Recursive trust-region methods for multilevel nonlinear optimization

Philippe Toint ${ }^{1}$ Annick Sartenaer ${ }^{1}$ Serge Gratton ${ }^{2}$

${ }^{1}$ Department of Mathematics, University of Namur, Belgium
(philippe.toint@fundp.ac.be)
${ }^{2}$ CERFACS, Toulouse, France
Beijing, September 25-28, 2006

Outline for Annick's talk and mine

(1) A recursive multilevel trust-region algorithm
(2) First-order convergence results
(3) A practical recursive algorithm

4 Second-order convergence
(5) Numerical experience
(6) Ongoing work

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

Outline

(1) A recursive multilevel trust-region algorithm
(2) First-order convergence results
(3) A practical recursive algorithm
(4) Second-order convergence
(5) Numerical experience
(6) Ongoing work

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

The problem

$$
\begin{equation*}
\min _{x \in \mathbf{R}^{n}} f(x) \tag{1}
\end{equation*}
$$

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ nonlinear, twice-continuously differentiable and bounded below
- No convexity assumption
- (1) results from the discretization of some infinite-dimensional problem on a relatively fine grid for instance (n large)
\longrightarrow Iterative search of a first-order critical point x_{*} (s.t. $\left.\nabla f\left(x_{*}\right)=0\right)$

A recursive multilevel trust-region algorithm

Basic trust-region algorithm

At iteration k (at x_{k}):
(1) Define a local model $m_{k}\left(x_{k}+s\right)$ of f around x_{k} (Taylor's model)
(2) Compute a candidate step s_{k} that (approximately) solves

$$
\begin{cases}\text { minimize }_{s \in \mathrm{R}^{n}} & m_{k}\left(x_{k}+s\right) \\ \text { subject to } & \|s\| \leq \Delta_{k}\end{cases}
$$

(3) Compute $f\left(x_{k}+s_{k}\right)$ and $\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+s_{k}\right)}{m_{k}\left(x_{k}\right)-m_{k}\left(x_{k}+s_{k}\right)}$
(4) Update the iterate x_{k} and the trust-region radius Δ_{k}

$$
x_{k+1}=\left\{\begin{array}{ll}
x_{k}+s_{k} & \text { if } \rho_{k} \geq \eta_{1} \\
x_{k} & \text { if } \rho_{k}<\eta_{1}
\end{array} \quad \Delta_{k+1}= \begin{cases}\max \left(\alpha_{2}\left\|s_{k}\right\|, \Delta_{k}\right) & \text { if } \rho_{k} \geq \eta_{2} \\
\Delta_{k} & \text { if } \rho_{k} \in\left[\eta_{1}, \eta_{2}\right) \\
\alpha_{1}\left\|s_{k}\right\| & \text { if } \rho_{k}<\eta_{1}\end{cases}\right.
$$

where $0<\eta_{1} \leq \eta_{2}<1$ and $0<\alpha_{1}<1<\alpha_{2}$

```
The context
Motivation
Main algorithmic ingredients
Model construction
The recursive algorithm
```


Dominating cost per iteration

- Computation of $f\left(x_{k}+s_{k}\right)$ and its derivatives
- Numerical solution of the subproblem $\begin{cases}\operatorname{minimize}_{s \in \mathbf{R}^{n}} & m_{k}\left(x_{k}+s\right) \\ \text { subject to } & \|s\| \leq \Delta_{k}\end{cases}$

Assume now that

The context
 Motivation
 Main algorithmic ingredients
 Model construction
 The recursive algorithm

Dominating cost per iteration

- Computation of $f\left(x_{k}+s_{k}\right)$ and its derivatives
- Numerical solution of the subproblem $\begin{cases}\operatorname{minimize}_{s \in \mathbf{R}^{n}} & m_{k}\left(x_{k}+s\right) \\ \text { subject to } & \|s\| \leq \Delta_{k}\end{cases}$

Assume now that

A set of alternative simplified models of f is known
\longrightarrow how can we exploit this knowledge to reduce the cost
of solving the trust-region subproblem?

Example: hierarchy of problem descriptions

Finest problem description	
Restriction $\downarrow R$	$P \uparrow$ Prolongation
Fine problem description	
Restriction $\downarrow R$	$P \uparrow$ Prolongation
Restriction $\downarrow R$	$P \uparrow$ Prolongation
Coarse problem description	
Restriction $\downarrow R$	$P \uparrow$ Prolongation
Coarsest problem description	

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm

Sources for such problems

- Parameter estimation in
- discretized ODEs
- discretized PDEs
- Optimal control problems
- Variational problems (minimum surface problem)
- Surface design (shape optimization)
- Data assimilation in weather forecast (different levels of physics in the models)

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

The minimum surface problem

$$
\min _{v} \int_{0}^{1} \int_{0}^{1}\left(1+\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}\right)^{\frac{1}{2}} d x d y
$$

with the boundary conditions:

$$
\left\{\begin{array}{lll}
f(x), & y=0, & 0 \leq x \leq 1 \\
0, & x=0, & 0 \leq y \leq 1 \\
f(x), & y=1, & 0 \leq x \leq 1 \\
0, & x=1, & 0 \leq y \leq 1
\end{array}\right.
$$

where

$$
f(x)=x *(1-x)
$$

\longrightarrow Discretization using a finite element basis

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

The solution at different levels

$$
n=3^{2}=9
$$

$n=7^{2}=49$

$$
n=31^{2}=961
$$

$n=63^{2}=3969$

$$
n=15^{2}=225
$$

$$
n=127^{2}=16129
$$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

The context

The framework

Assume that

- we know a collection of functions $\left\{f_{i}\right\}_{i=0}^{r}$ s.t. $f_{i}: \mathbf{R}^{n_{i}} \rightarrow \mathbf{R} \in \mathcal{C}^{2}$ and $n_{i} \geq n_{i-1}$
- $n_{r}=n$ and $f_{r}(x)=f(x)$ for all $x \in \mathbf{R}^{n}$
such that, for each $i=1, \ldots, r$
- f_{i} is "more costly" to minimize than f_{i-1}
- there exist full-rank linear operators:

$$
\left.\begin{array}{l}
R_{i}: \mathrm{R}^{n_{i}} \rightarrow \mathrm{R}^{n_{i-1}} \text { (the restriction) } \\
P_{i}: \mathrm{R}^{n_{i-1}} \rightarrow \mathrm{R}^{n_{i}} \text { (the prolongation) }
\end{array}\right\} \text { such that } \sigma_{i} P_{i}=R_{i}^{T} \quad\left(\sigma_{i}=\left\|P_{i}\right\|^{-1}\right)
$$

