example: hierarchy of problem descriptions

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Sources for such problems

Parameter estimation in

discretized ODEs

discretized PDEs

Optimal control problems

Variational problems (minimum surface problem)

Surface design (shape optimization)

Data assimilation in weather forecast (different levels of physics in the models)
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The minimum surface problem

min
v

Z 1

0

Z 1

0

`
1 + (∂xv)2 + (∂yv)2

´ 1

2 dx dy

with the boundary conditions:

8
>><

>>:

f(x), y = 0, 0 ≤ x ≤ 1
0, x = 0, 0 ≤ y ≤ 1
f(x), y = 1, 0 ≤ x ≤ 1
0, x = 1, 0 ≤ y ≤ 1

where
f(x) = x ∗ (1 − x)

−→ Discretization using a finite element basis

y

x
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The solution at different levels
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The framework

Assume that

we know a collection of functions {fi}
r
i=0 s.t. fi : IRni → IR ∈ C2 and

ni ≥ ni−1

nr = n and fr(x) = f(x) for all x ∈ IRn

such that, for each i = 1, . . . , r

fi is “more costly” to minimize than fi−1

there exist full-rank linear operators:

Ri : IRni → IRni−1 (the restriction)

Pi : IRni−1 → IRni (the prolongation)

9
=

;
such that σiPi = RT

i (σi = ‖Pi‖
−1)

Terminology

a particular i is referred to as a level

a subscript i is used to denote a quantity corresponding to the i-th level

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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The idea

min
x∈IRn

fr(x) = f(x) → at xk:


mins∈IRn mk(xk + s) = fr(xk) + ∇fr(xk)T s + 1

2
sT Hks

s.t. ‖s‖ ≤ ∆k

↓ or (whenever suitable)

at xk : Compute ∇fr(xk) (possibly Hk) Candidate step sk

Restriction ↓ R P ↑ Prolongation

use fr−1 to construct a coarse local model of fr

and minimize it within the fine trust region (∆k)

→ If more than two levels are available (r > 1), do this recursively

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Example of recursion with 5 levels (r = 4)

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

Notation: double subscript

8
<

:

i : level index (0 ≤ i ≤ r)

k : index of the current iteration within level i

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Additional ingredients

Construction of the coarse local models: first-order coherence

Use of the coarse local models: coarsening condition

Trust-region constraint preservation

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Construction of the coarse models

At a given iteration (i, k) with current iterate xi,k

Restrict xi,k to create the starting iterate xi−1,0 at level i − 1

xi−1,0 = Rixi,k

Define the lower level model hi−1 around xi−1,0

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1)+ vT

i−1si−1

where
vi−1 = Ri∇hi(xi,k) −∇fi−1(xi−1,0)

so that

∇hi−1(xi−1,0) = Ri∇hi(xi,k)

−→ Coherence of first-order information

Gratton, Sartenaer, Toint Recursive Multilevel Optimization



university-logo

A recursive multilevel trust-region algorithm
First-order convergence results
A practical recursive algorithm

Second-order convergence
Numerical experience

Ongoing work

The context
Motivation
Main algorithmic ingredients
Model construction
The recursive algorithm

Use of the coarse models

When ‖Ri∇hi(xi,k)‖ ≥ κ ‖∇hi(xi,k)‖ where κ ∈ (0, min[1, mini ‖Ri‖])

(0.01)

and

When ‖Ri∇hi(xi,k)‖ > ǫi−1 where ǫi−1 ∈ (0, 1) is a measure of the

first-order criticality for hi−1 judged sufficient at level i − 1

and

When i > 0

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Choosing a model

Assume that we enter level i and want to (locally) minimize hi starting from xi,0

At iteration k of this minimization

Choose a local model of hi at xi,k:

8
><

>:

