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Abstract

We reconsider the theory of Thompson aggregators proposed by Mari-
nacci and Montrucchio [34]. We prove a variant of their Recovery Theorem
establishing the existence of extremal solutions to the Koopmans equa-
tion. We apply the constructive Tarski-Kantorovich Fixed Point Theorem
rather than the nonconstructive Tarski Theorem employed in [34]. We
also obtain additional properties of the extremal solutions. The Koop-
mans operator possesses two distinct order continuity properties. Each
is suffi cient for the application of the Tarski-Kantorovich Theorem. One
version builds on the order properties of the underlying vector spaces for
utility functions and commodities. The second form is topological. The
Koopmans operator is continuous in Scott’s [40] induced topology. The
least fixed point is constructed with either continuity hypothesis by the
partial sum method. This solution is a concave function whenever the
Thompson aggregator is concave and also norm continuous on the inte-
rior of its effective domain.

JEL Codes: D10, D15, D50,E21
Keywords: Recursive Utility, Thompson Aggregators, Koopmans Equa-

tion, Koopmans operator, Order Continuity, Tarski-Kantorovich Fixed

∗This paper includes results appearing the first half of our 2017 working paper [11], “Recur-
sive Utility and Thompson Aggregators.”The working paper’s second half covers our concave
operator uniqueness theory. We thank the participants at the European Workshop in General
Equilibrium Theory (Univeristy of Glasgow, June 2016 and Paris School of Economics, Paris
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Point Theorem, Extremal Solutions, Least Fixed Point Theory, Scott
Topology, and Scott Continuous Koopmans operator.
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1 Introduction

Recursive utility functions defined for discrete time, deterministic, and infi-
nite horizon intertemporal choice problems have been studied intensively since
their introduction by Koopmans ([25], [26], and [27]). Koopmans, Diamond and
Williamson [28] extended that work. Koopmans showed a recursive utility func-
tion satisfied a particular functional equation, known today as the Koopmans
equation. This equation relates the utility function to an aggregator function in
two real variables, current consumption and future utility.
Lucas and Stokey [30] proposed taking the aggregator as the primitive con-

cept. Using that function, the Koopmans equation in the unknown utility func-
tion is defined and a unique solution (in an appropriate function space) is sought.
This solution recovers a unique recursive utility function representation of the
underlying preference relation defined on the commodity space. This existence
and uniqueness problem is solved by setting up a fixed point problem for the
Koopmans operator. It is a selfmap defined on the given space of potential util-
ity functions representing the underlying preference relation. They appeal to
Banach’s Contraction Mapping Principle. This yields yields the existence and
uniqueness of the Koopmans equation’s solution. In order to do so, the aggre-
gator function must be carefully restricted in order to prove the Koopmans op-
erator satisfies Blackwell’s suffi cient conditions for a contraction mapping. Gen-
eralizations of their approach are the subject of Boyd [14] and the monograph
by Becker and Boyd [9]. Their work lays out the recovery theory for the class
of Blackwell aggregators. More recently a literature on local contractions has
expanded the recovery theorems for unbounded Blackwell aggregators that goes
beyond the treatment in Becker and Boyd [9]. Rincón-Zapatero and Rodriguez-
Palmero ([38],[39]) initiated the local contraction theory with additional results
subsequently obtained by Martins-da-Rocha and Vailakis ([32],[33]).
The contraction mapping approach links to successive approximations as the

tool for finding the solution as the limit of iterations of the Koopmans operator.
The initial seed for this iterative procedure does not matter since any such
initial condition’s limit function is the same. When the initial seed is the zero
function and the aggregator is bounded from below, then it turns out that the
sequence of iterates approximates the fixed point from below. The calculation of
the iterates in this scenario is called the partial sum technique in the literature.
This approach is particularly fruitful because the Koopmans operator turns out
to be a monotone operator and this sequence of iterates is a monotone sequence.
The monotonicity of the Koopmans operator holds for aggregator classes

other than the Blackwell family.1 Le Van and Vailakis [29] explore partial sum
techniques for aggregators which might not be bounded from below. Their
Koopmans operator is monotone. They also require the aggregator satisfy a
Lipschitz condition in its second argument. They admit some cases where that

1Both Boyd [14] and Becker and Boyd [9] examine Blackwell aggregators that are not
bounded from below. Partial sum techniques are applicable, but the implementation is sen-
sitive to the structure of the underlying commodity space and the exclusion of consumption
sequences taking the utility value negative infinity.
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Lipschitz condition corresponds to no discounting, or even upcounting, in con-
trast to the usual discounted case. In the more common discounted case the
Lipschitz condition is the utility discount factor for future utility. This Lipschitz
constant’s magnitude lies between 0 and 1. They find existence and uniqueness
of the Koopmans operator’s fixed point with an additional assumption.2 Exis-
tence by a partial summation argument yields a particular utility function. As-
suming the Lipshchitz contsant reflects the discounting of future utilties, then
uniqueness holds provided a type of transversality condition obtains.
Marinacci and Montrucchio [34] introduced the new class of Thompson ag-

gregators to distinguish them from the Blackwell aggregators. The Koopmans
operator remains a monotone operator in this case. Thompson aggregators are
economically reasonable, but fail to satisfy some properties required by var-
ious forms of contraction theorems in proving the Koopmans equation has a
unique solution. The major issue concerns the Lipschitz condition required
for admission to the Blackwell class. The Lipschitz condition on future util-
ity fails altogether for one Thompson class.3 In another Thompson class, a
Lipschitz condition holds, but corresponds to upcounting, or possibly no dis-
counting of future utility.4 In both situations the contraction property breaks
down. New techniques must be introduced in order to associate utility functions
with Thompson aggregators.
They present a partial sum argument to prove there is a solution to the

Koopmans equation. They also analyze the solutions of an auxilliary difference
equation in utility values for each given consumption stream. This equation
is shown to have a unique solution (with a restricted domain for that func-
tion). That solution is continuous in the product topology. This observation
is useful for optimal growth problems. However, their product continuity proof
depends on their existence and uniqueness theorems as well as the construc-
tive derivation of the corresponding extremal fixed points.5 Our approach rests
on a direct analysis of the Koopmans operator’s properties and how those fea-
tures contribute to solving the Koopmans functional equation in a constructive
manner.
We reexamine Marinacci and Montrucchio’s existence result in our paper.

We provide a rigourous foundation for the partial sum technique’s success in
proving the Koopmans equation has at least one solution for a given Thomp-
son aggregator. The missing ingredient in their work concerns confirmation
the Koopmans operator is order continuous. Moreover, important qualitative
properties then follow from the partial sum approach.
The underlying monotone methods are not, by themself, suffi ciently power-

ful to conclude the Koopmans equation has a unique solution. Iteration of the

2See Le Van and Vailakis ([29], Theorem 1, property (b), p. 197 ).
3 In this case the interesting contribution by Le Van and Vailakis [29] does not apply.
4This case may overlap with the aggregator conditions in Le Van and Vailakis [29]. How-

ever, they also impose a strong condition, their assumption (W5), that might fail for a Thomp-
son aggregator.

5See Marinacci and Montrucchio’s [34] Theorem 5 and its corresponding proof. Bloise and
Vailakis [13] follow their reasoning based on the the existence of extremal fixed points. They
verify the product lower (upper) semicontinuity obtain for the least (greatest) fixed points.
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Koopmans operator starting from a non-zero function may produce a different
limit function than the one obtained by partial summation. The solution ob-
tained by partial summation is the Koopmans operator’s least (smallest) fixed
point. We claim it should be singled out as the equation’s principal solution.

Blackwell’s suffi cient condition for a contraction mapping assumes for recur-
sive utility applications the Koopmans operator is a monotone self map. This
property alone is suffi cient, in many examples, to prove the existence of a solu-
tion in the stated function space. Marinacci and Montrucchio [34] separate the
question of existence of a solution to the Koopmans equation from the determi-
nation of whether or not that solution is unique in the given space of possible
utility representations.6 Their existence proof turns on an application of the
well-known Tarski Fixed Point Theorem [41] that yields the Koopmans oper-
ator’s least and largest fixed points. These are the operator’s extremal fixed
points. Marinacci and Montrucchio [34] define an underlying space of possible
utility functions that is an order interval in a space of bounded functions form-
ing a Dedekind complete Riesz space. Their order interval is a complete lattice
in the partial order induced by this function space.
Tarski’s Theorem is nonconstructive. Marinacci and Montrucchio’s iterative

scheme “computing”the extremal fixed points by successive approximation may
fail to yield those solutions. The missing ingredient is the requirement that
the Koopmans operator enjoy an order continuity property. Our paper verifies
this property holds in their setting. Absent such a proof, the extremal fixed
points may only be found through transfinite induction. Although this is an
iterative procedure, it is hardly a constructive one. Hence, it is desirable to
prove a constructive version of their result in order to provide a foundation
for computing approximate solutions to the Koopmans equation derived from
Thompson aggregators. The notion of a constructive procedure as used here
means successive approximations indexed on the natural numbers.
We consider two forms of order continuity. The first concept is the Koop-

mans operator satisfy monotone sup/inf-preservation for monotone sequences
(nondecreasing/nonincreasing, respectively). The second is monotone nets sup-
preservation. The first is a purely order theoretic property dependent on order
properties of the commodity vector space and the vector space of possible utility
functions. The second property is topological as well as order theoretic. The
particular topology is known as the Scott (induced) topology. This structure
is important in the literature on foundations of computational theory. We ex-
posit its main features in Section 5.3. The topological theory only applies to
constructing the least fixed point belonging to the Koopmans operator on the
given order interval. By contrast, sup/inf-preservation for monotone sequences
constructs both the least and the largest fixed points, albeit starting from dis-
tinct initial seeds.
There are qualitative advantages to our constructive approach built on order

6They also use a contraction mapping with respect to the Thompson metric for their
uniqueness results. Martins-da-Rocha and Vailakis ([32],[33]) also study Thompson aggrega-
tors and obtain the existence of unique solutions using a combination of local contraction with
Thompson metric space structure.

5



continuity for the Koopmans operator. Marinacci and Montrucchio ([34], p.
1785) suggest this, but do not clearly defend it in their paper. They claim
([34], p. 1790) the largest one is sup norm upper semicontinuous as a real-
valued function defined on the underlying commodity space. Given their claimed
iterative procedure the least fixed point is likewise norm lower semicontinuous.
We verify these conditions by application of the Tarski-Kantorovich Fixed Point
Theorem which secures a foundation for constructing fixed points by iterative
schemes. The order continuity property of the Koopmans operator also implies
its set of fixed points is a countably chain complete partially ordered set. This
property is the constructive analog of Tarski’s conclusion that the set of fixed
points is a complete lattice in its own right in the induced partial order. The
countably chain complete property of the fixed point set is demonstrated for the
general form of the Tarski-Kantorovich Theorem in Balbus, Reffett, and Wózny
[6].
Section 2 offers a brief review of concepts on partially ordered sets, lattices,

and positive cones in real Banach spaces. Next we recall the Tarski-Kantorovich
Theorem and related concepts. The aggregator axioms and basic theory derived
from Marinacci and Montrucchio [34] follow in Section 3. The fourth section
includes our version of the Marinacci and Montrucchio existence theorem, which
we term a Recovery Theorem. We separate the uniqueness question from the
existence problem as each problem draws on different ways of combining order
theoretic and topological structures derived from the model’s formulation. In
particular, special properties of Banach spaces are important in our approach to
the uniqueness problem which are subsidiary in the existence theory. Moreover,
our existence arguments accommodate economies capable of sustained growth
whereas the uniqueness theory developed in our working paper only admits
capital accumulation models with bounded growth paths.7 We show by means of
an example that the Koopmans equation may have multiple solutions.8 Hence,
some additional restrictions beyond those suffi cient for existence are required
for an adequate uniqueness theory. The least fixed point for concave Thompson
aggregators is shown to exhibit concavity and weak continuity properties which
are not necessarily found in the largest fixed point. We identify in Section 5 the
least fixed point as the Koopmans operator’s principal solution or principal fixed
point following Kantorovich’s [22] usage. Topological order continuity is one of
the criteria we consider in our support for distinguishing the least and largest
fixed points. We conclude with some thoughts for future research and comments
on the necessity to extend our results to searching for continuous solutions to
the Koopmans equation with weaker topologies for the commodity space than
the norm topologies featured here. 9

7Our uniqueness theory [11] draws on the second part of our working paper on Thomp-
son aggregators. Our methods differ substantially from those in Marinacci and Montruc-
chio’s working paper [35] based on contraction mappings in function spaces endowed with the
Thompson metric.