Terminology

- a particular i is referred to as a level
- a subscript i is used to denote a quantity corresponding to the i-th level

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

The idea

$$
\min _{x \in \mathbb{R}^{n}} f_{r}(x)=f(x) \quad \rightarrow \underline{\text { at } x_{k}}: \begin{cases}\min _{s \in \mathrm{R}^{n}} & m_{k}\left(x_{k}+s\right)=f_{r}\left(x_{k}\right)+\nabla f_{r}\left(x_{k}\right)^{T} s+\frac{1}{2} s^{T} H_{k} s \\ \text { s.t. }\end{cases}
$$

$$
\downarrow \quad \text { or (whenever suitable) }
$$

$$
\text { at } x_{k}
$$

$$
\text { Candidate step } s_{k}
$$

$P \uparrow$ Prolongation
use f_{r-1} to construct a coarse local model of f_{r} and minimize it within the fine trust region $\left(\Delta_{k}\right)$
\rightarrow If more than two levels are available $(r>1)$, do this recursively

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

The context

Motivation
Main algorithmic ingredients
Model construction
The recursive algorithm

Example of recursion with 5 levels ($r=4$)

Level 4

Level 3

Level 2

Level 1

Level 0

Notation: double subscript $\left\{\begin{array}{l}i \text { : level index }(0 \leq i \leq r) \\ k \text { : index of the current iteration within level } i\end{array}\right.$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm

Second-order convergence
Numerical experience Ongoing work

The context

Main algorithmic ingredients
Model construction
The recursive algorithm

Additional ingredients

- Construction of the coarse local models: first-order coherence
- Use of the coarse local models: coarsening condition
- Trust-region constraint preservation

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

Construction of the coarse models

At a given iteration (i, k) with current iterate $x_{i, k}$

- Restrict $x_{i, k}$ to create the starting iterate $x_{i-1,0}$ at level $i-1$

$$
x_{i-1,0}=R_{i} x_{i, k}
$$

- Define the lower level model h_{i-1} around $x_{i-1,0}$

$$
h_{i-1}\left(x_{i-1,0}+s_{i-1}\right) \stackrel{\text { def }}{=} f_{i-1}\left(x_{i-1,0}+s_{i-1}\right)+v_{i-1}^{T} s_{i-1}
$$

where

$$
v_{i-1}=R_{i} \nabla h_{i}\left(x_{i, k}\right)-\nabla f_{i-1}\left(x_{i-1,0}\right)
$$

so that

$$
\nabla h_{i-1}\left(x_{i-1,0}\right)=R_{i} \nabla h_{i}\left(x_{i, k}\right)
$$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

Use of the coarse models

- When $\left\|R_{i} \nabla h_{i}\left(x_{i, k}\right)\right\| \geq \kappa\left\|\nabla h_{i}\left(x_{i, k}\right)\right\| \quad$ where $\kappa \in\left(0, \min \left[1, \min _{i}\left\|R_{i}\right\|\right]\right)$ (0.01)
and
- When $\left\|R_{i} \nabla h_{i}\left(x_{i, k}\right)\right\|>\epsilon_{i-1}$ where $\epsilon_{i-1} \in(0,1)$ is a measure of the first-order criticality for h_{i-1} judged sufficient at level $i-1$
and
- When

$$
i>0
$$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience
Ongoing work

Choosing a model

Assume that we enter level i and want to (locally) minimize h_{i} starting from $x_{i, 0}$

At iteration k of this minimization

- Choose a local model of h_{i} at $x_{i, k}:\left\{\begin{array}{l}\text { Taylor's model } \\ \text { the coarse model }\end{array}\right.$
- Compute a candidate step $s_{i, k}$ that generates a decrease on this model within

$$
\mathcal{B}_{i, k}=\left\{s_{i} \mid\left\|s_{i}\right\|_{i} \leq \Delta_{i, k}\right\}
$$

where $\Delta_{i, k}>0$ and $\|\cdot\|_{i}$ is a level-dependent norm

A recursive multilevel trust-region algorithm

Using Taylor's model

The step $s_{i, k}$ is computed such that it approximately solves

$$
\left\{\begin{array}{lc}
\text { minimize }_{s_{i} \in \mathbf{R}^{n_{i}}} \quad m_{i, k}\left(x_{i, k}+s_{i}\right)= & h_{i}\left(x_{i, k}\right)+g_{i, k}^{T} s_{i}+\frac{1}{2} s_{i}^{T} H_{i, k} s_{i} \\
\text { subject to } & \left\|s_{i}\right\|_{i} \leq \Delta_{i, k}
\end{array}\right.
$$

where $g_{i, k} \stackrel{\text { def }}{=} \nabla h_{i}\left(x_{i, k}\right)$ and $H_{i, k} \approx \nabla^{2} h_{i}\left(x_{i, k}\right)$

The decrease of $m_{i, k}$ is understood in its usual meaning for trust-region methods, i.e., $s_{i, k}$ must satisfy the "sufficient decrease" condition:

$$
m_{i, k}\left(x_{i, k}\right)-m_{i, k}\left(x_{i, k}+s_{i, k}\right) \geq \kappa_{\text {red }}\left\|g_{i, k}\right\| \min \left[\frac{\left\|g_{i, k}\right\|}{1+\left\|H_{i, k}\right\|}, \Delta_{i, k}\right]
$$

for some $\kappa_{\text {red }} \in(0,1)$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