Taylor’s model

the coarse model

Compute a candidate step si,k that generates a decrease on this model within

Bi,k = {si | ‖si‖i ≤ ∆i,k}

where ∆i,k > 0 and ‖ · ‖i is a level-dependent norm

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Using Taylor’s model

The step si,k is computed such that it approximately solves

8
<

:

minimize
si∈IRni mi,k(xi,k + si) = hi(xi,k) + gT

i,ksi + 1

2
sT
i Hi,ksi

subject to ‖si‖i ≤ ∆i,k

where gi,k
def
= ∇hi(xi,k) and Hi,k ≈ ∇2hi(xi,k)

The decrease of mi,k is understood in its usual meaning for trust-region methods,

i.e., si,k must satisfy the “sufficient decrease” condition:

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ κred‖gi,k‖min

»
‖gi,k‖

1 + ‖Hi,k‖
, ∆i,k

–

for some κred ∈ (0, 1)

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Using the coarse model

Defining the level-dependent norm ‖ · ‖i−1 by

‖ · ‖r = ‖ · ‖2 and ‖si−1‖i−1 = ‖Pisi−1‖i for i = 1, . . . , r

then the lower level subproblem consists in approximately solving

8
><

>:

minimize
si−1∈IRni−1 hi−1(xi−1,0 + si−1)

subject to ‖si−1‖i−1 ≤ ∆i,k

yielding a point xi−1,∗ such that

hi−1(xi−1,∗) < hi−1(xi−1,0)

and a corresponding step xi−1,∗ − xi−1,0 which is brought back to level i

si,k = Pi(xi−1,∗ − xi−1,0)

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Preserving the trust-region constraint

∆i+1
xi,0
•

•

∆
+

i,k

xi,k+1

∆i+1 − ‖xi,k+1 − xi,0‖i

Trust-region radius update:

∆i,k+1 = min
h

∆+
i,k

, ∆i+1 − ‖xi,k+1 − xi,0‖i

i

where

∆+
i,k

=

8
<

:

max[ α2‖si,k‖, ∆i,k] if ρi,k ≥ η2

∆i,k if ρi,k ∈ [η1, η2)
α1‖si,k‖ if ρi,k < η1
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Algorithm RMTR(i, xi,0,gi,0, ∆i+1)

(First call with arguments r, xr,0, ∇fr(xr,0) and ∞)

Step 0: Initialization

Compute vi and hi(xi,0)

Set ∆i,0 = ∆i+1 (or some ∆s
r if i = r) and k = 0

Step 1: Model choice

If i = 0 or if ‖Rigi,k‖ < 0.01‖gi,k‖ or if ‖Rigi,k‖ ≤ ǫi−1, go to Step 3

Otherwise, choose to go to Step 2 (recursive step) or to Step 3 (Taylor step)

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Step 2: Recursive step computation

Call Algorithm RMTR(i − 1, Rixi,k, Rigi,k, ∆i,k), yielding an approximate
solution

xi−1,∗ of
(

minimize
si−1∈IRni−1 hi−1(Rixi,k + si−1)

subject to ‖si−1‖i−1 ≤ ∆i,k

Define si,k = Pi(xi−1,∗ − Rixi,k)

Set δi,k = hi−1(Rixi,k) − hi−1(xi−1,∗) and go to Step 4

Step 3: Taylor step computation

Choose Hi,k and compute si,k ∈ IRni that approximately solves

(
minimize

si∈IRni mi,k(xi,k + si) = hi(xi,k) + gT
i,ksi + 1

2
sT
i Hi,ksi

subject to ‖si‖i ≤ ∆i,k

Set δi,k = mi,k(xi,k) − mi,k(xi,k + si,k) and go to Step 4

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Step 4: Acceptance of the trial point

Compute hi(xi,k + si,k) and ρi,k =
hi(xi,k)−hi(xi,k+si,k)

δi,k

Define xi,k+1 =


xi,k + si,k if ρi,k ≥ η1 (successful iteration)
xi,k if ρi,k < η1

Step 5: Termination

Compute gi,k+1

If ‖gi,k+1‖∞ ≤ ǫi or ‖xi,k+1 − xi,0‖i > (1 − ε)∆i+1

return with xi,∗ = xi,k+1

Step 6: Trust-region radius update

Set

∆+
i,k

=

8
<

:

max[ α2‖si,k‖, ∆i,k] if ρi,k ≥ η2 (very successful iteration)
∆i,k if ρi,k ∈ [η1, η2)
α1‖si,k‖ if ρi,k < η1