8Bloise and Vailakis [13] also provide examples where uniqueness fails. Their first example
is instructive in so far as our example is, for a different aggregator, making the same point.
The extremal solutions might not agree when evaluated at the zero consumption sequence.

9Signigicant progress has been made on this point by Martins-da-Rocha and Vailakis ([32],
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2 Mathematical Preliminaries

2.1 Posets, Lattices, and the Tarski-Kantorovich Theorem

A set X is said to be partially ordered, or a poset, if it is nonempty and for
certain pairs (x, y) in X ×X there is a binary relation x ≤ y which is reflexive,
transitive, and antiysmmetric.10

A poset X is a lattice provided each pair of elements has a supremum
(sup, meet) and an infimum (inf, join). Standard lattice notation for sups
and infs is followed: sup {x, y} = x ∨ y and inf {x, y} = x ∧ y. A complete
lattice is a lattice in which each nonempty subset Y has a supremum

∨
Y and

an infimum
∧
Y . The element x ∈ Y is called greatest, or largest (smallest,

or least) in Y if and only if y ≤ x (x ≤ y) respectively, for all y ∈ Y . Note
that a complete lattice has a greatest element (top) and and a bottom element
(bottom). An order interval in X, denoted by 〈x, x̄〉 ⊆ X, is defined by
x ≤ x̄, x 6= x̄, and x ∈ 〈x, x̄〉 if and only if x ≤ x ≤ x̄. Clearly x is the least
element of the order interval while x̄ is the corresponding largest element.
Suppose that Y ⊆ X and letX be a poset. The set Y is called a chain (ofX)

if and only if Y is nonempty and for all x, y ∈ Y , one of the two conditions x ≤ y
or y ≤ x holds. If the chain is countable, then it is called a countable chain.
Let {xn}∞n=0 ⊂ X be a monotone sequence (either xn ≤ xn+1, or xn ≥ xn+1 for
each n). The monotone sequence {xn}∞n=0 is increasing (decreasing) when
xn ≤ xn+1 (xn ≥ xn+1) for each n. A monotone sequence is a countable chain.
The supremum and infimum of a monotone sequence are denoted in lattice
notation as follows: ∨

n

xn = sup
n
xn; and

∧
n

xn = inf
n
xn.

The subscript n in the meet and join notation is omitted when the index set
is clearly understood from the context. If, for every chain Y ⊆ X, we have
inf Y ≡

∧
Y ∈ X and supY ≡

∨
Y ∈ X, then X is said to be a chain

complete poset. If this condition obtains only for every countable chain Y ⊆
X, then X is said to be a countably chain complete poset. If Y has greatest
and smallest elements, then monotone sequences {xn} ⊆ Y are countably chain
complete posets in Y .
A function F : X → X is said to be a self-map on X. By FN (x), we

are denoting the N th−iteration of F with initial seed x. That is, FN (x) =
F
(
FN−1 (x)

)
for each natural number N and F 0 (x) ≡ x. This self-map is

said to be monotone whenever x, y ∈ X and x ≤ y, then F (x) ≤ F (y). Some
writers refer to a monotone self-map as an isotone self-map or an increasing
self-map. A point x∗ ∈ X with F (x∗) = x∗ is a fixed point of the self-map, F .
The set of all fixed points of this self-map is denoted fix (F ).

[33]) for Blackwell (and related) aggregators where local contraction arguments work well to
recover a unique solution to the Koopmans equation.
10Birkhoff [12]and Davey and Priesley [16] cover the basic properties of posets and lattices.
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The classical Tarski Fixed Point Theorem [41] asserts that a monotone self-
map on a complete lattice has a nonempty set of fixed points. Moreover, there is
a smallest and a largest fixed point. These are the extremal fixed points. The
set of all fixed points forms a complete lattice in the induced order (the partial
order inherited fromX). Successive approximations iterating the monotone self-
map by transfinite induction yields the largest fixed point with initial seed the
top element, and the smallest fixed point when the bottom element is the initial
seed.11 Iteration using transfinite induction is not a constructive procedure in
any sense of that term. The Tarski-Kantorovich Theorem is similar to Tarski’s
result, but combines a weaker property for the self-map’s domain with a stronger
order continuity condition imposed on the operator. That property implies the
operator is a monotone self-map.
We consider two distinct forms of order continuity. The first is defined en-

tirely in terms of the underlying order properties of our domain’s (and range’s)
function space. This approach, introduced below, implies the set of fixed points
is a countably chain complete subset of the operator’s domain. The successive
approximation procedure used in this result is constructive in so far as the itera-
tions are indexed on the natural numbers in contrast to the transfinite iterative
procedure underlying Tarski’s Theorem. The second order continuity idea is
topological and its recursive utility application is new.12 This is the notion of
continuity when the order interval of possible utility functions is endowed with
Scott’s induced topology. This topology’s definition and the development of
its properties as applied to the Koopmans operator are deferred to Section 5.3.
Scott’s topological structure yields a constructive foundation for the operator’s
least fixed point. We argue in Section 5 that this result reenforces the arguments
supporting the least fixed point as the operator equation’s principal solution.

Definition 1 A self-map F defined on a countably chain complete poset X
with the greatest element x̄ and smallest element x is monotonically sup-
preserving if for any increasing {xn} we have

F
(∨

xn
)

=
∨
F (xn),

and monotonically inf-preserving if for any decreasing {xn}, we have

F
(∧

xn
)

=
∧
F (xn).

F is said to be monotonically sup/inf-preserving if and only if it is both
mononically sup-preserving and monotonically inf-preserving.

11Cousot and Cousot [15] provide a so-called constructive proof without monotonic sup-inf
continuity. However, their argument employes transfinite induction. Echenique [17] simplifies
their proof while maintaining a tranfinite induction argument. Gierz ([18], p.20) sketches an
iterative least fixed point theorem that applies to a monotone self-map on complete lattice.
However, that proof also employs transfinite induction indexed by the ordinals.
12See Vassilakis [42] for economic and game theoretic applications of Scott domains and

Scott continuity (in terms of sequencs as opposed to nets).

8



Evidently, a monotonically sup (respectively, inf)-preserving self map on
the ordered space X must be an increasing self-map. The sup-inf preservation
property is a type of order continuity introduced in Kantrovich’s [22] seminal
article on monotone methods with successive approximations.13 In the case
of a monotonically increasing sequence the sup is regarded as the sequence’s
limit and continuity is taken to mean F (sup {xn}) = sup [{F (xn)}] where the
countable chain is denoted {xn}. Likewise for the inf of a decreasing sequence.
Some authors (e.g. Granas and Dugundji [19]) refer to order continuity as used
here by the term σ —order continuity to stress the restriction to countable
chains and also drop the monotonicity requirement for the sequences. The
conclusions of the Tarksi-Kantorovich Theorem based on iteration indexed on
the natural numbers can fail without order continuity. Davey and Priestley
([16], p.93) offer an elementary counterexample.
The Tarski-Kantorovich Fixed Point Theorem (TK FPT) as refined

by Balbus, Reffett and Wózny ([6], Theorem 7), states the following:14

Theorem 2 Suppose that X is a countably chain complete partially ordered set
with the greatest element, x̄, and the smallest element, x. Let F be a monotone
self-map on X.

1. If F is monotonically inf-preserving; then
∧
FN (x̄) is the greatest fixed

point of F , denoted x∞;

2. if F is monotonically sup-preserving; then
∨
FN (x) is the least fixed

point of F , denoted x∞.

3. fix(F ) is a nonempty countably chain complete poset in X.

The result that fix(F ) is a countably chain complete poset in X is due to
Balbus, Reffett, and Wózny [6]. It is the analog of Tarski’s result that fix(F )
is a complete lattice in the induced order. The Tarski-Kantorovich theorem
tells us that successive approximations (iteration of F indexed on the natural
numbers) initiated at either the smallest or greatest element of the set X pro-
duces the smallest or largest fixed point in the limit, respectively. Moreover,
it is clear that x∞ ≤ x∞. If x∗ is any other fixed point for F , and x ≤ x∗,
then x ≤ F (x) ≤ F (x∗) = x∗. Iteration produces the sequence

{
FN (x)

}∞
N=1

such that for each N , FN (x) ≤ x∞ ≤ x∗ and FN (x) ↗ F (x∞) = x∞ ≤ x∗.
Hence, the fixed point x∞ is the least fixed point (LFP). Likewise, x∞ is

13This notion of order continuity is an order theoretic concept for Riesz spaces. It is NOT
a topological idea, although it is related to continuity of F in the Scott topology [40], as
presented in Section 5.3. See Aliprantis and Border [1] for the Riesz space version of order
continuity based on convergent nets. Vulikh [44] develops many themes from Kantorovich’s
[22] article.
14Granas and Dugundji( [19], p. 26) name this result. The earliest published version is

found in Kantorovich [22]. Baranga [8] presents it as the “Kleene Fixed Point Theorem.”
Jachymski et al ([20], p. 249) argues it is equivalent to the TK FPT. Also, see Stoltenberg-
Hansen, et al ([43], p. 21) on Kleene’s Fixed Point Theorem. Kamihigashi et al [21] apply the
Kleene Fixed Point Theorem to dynamic programming.
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the greatest fixed point (GFP). The notation FN (x) ↗ F (x∞) indicates
that FN (x) approximates the LFP from below for each N . Likewise,
FN (x̄)↘ F (x∞) = x∞ says FN (x̄) approximates the GFP from above.

2.2 Positive Cones and Nonlinear Operators in Riesz Spaces

Let E denote a real vector space. The zero element in E is denoted by θ. A
nonempty subset P of E is said to be a cone if x ∈ P , then λx ∈ P for each
scalar λ ≥ 0.15 In particular this definition of a cone implies θ ∈ P . A cone
induces a partial order on the vectors belonging to E. A vector x is said to be
positive, written x ≥ θ, provided x ∈ P . The cone is then called the positive
cone of E and is denoted by E+ in the sequel. The standard partial relation
expressing x ≥ y whenever x, y ∈ E is defined by requiring x− y ∈ E+. Write
x > θ whenever x ≥ θ and x 6= θ. Likewise, x > y provided x ≥ y and x 6= y.

Our application requires the vector spaces are Riesz spaces where E is
equipped with the partial order derived from the cone E+. A Riesz space is
a partially ordered vector space that is also a lattice.16 For each element x ∈ E,
we define its positive part, x+, its negative part x−, and its absolute value,
|x|, by the formulas:

x+ = x ∨ θ, x− = x ∧ θ , and |x| = x ∨ (−x) .