Using the coarse model

Defining the level-dependent norm $\|\cdot\|_{i-1}$ by

$$
\|\cdot\|_{r}=\|\cdot\|_{2} \quad \text { and } \quad\left\|s_{i-1}\right\|_{i-1}=\left\|P_{i} s_{i-1}\right\|_{i} \quad \text { for } \quad i=1, \ldots, r
$$

then the lower level subproblem consists in approximately solving

$$
\begin{cases}\operatorname{minimize}_{s_{i-1} \in \mathbf{R}^{n_{i-1}}} & h_{i-1}\left(x_{i-1,0}+s_{i-1}\right) \\ \text { subject to } & \left\|s_{i-1}\right\|_{i-1} \leq \Delta_{i, k}\end{cases}
$$

yielding a point $x_{i-1, *}$ such that

$$
h_{i-1}\left(x_{i-1, *}\right)<h_{i-1}\left(x_{i-1,0}\right)
$$

and a corresponding step $x_{i-1, *}-x_{i-1,0}$ which is brought back to level i

$$
s_{i, k}=P_{i}\left(x_{i-1, *}-x_{i-1,0}\right)
$$

Preserving the trust-region constraint

Trust-region radius update:
$\Delta_{i, k+1}=\min \left[\Delta_{i, k}^{+}, \Delta_{i+1}-\left\|x_{i, k+1}-x_{i, 0}\right\|_{i}\right]$
where
$\Delta_{i, k}^{+}= \begin{cases}\max \left[\alpha_{2}\left\|s_{i, k}\right\|, \Delta_{i, k}\right] & \text { if } \rho_{i, k} \geq \eta_{2} \\ \Delta_{i, k} & \text { if } \rho_{i, k} \in\left[\eta_{1}, \eta_{2}\right) \\ \alpha_{1}\left\|s_{i, k}\right\| & \text { if } \rho_{i, k}<\eta_{1}\end{cases}$

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

$\operatorname{Algorithm} \operatorname{RMTR}\left(i, x_{i, 0}, g_{i, 0}, \Delta_{i+1}\right)$

(First call with arguments $r, x_{r, 0}, \nabla f_{r}\left(x_{r, 0}\right)$ and ∞)

Step 0: Initialization

- Compute v_{i} and $h_{i}\left(x_{i, 0}\right)$
- Set $\Delta_{i, 0}=\Delta_{i+1}$ (or some $\Delta_{r}^{\mathbf{s}}$ if $i=r$) and $k=0$

Step 1: Model choice

- If $i=0$ or if $\left\|R_{i} g_{i, k}\right\|<0.01\left\|g_{i, k}\right\|$ or if $\left\|R_{i} g_{i, k}\right\| \leq \epsilon_{i-1}$, go to Step 3
- Otherwise, choose to go to Step 2 (recursive step) or to Step 3 (Taylor step)

Step 2: Recursive step computation

- Call Algorithm $\operatorname{RMTR}\left(i-1, R_{i} x_{i, k}, R_{i} g_{i, k}, \Delta_{i, k}\right)$, yielding an approximate solution
$x_{i-1, *}$ of

$$
\begin{cases}\text { minimize }_{s_{i-1} \in \mathbf{R}^{n_{i-1}}} & h_{i-1}\left(R_{i} x_{i, k}+s_{i-1}\right) \\ \text { subject to } & \left\|s_{i-1}\right\|_{i-1} \leq \Delta_{i, k}\end{cases}
$$

- Define $s_{i, k}=P_{i}\left(x_{i-1, *}-R_{i} x_{i, k}\right)$
- Set $\delta_{i, k}=h_{i-1}\left(R_{i} x_{i, k}\right)-h_{i-1}\left(x_{i-1, *}\right)$ and go to Step 4

Step 3: Taylor step computation

- Choose $H_{i, k}$ and compute $s_{i, k} \in \mathbf{R}^{n_{i}}$ that approximately solves

$$
\left\{\begin{array}{lc}
\operatorname{minimize}_{s_{i} \in \mathbf{R}^{n_{i}}} & m_{i, k}\left(x_{i, k}+s_{i}\right)=h_{i}\left(x_{i, k}\right)+g_{i, k}^{T} s_{i}+\frac{1}{2} s_{i}^{T} H_{i, k} s_{i} \\
\text { subject to } & \left\|s_{i}\right\|_{i} \leq \Delta_{i, k}
\end{array}\right.
$$

- Set $\delta_{i, k}=m_{i, k}\left(x_{i, k}\right)-m_{i, k}\left(x_{i, k}+s_{i, k}\right)$ and go to Step 4

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience Ongoing work

Step 4: Acceptance of the trial point

- Compute $h_{i}\left(x_{i, k}+s_{i, k}\right)$ and $\rho_{i, k}=\frac{h_{i}\left(x_{i, k}\right)-h_{i}\left(x_{i, k}+s_{i, k}\right)}{\delta_{i, k}}$
- Define $x_{i, k+1}=\left\{\begin{array}{ll}x_{i, k}+s_{i, k} & \text { if } \rho_{i, k} \geq \eta_{1} \\ x_{i, k} & \text { if } \rho_{i, k}<\eta_{1}\end{array}\right.$ (successful iteration)

Step 5: Termination

- Compute $g_{i, k+1}$
- If $\left\|g_{i, k+1}\right\|_{\infty} \leq \epsilon_{i}$ or $\left\|x_{i, k+1}-x_{i, 0}\right\|_{i}>(1-\varepsilon) \Delta_{i+1}$ return with $x_{i, *}=x_{i, k+1}$

Step 6: Trust-region radius update

- Set

$$
\Delta_{i, k}^{+}= \begin{cases}\max \left[\alpha_{2}\left\|s_{i, k}\right\|, \Delta_{i, k}\right] & \text { if } \rho_{i, k} \geq \eta_{2} \quad \text { (very successful iteration) } \\ \Delta_{i, k} & \text { if } \rho_{i, k} \in\left[\eta_{1}, \eta_{2}\right) \\ \alpha_{1}\left\|s_{i, k}\right\| & \text { if } \rho_{i, k}<\eta_{1}\end{cases}
$$

- Set $\Delta_{i, k+1}=\min \left[\Delta_{i, k}^{+}, \Delta_{i+1}-\left\|x_{i, k+1}-x_{i, 0}\right\|_{i}\right]$
- Increment k by one and go to Step 1