Set ∆i,k+1 = min
h

∆+
i,k

, ∆i+1 − ‖xi,k+1 − xi,0‖i

i

Increment k by one and go to Step 1

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Global convergence and complexity

Based on the trust-region technology:

Uses the sufficient decrease argument (imposed in Taylor’s iterations)

Plus the coarsening condition (‖Rigi,k‖ ≥ 0.01 ‖gi,k‖)

Main results:

Convergence to first-order critical points at all levels

Weak upper bound (O(1/ǫ2r)) on the number of iterations to achieve a given

accuracy
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Minimization sequence

If iteration (i, k) is a recursive iteration:

a minimization sequence at level i − 1 initiated at iteration (i, k)

denotes all successive iterations at level i − 1 until a return is made to level i

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

Example of recursion with 5 levels (r = 4)
Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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The set R(i, k)

At iteration (i, k) we associate the set:

R(i, k)
def
= {(j, ℓ) | iteration (j, ℓ) occurs within iteration (i, k)}

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

Gratton, Sartenaer, Toint Recursive Multilevel Optimization



university-logo

A recursive multilevel trust-region algorithm
First-order convergence results
A practical recursive algorithm

Second-order convergence
Numerical experience

Ongoing work

In short
In more details

Key results

Consider the set

V(i, k)
def
= { (j, ℓ) ∈ R(i, k) | δj,ℓ ≥ c‖gi,k‖∆j,ℓ

| {z }

“sufficient decrease”

} c ∈ (0, 1)

If xi,k is non-critical and ∆i,k is small enough

then: • V(i, k) = R(i, k)

• The total number of iterations in R(i, k) is finite

• All iterations (j, ℓ) ∈ R(i, k) are very successful

• ∆+
i,k

≥ ∆i,k

Because we impose nonzero tolerances ǫi on the gradient norms

then: • Each minimization sequence contains at least one successful iteration

• All the trust-region radii are bounded away from zero

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Complexity result

Furthemore:

• The number of iterations at each level is finite

• Algorithm RMTR needs at most

‰
f(xr,0) − flow

θ(ǫmin)

ı

successful Taylor iterations at any level to obtain an iterate xr,k such that

‖gr,k‖ ≤ ǫr

where

• ǫmin = min
i=0,...,r

ǫi

• flow is a known lower bound on f

• θ(ǫ) = O(ǫ2) for small values of ǫ (can be estimated)

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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This complexity bound in 1/ǫ2 for small ǫ:

• is in terms of iteration numbers, thus only implicitly accounts for the cost of

computing a Taylor step

• is only modified by a constant factor if all iterations (successful and unsucessful)

are considered

• thus gives a worst case upper bound on the number of function and gradient

evaluations

• is of the same order as the corresponding bound for the pure gradient method

(not surprising since based on the “sufficient decrease” condition)

• involves the number of successful Taylor iterations summed up on all levels,
meaning that successful such iterations at cheap low levels decrease the
number of necessary expensive ones at higher levels

• does not depend on the problem dimension but on the properties of the problem

and of the algorithm

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Global convergence result

If Algorithm RMTR is called at the uppermost level with ǫr = 0, then:

lim
k→∞

‖gr,k‖ = 0

If the trust region becomes asymptotically inactive at all levels and all ǫi are driven to

zero, then each minimization sequence becomes infinite and:

lim
k→∞

‖gi,k‖ = 0

for every level i = 0, . . . , r

Gratton, Sartenaer, Toint Recursive Multilevel Optimization
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Two comments

“Premature” termination does not affect the convergence results at the upper level
provided each minimization sequence contains at least one successful iteration

One can:

Stop a minimization sequence after a preset number of successful iterations

Use fixed lower-iterations patterns like the V or W cycles in multigrid methods

We did not use the form of the lower levels functions {fi}
r−1
i=0

One can:

Choose fi = 0 for i = 0, . . . , r − 1, which implies that the lower level model

hi−1(xi−1,0 + si−1) reduces to the linear model (Rigi,k)T si−1
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A practical RMTR algorithm

How to efficiently compute appropriate steps at Taylor iterations?