An order interval in the Riesz space E is a set of the form 〈x, y〉 =
{z ∈ E : x ≤ z ≤ y}. A subset G of a Riesz space is order bounded from
above if there is a y ∈ E such that z ≤ y for each z ∈ G. The dual notion
that this subset is order bounded from below is defined similarly. A subset of
a Riesz space is order bounded if it is contained in an order interval. E is
order complete, or Dedekind complete, if every nonempty subset that is
order bounded from above has a supremum (and dually, every nonempty subset
that is order bounded from below has an infimum).
Suppose further that E is a real Banach space. The notation x >> θ means

x ∈ int(E+), where int (E+) denotes the norm interior of the cone E+. Of
course, this latter inequality is only meaningful when int (E+) 6= ∅ – a strong
topological restriction on the underlying Banach space. An arbitrary cone P
contained in E with nonempty interior in its norm topology is said to be a solid
cone. The positive cones turns out to be solid in our applications.
We consider an abstract nonlinear operator, denoted by A, that is positive on

E+. That is, it is a self-map: A : E+ → E+. We also write this as AE+ ⊆ E+.
The operator A is said to be monotone (isotone, increasing) on E+ if
x ≤ y, (x, y ∈ E+) implies Ax ≤ Ay. It is antitone whenever Ax ≥ Ay instead.
15This definition is not used by all authors (see Aliprantis and Tourky [4]). In our application

P is defined in terms of a given partial order on a function space. Additional properties that
might be imposed, such as P is norm closed, must be verified. Likewise, many cones are also
convex and this property may be verified in examples.
16Riesz spaces are also known as vector lattices. Consult Aliprantis and Border ([1], Chapter

8) for a thorough review of Riesz spaces. We follow their terminology. All Riesz spaces
appearing in our paper are Archimedean.
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The Koopmans operator is shown in Section 4 to be monotone whenever the
aggregator is also monotone in its arguments.
Given a nonlinear operator satisfying AE+ ⊆ E+ we are concerned with the

existence of fixed points as well as whether or not there is a unique solution in
the cone E+. The operator equation is Ax = x with x ∈ E+; a solution is
a fixed point of the operator, A. In some applications there may be a trivial
fixed point, θ. We are only interested in nontrivial fixed points x ∈ E+ with
x 6= θ. The Koopmans operator does not admit a trivial fixed point under our
assumptions.
The present paper addresses the existence of a solution in the cone E+. We

do this by showing the operator is an order contiuous self-map on a particular
order interval in that cone. Application of the TK FPT yields extremal fixed
points. Our uniqueness arguments are found in Becker and Rincón-Zapatero
[11].
All spaces in this paper are complete normed Riesz spaces. They are also

Banach lattices. That is, they are Riesz spaces which are Banach spaces whose
norms are also lattice norms.17 A norm ‖•‖ on a Riesz space is a lattice norm
provided for each point x and y, |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. Indeed, the spaces
on which the Koopmans operator acts turn out to be abstract M − spaces, or
AM −spaces with an order unit. AM −spaces are Banach lattices for which
‖x ∨ y‖ = max {‖x‖ , ‖y‖ for each x, y ∈ E+}. An AM − space E possesses an
order unit whenever there exists an element e ∈ E, e > θ, such that for each
x ∈ E there is a scalar λ > 0 satisfying |x| ≤ λe. If an AM − space has a unit,
then its lattice norm is defined for each x ∈ E by ‖x‖∞ = inf {λ > 0 : |x| ≤ λe}.
This norm is equivalent to the given norm on E. One advantage to this setup is
that the positive cone of an AM − space with unit is norm-closed, convex and
solid.18

3 Recursive Utility Theory for The Thompson
Aggregator Class

Our development of Marinacci and Montrucchio’s [34] Recovery Theorem begins
with the defining properties of Thompson aggregators. We introduce a minor
revision to their continuity axiom and emphasize the concavity of the aggrega-
tor in developing important additional properties of the principal solution to
the Koopmans equation. Our continuity condition is critical to verifying the
Koopmans operator is sup/inf preserving on its domain. This is the key step

17See Aliprantis and Border [1], Aliprantis and Burkinshaw [2], Meyer-Nieberg [36], Peressini
[37], and Vulikh [44] for details on Riesz spaces and Banach lattices.
18The positive cone of an AM-space has a nonempty norm interior provided it is an AM-

space with unit. See Aliprantis and Tourky ([4], p. 64) and Peressini ([37], p. 183). A Banach
lattice has an order unit if and only if that order unit is an interior point of the space’s
positive cone. In this case, the original sup norm and lattice norm topologies are equivalent.
See Meyer-Nieberg ([36], Corollary 1.2.14 for details).
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differentiating our work from Marinacci and Montrucchio [34].19

3.1 Defining Properties of Thomson Aggregators

The class of Thompson aggregators is delineated by the following four basic
assumptions.

Definition 3 W : R2
+ → R is said to be a Thompson aggregator if it satisfies

properties (T1) —(T4):

(T1) W ≥ 0, continuous, and monotone: (x, y) ≤ (x′, y′) implies W (x, y) ≤
W (x′, y′);

(T2) W (x, y) = y has at least one nonnegative solution for each x ≥ 0;

(T3) W (x, •) is concave at 0 for each x ≥ 0, that is

W (x, µy) ≥ µW (x, y) + (1− µ)W (x, 0)

for each µ ∈ [0, 1] and each (x, y) ∈ R2
+;

(T4) W (x, 0) > 0 for each x > 0.

Our definition of a Thompson aggregator builds in the assumption that it is
jointly continuous in (x, y) over R2

+. Marinacci and Montrucchio [34] prove that
their definition of a Thompson aggregator is jointly continuous with y restricted
to the open interval (0,∞). For technical reasons we require joint continuity as
well as continuity at y = 0 whatever value is assumed by x. They admit this
in their Recovery Theorem’s formal assumptions. We prefer to build this joint
continuity assumption directly into the definition of a Thompson aggregator
as the known examples satisfy it. This assumption is critical to the verifica-
tion that the Koopmans operator enjoys the order continuity property required
for the Tarski-Kantorovich Theorem’s application (and the corresponding proof
for Scott continuity found in Section 5.3). This condition also shows up in
our demonstration that there is an upper semicontinuous (lower semicontinu-
ous) extremal solution to the Koopmans equation using the Tarski-Kantorovich
Theorem. For these reasons our existence argument differs from the parallel
one given by Marinacci and Montrucchio built on the nonconstructive Tarski’s
Fixed Point Theorem [41]. In addition, they impose two additional properties
formalized here as assumptions (T5) and (T6).20 These conditions are essen-
tial ingredients to the proof of their recovery theorem. Both properties further
restrict the class of Thompson aggregators from which an underlying recursive
utility representation is possible.
The first additional condition imposed by Marinacci and Montrucchio is the

aggregator be γ− subhomogeneous.
19Marinacci and Montrucchio [35], p.2 appeal to Kantorovich’s [22] original fixed point

theorem for an existence result, but do not verify the required order continuity property
obtains for the Koopmans operator.
20Their limit condition is assumed in their results, but it is not listed as a separate axiom.
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(T5) W is γ− subhomogeneous – there is some γ > 0 such that:

W (µγx, µy) ≥ µW (x, y)

for each µ ∈ (0, 1] and each (x, y) ∈ R2
+.

The standard positive homogeneity of degree γ aggregator functional form
corresponds to the case where

W (µx, µy) = µγW (x, y)

for each µ > 0 and each (x, y) ∈ R2
+. If the defining inequality in (T5) is an

equality, then we say W is γ−homogeneous. We turn to the second property
required for the recovery theorem’s proof.

(T6) W satisfies the MM-Limit Condition: for a given α ≥ 1 and γ > 0
(from (T5)),

lim
t→∞

W (1, t)

t
< α−1/γ , (1)

with t > 0.

The parameter α in (T6) is the economy’s maximum possible consumption
growth factor in applications. Condition (T6) turns out to be an important joint
restriction on the preferences embodied in the aggregator function as well as on
the underlying commodity space, as might arise from properties of technologies
in production economies and/or endowments in exchange economies.21 Condi-
tion (1) may not obtain for an arbitrarily chosen member of the Thompson class
given the α parameter’s value. Joint restrictions of this type routinely appear
in treatments of the Blackwell aggregator class. What is certainly true under
assumptions (T1)− (T5) is that

L ≡ lim
y→∞

W (1, y)

y
(2)

exists as the ratio W (x, y) /y is decreasing in y and bounded below by zero as
formally demonstrated by Marinacci and Montrucchio [34]. But, this limit, L,
could be larger or smaller than α−1/γ . Certainly if L = 0, then (1) holds. We
list satisfaction of the MM Limit Condition as an explicit axiom that might, or
might not, obtain for a particular aggregator in order to emphasize that some
restrictions may apply on the underlying model’s deep preference and technology
parameters.

21Becker and Boyd [9] cover many examples of models with commodity spaces arising in
interemporal choice and consistent with our Thompson aggregator specification.
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3.2 Examples of Thompson Aggregators

There are two important sources for examples. The KDW aggregator (defined
below) has parameterizations placing it outside the Blackwell class and firmly in
the Thompson family. There are also many new examples based on the Constant
Elasticity of Substitution functional form for utility functions and production
functions commonly studied in microeconomic theory. Both the CES and KDW
examples illustrate the fine properties of Thompson aggregators that are also
required to meet (T5) and (T6).

3.2.1 CES Aggregators

Standard utility theory for two, or more, goods suggests the CES class as a po-
tential source for aggregators. Certainly, CES utility functions over two dated
consumption goods, one good corresponding to today’s consumption, and the
other to tomorrow’s consumption, are reasonable and widely applied in equilib-
rium theory. Indeed, these forms are often taken as the standard specifications!
The Fisherian inspired reinterpretation of the aggregator’s second argument as
future utility, is the economic basis for our interest in aggregator models! This
suggests introducing the corresponding class of CES aggregators defined by
the formula:

W (x, y) = (1− β)xρ + βyρ, for 0 < ρ ≤ 1. (3)

The parameter β is restricted – 0 < β < 1. Note that this family of func-
tions is positively homogeneous of degree ρ. The elasticity of substitution is
σ := 1/ (1− ρ) ; ρ 6= 1. The restriction 0 < ρ < 1 is required to insureW is both
a positively homogeneous and concave function in the variables (x, y) ∈ R2

+ with
W (x, y) ≥ 0 and W (0, 0) = 0. These aggregator functions are unbounded from
above. This is an important point for developing an appropriate recovery theo-
rem. Verification of property (T3) also follows from the factW is jointly concave
in (x, y), a fact that may NOT be true for an arbitrary Thompson aggregator.
This joint concavity condition plays a critical role in proving the smallest fixed
point is a concave function on the commodity space. This property is critical
for working with concave optimization techniques in optimal growth settings.
The other Thompson aggregator criteria are met when σ > 1. Assume this
restriction applies without further notice. The CES Thompson aggregators are
readily shown to satisfy (T5) and (T6). Note that (T5) holds for γ = 1.
Routine calculations show that for the CES aggregator W (x, •) does not

satisfy a Lipschitz condition in y ≥ 0 whenever 0 < ρ < 1. Just compute
W2 ≡ ∂W/∂y and note supy≥0W2 (x, y) = +∞. This aggregator specification
fails to exhibit the discounting property qualifying it for Blackwell aggregator
status.22

Marinacci and Montrucchio [34] introduce a four parameter family of aggre-

22Recall, this is the requirement 0 < supy≥0W2 (x, y) < 1 for differentiable aggregators
such as the examples developed here.
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gators which are variants of the CES class: set

W (x, y) =
(
xη + βyξ

)1/ρ
, (4)

where η, ξ, ρ, β > 0. Conditions (T1) and (T4) always hold. If ξ ≤ 1, then this
aggregator IS a Thompson aggregator in two cases:

(i) ξ < ρ, or

(ii) ξ = ρ and β < 1.

Property (T5) holds with γ = ξ/η, provided ξ ≤ ρ. In this case, the aggre-
gator is γ-subhomogeneous. Property (T3) follows provided ξ ≤ 1 and ξ ≤ ρ.
Notice that this aggregator is jointly concave provided η ≤ 1, ρ ≤ 1 and ξ < 1 as
well. For example for β = 1, η = 1, ρ = 11 and ξ = 1/2, then W (x, y) = x+

√
y

is Thompson.