A recursive multilevel trust-region algorithm

Outline

(1) A recursive multilevel trust-region algorithm
(2) First-order convergence results
(3) A practical recursive algorithm

4 Second-order convergence
(5) Numerical experience
(6) Ongoing work

Global convergence and complexity

Based on the trust-region technology:

- Uses the sufficient decrease argument (imposed in Taylor's iterations)
- Plus the coarsening condition $\left(\left\|R_{i} g_{i, k}\right\| \geq 0.01\left\|g_{i, k}\right\|\right)$

Main results:

- Convergence to first-order critical points at all levels
- Weak upper bound $\left(\mathcal{O}\left(1 / \epsilon_{r}^{2}\right)\right)$ on the number of iterations to achieve a given accuracy

Minimization sequence

If iteration (i, k) is a recursive iteration:

```
            a minimization sequence at level i-1 initiated at iteration (i,k)
denotes all successive iterations at level i-1 until a return is made to level i
```

Level 4

Level 3

Level 2

Level 1

Level 0

In short
In more details

The set $\mathcal{R}(i, k)$

At iteration (i, k) we associate the set:

$$
\mathcal{R}(i, k) \stackrel{\text { def }}{=}\{(j, \ell) \mid \text { iteration }(j, \ell) \text { occurs within iteration }(i, k)\}
$$

Level 4

Level 3

Level 2

Level 1

Level 0

Gratton, Sartenaer, Toint
Recursive Multilevel Optimization

Key results

Consider the set

$$
\mathcal{V}(i, k) \stackrel{\text { def }}{=}\{(j, \ell) \in \mathcal{R}(i, k) \mid \underbrace{\delta_{j, \ell} \geq c\left\|g_{i, k}\right\| \Delta_{j, \ell}}_{\text {"sufficient decrease" }}\} \quad c \in(0,1)
$$

If $x_{i, k}$ is non-critical and $\Delta_{i, k}$ is small enough
then: \quad - $\mathcal{V}(i, k)=\mathcal{R}(i, k)$

- The total number of iterations in $\mathcal{R}(i, k)$ is finite
- All iterations $(j, \ell) \in \mathcal{R}(i, k)$ are very successful
- $\Delta_{i, k}^{+} \geq \Delta_{i, k}$

Because we impose nonzero tolerances ϵ_{i} on the gradient norms
then: - Each minimization sequence contains at least one successful iteration

- All the trust-region radii are bounded away from zero

Complexity result

Furthemore:

- The number of iterations at each level is finite
- Algorithm RMTR needs at most

$$
\left\lceil\frac{f\left(x_{r, 0}\right)-f_{\text {low }}}{\theta\left(\epsilon_{\text {min }}\right)}\right\rceil
$$

successful Taylor iterations at any level to obtain an iterate $x_{r, k}$ such that

$$
\left\|g_{r, k}\right\| \leq \epsilon_{r}
$$

where

- $\epsilon_{\min }=\min _{i=0, \ldots, r} \epsilon_{i}$
- $f_{\text {low }}$ is a known lower bound on f
- $\theta(\epsilon)=\mathcal{O}\left(\epsilon^{2}\right)$ for small values of ϵ (can be estimated)

This complexity bound in $1 / \epsilon^{2}$ for small ϵ :

- is in terms of iteration numbers, thus only implicitly accounts for the cost of computing a Taylor step
- is only modified by a constant factor if all iterations (successful and unsucessful) are considered
- thus gives a worst case upper bound on the number of function and gradient evaluations
- is of the same order as the corresponding bound for the pure gradient method (not surprising since based on the "sufficient decrease" condition)
- involves the number of successful Taylor iterations summed up on all levels, meaning that successful such iterations at cheap low levels decrease the number of necessary expensive ones at higher levels
- does not depend on the problem dimension but on the properties of the problem and of the algorithm

Global convergence result

If Algorithm RMTR is called at the uppermost level with $\epsilon_{r}=0$, then:

$$
\lim _{k \rightarrow \infty}\left\|g_{r, k}\right\|=0
$$

If the trust region becomes asymptotically inactive at all levels and all ϵ_{i} are driven to zero, then each minimization sequence becomes infinite and:

$$
\lim _{k \rightarrow \infty}\left\|g_{i, k}\right\|=0
$$

for every level $i=0, \ldots, r$

Two comments

"Premature" termination does not affect the convergence results at the upper level provided each minimization sequence contains at least one successful iteration

One can:

- Stop a minimization sequence after a preset number of successful iterations
- Use fixed lower-iterations patterns like the V or W cycles in multigrid methods

We did not use the form of the lower levels functions $\left\{f_{i}\right\}_{i=0}^{r-1}$

One can:

- Choose $f_{i}=0$ for $i=0, \ldots, r-1$, which implies that the lower level model $h_{i-1}\left(x_{i-1,0}+s_{i-1}\right)$ reduces to the linear model $\left(R_{i} g_{i, k}\right)^{T} s_{i-1}$

A recursive multilevel trust-region algorithm

Outline

(1) A recursive multilevel trust-region algorithm
(2) First-order convergence results
(3) A practical recursive algorithm

4 Second-order convergence
(5) Numerical experience
(6) Ongoing work

A practical RMTR algorithm

- How to efficiently compute appropriate steps at Taylor iterations?
- How to improve the coarse models to ensure second-order coherence?
- Which structure consider for the recursions?
- How to compute the starting point at the finest level?
- Which choice for the prolongation and restriction operators $\left(P_{i}\right.$ and $\left.R_{i}\right)$?