How to improve the coarse models to ensure second-order coherence?

Which structure consider for the recursions?

How to compute the starting point at the finest level?

Which choice for the prolongation and restriction operators (Pi and Ri)?
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Taylor iterations: solving and smoothing

8
<

:

minimize
si∈IRni mi,k(xi,k + si) = hi(xi,k) + gT

i,ksi + 1

2
sT
i Hi,ksi

subject to ‖si‖i ≤ ∆i,k

At the coarsest level:

Solve using the exact Moré-Sorensen method (small dimension)

At finer levels:

Solve using a Truncated Conjugate-Gradient (TCG) algorithm

or

Smooth using a smoothing technique from multigrid methods
(to reduce the high frequency residual/gradient components)
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SCM Smoothing

−→ Adaptation of the Gauss-Seidel smoothing technique to optimization:

Sequential Coordinate Minimization (SCM smoothing)

(≡ successive one-dimensional minimizations of the model along the coordinate
axes when positive curvature)

From s0
i = 0 and for j = 1, . . . , ni:

sj
i ⇐= min

α
mi,k(xi,k + sj−1

i + αei,j)

where ei,j is the jth vector of the canonical basis of IRni

Cost: 1 SCM smoothing cycle ≈ 1 matrix-vector product
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Three issues

How to impose sufficient decrease in the model?

How to impose the trust-region constraint?

What to do if a negative curvature is encountered?
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Start the first SCM smoothing cycle by minimizing along the largest gradient
component (enough to ensure sufficient decrease)

While inside the trust region, perform (at most p) SCM smoothing cycles
(reasonable cost)

If the step lies outside the trust region, apply a variant of the dogleg strategy
(very rare in practice)

If negative curvature is encountered during a cycle:

Remember the step to the trust-region boundary which produces the
largest model reduction during the cycle (stop the SCM smoothing)

Select the final step as that giving the maximum reduction
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Second-order and Galerkin models

At level i − 1 (model for level i):

First-order coherence

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + vT
i−1si−1

with xi−1,0 = Rixi,k and vi−1 = Rigi,k −∇fi−1(xi−1,0)

⇒ gi−1,0 = ∇hi−1(xi−1,0) = Rigi,k

Second-order coherence (more costly)

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + vT
i−1si−1 + 1

2
sT
i−1Wi−1si−1

with Wi−1 = RiHi,kPi −∇2fi−1(xi−1,0)

⇒ ∇2hi−1(xi−1,0) = RiHi,kPi

Gratton, Sartenaer, Toint Recursive Multilevel Optimization



university-logo

A recursive multilevel trust-region algorithm
First-order convergence results
A practical recursive algorithm

Second-order convergence
Numerical experience

Ongoing work

Iteration types
Models
Recursion forms
Other issues

Galerkin model (second-order coherent)

hi−1(xi−1,0 + si−1) = vT
i−1si−1 + 1

2
sT
i−1Wi−1si−1

with

vi−1 = Rigi,k

Wi−1 = RiHi,kPi

⇒ “Restricted” version of the quadratic model at the upper level
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Recursion forms

k

0 1 2 3 ∗

0 1 2 3 4 5 6 ∗

0 1 2 ∗ 0 1 2 3 4 5 ∗

0 1 2 ∗ 0 ∗ 0 1 2 ∗

Example of recursion with 5 levels (r = 4)
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Free and fixed form recursions

Because:

The convergence properties of Algorithm RMTR still hold if the minimization at
lower levels (i = 0, . . . , r − 1) is stopped after the first successful iteration