3.2.2 KDW Aggregators

Koopmans, Diamond, and Williamson [28] introduced an interesting aggregator.
We refer to it as the KDW aggregator. It is defined by the formula

W (x, y) =
δ

d
ln
(
1 + axb + dy

)
where a, b, d, δ > 0. This aggregator satisfies (T5) with γ = b−1 and also satisfies
(T6).23

The KDW aggregator fails to satisfy the required Blackwell contraction con-
dition when δ ≥ 1. Recall this aggregator always satisfies a Lipschitz condition
in its second argument. Assumption (T5) holds for the KDW aggregator.24 The
KDW aggregator is an example of a γ−subhomogeneous (with γ = b−1) aggre-
gator that is NOT a homogeneous aggregator, like members in the CES family.
This example also illustrates why (T5) only requires γ > 0. IF the parameter
0 < b < 1 (so the KDW aggregator is concave in x for each y), then γ > 1
must hold for the aggregator to satisfy (T5). It is interesting to note that (T5)
applies to both current consumption and future utility arguments, whereas the
question of discounting or not is a property of the future utility argument alone
as well as parameter δ’s magnitude.
The KDW aggregator satisfies (T6). That is, the limit L = 0 in (1). Here,

just notice for x = 1,

W (1, y)

y
=

ln (1 + a+ dy)

y
→ 0 as y →∞

for any a, d ≥ 0. In this case, (T6) holds for any a ≥ 1.

23Becker and Rincón-Zapatero [11] includes detailed calculations supporting our claims.
24See Becker and Rincón-Zapatero [11] for the detailed calculations.
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4 Recovery Theory: Marinacci and Montruc-
chio’s Theorem

4.1 The Setup

Marinacci and Montrucchio [34] prove a Recovery Theorem for Thompson ag-
gregators whenever the underlying commodity space is the positive cone of a
principal ideal of the vector space of all real-valued sequences, s, with the usual
coordinatewise partial order and corresponding definitions of sup and inf. The
space s is a Dedekind complete Riesz space. Let C = {ct}∞t=1 denote an element
of s. Given a non-zero vector ω ∈ s+, the set

Aω = {C ∈ s : |C| ≤ λω for some scalar λ > 0}

defines a principal ideal in s. Use the notation 0 for the zero vector of this
commodity space and reserve θ for the real-valued zero function, θ (C) = 0,
defined on this space.The positive cone of Aω is:

A+
ω = {C ∈ Aω : C ≥ 0} .

This is the commodity space in the anticipated economic applications.25 It is
also a Dedekind complete Riesz space in its induced order viewed as a subset of
s.
We generally consider two cases of this commodity space on economic grounds:

the first occurs when ω = (1, 1, . . .), and Aω = `∞, the vector space of all
bounded real-valued sequences. The second case arises in the general exponen-
tial model where ω =

(
α, α2, . . .

)
for α ≥ 1. In the latter situation we recall

l∞ ⊂ Aω ⊂ s when α > 1. Our version of Marinacci’s and Montrucchio’s recov-
ery theory applies to exponential models where α ≥ 1. Thus, we always assume
the vector ω is strictly positive in each component. This implies ω is an order
unit in the space Aω. Furthermore, for each C ∈ Aω,

‖C‖∞ = inf {λ > 0 : |C| ≤ λω}

defines a lattice norm. Here, λ is a scalar; note |C| = {|ct|}∞t=1.
Following ideas drawn from Boyd [14], and further developed in Becker and

Boyd [9], weighted norms are introduced on this principal ideal. These norms
are deduced using strictly positive real-valued weight functions defined on Aω.
These weight functions are expressed in particular functional forms in aggrega-
tor models. These functions are specifically chosen to be well- adapted to the
application at hand. There are two distinct uses of weight functions. First, we
use the lattice norm inherited from the given principal ideal to define a weighted
norm on the set Aω that turns it into a Banach space in its own right. Second,
we introduce another weight function to form a space of bounded functions ac-
cording to this weight function. These functions are real-valued and defined on

25Becker and Boyd [9] illustrate a range of applications and present arguments for postu-
lating this positive cone as the commodity space.
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A+
ω , the positive cone of Aω. Think of these functions as possible trial utility

functions on the underlying commodity space. We seek a solution to the Koop-
mans operator equation in this function space. Marinacci and Montrucchio’s
weight function is chosen in this latter case in order to construct a particular
order interval of trial functions on which the solution to Koopmans’equation is
sought.
The α− norm, ‖•‖α, is defined for elements of Aω by the formula:

‖C‖α = sup
t≥1

∣∣∣ ct
αt

∣∣∣ . (5)

The normed vector space `∞ (α) is defined by the pair (Aω, ‖•‖α) where
α ≥ 1. We note that the sequences in this space are α− norm− bounded since
(|ct| /αt) ≤ λ < +∞. This is so as C ∈ Aω means there is some scalar λ > 0
such that |ct| ≤ λαt for each t. Hence, ‖C‖α ≤ λ < +∞ whenever C ∈ Aω.
This normed space is a vector lattice with the usual pointwise operations for
join and meet of two vectors. The positive cone of this space is denoted by
`+∞ (α), which is just A+

ω with the relative α−norm topology. The space `∞ (α)
is also a Banach lattice, so its positive cone is also α−norm closed. The lattice
norm is equivalent to the α−norm. This positive cone is also convex and has a
nonempty α− norm interior. The latter fact follows from the observation that
`∞ (α) is an AM-space with unit vector ω.
We turn to the second weight function. We need to define a set of possible,

or trial, real-valued utility functions with common domain `+∞ (α). These trial
utility functions must also be bounded in an appropriately defined norm. The
next weight function enters at this stage in order to define a suitable space of
“bounded”real-valued functions on the commodity space.
First, define a weight function, ϕγ following Marinacci and Montrucchio’s

[34] specification. For each C ∈ `+∞ (α) define ϕγ by the formula:

ϕγ (C) = (1 + ‖C‖α)
1/γ

. (6)

This weight function is uniformly continuous and convex on `+∞ (α) with respect
to the α − norm topology.26 Here, the parameter γ > 0 appearing in the
weight function is taken from (T5). This weight function as well the α− norm
entangle preference and technology parameters – the growth rate α is derived
from a model’s technology side while the parameter γ comes from the model’s
preference side.

Definition 4 A function U : `+∞ (α)→ R is ϕγ− bounded provided

‖U‖γ := sup
C∈`+∞(α)

|U (C)|
(1 + ‖C‖α)

1/γ
< +∞.

26The norm ‖•‖α is a uniformly continuous real-valued function defined on the set Aω . See
Aliprantis and Burkinshaw ([3], p. 218). Hence, the function ϕγ (C) is continuous as the

composition of the continuous functions 1 + ‖C‖α and φ (x) = x1/γ for x > 0.
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The set of all ϕγ− bounded real-valued functions with domain `+∞ (α) is denoted
by Fαγ .

The zero function, θ, is defined by θ (C) = 0 for each C. The zero function
is the origin in the vector space Fαγ . The space F

α
γ is a Dedekind complete Riesz

space. Clearly the weight function ϕγ satisfies ϕγ (θ) = 1 and ϕγ (C) ≥ 1 for
each C. Moreover,

∥∥ϕγ∥∥ = 1 as well and ϕγ is an order unit in F
α
γ .

The space

Cαγ :=
{
U ∈ Fαγ : U is ‖•‖α − continuous on `+∞ (α)

}
is a closed subspace of Fαγ . However, this space is not a complete lattice. The

corresponding positive cone, denoted
(
Cαγ
)+
, is a solid cone. Its weighted sup

norm interior is nonempty since the weight function ϕγ ∈
(
Cαγ
)+

is an order
unit. This property is important for the Recovery Theorem and the conclusion
that the greatest fixed point of the Koopmans operator is a sup norm upper
semicontinuous ϕγ − bounded real-valued function on `+∞ (α).
The aggregator approach to recovering recursive utility representations of an

underlying preference relation defined on the given commodity space is expressed
in terms of a functional equation. This equation takes the aggregator function
as the primitive concept. The Koopmans equation for recursive utility is

U (C) = W (c1, U (SC)) . (7)

Define the shift operator S : `+∞ (α) → `+∞ (α) according to the rule C =
{c1c2, c3, . . .} 7→ SC = {c2, c3, . . .}. A solution of this equation is a recursive
utility function representation of the preference relation. Of course, it all de-
pends on what is meant by a solution. Proving this functional equation has a
solution turns on recasting the problem as demonstrating a corresponding non-
linear operator, known as the Koopmans operator (denoted by TW ) has a
fixed point in the desired function space of possible solutions. The Koopmans
operator (defined below) is formally defined given a function U ∈

(
Fαγ
)+
by the

following equation for each C ∈ `+∞ (α) :

(TWU) (C) = W (c1, U (SC)) .

If TWU = U , then U is a solution to the Koopmans equation and defines a
recursive representation of the underlying preference relation.
The Koopmans operator enjoys a monotonicity property whenever the ag-

gregator is specified by a member of the Thompson aggregator class.

Lemma 5 If W is a Thompson aggregator, then TW :
(
Fαγ
)+ → (

Fαγ
)+

is a
monotone operator.

Proof. Suppose U,U ′ ∈
(
Fαγ
)+
and U ≥ U ′. Then TWU ≥ TWU ′ since for each

C ∈ `+∞ (α) we have TWU (C) = W (c1, U (SC)) ≥W (c1, U
′ (SC)) = TWU

′ (C)
as W is monotone increasing according to (T1).
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A fixed point of the Koopmans operator belongs to
(
Fαγ
)+
. It may fail to

possess any useful analytically or economically important properties. For ex-
ample, this fixed point may not be continuous, or even upper semicontinuous.
Hence, we seek at least one solution with mathematical properties appropriate
for analyzing an intertemporal choice model. Showing the model has an opti-
mal solution is the first step in this analysis. Some form of continuity for the
objective function is usually required to demonstrate an optimum exists.
Our objective is to show the Koopmans equation (7) has at least one econom-

ically interesting solution in the space
(
Fαγ
)+
using the monotonicity property of

the Koopmans operator when the aggregator belongs to the Thompson class, is
γ− subhomogeneous and satisfies the MM Limit Condition. By an economically
interesting solution we mean one that enjoys some form of continuity property.
In fact, we show there are extremal solutions. The smallest fixed point is a
lower semicontinuous function while the largest is an upper semicontinuous so-
lution in the space

(
Fαγ
)+
. The smallest and largest solutions define an order

interval of fixed points. This set, fix(TW ), is also a countably chain complete
subset of

(
Fαγ
)+
. The formal statement of these facts is the Marinacci and

Montrucchio [34] Recovery Theorem.

Theorem 6 (Marinacci and Montrucchio [34]). Suppose W is a Thompson
aggregator satisfying (T5) and (T6).

1. There is a ‖•‖α− upper semicontinuous function U∞ ∈
(
Fαγ
)+
such that

TWU
∞ = U∞.

2. There is a ‖•‖α− lower semicontinuous function U∞ ∈
(
Fαγ
)+
such that

TWU∞ = U∞.

3. U∞ is the least fixed point, U∞ is the greatest fixed point, and fix(TW ) is
a countably chain complete subset of

(
Fαγ
)+
.

Our proof of this Recovery Theorem is based on verifying the hypotheses
of the Tarski-Kantorovich Theorem are met on an appropriately chosen order
interval in the positive cone

(
Fαγ
)+
. This order interval is denoted

〈
θ, UT

〉
,

where θ is the zero function in
(
Fαγ
)+
and UT , called “U-top,”is defined below.

Of course we require UT ∈
(
Fαγ
)+
as well. The desired order interval has the

property TW θ ≥ θ and TWUT ≤ UT with TW :
〈
θ, UT

〉
→
〈
θ, UT

〉
. Evidently

TW θ ≥ θ since for each C ∈ `+∞ (α) we have TW θ (C) = W (c1, 0) ≥ 0 as
θ (SC) = 0.
The defining characteristics of UT are summarized based on the correspond-

ing analysis in Marinacci and Montrucchio ([34]). The difference between our
proofs is entirely concerned with the role played by Thompson criterion (T1) in
our argument. Modifying (T1) allows us to consider two distinct interpretations
of order continuity. Both turn out to support the rigorous foundation for suc-
cessive approximations to construct the extremal solutions. The order theoretic
approach is initiated in section 4.3, whereas the topological form is presented in
section 5.3.
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4.2 The Order Interval
〈
θ, UT

〉
The definition of UT is the first order of business in this subsection. We con-
sider a Thompson aggregator, W . We have already specified the order interval’s
bottom element is the zero-function, θ. Note that it is trivially a ‖•‖α− con-
tinuous function and also belongs to Cαγ (by (T1)). Marinacci and Montrucchio
[34] define the function UT as follows:

UT (C) = W (1, yα)ϕγ (C) .