Taylor iterations: solving and smoothing

$$
\left\{\begin{array}{lc}
\operatorname{minimize}_{s_{i} \in \mathbf{R}^{n_{i}}} \quad m_{i, k}\left(x_{i, k}+s_{i}\right)= & h_{i}\left(x_{i, k}\right)+g_{i, k}^{T} s_{i}+\frac{1}{2} s_{i}^{T} H_{i, k} s_{i} \\
\text { subject to } & \left\|s_{i}\right\|_{i} \leq \Delta_{i, k}
\end{array}\right.
$$

- At the coarsest level:
- Solve using the exact Moré-Sorensen method (small dimension)
- At finer levels:
- Solve using a Truncated Conjugate-Gradient (TCG) algorithm
or
- Smooth using a smoothing technique from multigrid methods (to reduce the high frequency residual/gradient components)

SCM Smoothing

\longrightarrow Adaptation of the Gauss-Seidel smoothing technique to optimization:

- Sequential Coordinate Minimization (SCM smoothing)
(\equiv successive one-dimensional minimizations of the model along the coordinate axes when positive curvature)

$$
\begin{gathered}
\text { From } s_{i}^{0}=0 \text { and for } j=1, \ldots, n_{i}: \\
s_{i}^{j} \Longleftarrow \min _{\alpha} m_{i, k}\left(x_{i, k}+s_{i}^{j-1}+\alpha e_{i, j}\right)
\end{gathered}
$$

where $e_{i, j}$ is the j th vector of the canonical basis of $\mathbf{R}^{n_{i}}$

- Cost: 1 SCM smoothing cycle ≈ 1 matrix-vector product
- How to impose sufficient decrease in the model?
- How to impose the trust-region constraint?
- What to do if a negative curvature is encountered?

```
Iteration types
Models
Recursion forms
Other issues
```

- Start the first SCM smoothing cycle by minimizing along the largest gradient component (enough to ensure sufficient decrease)
- While inside the trust region, perform (at most p) SCM smoothing cycles (reasonable cost)
- If the step lies outside the trust region, apply a variant of the dogleg strategy (very rare in practice)
- If negative curvature is encountered during a cycle:
- Remember the step to the trust-region boundary which produces the largest model reduction during the cycle (stop the SCM smoothing)
- Select the final step as that giving the maximum reduction

Second-order and Galerkin models

At level $i-1$ (model for level i):

- First-order coherence

$$
h_{i-1}\left(x_{i-1,0}+s_{i-1}\right)=f_{i-1}\left(x_{i-1,0}+s_{i-1}\right)+v_{i-1}^{T} s_{i-1}
$$

with $x_{i-1,0}=R_{i} x_{i, k}$ and $v_{i-1}=R_{i} g_{i, k}-\nabla f_{i-1}\left(x_{i-1,0}\right)$

$$
\Rightarrow \quad g_{i-1,0}=\nabla h_{i-1}\left(x_{i-1,0}\right)=R_{i} g_{i, k}
$$

- Second-order coherence (more costly)

$$
h_{i-1}\left(x_{i-1,0}+s_{i-1}\right)=f_{i-1}\left(x_{i-1,0}+s_{i-1}\right)+v_{i-1}^{T} s_{i-1}+\frac{1}{2} s_{i-1}^{T} W_{i-1} s_{i-1}
$$

with $W_{i-1}=R_{i} H_{i, k} P_{i}-\nabla^{2} f_{i-1}\left(x_{i-1,0}\right)$

$$
\Rightarrow \quad \nabla^{2} h_{i-1}\left(x_{i-1,0}\right)=R_{i} H_{i, k} P_{i}
$$

- Galerkin model (second-order coherent)

$$
h_{i-1}\left(x_{i-1,0}+s_{i-1}\right)=v_{i-1}^{T} s_{i-1}+\frac{1}{2} s_{i-1}^{T} W_{i-1} s_{i-1}
$$

with

- $v_{i-1}=R_{i} g_{i, k}$
- $W_{i-1}=R_{i} H_{i, k} P_{i}$
\Rightarrow "Restricted" version of the quadratic model at the upper level

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm

Second-order convergence
Numerical experience
Ongoing work

Recursion forms

Example of recursion with 5 levels $(r=4)$

Free and fixed form recursions

Because:

- The convergence properties of Algorithm RMTR still hold if the minimization at lower levels $(i=0, \ldots, r-1)$ is stopped after the first successful iteration
\Rightarrow Flexibility that allows different recursion patterns
- Alternance of successful SCM smoothing iterations with recursive or TCG successful iterations (at all levels but the coarsest) is very fruitful
\Rightarrow This alternance is imposed for each recursion form
- TCG iterations are much more expensive than recursive iterations
\Rightarrow A recursive iteration is always attempted whenever allowed
(i.e., when $i>0$ and $\left\|R_{i} g_{i, k}\right\| \geq 0.01\left\|g_{i, k}\right\|$ and $\left\|R_{i} g_{i, k}\right\|>\epsilon_{i-1}$)

Free form recursion

- The minimization at each level is stopped when the termination condition on the gradient norm or on the step size is satisfied (Step 5 of Algorithm RMTR)
- Alternance of successful SCM smoothing iterations with recursive (or TCG) iterations is imposed

Fixed form recursion (possibly truncated)

- A maximum number of successful iterations at each level is specified

W-form recursion:

V-form recursion:

One succ. SCM smoothing followed by
One succ. recursive (or TCG) iteration
followed by
One succ. SCM smoothing

One succ. SCM smoothing followed by
One succ. recursive (or TCG) iteration followed by
One succ. SCM smoothing followed by
One succ. recursive (or TCG) iteration followed by
One succ. SCM smoothing

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience Ongoing work

Iteration types
Models
Recursion forms
Other issues

V-form recursion

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm

Second-order convergence
Numerical experience
Ongoing work

Iteration types

W-form recursion

Smoothing
Solving (MS)

Computing the starting point at the finest level

Use a mesh refinement technique to compute $x_{r, 0}$:

- Select a random starting point $x_{0,0}$ at level 0

For $i=0, \ldots, r-1$

- Apply Algorithm RMTR to solve

$$
\min _{x} f_{i}(x)
$$

(with increasing accuracy)

- Prolongate the solution to level $i+1$ using cubic interpolation

Prolongations and restrictions

- The prolongation P_{i} is the linear interpolation operator
- The restriction R_{i} is P_{i}^{T} normalized to ensure that $\left\|R_{i}\right\|=1$
- P_{i} and R_{i} are never assembled