⇒ Flexibility that allows different recursion patterns

Alternance of successful SCM smoothing iterations with recursive or TCG
successful iterations (at all levels but the coarsest) is very fruitful

⇒ This alternance is imposed for each recursion form

TCG iterations are much more expensive than recursive iterations

⇒ A recursive iteration is always attempted whenever allowed
(i.e., when i > 0 and ‖Rigi,k‖ ≥ 0.01‖gi,k‖ and ‖Rigi,k‖ > ǫi−1)
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Free form recursion

The minimization at each level is stopped when the termination condition on
the gradient norm or on the step size is satisfied (Step 5 of Algorithm RMTR)

Alternance of successful SCM smoothing iterations with recursive (or TCG)
iterations is imposed
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Fixed form recursion (possibly truncated)

A maximum number of successful iterations at each level is specified

V-form recursion:

One succ. SCM smoothing
followed by

One succ. recursive (or TCG) iteration
followed by

One succ. SCM smoothing

W-form recursion:

One succ. SCM smoothing
followed by

One succ. recursive (or TCG) iteration
followed by

One succ. SCM smoothing
followed by

One succ. recursive (or TCG) iteration
followed by

One succ. SCM smoothing
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V-form recursion

k k + 1f4(= f) Level 4

0 1 2 ∗f3 Level 3

0 1 2 ∗f2 Level 2

0 1 2 ∗f1 Level 1

0 ∗f0 Level 0

Smoothing Solving (MS)
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W-form recursion

k k + 1

0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

Smoothing Solving (MS)
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Computing the starting point at the finest level

Use a mesh refinement technique to compute xr,0:

Select a random starting point x0,0 at level 0

For i = 0, . . . , r − 1

Apply Algorithm RMTR to solve

min
x

fi(x)

(with increasing accuracy)

Prolongate the solution to level i + 1 using cubic interpolation
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Prolongations and restrictions

The prolongation Pi is the linear interpolation operator

The restriction Ri is P T
i normalized to ensure that ‖Ri‖ = 1

Pi and Ri are never assembled
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Convergence to weak minimizers

Convergence to second-order critical points requires the eigen-point condition

If τi,k (the smallest eigenvalue of Hi,k) is negative, then

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ κeip|τi,k|min[τ2
i,k, ∆2

i,k]

where κeip ∈ (0, 1

2
)

−→ Too costly to impose a posteriori on recursive iterations

The SCM smoothing technique limits its exploration of the model’s curvature to
the coordinate axes and thus only guarantees

If µi,k (the most negative diagonal element of Hi,k) is negative, then

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ 1

2
|µi,k|∆

2
i,k
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−→ Asymptotic positive curvature:

along the coordinate axes at the finest level (i = r)

along the the prolongation of the coordinate axes at levels i = 1, . . . , r − 1

along the prolongation of the coarsest subspace (i = 0)

−→ “Weak” minimizers
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DN: a Dirichlet-to-Neumann transfer problem
(Lewis and Nash, 2005)

min
a : [0,π]→IR

Z π

0
(∂yu(x, 0) − φ(x))2 dx

where u is the solution of the boundary
value problem

8
<

:

∆u(x, y) = 0 in S,
u(x, y) = a(x) on Γ,
u(x, y) = 0 on ∂S\Γ.

with

S = {(x, y), 0 ≤ x ≤ π, 0 ≤ y ≤ π}

Γ = {(x, y), 0 ≤ x ≤ π, y = 0}

φ(x) =
15X

i=1

sin(i x) + sin(40 x)

−→ The discretized problem is a 1D
linear least-squares problem
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Q2: a simple quadratic example

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2

where

f is such that the analytical solution
to the problem is

u(x, y) = 2y(1 − y) + 2x(1 − x)

S2 = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

−→ 5-point finite-difference discretization:

Aix = bi (Ai sym pd)

at level i

−→ min
x∈IRnr

1

2
xT Arx − xT br

Gratton, Sartenaer, Toint Recursive Multilevel Optimization



university-logo

A recursive multilevel trust-region algorithm
First-order convergence results
A practical recursive algorithm