Here, the element yα > 0 is the solution to W (1, yα) = α−1/γyα (shown to
exist in [34] using the additional properties (T5)− (T6)). It is straightforward
to verify UT ∈

(
Fαγ
)+
. Clearly UT ≥ θ and UT (C) > 0 whenever C 6= 0

and
∥∥UT∥∥

γ
= W (1, yα) < +∞. Furthermore, UT ∈

(
Cαγ
)+

follows from its

definition.27

The next result (again, see Marinacci and Montrucchio [34] for the proof) is
critical to showing the Koopmans operator is a self-map on the order interval〈
θ, UT

〉
⊂
(
Fαγ
)+
.

Proposition 7 If W is a Thompson aggregator satisfying (T5) and (T6), then
TWU

T ≤ UT .

4.3 Proof of the Marinacci-Montrucchio Recovery Theo-
rem

The formal proof of the Marinacci-Montrucchio Recovery Theorem depends on
verifying the Koopmans operator satisfies the Tarski-Kantorovich Fixed Point
Theorem’s hypotheses. Three key requirements must hold. First, the Koopmans
operator must be a self-map on

〈
θ, UT

〉
. Second, this order interval must be

a countably chain complete poset as a subset of (F γα )
+. Third, the Koopmans

operator must be monotonically sup/inf-preserving. This property rests on the
joint continuity assumption (T1).28 The monotonically sup/inf-preservation
property is the order continuity condition satisfied by the Koopmans operator
when only order properties of the underlying utility function and commodity
spaces are assumed. A successive approximation calculation (indexed on the
natural numbers) recovers at least one underlying utility function from the given
Thompson aggregator.29

Marinacci and Montrucchio’s [34] proof applies the Tarski’s Fixed Point The-
orem. This relies on the fact that the Koopmans operator is a monotone self-
map defined on a complete lattice given by the order interval

〈
θ, UT

〉
⊂
(
Fαγ
)+
.

27Of course, this is true because the underlying ‖•‖α − norm is a (uniformly) continuous
function from `+∞ (α) into R+.
28This is the subtle difference between our version of the recovery theorem and Marinacci’s

and Montrucchio’s theory.
29We comment below on the uniqueness question, but refer the reader to the literature and

our working paper [11] for details on this important point.
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It does NOT require any order continuity property for their demonstration.
However, their proof is, strictly speaking, nonconstructive. They claim to suc-
cessively approximate the extremal fixed points whose existence is guaranteed
by the Tarski Fixed Point Theorem. For example, they obtain a sequence of ap-
proximate utility functions via iteration on the natural numbers from the initial
seed, UT . Their claim that this sequence’s limit is the greatest solution does
not follow from the nonconstructive Tarski Theorem alone.
The TK FPT, by contrast, is constructive in the sense that successive ap-

proximation indexed on the natural numbers IS the underlying method. The
monotonically sup/inf-preserving ( order continuity) property is the additional
ingredient that allows us to know our procedure finds each extremal fixed point
by interation on the natural numbers. This, in turn, has ramifications for de-
ducing semicontinuity and other qualitative properties of these special fixed
points.
There is another important formal difference between the hypotheses of the

Tarski and Tarski-Kantrovich Theorems. The conditions on the domain X and
on the self-map F for the TK FPT result are weaker than those in Tarski’s
Theorem. The underling poset X is no longer assumed to be a complete lat-
tice. Our underlying vector space F γα is not a complete lattice. However, it is
both a Dedekind complete Riesz space and a Banach lattice. Hence, the order
interval

〈
θ, UT

〉
is a complete lattice in the induced order inherited from F γα . A

monotonic sequence in this order interval is automatically order bounded and
the sup or inf of such a sequence belongs to the order interval as well. Hence,
our order interval is a countably chain complete poset. The TK FPT is available
for a recovery proof provided the Koopmans operator is order continuous.

4.4 The Recovery Theorem’s Formal Proof

The application of the TK FPT to the Koopmans operator turns on verifying it
is monotonically sup/inf-preserving on the order interval

〈
θ, UT

〉
⊂ (F γα )

+ and
that order interval is also a countably chain complete set.

Proposition 8 SupposeW is a Thompson aggregator satisfying (T5) and (T6).
Then the associated Koopmans operator is a monotonically sup/inf-preserving
self-map on

〈
θ, UT

〉
.

Proof. Lemma 5 implies TW is a monotone operator. It is obvious that TW θ ≥ θ
and TWUT ≤ UT follows from Proposition 7.

Suppose
{
UN
}
≡
{
UN
}∞
N=1

is a sequence of ϕγ – bounded functions in

the order interval
〈
θ, UT

〉
⊂ (F γα )

+. Clearly both the sup and inf of this se-
quence exist as elements of

〈
θ, UT

〉
. This implies

{
UN
}
is a a countably chain

complete set in
〈
θ, UT

〉
provided it is a chain. Therefore,

〈
θ, UT

〉
is a countably

chain complete poset follows immediately as
{
UN
}
may be an arbitrarily chosen

countable chain in
〈
θ, UT

〉
.

The order interval
〈
θ, UT

〉
evidently contains a smallest and largest element.

Now suppose
{
UN
}
is any monotone increasing sequence of functions in

〈
θ, UT

〉
.
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By countable chain completeness, we find
∨
UN exists since each UN ≤ UT .

Hence, there is a function U =
∨
UN ∈

〈
θ, UT

〉
. In fact, UN↗U pointwise

on `+∞ (α). That is limN→∞ UN (C) = U (C) for each C ∈ `+∞ (α). Since W is
increasing in its second argument and continuous in its second argument, (T1)
implies for each C ∈ `+∞ (α) the following equalities:∨

[TWU
N ] (C) =

∨
W
(
c1, U

N (SC)
)
(by definition of TW )

= lim
N
W
(
c1, U

N (SC)
)
(by the monotone property of W in (T1) )

= W
(
c1, lim

N
UN (SC)

)
(by continuity of W in (T1) )

= W (c1, U (SC))

= TW

(∨
UN
)

(C) .

Hence, the Koopmans operator is monotonically sup-preserving. Apply the
analogous argument for monotone decreasing sequences

{
UN
}
, bounded below

by the zero function. This shows that TW is also monotonically inf-preserving.
Hence, the Koopmans operator is monotonically sup/inf-preserving.

This Proposition’s proof seemingly depends only on assumption (T1). How-
ever, the other properties come into play when verifying TW is a monotone self
map on the order interval

〈
θ, UT

〉
⊂ (F γα )

+.
Our take on the Marinacci-Montrucchio Recovery Theorem proof appears

below.
Proof. (1): Iterate TW using UT as the initial seed. That is, for each natural
number, N , let

UN = TWU
N−1 and U0 ≡ UT .

Clearly for each N ≥ 1,

θ ≤ UN ≤ UN−1 ≤ · · · ≤ U1 ≤ UT .

Hence, there is a function U∞ such that

U∞ =
∧
N

UN ∈
〈
θ, UT

〉
since

〈
θ, UT

〉
is a countably chain complete subset of (F γα )

+.
The function UT is ‖•‖α− continuous on `+∞ (α). Hence, since, by (T1),

W is a continuous function on R2
+, the function U

1 = TWU
T is also a ‖•‖α−

continuous function on `+∞ (α), and so on for each UN . Hence, U∞ is a ‖•‖α−
upper-semicontinuous real-valued function on `+∞ (α) as it is the pointwise in-
fimum of continuous functions. Proposition 8 shows that TW is monotonically
sup-inf-preserving. Therefore, TW satisfies the hypotheses of the TK FPT.
Hence, we may conclude by that Theorem that U∞ is a fixed point of the
Koopmans operator. That is,

TWU
∞ = U∞.
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The fixed point U∞ =
∧
N

TNWU
T is the largest fixed point of the Koopmans

operator in
〈
θ, UT

〉
.

(2): A parallel argument establishes that there is also a smallest fixed point
in
〈
θ, UT

〉
, denoted U∞ =

∨
N

TNW θ found by iterating TW with the initial seed, θ,

the zero function. Moreover, U∞ is a ‖•‖α− lower-semicontinuous real-valued
function on `+∞ (α).
(3): Let fix(TW ) denote the nonempty set of fixed points belonging to our

Koopmans operator in the order interval
〈
θ, UT

〉
. Balbus, et al (see [6], Theorem

7, p. 109) implies fix(TW ) is a countably chain complete poset in
〈
θ, UT

〉
.

Recall TNW θ ↗ U∞ says that each TNW θ approximates U∞ from below. The
partial sum technique encapsulates the observation that TNW θ approximates U∞
from below. This construction of U∞ receives special attention in Section 5.
The Recovery Theorem’s proof implies that IF U∞ = U∞ ≡ U∗, then

U∗ ∈ (F γα )
+ is the unique ‖•‖α− continuous ϕγ-bounded real-valued function

in the order interval
〈
θ, UT

〉
satisfying the Koopmans equation when W is a

Thompson aggregator. That is, in this situation U∗ ∈ (Cγα)+ as well! Unique-
ness of the solution in the larger space (F γα )

+ implies that the solution is also a
‖•‖α− continuous and ϕγ-bounded real-valued function! The interesting prob-
lem at this point is to provide conditions under which there is a unique ‖•‖α−
continuous and ϕγ-bounded solution to this aggregator’s Koopmans equation.
The uniqueness question is addressed in the literature.30 We point out some
subtle issues that must be addressed in setting up the uniqueness problem and
additionally motivate our interpretation (in Section 5) of the least fixed point
as the operator equation’s principal solution.
There are two issues. First, the extremal fixed points may never be identical

on the domain, `+∞ (α). This may obtain wheneverW (0, 0) = 0 holds, a common
property enjoyed by the CES and KDW aggregators. The following example
illustrates this point with a CES aggregator (3) assuming 0 < ρ < 1. Let
α = 1 and identify `+∞ and `+∞ (α). Note there is a unique y∗ > 0 such that
W (1, y∗) = y∗. Choose a natural number N . Compute TNW θ (C) and evaluate
this expression at C = 0 to obtain:

TNW θ (0) = W (0, 0) = 0.

Hence, passing to the limit we find U∞ (0) = 0. On the other hand, calculation
of U∞ (0) proceeds as follows by computing the iterates directly for this CES

30See our working paper [11] for our uniqueness approach via concave operator theory.
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aggregator:

T 0
WU

T (0) ≡ UT (0) = y∗ϕγ (0) = y∗ as ϕγ (0) = 1;

TWU
T (0) = W (0, y∗) = β (y∗)

ρ
;

T 2
WU

T (0) = W (0,W (0, y∗)) = β [β (y∗)
ρ
]
ρ

= β1+ρ (y∗)
ρ2

;

...

TNWU
T (0) = W (0,W (0,W (0, . . . ,W (0, y∗) = β(1+ρ+ρ2+···+ρN−1) (y∗)

ρN
.

Clearly ρN → 0 as N →∞ implies limN (y∗)
ρN

= 1 and

U∞ (0) = lim
N→∞

TNWU
T (0) = β( 1

1−ρ ) > 0,

and hence, U∞ (0) > U∞ (0) = 0. The extremal fixed points of the Koopmans
operator cannot agree on the entire domain, `+∞. The Koopmans operator,
defined for all consumption sequences in `+∞, is NOT uniquely determined by
the aggregator function! However, this does not mean we cannot say something
useful about the subset of consumption sequences where the extremal fixed
points deliver the same utility value. The papers by Marinacci and Montrucchio
([34],[35]), Bloise and Vailakis [13], and Becker and Rincón-Zapatero [11] prove
uniqueness theorems by further restricting the commodity space’s domain for
the utility functions. Each of the cited papers find uniqueness on subsets of the
commodity space that exlude consumption sequences with zero components. For
example, uniqueness typically obtains on the norm interior of the commodity
space’s positive cone.
The second issue concerns the interpretation of multiple solutions to the op-

erator equation when the extremal fixed points are unequal. Either one of the
extremal fixed points is a strictly increasing transformation of the other, or nei-
ther is a strictly increasing transformation of the other. In the first case, there
is no fundamental economic difference between the two utility representations.
If one is a utility representation of the underlying (and hidden) intertemporal
preference relation, then so is the other. Multiple solutions to the Koopmans
equation may not be an issue from an economic persective. On the other hand, if
the two distinct extremal solutions are NOT ordinally equivalent, then we know
spurious solutions exist. These solutions do not represent the underlying pref-
erence relation. In this case, we argue next the least fixed point is the operator
equation’s principal solution. It possesses economically important characteris-
tics (e.g. concavity) not necessarily provable for the greatest solution absent a
uniqueness theorem for the Koopmans equation.