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence

Numerical experience
Ongoing work

Outline

(1) A recursive multilevel trust-region algorithm

(2) First-order convergence results
(3) A practical recursive algorithm

4 Second-order convergence
(5) Numerical experience
(6) Ongoing work

Convergence to weak minimizers

- Convergence to second-order critical points requires the eigen-point condition

$$
\text { If } \tau_{i, k} \text { (the smallest eigenvalue of } H_{i, k} \text {) is negative, then }
$$

$$
\begin{gathered}
m_{i, k}\left(x_{i, k}\right)-m_{i, k}\left(x_{i, k}+s_{i, k}\right) \geq \kappa_{\text {eip }}\left|\tau_{i, k}\right| \min \left[\tau_{i, k}^{2}, \Delta_{i, k}^{2}\right] \\
\text { where } \kappa_{\text {eip }} \in\left(0, \frac{1}{2}\right)
\end{gathered}
$$

\longrightarrow Too costly to impose a posteriori on recursive iterations

- The SCM smoothing technique limits its exploration of the model's curvature to the coordinate axes and thus only guarantees

If $\mu_{i, k}$ (the most negative diagonal element of $H_{i, k}$) is negative, then

$$
m_{i, k}\left(x_{i, k}\right)-m_{i, k}\left(x_{i, k}+s_{i, k}\right) \geq \frac{1}{2}\left|\mu_{i, k}\right| \Delta_{i, k}^{2}
$$

\longrightarrow Asymptotic positive curvature:

- along the coordinate axes at the finest level $(i=r)$
- along the the prolongation of the coordinate axes at levels $i=1, \ldots, r-1$
- along the prolongation of the coarsest subspace $(i=0)$
\longrightarrow "Weak" minimizers

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm

Outline

(1) A recursive multilevel trust-region algorithm
(5) First-order convergence results

3 A practical recursive algorithm
(4) Second-order convergence
(5) Numerical experience
(6) Ongoing work

DN: a Dirichlet-to-Neumann transfer problem

(Lewis and Nash, 2005)

$$
\min _{a:[0, \pi] \rightarrow \mathbf{R}} \int_{0}^{\pi}\left(\partial_{y} u(x, 0)-\phi(x)\right)^{2} d x
$$

where u is the solution of the boundary value problem

$$
\left\{\begin{array}{llll}
\Delta u(x, y) & = & 0 & \text { in } S, \\
u(x, y) & = & a(x) & \text { on } \Gamma, \\
u(x, y) & =0 & \text { on } \partial S \backslash \Gamma .
\end{array}\right.
$$

$$
\phi(x)=\sum_{i=1}^{15} \sin (i x)+\sin (40 x)
$$

with

- $S=\{(x, y), 0 \leq x \leq \pi, 0 \leq y \leq \pi\}$
- $\Gamma=\{(x, y), 0 \leq x \leq \pi, y=0\}$

DN: a Dirichlet-to-Neumann transfer problem

(Lewis and Nash, 2005)

$$
\min _{a:[0, \pi] \rightarrow \mathbf{R}} \int_{0}^{\pi}\left(\partial_{y} u(x, 0)-\phi(x)\right)^{2} d x
$$

where u is the solution of the boundary value problem

$$
\left\{\begin{array}{llll}
\Delta u(x, y) & = & 0 & \text { in } S, \\
u(x, y) & = & a(x) & \text { on } \Gamma, \\
u(x, y) & =0 & \text { on } \partial S \backslash \Gamma .
\end{array}\right.
$$

$$
\phi(x)=\sum_{i=1}^{15} \sin (i x)+\sin (40 x)
$$

\longrightarrow The discretized problem is a 1D

- $S=\{(x, y), 0 \leq x \leq \pi, 0 \leq y \leq \pi\}$
- $\Gamma=\{(x, y), 0 \leq x \leq \pi, y=0\}$

Q2: a simple quadratic example

$$
\begin{aligned}
-\Delta u(x, y) & =f \text { in } S_{2} \\
u(x, y) & =0 \text { on } \partial S_{2}
\end{aligned}
$$

where

- f is such that the analytical solution to the problem is

$$
u(x, y)=2 y(1-y)+2 x(1-x)
$$

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$

$$
S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}
$$

\longrightarrow 5-point finite-difference discretization:

$$
A_{i} x=b_{i} \quad\left(A_{i} \text { sym pd }\right)
$$

at level i

Q2: a simple quadratic example

$$
\begin{aligned}
-\Delta u(x, y) & =f \text { in } S_{2} \\
u(x, y) & =0 \text { on } \partial S_{2}
\end{aligned}
$$

where

- f is such that the analytical solution to the problem is

$$
u(x, y)=2 y(1-y)+2 x(1-x)
$$

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$
\longrightarrow 5-point finite-difference discretization:

$$
A_{i} x=b_{i} \quad\left(A_{i} \text { sym pd }\right)
$$

at level i
$\longrightarrow \min _{x \in \mathbf{R}^{n} r} \frac{1}{2} x^{T} A_{r} x-x^{T} b_{r}$

Q3: a 3D quadratic example

$$
\begin{aligned}
-\left(1+\sin (3 \pi x)^{2}\right) \Delta u(x, y, z) & =f \text { in } S_{3} \\
u(x, y, z) & =0 \text { on } \partial S_{3}
\end{aligned}
$$

where

- f is such that the analytical solution to the problem is
$u(x, y, z)=x(1-x) y(1-y) z(1-z)$
- $S_{3}=[0,1] \times[0,1] \times[0,1]$
\longrightarrow 7-point finite-difference discretization:

$$
A_{i} x=b_{i} \quad\left(A_{i} \text { sym pd }\right)
$$

at level i (systems made symmetric)

Q3: a 3D quadratic example

$$
\begin{aligned}
-\left(1+\sin (3 \pi x)^{2}\right) \Delta u(x, y, z) & =f \text { in } S_{3} \\
u(x, y, z) & =0 \text { on } \partial S_{3}
\end{aligned}
$$

where

- f is such that the analytical solution to the problem is
$u(x, y, z)=x(1-x) y(1-y) z(1-z)$
- $S_{3}=[0,1] \times[0,1] \times[0,1]$