Second-order convergence
Numerical experience

Ongoing work

Test problems
Performance of Algorithm RMTR

Q2: a simple quadratic example

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2

where

f is such that the analytical solution
to the problem is

u(x, y) = 2y(1 − y) + 2x(1 − x)

S2 = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

−→ 5-point finite-difference discretization:

Aix = bi (Ai sym pd)

at level i

−→ min
x∈IRnr

1

2
xT Arx − xT br

Gratton, Sartenaer, Toint Recursive Multilevel Optimization



university-logo

A recursive multilevel trust-region algorithm
First-order convergence results
A practical recursive algorithm

Second-order convergence
Numerical experience

Ongoing work

Test problems
Performance of Algorithm RMTR

Q3: a 3D quadratic example

−(1 + sin(3πx)2) ∆u(x, y, z) = f in S3

u(x, y, z) = 0 on ∂S3

where

f is such that the analytical solution
to the problem is

u(x, y, z) = x(1 − x)y(1 − y)z(1 − z)

S3 = [0, 1] × [0, 1] × [0, 1]

−→ 7-point finite-difference discretization:

Aix = bi (Ai sym pd)

at level i (systems made symmetric)

−→ min
x∈IRnr

1

2
xT Arx − xT br
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Surf: the minimum surface problem

min
v

Z 1

0

Z 1

0

`
1 + (∂xv)2 + (∂yv)2

´ 1

2 dx dy

with the boundary conditions

8
>><

>>:

f(x), y = 0, 0 ≤ x ≤ 1
0, x = 0, 0 ≤ y ≤ 1
f(x), y = 1, 0 ≤ x ≤ 1
0, x = 1, 0 ≤ y ≤ 1

where
f(x) = x ∗ (1 − x)

−→ Discretization using a finite element basis

y

x

−→ Nonlinear convex problem
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Inv: an inverse problem from image processing

Image deblurring problem (Vogel, 2002)

minJ (f) where J (f) =
1

2
‖Tf − d‖2

2 + TV (f)

where TV (f) is the discretization of the
total variation function

Z 1

0

Z 1

0

`
1 + (∂xf)2 + (∂yf)2

´ 1

2 dx dy

−→ Same discretization scheme than for Surf

−→ Nonlinear convex problem
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Vogel’s problem data and result
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Opt: an optimal control problem
Solid ignition problem (Borzi and Kunisch, 2006)

min
f

J (u(f), f) =

Z

S2

(u − z)2 +
β

2

Z

S2

(eu − ez)2 +
ν

2

Z

S2

f2

where

S2 = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}


−∆u + δeu = f in S2

u = 0 on ∂S2

ν = 10−5, δ = 6.8, β = 6.8, z = 1
π2

−→ Discretization by finite differences in S2

−→ Nonlinear convex problem
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NC: a nonconvex example
Penalized version of a constrained optimal control problem

min
u,γ

J (u, γ) =

Z

S2

(u − u0)2 +

Z

S2

(γ − γ0)2 +

Z

S2

f2

where

S2 = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}


−∆u + γu − f0 = f in S2

u = 0 on ∂S2

γ0(x, y) = u0(x, y)
= sin(x(1 − x)) sin(y(1 − y))

−∆u0 + γ0u0 = f0

−→ Discretization by finite differences

−→ Nonconvex least-squares problem
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Comparison of three algorithms

AF (“All on Finest”): standard Newton trust-region algorithm (with TCG as
subproblem solver) applied at the finest level

MR (“Mesh Refinement”): discretized problems solved in turn from the coarsest
level to the finest one, using the same standard Newton trust-region method

(Starting point at level i + 1 obtained by prolongating the solution at level i)

FM (“Full Multilevel”): Algorithm RMTR
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The default full multilevel (FM) algorithm

Newton quadratic model at the finest level

Galerkin models (fi = 0) at coarse levels

W-form recursion performed at each level

Recursive iteration always attempted when allowed

A single smoothing cycle allowed at SCM smoothing iterations
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Comparison of computational kernels

