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We derive the implications of default risk for valuation of securities
in an abstract setting in which the fractional default recovery rate and the
hazard rate for default may depend on the market value of the instrument
itself, or on the market values of other instruments issued by the same
entity (which are determined simultaneously). A key technique is the use
of backward recursive stochastic integral equations. We characterize the
dependence of the market value on the manner of resolution of uncertainty,
and in particular give conditions for monotonicity of value with respect to
the information filtration.

Introduction. This paper presents a model of defaultable securities in
which the fractional recovery upon default and the default hazard rate may
depend on the market value of the security itself and possibly on the market
values of other securities issued by the firm. If these dependencies are non-
linear, it is shown that, in general, the security value depends on the timing
of resolution of uncertainty. Several general pricing relationships are given,
extending work by Duffie and Singleton (1994).

In a much different setting Nabar, Stapleton and Subrahmanyam (1988)
earlier examined the implications of the timing of resolution of uncertainty for
the market value of defaultable claims. Ross (1989) posed as an interesting
puzzle the response of a defaultable bond price to an announcement of earlier
resolution of uncertainty.

A traditional approach in valuing defaultable debt, going back at least to
Black and Scholes (1973), is to take the default time of the firm as literally
the first time that the market value of assets is reduced to or below the total
market value of liabilities. This approach is taken in much subsequent work,
including that of Hull and White (1992, 1995), Longstaff and Schwartz (1993),
Nielson, Saá-Requejo and Santa-Clara (1993) and Rendleman (1992).

It some cases, it may be inconvenient to obtain information on the individual
components of the firm’s balance sheet. In other cases, it may be unrealistic to
assume that default is equivalent to a situation in which the market value of
assets is reduced to or below that of liabilities. For example, default may arise
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from illiquidity associated with credit restrictions or imperfect information.
In any case, public information on the market values of assets and liabilities
may be so coarse as to render such a model problematic. In general, default
could actually arise well before or after the time at which the market value of
assets falls below that of liabilities (if indeed these values could be measured
and credibly announced).

Our approach in this paper is not to allow the determination of default to
be a strict property of the capital structure of the firm, but rather to allow
the time of default to be a stopping time whose arrival intensity is itself a
random process that may be given exogenously, or may depend in a specified
way on available information such as market rates and prices, including the
price of the claim being valued and the prices of other claims issued by the
firm, including equity. For example, at a given time, the market is assumed
to assess the probability of default over the next instant of time, and may
judge this probability to be decreasing in equity value, or equity value relative
to accounting measures of liabilities. Likewise, recovery on default may be
specified in terms of the relative prices of the issues of the firm, and on other
random processes judged in the market place to be relevant.

Similar reduced-form approaches to the valuation of defaultable issues, tak-
ing default arrival intensity as a given process, have been undertaken by
Artzner and Delbaen (1990, 1992), Duffie and Huang (1994), Duffie and Sin-
gleton (1994), Hull and White (1992), Jarrow, Lando and Turnbull (1993),
Jarrow and Turnbull (1995), Lando (1993, 1994), Madan and Unal (1993) and
Pye (1974).

There are five sections. Section 1 introduces a general model of defaultable
claims, the valuation formula of which is derived in Section 2. In Section 3
the model is further specified by letting the default-payoff and hazard-rate
processes depend on the price of the defaultable claim itself. Section 4 dis-
cusses the resulting dependence of prices on the underlying filtration. Sec-
tion 5 presents a brief extension in which several defaultable securities issued
by the same entity are simultaneously valued.

The Appendix contains proofs.

1. The basic setup. We begin with a standard setup of a filtered probabil-
ity space ��;F ;F;P� satisfying the (purely technical) “usual conditions.” The
underlying time set is the positive real line �0;∞�. The filtration F = �Ftx t ≥
0� represents the arrival of information over time. Throughout the paper,
equalities involving random variables should be interpreted in the almost-
sure sense. (For example, we write X = Y instead of P�X = Y� = 1.) For
technical background and terminology, the reader may refer to Protter (1990),
Jacod and Shiryaev (1987) or Dellacherie and Meyer (1976, 1982).

The probability P is assumed to be an equivalent martingale measure in the
sense of Harrison and Kreps (1979), under a given short rate process r, as-
sumed to be bounded and progressively measurable. As described by Harrison
and Kreps (1979), the existence of such a measure is essentially equivalent to
the absence of arbitrage. In our setting however, replication arguments, such
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as those used for the Black–Scholes model, do not easily serve to identify
uniquely an equivalent martingale measure. In effect, one cannot necessarily
hedge against jumps in value that may occur at default or with the sudden
arrival of information on credit quality.

By the definition of an equivalent martingale measure, the price process S
of any security with cumulative dividend process D (any adapted process of
integrable variation) satisfies

�1� St = E
[∫ T
t

exp
(
−
∫ u
t
rv dv

)
dDu + exp

(
−
∫ T
t
rv dv

)
ST

∣∣∣ Ft

]
; t ≤ T:

Equivalently, the discounted gain process
{∫ t

0
exp

(
−
∫ u

0
rv dv

)
dDu + exp

(
−
∫ t

0
rv dv

)
Stx t ≥ 0

}

is a martingale. (Unless otherwise noted, the martingale property will always
be with respect to the underlying filtration F.) We will assume throughout
that the price of a security at time t is zero if all dividend payments after
time t are zero. [This property is not implied by �1�.] All prices are taken to
be ex-dividend.