Surf: the minimum surface problem

$$
\min _{v} \int_{0}^{1} \int_{0}^{1}\left(1+\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}\right)^{\frac{1}{2}} d x d y
$$

with the boundary conditions

$$
\left\{\begin{array}{lll}
f(x), & y=0, & 0 \leq x \leq 1 \\
0, & x=0, & 0 \leq y \leq 1 \\
f(x), & y=1, & 0 \leq x \leq 1 \\
0, & x=1, & 0 \leq y \leq 1
\end{array}\right.
$$

where

$$
f(x)=x *(1-x)
$$

\longrightarrow Discretization using a finite element basis

Surf: the minimum surface problem

$$
\min _{v} \int_{0}^{1} \int_{0}^{1}\left(1+\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}\right)^{\frac{1}{2}} d x d y
$$

with the boundary conditions

$$
\left\{\begin{array}{lll}
f(x), & y=0, & 0 \leq x \leq 1 \\
0, & x=0, & 0 \leq y \leq 1 \\
f(x), & y=1, & 0 \leq x \leq 1 \\
0, & x=1, & 0 \leq y \leq 1
\end{array}\right.
$$

where

$$
f(x)=x *(1-x)
$$

\longrightarrow Discretization using a finite element basis

\longrightarrow Nonlinear convex problem

Inv: an inverse problem from image processing

Image deblurring problem
(Vogel, 2002)

$$
\min \mathcal{J}(f) \quad \text { where } \quad \mathcal{J}(f)=\frac{1}{2}\|T f-d\|_{2}^{2}+T V(f)
$$

where $T V(f)$ is the discretization of the total variation function
\longrightarrow Same discretization scheme than for Surf

$$
\int_{0}^{1} \int_{0}^{1}\left(1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}\right)^{\frac{1}{2}} d x d y
$$

\longrightarrow Nonlinear convex problem

Inv: an inverse problem from image processing

Image deblurring problem

$$
\min \mathcal{J}(f) \quad \text { where } \quad \mathcal{J}(f)=\frac{1}{2}\|T f-d\|_{2}^{2}+T V(f)
$$

(Vogel, 2002)
where $T V(f)$ is the discretization of the total variation function

$$
\int_{0}^{1} \int_{0}^{1}\left(1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}\right)^{\frac{1}{2}} d x d y
$$

\longrightarrow Nonlinear convex problem

Vogel's problem data and result

Opt: an optimal control problem

Solid ignition problem
(Borzi and Kunisch, 2006)

$$
\min _{f} \mathcal{J}(u(f), f)=\int_{S_{2}}(u-z)^{2}+\frac{\beta}{2} \int_{S_{2}}\left(e^{u}-e^{z}\right)^{2}+\frac{\nu}{2} \int_{S_{2}} f^{2}
$$

where

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$
$\longrightarrow \quad$ Discretization by finite differences in S_{2}
- $\left\{\begin{aligned}-\Delta u+\delta e^{u} & =f\end{aligned} \quad\right.$ in S_{2}
\longrightarrow Nonlinear convex problem
- $\nu=10^{-5}, \delta=6.8, \beta=6.8, z=\frac{1}{\pi^{2}}$

Opt: an optimal control problem

Solid ignition problem
(Borzi and Kunisch, 2006)

$$
\min _{f} \mathcal{J}(u(f), f)=\int_{S_{2}}(u-z)^{2}+\frac{\beta}{2} \int_{S_{2}}\left(e^{u}-e^{z}\right)^{2}+\frac{\nu}{2} \int_{S_{2}} f^{2}
$$

where

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$
$\longrightarrow \quad$ Discretization by finite differences in S_{2}
- $\left\{\begin{aligned}-\Delta u+\delta e^{u} & =f\end{aligned} \quad\right.$ in S_{2}
\longrightarrow Nonlinear convex problem
- $\nu=10^{-5}, \delta=6.8, \beta=6.8, z=\frac{1}{\pi^{2}}$

NC: a nonconvex example

Penalized version of a constrained optimal control problem

$$
\min _{u, \gamma} \mathcal{J}(u, \gamma)=\int_{S_{2}}\left(u-u_{0}\right)^{2}+\int_{S_{2}}\left(\gamma-\gamma_{0}\right)^{2}+\int_{S_{2}} f^{2}
$$

where

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$
- $\left\{\begin{array}{rll}-\Delta u+\gamma u-f_{0} & = & f \\ \text { in } S_{2} \\ u & =0 & \text { on } \partial S_{2}\end{array}\right.$
- $\gamma_{0}(x, y)=u_{0}(x, y)$

$$
=\sin (x(1-x)) \sin (y(1-y))
$$

$\longrightarrow \quad$ Discretization by finite differences

- $\quad=\sin (x(1-x)) \sin (y(1-y))$
$\longrightarrow \quad$ Nonconvex least-squares problem
- $-\Delta u_{0}+\gamma_{0} u_{0}=f_{0}$

NC: a nonconvex example

Penalized version of a constrained optimal control problem

$$
\min _{u, \gamma} \mathcal{J}(u, \gamma)=\int_{S_{2}}\left(u-u_{0}\right)^{2}+\int_{S_{2}}\left(\gamma-\gamma_{0}\right)^{2}+\int_{S_{2}} f^{2}
$$

where

- $S_{2}=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$
- $\left\{\begin{array}{rll}-\Delta u+\gamma u-f_{0} & = & f \\ \text { in } S_{2} \\ u & = & \text { on } \partial S_{2}\end{array}\right.$
- $\gamma_{0}(x, y)=u_{0}(x, y)$

$$
=\sin (x(1-x)) \sin (y(1-y))
$$

\longrightarrow Nonconvex least-squares problem

- $-\Delta u_{0}+\gamma_{0} u_{0}=f_{0}$

Comparison of three algorithms

- AF ("All on Finest"): standard Newton trust-region algorithm (with TCG as subproblem solver) applied at the finest level
- MR ("Mesh Refinement"): discretized problems solved in turn from the coarsest level to the finest one, using the same standard Newton trust-region method
(Starting point at level $i+1$ obtained by prolongating the solution at level i)
- FM ("Full Multilevel"): Algorithm RMTR