For the quadratic problems:

Number of smoothing cycles (FM) vs number of matrix-vector products (AF,
MR)

For the non-quadratic problems:

Number of smoothing cycles (FM) vs number of matrix-vector products (MR)

Number of f , g, and H evaluations
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Time performance of computational kernels
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On quadratic problems: the number of smoothing cycles is fairly independent of the
mesh size and dimension

−→ Similar behaviour as the linear multigrid approach

−→ The trust-region machinery introduced in the multigrid setting does not alter the
property
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Operations counts for Opt (at the finest level)
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One eval of f = 14nr flops

One eval of g = 56nr flops

One cycle/matvec = 10nr flops

FM: 4394 flops

MR: 148470 flops

−→ MR much more expensive than FM because the gain in the number of
smoothing cycles is much superior to the loss in f and g evaluations
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Comparison of algorithmic variants

−→ Sensibility investigation of FM

W2: two smoothing cycles per SCM smoothing iteration instead of one

W3: three smoothing cycles per SCM smoothing iteration instead of one

V1: V-form recursions instead of W-form recursions

F1: free form recursions instead of W-form recursions

LMOD: first-order coherent model rather than Galerkin model (fi = 0)

QMOD: second-order coherent model rather than Galerkin model (fi = 0)

LINT: linear rather than cubic interpolation in the initialization phase
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Current comparative conclusions

−→ Encouraging !

Algorithm RMTR (default version FM) is more efficient than mesh refinement
(MR) for large instances

Pure quadratic recursion (Galerkin model) is very efficient

W-form and free form recursions are most efficient
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A (more natural) ℓ∞ version

RMTR

2-norm criticality measure

good results, but annoying trust
region scaling problem (recursion)

RMTR-∞

∞-norm (bound constraints)

new criticality measure

new possibilities for step length
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∞-norm in trust regions

Possibility for asymmetric trust regions (more freedom)

In lower levels, can be represented as a bound constrained subproblem

We will impose that the lower level steps must remain inside the restriction of
the upper level trust region: If

Bup = {x | lup ≤ x ≤ uup}

then
Blow = RBup = {x |Rlup ≤ x ≤ Ruup}

The step sup = Pslow will not necessarily be inside the upper level trust region!
But: If ∆up = radius(Bup), then

‖sup‖∞ ≤ ‖P‖∞‖R‖∞∆up.
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A new Criticality Measure

Each lower level subproblem is constrained by the restriction of the upper level
trust region; we can consider the lower level subproblem as a bound constrained
optimization problem.

Instead of evaluating glow to check criticality, we will look at

χ(xlow) = | min
d∈RBup
‖d‖≤1

〈glow, d〉|.

We only use recursion if:
χlow ≥ κχχup

We have found a solution to the current level i if

χ < ǫχ
i .
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Algebraic multigrid

No need for predefined grids; lower level information is obtained automatically through
a preprocessing phase which can be expensive (but usually the resolution phase is
faster for a single system).

1 Problem definition
2 Choice of smoothing operator (smooth error detection)
3 Construction of intergrid operators and subgrids.
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P-multigrid

Need an initial grid (not necessarily uniform); Construct the finer grids by using higher
level polynomials.

Choice of the basis: shape functions, hierarchical basis, ... with different degrees
at each level

Same number of nodes for each level

Construction of the intergrid operators that have to interpolate correctly the
basis
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Bound constrained problems

minimize f(x)
subject to x ≥ 0,

Issues:

Restriction of bound constraints 6= bounds!

Fast active set identification

Bound compatible smoothing operator

Criticality measure
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Equality constrained problems

minimize f(x)
subject to c(x) = 0,

Issues:

Error in the adjoint equation

Inexactly tangential steps

Iterative solvers

(Filters?)
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Perspectives

More numerical experiments

Hessian approximation schemes

Combination with non-monotone techniques, filter methods, . . .

Real applications in data assimilation . . .

. . . and much more !
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