5 The Principal Fixed Point of TWU = U .

The Recovery Theorem yields two interesting fixed points, U∞ and U∞. The
former is lower semicontinuous and the latter upper semicontinuous in the com-
modity space’s norm topology. These continuity properties were found from the
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pointwise convergence of TNW θ (C) ↗ U∞ (C) and TNWU
T (C) ↘ U∞ (C). The

latter fixed point’s upper semicontinuity property suggests a standard optimal
growth problem with this upper semicontinuous objective, U∞, has an optimal
program provided the feasible consumption sequences form a norm compact
subset of the commodity space. Unfortunately, this norm compactness property
does not generally hold for infinite horizon problems. Hence, the norm upper
semicontinuity property enjoyed by U∞ is not, in itself, particularly useful for
the purposes of optimal growth theory. The LFP, U∞, is norm lower semicon-
tinuous. However, it is norm continuous on the interior of its effective domain
in the commodity space when it is also a concave function. Our standard CES
and KDW aggregator examples imply U∞ is concave. This norm continuity
also has some implications for weak continuity and brings us a step closer to an
application in optimal growth theory since feasible paths are typically compact
in the commodity space’s product topology.

5.1 Approximation of U∞ From Below: A Computational
Perspective

The successive approximation of the function U∞ for a given consumption profile
C ∈ `+∞ (α) yields the following partial sum relations:

(TW θ) (C) = U1 (C) = W (c1, 0) ;(
T 2
W θ
)

(C) = U2 (C) = (TWU
1) (C) = W (c1,W (c2, 0)) ;

· · ·(
TNW θ

)
(C) = (TWU

N−1) (C) = W (c1,W (c2,W (c3, . . . ,W (cN , 0) · · · ))) ,

and so on. Since
(
TNW θ

)
(C)↗ U∞ (C), we find

0 = θ (C) ≤ U1 (C) ≤ U2 (C) ≤ · · · ≤ U∞ (C) .

Rewriting this in terms of the aggregator, we have the nondecreasing sequences
of “finite horizon”approximations of the infinite horizon value U∞ (C) in terms
of the underlying aggregator:

0 ≤W (c1, 0) ≤W (c1W (c2, 0)) ≤ · · · ≤ U∞ (C) .

That is, successive approximations starting from the zero function θ provides an
approximation, from below, for the value U∞ (C). Each approximation incor-
porates the consumption of a finite number of consecutive periods. These initial
segments of the consumption sequence may be interpreted as consumption over
a finite horizon of length N . That is, more consumption periods are incorpo-
rated in the N th approximation than its predecessors. In this sense, there is
more information in W (c1W (c2, 0)) about U∞ (C) than provided by W (c 1, 0),
and so on. This theoretical computation of U∞ (C) starts with no informa-
tion about U∞ (C) as θ (C) = 0 for each C. This interpretation is consistent
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with the computer science literature on theoretical computation and successive
approximation.31

Our first reason for proposing U∞ as the principal fixed point is that it is the
pointwise limit of an increasing sequence of functions which are strictly smaller
than it. Information about the value U∞ (C) improves with each iteration. And,
each step in the iteration requires knowledge of a finite number of coordinates of
the given consumption sequence and the form of the aggregator function only.
Iteration from the top element fails on this issue as the function itself needs
to input the exact value ‖C‖α, which depends on knowing the entire infinite
horizon consumption stream. Iteration from UT also requires calculation of
the particular value of the aggregator, W (1, yα), in addition to inputing the
aggregator’s functional form! It would seem more information must be secured
to carry through the iteration initiated at UT than at θ. Calculating the value
U∞ (C), or a “good approximation of that value,” requires a finite number of
consecutive consumption dates. Calculating U∞ (C), or a “good approximation
of that value,”requires inputing the complete sequence, C. From a theoretical
computational perspective the principal fixed point approximations of U∞ (C)
offer some informational advantages over the succession of approximations to
U∞ (C).

5.2 The Principal Fixed Point is a Monotone Concave
Function

Lemma 9 U∞ is a monotone function: C ≥ C ′ implies U∞ (C) ≥ U∞ (C ′).

Proof. Thompson property (T1) implies that each term of the partial sum,
UN+1 = TNW θ is a monotone function of the consumption sequence. Fix con-
sumption sequences C ≥ C ′. That is, ct ≥ c

′

t for each t. Then W (c 1, 0) ≥
W
(
c
′

1, 0
)
. Likewise,

W (c1W (c2, 0)) ≥W
(
c
′

1W
(
c
′

2, 0
))

,

and so on for the successive indices N . It readily follows that the limiting
function, U∞ is monotone.
A similar argument shows that U∞ is also a monotone function of C.

Lemma 10 Suppose W is a jointly concave and increasing Thompson aggre-
gator in (x, y). If U is a concave function in (Fγα)

+, then TWU is a concave
function in (Fγα)

+.

Proof. Suppose U ∈ (Fγα)
+ is a concave function. Clearly TWU ∈ (Fγα)

+. Let
C0 6= C1 be two consumption sequences in in `+∞ (α) and let λ ∈ [0, 1]. Then

TWU(λC1 + (1− λ)C0) = W (λc01 + (1− λ)c11, U(S(λC1 + (1− λ)C0)).

31See Stoletenberg-Hansen, et al ([43], p.23).
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Note that S(λC1 + (1− λ)C0) = λSC1 + (1− λ)SC0 and U concave yield

U(λSC1 + (1− λ)SC0) ≥ λU(SC1) + (1− λ)U(SC0).

Since W is increasing in both arguments

W (λc11+(1−λ)c01, U(S(λC1+(1−λ)C0)) ≥W (λc11+(1−λ)c01, λU(SC1)+(1−λ)U(SC0)).

Finally, since W is also jointly concave and

(λc11+(1−λ)c01, λU(SC1)+(1−λ)U(SC0)) = λ(c11, U(SC1))+(1−λ)(c01, U(SC0)),

is a convex combination of
(
c11, U

(
SC1

))
and

(
c01, U

(
SC0

))
, we have

W (λc11+(1−λ)c01, U(S(λC1+(1−λ)C0)) ≥ λW (c11, U(SC1))+(1−λ)W (c01, U(SC0)).

Thus
TWU(λC1 + (1− λ)C0) ≥ λTWU(C1) + (1− λ)TWU(C0),

and TWU ∈ (Fγα)
+ is a concave function.

Evidently θ is a concave function. The Lemma implies TW θ = U1 is also
concave. Iterate the Koopmans operator with initial seed θ to obtain the se-
quence

{
UN
}∞
N=1

, where UN = TWU
N−1 and U0 ≡ θ. The Lemma implies for

a given natural number N that UN = TWU
N−1 is concave whenever UN−1 is

concave. By mathematical induction UN+1 is concave provided UN is concave.
Therefore, UN is a concave function for each N . The next result proves that
U∞ inherits this concavity property. The argument turns entirely on the point-
wise convergence of the iterates UN (C) to U∞ (C) that is a by-product of the
Recovery Theorem’s proof.

Proposition 11 Suppose W is a jointly concave and an increasing Thompson
aggregator in (x, y). The principal fixed point U∞ is a real-valued monotone
concave function.

Proof. For each natural number N concavity of UN implies

UN (λC1 + (1− λ)C0) ≥ λUN (C1) + (1− λ)UN (C0),

where C0 6= C1 are two consumption sequences in `+∞ (α) and λ ∈ [0, 1]. Let
Cλ = λC1 + (1− λ)C0 denote this convex combination. As UN (C)↗ U∞ (C)
holds for each C, it holds, in particular, when C = C1, C2 and Cλ, respectively.
Taking the limits in the previous inequality implies for U∞ that:

U∞(λC1 + (1− λ)C0) ≥ λU∞(C1) + (1− λ)U∞(C0).

This proves U∞ is concave.
The concavity of U∞ has implications for proving that function is continuous

in the norm topology of `+∞ (α), at least on the norm-interior of its effective
domain. The effective domain of U∞ is the set:{

C ∈ `+∞ (α) : U∞ (C) > −∞
}
.
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The effective domain of the nonnegative concave function U∞ is `+∞ (α). U∞
is also a proper function on `+∞ (α). First, its effective domain is nonempty.
Second, U∞ is not identically +∞ since it is a ϕγ – bounded function on `+∞ (α).
In particular, it is proper on the set `+∞ (α) since it takes a finite value at each
C ∈ `+∞ (α) with ‖C‖α < +∞.
The LFP, U∞, is norm continuous on the interior of its effective domain,

`++
∞ (α). By U∞ concave, it suffi ces to show that U∞ is bounded below by some
constant, µ, on a neighborhood of some point C∗ ∈ `++

∞ (α), the norm interior
of the positive cone `+∞ (α).32 But this trivially follows from the fact U∞ ≥ θ!
The point ω =

(
α, α2, . . .

)
for some α ≥ 1 is an order unit in this positive cone

and it is also a norm interior point, that is ω ∈ `++
∞ (α). Define the α-norm

open set
B =

{
C ∈ `+∞ (α) : ‖C − ω‖α < ε

}
,

where ε > 0 is chosen so that B is contained in the positive cone’s norm interior.

Lemma 12 1. U∞ is a concave function that is bounded below on B.
2. U∞ is a norm continuous function on the interior of its effective domain,

`++
∞ (α).

Proof. The proof follows by verifying the conditions of Theorem 5.43 for convex
functions in Aliprantis and Border ([1], p.188). Just observe the convex function
−U∞ is bounded from above by 0 for each C ∈ B. The second property follows
at once.
The continuity property deduced from concavity is not, by itself, suffi cient

to prove an optimum exists in an optimal growth model when the consumption
possibility set is contained in the positive cone `+∞ (α). We still need to weaken
the topology and show that U∞ is weakly upper semicontinuous in the same
topology for which feasible consumption sequences form a compact set.
However, this result does get us partway to verifying weak upper semicon-

tinuity obtains for this utility function. For example, consider the case where
α = 1. That is, let `+∞ = `+∞ (1). The norm-dual of `∞ is the set ba of bounded-
additive set functions on the positive integers. Since U∞ is concave it is norm
continuous on the interior of its effective domain by the previous lemma.
Recall the hypograph of U∞ is the set of all nonnegative real-valued bounded

sequences C and real numbers r such that r ≤ U∞ (C). Since U∞ is a concave
function, then the hypograph is a convex subset of `+∞ × R. See Aliprantis and
Border ([1]. p. 254). Norm continuity on each closed subset of `++

∞ implies that
there are corresponding closed convex subsets contained in the hypograph.
Now consider the weak topology of the dual pair (`∞, ba). Each nonempty

norm-closed convex set in `∞ is also a nonempty weakly closed convex set (c.f.
Aliprantis and Border ([1], Theorem 5.98, p. 214). Now consider the hypo-
graph of U∞ where the domain of U∞ is further restricted to a nonempty closed
convex subset of `++

∞ where it is also norm continuous. It follows that U∞
is also weakly upper semicontinuous on that restricted domain! Indeed, it is

32See Aliprantis and Border ([1], Theorems 5.42 and 5.43, p. 188).
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upper semicontinuous in the relative product topology (or, topology of coordi-
natewise convergence) on that domain since each coordinate linear functional
pt = (0, 0, . . . , 1, 0, . . .) ∈ `1 ⊂ ba.
This is not, by itself, a final answer to proving U∞ is upper semicontinu-

ous in a topology on `+∞ suffi ciently weak to insure compactness of the feasible
consumption sequences as well. Indeed, this result only resolves weak upper
semicontinuity on a proper subset of this utility function’s effective domain.33