The default full multilevel (FM) algorithm

- Newton quadratic model at the finest level
- Galerkin models $\left(f_{i}=0\right)$ at coarse levels
- W-form recursion performed at each level
- Recursive iteration always attempted when allowed
- A single smoothing cycle allowed at SCM smoothing iterations

Comparison of computational kernels

For the quadratic problems:

- Number of smoothing cycles (FM) vs number of matrix-vector products (AF, MR)

For the non-quadratic problems:

- Number of smoothing cycles (FM) vs number of matrix-vector products (MR)
- Number of f, g, and H evaluations

Time performance of computational kernels

Performance results on quadratic problems

On quadratic problems: the number of smoothing cycles is fairly independent of the mesh size and dimension
\longrightarrow Similar behaviour as the linear multigrid approach
\longrightarrow The trust-region machinery introduced in the multigrid setting does not alter the property

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience

Ongoing work

Test problems
Performance of Algorithm RMTR

Performance results on Surf

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience

Ongoing work

Test problems
Performance of Algorithm RMTR

Performance results on Inv

A recursive multilevel trust-region algorithm
First-order convergence results A practical recursive algorithm Second-order convergence Numerical experience

Ongoing work

Test problems
Performance of Algorithm RMTR

Performance results on Opt

Operations counts for Opt (at the finest level)

- One eval of $f=14 n_{r}$ flops
- One eval of $g=56 n_{r}$ flops
- One cycle $/$ matvec $=10 n_{r}$ flops

- FM: 4394 flops
- MR: 148470 flops
\longrightarrow MR much more expensive than FM because the gain in the number of smoothing cycles is much superior to the loss in f and g evaluations

Test problems
Performance of Algorithm RMTR

Performance results on NC

Comparison of algorithmic variants

\longrightarrow Sensibility investigation of FM

W2: two smoothing cycles per SCM smoothing iteration instead of one
W3: three smoothing cycles per SCM smoothing iteration instead of one
V1: V-form recursions instead of W-form recursions
F1: free form recursions instead of W-form recursions
LMOD: first-order coherent model rather than Galerkin model $\left(f_{i}=0\right)$
QMOD: second-order coherent model rather than Galerkin model $\left(f_{i}=0\right)$
LINT: linear rather than cubic interpolation in the initialization phase

Current comparative conclusions

\longrightarrow Encouraging!

- Algorithm RMTR (default version FM) is more efficient than mesh refinement (MR) for large instances
- Pure quadratic recursion (Galerkin model) is very efficient
- W-form and free form recursions are most efficient

An ℓ_{∞} version (with M. Weber) Multigrid enhancements (with D. Tomanos and M. Weber) Constrained problems (with M. Mouffe et al.)

Outline

(1) A recursive multilevel trust-region algorithm

(2) First-order convergence results
(3) A practical recursive algorithm
(4) Second-order convergence
(5) Numerical experience
(6) Ongoing work

An ℓ_{∞} version (with M. Weber)

A (more natural) ℓ_{∞} version

RMTR

- 2-norm criticality measure
- good results, but annoying trust region scaling problem (recursion)

RMTR- ∞

- ∞-norm (bound constraints)
- new criticality measure
- new possibilities for step length

∞-norm in trust regions

- Possibility for asymmetric trust regions (more freedom)
- In lower levels, can be represented as a bound constrained subproblem
- We will impose that the lower level steps must remain inside the restriction of the upper level trust region: If

$$
\mathcal{B}_{u p}=\left\{x \mid l_{u p} \leq x \leq u_{u p}\right\}
$$

then

$$
\mathcal{B}_{\text {low }}=R \mathcal{B}_{u p}=\left\{x \mid R l_{u p} \leq x \leq R u_{u p}\right\}
$$

- The step $s_{u p}=P s_{\text {low }}$ will not necessarily be inside the upper level trust region! But: If $\Delta_{u p}=\operatorname{radius}\left(\mathcal{B}_{u p}\right)$, then

$$
\left\|s_{u p}\right\|_{\infty} \leq\|P\|_{\infty}\|R\|_{\infty} \Delta_{u p}
$$

A new Criticality Measure

- Each lower level subproblem is constrained by the restriction of the upper level trust region; we can consider the lower level subproblem as a bound constrained optimization problem.
- Instead of evaluating $g_{\text {low }}$ to check criticality, we will look at

$$
\chi\left(x_{\text {low }}\right)=\left|\min _{\substack{d \in R \mathcal{B}_{\text {up }} \\\|d\| \leq 1}}\left\langle g_{\text {low }}, d\right\rangle\right| .
$$

- We only use recursion if:

$$
\chi_{l o w} \geq \kappa_{\chi} \chi_{u p}
$$

- We have found a solution to the current level i if

$$
\chi<\epsilon_{i}^{\chi} .
$$

An ℓ_{∞} version (with M. Weber)
Multigrid enhancements (with D. Tomanos and M. Weber) Constrained problems (with M. Mouffe et al.)

Algebraic multigrid

No need for predefined grids; lower level information is obtained automatically through a preprocessing phase which can be expensive (but usually the resolution phase is faster for a single system).
(1) Problem definition
(2) Choice of smoothing operator (smooth error detection)
(3) Construction of intergrid operators and subgrids.

P-multigrid

Need an initial grid (not necessarily uniform); Construct the finer grids by using higher level polynomials.

- Choice of the basis: shape functions, hierarchical basis, ... with different degrees at each level
- Same number of nodes for each level
- Construction of the intergrid operators that have to interpolate correctly the basis

Bound constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \geq 0
\end{array}
$$

Issues:

- Restriction of bound constraints \neq bounds!
- Fast active set identification
- Bound compatible smoothing operator
- Criticality measure

An ℓ_{∞} version (with M. Weber)

Equality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & c(x)=0
\end{array}
$$

Issues:

- Error in the adjoint equation
- Inexactly tangential steps
- Iterative solvers
- (Filters?)

A recursive multilevel trust-region algorithm

Perspectives

- More numerical experiments
- Hessian approximation schemes
- Combination with non-monotone techniques, filter methods, ...
- Real applications in data assimilation...
- ... and much more!