However, this argument indicates this problem may have a positive resolution
using the product topology by further exploiting the full implications that U∞
is concave. Technology based conditions might also prove useful in combina-
tion with the principal solution’s concavity property in obtaining a weak upper
semicontinuity property on the feasible consumption alternatives.
The weak upper semicontinuity property of U∞ just established does not

extend to U∞. The induction argument proving U∞ is concave fails. The initial
iterate, TWUT , is not a concave function. The weight function ϕγ is a convex
function in C since the α−norm is a convex function. Hence, the top function,
UT , is a convex function of C. This does NOT exclude the possibility that
U∞ is concave! Indeed, when the Koopmans equation has a unique solution in
the order interval

〈
θ, UT

〉
it will turn out that U∞ is concave, at least on the

interior of its domain, whenever U∞ is also concave.
Iteration of the Koopmans operator starting from θ yields a product lower

semicontinuous limit function U .34 This same approach fails when applied to
iteration of the Koopmans operator from UT . The initial seed function, UT , is
not a product continuous function. The weight function’s ‖•‖α−norm continu-
ity appearing in UT depends directly on the continuity of the ‖•‖α − norm on
`+∞ (α). To see the problem, just let α = 1 and once again set `+∞ = `+∞ (1). Iden-
tify ‖•‖ and ‖•‖1. Suppose the corresponding ‖•‖−norm is a continuous func-
tion in the product topology. Let C1 = {1, 0, 0, 0, . . .}, C2 = {0, 1, 0, 0, . . .}, and
so on. Each sequence belongs to `+∞ and

∥∥CN∥∥ = 1 for each N . But
{
CN
}
→ 0

in the product topology (equivalent to the topology of coordinatewise conver-
gence). Hence, if ‖•‖ is a continuous function in this topology, limN

∥∥CN∥∥ = 0

as well. This contradicts the property
∥∥CN∥∥ = 1 for each N . Hence, ‖•‖ is not

continuous in the product topology.35 We note the sup norm is weakly lower
semicontinuous on `+∞ (α).36 Hence, TWUT is weakly lower semincontinuous as
well. given W is continuous (by (T1)). However, this observation does not help
resolve the issue of proving U∞ is weakly upper semicontinuous.
Marinacci and Montrocchio ([34], p. 1801) propose a different, qualitative,

solution to this weak continuity problem. They recall Boyd’s Lemma ([14],

33Bloise and Vailakis [13] show the GFP is product upper semicontinous on weakly compact
order intervals in the positive cone of `∞. This result is based on a study of solutons to the
auxillary difference equation, which in turn depends on the constructive existence of the GFP.
34W is jointly continuous by (T1). and TW θ = U1 is is product continuous. By induction,

so is each iterate UN . The pointwise limit function U∞ is also product lower semicontinuous.
35See Majumdar [31] for a closely related discussion about why compactness of feasible sets

fails in the one-sector growth model when the commodity space `∞ is given its sup norm
topology.
36See Aliprantis and Border ([1], Lemma 6.22, p. 235).
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Lemma 2), that the relative product topology and the β − norm topology on
the commodity space `+∞ (β) coincides with the relative product topology on
each α − bounded subset of `+∞ (α) whenever β > α ≥ 1. They go on to argue
that the smallest and largest fixed points coincide on a particular proper subset
of `+∞ (α) (relevant to their uniqueness theory) and hence this unique solution
(on the particular subset) must be continuous in the relative product topology
provided β is suffi ciently close to α. This resolution of the weak continuity
problem is useful (and was exploited by Boyd [14] and Becker and Boyd [9] for
the Blackwell aggregator family). Their proposed resolution also turns on the
successive approximations and pointwise convergence properties underlying the
construction of the extremal fixed points. Indeed, the uniqueness of the solution
in
〈
θ, UT

〉
is critical for their argument to be valid. Hence, this approach in

the Thompson theory may need further development for applications in optimal
growth theory.

5.3 Scott Continuity of TW and Construction of Its Prin-
cipal Fixed Point

The existence of the Koopmans operator’s existence of the LFP, U∞, only re-
quired monotonic sup-preservation. The successive approximation argument
concludes the nondecreasing sequence {TnW θ} converges pointwise to U∞. That
is, for each C = {ct}∞t=1, the “partial sums” T

N
W θ (C)↗ U∞ (c1, c2, c3, . . .). The

underlying order continuity property is a Riesz space concept. It is purely order
theoretic; no topological meaning is associated to a convergent sequence (or,
more generally, net).37

The TK FPT least fixed point construction may be recast in terms of the
lower limit of the monotone sequence

{
TNW θ

}
and a property of the Koopmans

operator that is analogous to lower semicontinuity. These twin notions are
implicit in the monotonic sup-preservation property. First, we rewrite

{
TNW θ

}
↗

U∞ as

lim inf
N

(
TNW θ

)
≡ sup

N

(
inf
K≥N

TKW θ

)
=
∨

N
TNW θ ≡ U∞.

Then monotonic sup-preservation is the same as stating:

TW

(
lim inf

N

(
TNW θ

))
= lim inf

N

(
TNW θ

)
,

or TW (∨NTNW θ) = TW (U∞) = U∞. Abstract these conditions to apply to nets
and to describe a topological continuity idea. The possibility for unifying order
and topological properties for the Koopmans operator falls into place.

37Vulikh [44] covers varies forms of order convergence in Riesz spaces based on nets and
sequences. Kantorovich’s [22] fundamental paper defines the sequential version of order con-
vergence. He defines a sequence’s upper and lower limit first. Both are well-defined in a
Dedeind complete Riesz space based on its order structure alone. A sequence has an order
limit if its upper and lower limits agree. Order continuous functions are defined in terms of
these upper and lower limits.
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Scott [40] proposes a topology for a complete lattice by abstracting the
notions of a lower limit for sequences and lower semicontinuity for functions.38

His induced topology permits consideration of continuous self-maps on the
given complete lattice. The literature following Scott’s fundamental paper refers
to the induced topology as the Scott topology. Assigning the Scott topology to〈
θ, UT

〉
turns that set into a T0 − space: given the points U and V in

〈
θ, UT

〉
,

there is a Scott open set containing one and not the other point. The space〈
θ, UT

〉
endowed with its Scott topology is neither a T1 space nor a T2 space.

Convergent nets may have more than one limit!
There are two ways to define the Scott topology. One specifies the open

sets directly. The other defines the class of convergent nets and their limits.
Sequences hardly suffi ce in this setup. Both approaches are found in the lit-
erature. We specify the net convergence class.39 It is an analytical approach
that directly links to our proof that the Koopmans operator is Scott continuous.
Both descriptions of Scott’s topology are presented in Gierz et al [18].40 Scott’s
[40] original paper also develops both approaches. We closely follow Gierz et
al’s net convergence class presentation.
This topolgical structure, adapted to our setting, is presented below. Next,

we prove the Koopmans operator is a Scott continuous self-map on the order
interval

〈
θ, UT

〉
. This order interval’s complete lattice structure plays an in-

tegral role in this demonstration. The monotonic sequence {Tnwθ} once again
constructs the principal fixed point, U∞, by successive approximations. This
is a surprising conclusion given that we must use nets to describe the topology
since sequences do not suffi ce. However, monotonic sequences are particular
monotonic nets where the natural numbers form the directed index set. Scott
introduced his topology to further the development of computational theory.
A similar construction of the largest fixed point, U∞, is not available using
the Scott topological structure! Scott’s topological setup abstracts properties
enjoyed by real-valued lower semicontinuus functions defined on a metric space
and may differ from related properties characteristic of upper semicontinuous
functions. For this reason, we argue that the Scott continuity property of the
Koopmans operator, and the subsequent fixed point theory (closely associated
with the TK FPT), form another rationale for calling the smallest fixed point,
U∞, the principal solution to the operator equation, TWU = U , for U ∈

〈
θ, UT

〉
.

A net u : Λ→
〈
θ, UT

〉
is a mapping from a directed set, Λ, to the complete

lattice
〈
θ, UT

〉
. Denote the net by setting u (λ) = Uλ ∈

〈
θ, UT

〉
. The set Λ

(with generic elements λ, µ, and ν) is the net’s index set. This set is directed
by a binary relation ≥ which is reflexive and transitive. Moreover, if λ and µ
are elements of Λ, then there is a ν ∈ Λ such that ν ≥ λ and ν ≥ µ. Write
this net as

(
Uλ
)
λ∈Λ

or, when the meaning is clear, as
(
Uλ
)
. We say that

(
Uλ
)

38Scott’s formal constructions apply to a broader class of partially ordered sets. We stick
with the stronger complete lattice setup that fits our theoretical model.
39Kelly ([23], [24]) shows how to specify a topology by describing convergent nets on the

given space. This amounts to defining a Kuratowski closure operator.
40See Gierz, et al ([18], pp. 131-138) for detailed motivation, formal definitions of Scott

open sets, and the formal development of his topology via net convergence.
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is a net in
〈
θ, UT

〉
. This net is monotonic (isotonic) when µ ≥ λ implies

Uµ ≥ Uλ. Monotone nets play an important role in Scott’s topological theory.
For any net

(
Uλ
)
in
〈
θ, UT

〉
define the net’s lower limit, or lim inf, by

lim inf
λ

(
Uλ
)

= sup
λ

[
inf
µ≥λ

Uµ
]
. (8)

Scott [40] refers to the lower limit of the net as its principal limit. We adopt
this terminology as well and justify it below. Note that if

(
Uλ
)
is a monotonic

net in
〈
θ, UT

〉
, then lim infλ

(
Uλ
)

= supλ
(
Uλ
)
. This follows as the sup exists in〈

θ, UT
〉
since this order interval is a complete lattice in its induced order inher-

ited from the underlying space of possible utility functions. Clearly monotonicity
of
(
Uλ
)
imples infµ≥λ U

µ = Uλ exists as well for each λ ∈ Λ.
The Scott topology is defined in terms of the definition of the class of Scott

convergent nets. Let S denote the class of those pairs
((
Uλ
)
, U
)
such that

U ≤ lim inf
λ

(
Uλ
)
. (9)

For such a pair we say that U is an S− limit of the net
(
Uλ
)
and we denote

this limit (
Uλ
) S→ U . (10)

The convergence conditions and inequality (9) hold pointwise for each C ∈
`+∞ (α). That is, (9) is equivalent to the pointwise condition:

U (C) ≤ lim inf
λ

(
Uλ (C)

)
= sup

λ

[
inf
µ≥λ

Uµ (C)

]
. (11)

The monotonic net
(
Uλ
)
has the property

(
Uλ
) S→ Uµ for each µ ∈ Λ.

That is, each Uµ is an S− limit of the net
(
Uλ
)
! The reason is simple: each

Uµ ≤ supλ
(
Uλ
)
; hence Uµ ≤ lim infλ

(
Uλ
)
. This shows a net’s S− limit may

not be unique. For an arbitrary net in
〈
θ, UT

〉
we refer to the particular limit

function, lim infλ
(
Uλ
)
, as the net’s principal limit to distinguish it from other

points in
〈
θ, UT

〉
which are also limits for this net.

This description of net convergence defines the Scott topology on the com-
plete lattice

〈
θ, UT

〉
. The Koopmans operator is Scott continuous if and only

if for each
(
Uλ
) S→ U , the corresponding values

(
TWU

λ
) S→ TWU . That is, the

abstract lower semicontinuity property holds (pointwise):

(TWU) ≤ lim inf
λ

(
TWU

λ
)

(12)

whenever
(
Uλ
) S→ U . Writing out the pointwise version of the above inequality

in terms of the underlying Thompson aggregator yields the condition

W (c1, U (SC)) ≤ lim inf
λ

[
W
(
c1, U

λ (SC)
)]
. (13)
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Proposition 13 (Gierz et al ([18], Proposition II-2.1, p. 157). The Koop-
mans operator is a Scott continuous self-map on

〈
θ, UT

〉
if and only if it is

an order-preserving (monotone) operator and for any net
(
Uλ
)
in
〈
θ, UT

〉
such

that lim infλ
(
Uλ
)
and lim infλ

(
TWU

λ
)
both exist,

TW

(
lim inf

λ
Uλ
)
≤ lim inf

λ

(
TW

(
Uλ
))

(14)

Inequality (14) expresses the abstract lower semicontinuity inequality (12)
for the case where U is the net’s principal limit. Note that lim infλ

(
Uλ
)
and

lim infλ
(
TWU

λ
)
both exist since

〈
θ, UT

〉
is a complete lattice in its induced

order. The nets appearing in this proposition may, or may not, be monotonic.
The pointwise analog of (14) expressed in terms of the Thompson aggregator is

W

(
c1, lim inf

λ
Uλ (SC)

)
≤ lim inf

λ
W
(
c1, U

λ (SC)
)
, (15)

where

TW

(
lim inf

λ
Uλ (C)

)
= W

(
c1, lim inf

λ
Uλ (SC)

)
, and

lim inf
λ

(
TW

(
Uλ (C)

))
= lim inf

λ
W
(
c1, U

λ (SC)
)
.

Since the Koopmans operator is known to be a monotone operator it suffi ces
to verify (14) obtains for an arbitrary convergent net of functions in

〈
θ, UT

〉
in

order to conclude the Koopmans operator is Scott continuous.

Observe that if
(
Uλ
) S→ U , then U ≤ lim infλ U

λ, so TW monotone implies

TWU ≤ TW
(

lim inf
λ
Uλ
)
.

Hence, if (14) also holds, then the previous inequality yields

TWU ≤ TW
(

lim inf
λ
Uλ
)
≤ lim inf

λ

(
TW

(
Uλ
))
,

which is the abstract lower semicontinuity inequality (12) and TW is Scott con-
tinuous.

Proposition 14 (Scott Continuity Proposition) TW is a Scott continuous self-
map on

〈
θ, UT

〉
.

Proof. We prove the pointwise inequality (15) obtains. Fix a consumption
sequence C ∈ `+∞ (α). Note that Thompson aggregator property (T1) requires
the aggregator function, W (x, y), to be jointly continuous on R2

+. In particu-
lar, given c1 ≥ 0, the function W (c1, •) is a lower semicontinuous function on
R∗+ = [0,+∞], the nonnegative extended real numbers endowed with its usual
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topology. Now consider
(
Uλ (C)

)
and

(
Uλ (SC)

)
as defining nets in R∗+. In

fact, the values taken by the nets for each index are nonnegative real numbers
as each Uλ is ϕγ − bounded. Indeed, each Uλ ≤ UT implies

∥∥Uλ∥∥
γ
≤
∥∥UT∥∥

γ
.

This lower semicontinuity property for the aggregator implies:

W

(
c1, lim inf

λ
Uλ (SC)

)
≤ lim inf

λ
W
(
c1, U

λ (SC)
)
,

which is (15). Therefore (14) holds and TW is Scott continuous by the previous
Proposition.

Gierz et al ([18], p. 157) show that Scott continuity is also equivalent to sup
preservation for directed sets (which can be taken to be nets). We highlight this
property for monotonic nets as this sets up the fixed point argument proving
fix(TW ) is nonempty.

Definition 15 The Koopmans operator TW is said to preserve the supre-
mum of the monotonic net

(
Uλ
)
in
〈
θ, UT

〉
whenever

TW

(
lim inf

λ

(
Uλ
))

= lim inf
λ

(
TWU

λ
)
. (16)

Put differently, TW preserves the supremum of monotonic nets provided that

TW
(
sup

(
Uλ
))

= sup
(
TWU

λ
)
.

These suprema correspond to the principal limits of the monotonic nets
(
Uλ
)

and
(
TWU

λ
)
, where the latter net is also monotonic as TW is a monotone opera-

tor. Notice that if this property holds for arbitrary monotone nets, then it holds
in particular for monotonic (nondecreasing) sequences, such as

{
TNW θ

}
. This ob-

servation is the key to reducing the existence of a fixed point for the Koopmans
operator to the application of the TK FPT (for monotonically sup−preserving
sequences). The smallest fixed point, U∞, is constructed as before by iteration
of TW indexed on the natural numbers with initial seed θ. The existence of
the smallest fixed point by successiven approximations is available even though
sequences do not suffi ce to describe the Scott topology. Hence, the key step in
showing this construction applies is the following Corollary to the Scott Conti-
nuity Proposition.

Corollary 16 TW preserves the supremum of each monotonic net
(
Uλ
)
in〈

θ, UT
〉
.

Proof. Let
(
Uλ
)
be a monotonic net in

〈
θ, UT

〉
with its principal Scott

limit ∨λUλ. The net
(
TWU

λ
)
is also a monotonic net in

〈
θ, UT

〉
since TW

is monotone. Its principal Scott limit is ∨λTWUλ. Since TW is a Scott contin-
uous self-map on

〈
θ, UT

〉
, inequality (14) holds in the following form:

TW

(∨
λ

Uλ

)
≤
∨
λ

(
TWU

λ
)
.
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The converse inequality follows since TW is a monotone operator. To see this,
note that for each index µ ∈ Λ, ∨

λ

Uλ ≥ Uµ,

and by TW monotone,

TW

(∨
λ

Uλ

)
≥ TWUµ.

The supremum of the righthand side, after changing back to the λ index nota-
tion, is just ∨λTWUλ. Hence,

TW

(∨
λ

Uλ

)
≥
∨
λ

(
TWU

λ
)
.

Therefore,

TW

(∨
λ

Uλ

)
=
∨
λ

(
TWU

λ
)
,

and the Koopmans operator preserves the supremum of monotonic nets.
The main result in this section is the existence of a smallest or least fixed

point for the Koopmans operator and its construction by successive approxima-
tions.41

Theorem 17 (Least Fixed Point Existence and Construction Theorem) The
Scott continuous Koopmans operator has a least fixed point, U∞. Moreover,
U∞ = ∨NTNW θ and it is constructed by successive approximations indexed on
the natural numbers.

Proof. The existence and construction of U∞ follows from the TK FPT since
TW preserves the supremum of each monotonic net

(
Uλ
)
in
〈
θ, UT

〉
. In partic-

ular, this holds for the monotonic sequence
{
TNW θ

}
. Hence, U∞ = ∨NTNW θ =

TWU∞ and U∞ ∈fix(TW ).
Suppose that U ∈fix(TW ). Then θ ≤ U and TW monotone implies TW θ ≤

TWU = U . Iterate this to yield the inequality TNW θ ≤ U . Hence, passing to the
limit we find U∞ ≤ U and U∞ is the least fixed point of the Koopmans operator
acting on

〈
θ, UT

〉
.

The sequence
{
TNW θ

}
has many Scott limits besides its principal limit, U∞.

But NONE of the other Scott limits, such as TNW θ, are also fixed points. That

41This result appears in Gierz et al ([18], p. 160). Their constructive proof is basically the
same as the proof of the Tarski-Kantorovich Theorem. We have linked to Tarski-Kantorovich
by explicitly proving the monotonic net sup preservation property for the Koopmans operator.
Thus, we formally show this condition implies the hypothesis for the Tarksi-Kantorovich
Theorem’s construction of the Koopmans operator’s smallest fixed point. A related approach
oriented to computation theory for abstract operators on complete partially ordered spaces is
in Stoltenberg, et al ([43], p. 42).
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is, the LFP is the only Scott limit of
{
TNW θ

}
that is also a fixed point of the

Koopmans operator.
Marinacci and Montrucchio’s Recovery Theorem says that U∞ = ∧NTNWUT

is the GFP. This is demonstrated by showing the antitone sequence
{
TNWU

T
}

is inf-preserving: TW
(
∧NTNWUT

)
= ∧NTNWUT . This inf-preservation property

required by the TK FPT does NOT have an analog in the Scott topology ap-
proach.42 The antitone sequence

{
TNWU

T
}
↘ U∞ fails to satisfy the monotonic

net sup-preservation property simply because it is not monotone (as used in
the Scott topology setup). Scott continuity acting alone yields the inequality
TWU

∞ ≤ lim infN
(
TNWU

T
)

= U∞. Absent a form of inf-preservation, Scott’s
topological structure does not imply U∞ is a fixed point for the Koopmans op-
erator. Even though we know from the TK FPT that U∞ is the GFP of TW ,
this is not provable from Scott continuity alone.
Now suppose that we establish U∞ as the GFP (say, by invoking the TK-

FPT based proof of the Recovery Theorem). Then we observe that every func-
tion U ∈ 〈θ, U∞〉 is also a Scott limit of the sequence

{
TNWU

T
}
. In particular,

each U ∈fix(TW ), including the LFP, is a Scott limit of
{
TNWU

T
}
. Therefore,

the sequence
{
TNWU

T
}
does not have a unique Scott limit which is also a fixed

point, unlike the LFP theory’s case. We cannot reasonably say that the GFP is
constructed as the unique Scott limit of

{
TNWU

T
}
which is also a fixed point.

The fact that the fixed point U∞ is shown to exist as a consequence of veri-
fying the Koopmans operator is Scott continuous provides us with a topological,
as well as order-theoretic, defense for considering this fixed point as the operator
equation’s principal solution.
The Least Fixed Point Existence and Construction Theorem does not yield

either the existence of the GFP nor any statement about fix(TW ) other than it is
nonempty and U∞ is its smallest element. By contrast, the TK FPT construc-
tions yield the extremal fixed points and fix(TW ) is a countably chain complete
poset. The Least Fixed Point Existence and Construction Theorem’s hypothe-
ses are stronger than monotonicity of TW assumed in Tarski’s Theorem [41].
The formal argument is also more elementary (by reduction to the monotonic
sup-preservation of sequences) in comparison to Tarski’s Theorem.43 In par-
ticular, the constructive TK FPT proof based on successive approximations by
iteration over the natural numbers is certainly more elementary than the recent
“constructive”versions for Tarski’s Theorem due to Cousot and Cousot [15] and
Echenique [17] obtained by interating over the ordinals.

6 Concluding Comments

Our existence theory is not yet ready for applications to the Ramsey optimal
growth model. Yet, we report progress on that front using the iterative con-
struction of the principal solution to the Koopmans equation. There are two

42The inf-preservation property is the analog of saying the Koopmans operator is upper
semicontinuous. However, this concept is not meaningful in the Scott topology.
43See the comments in Gierz et al ([18], p. 160).
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questions: First, how far can the topology on `+∞ (1), for example, be weakened
to provide product compact feasible sets in standard growth models AND a
product upper-semicontinuous U∞. If U∞ is concave and finite on `+∞ (1) and
there is a unique solution to the Koopmans operator, then we can conclude it is
also continuous on the positive cone’s norm interior in the corresponding weak
topology. This points to the second problem concerning the development of
suffi cient conditions for a unique solution to the Koopmans equation provided
one exists in the first place.
Martins-Da-Rocha and Vailakis [33] prove uniqueness theorems on a simi-

lar domain to the one found in Marinacci and Montrucchio’s uniqueness theory
(and ours too), but employing weaker topologies that would be consistent with
proving optimal programs exist. Their results turn on checking the local contrac-
tion mapping theorems originating in Rincón-Zapatero and Rodriguez-Palmero
([38], [39]). Marinacci and Montrucchio [34] do this for the Thompson case us-
ing the Thompson metric topology. Martins-da-Rocha and Vailakis ([32], [33])
also follow that programmatic use of the Thompson metric in their uniqueness
theories.
The importance of uniqueness theory is now clear. It seeks a unique way to

match a given aggregator and a unique utility function solution to the Koopmans
equation. It also yields properties of the solution suitable for proving existence
and uniqueness of optimal solutions in optimal capital accumulation models.
We leave development of our uniqueness theory to another paper.44

44See the working paper by Becker and Rincón-Zapatero [11] for a concave operator treat-
ment of the uniqueness question.
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