We consider a defaultable security that matures at time T, yielding a payoff
X at time T, provided there has been no default. The random variable X is
assumed to be FT-measurable and to satisfy E��X�p� < ∞ for some p > 1,
fixed throughout the paper. The payoff upon default is described through a
predictable process Z, satisfying E��supt �Zt��p� < ∞. (For the formal defini-
tion of predictability, see any of the technical references given above.) Default
at state ω and time t results in a payoff of Z�ω; t�. Intuitively, predictability
means that, were the time of default known, the payoff upon default would
be known just prior to default, and would not come as a surprise. We will see
below, however, that the time of default may be a surprise.

The following are simple examples of the form of Z that one may wish to
consider in practice. Further examples are given later in the paper.

Example 1. Given fractional recovery of “par.” This amounts to a lump-
sum settlement on default of Z�ω; t� = k, for some constant k. Brennan and
Schwartz (1980), for example, take this approach to the valuation of default-
able convertible bonds. Industry data on default recovery are usually recorded
in terms of fractional recovery of par.

Example 2. Given fractional recovery of a default-free version of the same
security. In this case,

Zt = αE
[
exp

(
−
∫ T
t
rs ds

)
X
∣∣∣ Ft

]
; t ∈ �0;T�;

for some constant α. For example, a corporate bond may be assumed to recover
a fraction of an otherwise identical government (assumed default-free) bond.
With a coupon structure, the same idea obviously applies. This is the approach
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taken by Jarrow, Lando and Turnbull (1993), Jarrow and Turnbull (1995),
Lando (1993, 1994) and Madan and Unal (1993). The model implies a lower
bound on the price of the claim which is α multiplied by the price of a default-
free version of the claim. More generally, the multiplier α can be replaced by
a (bounded) predictable stochastic process.

We model the stochastic structure of the default time through an F-stopping
time τ valued in �0;∞�. The default time is defined to be the time τ ∧T, the
minimum of τ and T. The event �τ > T� is then the event of no default. Some
fairly weak conditions are placed on the stopping time τ. Intuitively, we re-
quire that the hazard rate associated with τ, under the equivalent martingale
measure, be well defined and bounded; no specific distributional assumptions
are made. To make this intuition precise, we introduce the default indicator
function, Ht = 1�t≥τ�, t ≥ 0, a stochastic process that is equal to one if de-
fault has occurred, and zero otherwise. It is a standard result (due to Doob
and Meyer) that H can be decomposed as H = A +M, where A is a pre-
dictable increasing process, and M is a martingale. We assume that there is
a progressively measurable nonnegative bounded process h such that

At =
∫ t∧τ

0
hu du =

∫ t
0
hu1�u<τ� du; t ≥ 0:

The process h has the interpretation of a hazard rate under the equivalent
martingale measure, since

ht1�t≤τ� = lim
u↓0

E�Ht+u −Ht �Ft�
u

= lim
u↓0

P�t < τ ≤ t+ u �Ft�
u

:

The stopping time τ can also be thought of as the time of the first jump of a
point process with intensity h, as described, for example, in Brémaud (1981).
If N is a point process with intensity h, then �Nt −

∫ t
0 hs ds� is a martingale.

The process H is then defined as Ht = Nt∧τ, where τ is the time of the first
jump of N, and the above decomposition of H follows. The simplest nontrivial
example is Poisson arrival, in which h is a deterministic constant and τ is
exponentially distributed under the equivalent martingale measure.

For our purposes, it is sufficient to work directly with the equivalent martin-
gale measure P. In other applications, however, one may have to assume that
P is not the equivalent martingale measure. The Girsanov–Meyer theorem
for semimartingales can then be adapted to show that, subject to conditions,
our setup is preserved under an equivalent change of measure, as shown by
Artzner and Delbaen (1992). For the Girsanov–Meyer theorem, see, for exam-
ple, Dellacherie and Meyer (1982), and Brémaud (1981) for the case of point
processes.

2. Valuation formulas. With the defaultable-claim model in place, we
now provide formulas for its risk-neutral valuation. Our starting point is the
pricing formula (1), where D is now assumed to be the cumulative dividend
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process of the defaultable security. According to the description of the last
section, D is given by

Dt =
{
Zτ1�τ≤t�; for t < T;

Zτ1�τ≤T� +X1�τ>T�; for t ≥ T:

In terms of the default indicator function, H, this specification can be written
as

�2� Dt =
∫ t∧T

0
Zu dHu +X1�τ>T; t≥T�; t ≥ 0:

Using the decomposition H = A+M and the assumed integral representation
for A, we find that, on the time interval �0;T�, the defaultable security’s price
process, S, is given by

�3�
St = E

[∫ T
t

exp
(
−
∫ u
t
rv dv

)
Zuhu1�u<τ� du

+ exp
(
−
∫ T
t
rv dv

)
X1�T<τ�

∣∣∣ Ft

]
;

while St = 0 for t ≥ T (since there are no dividends after time T). The formal
justification for eliminating the martingale part is provided in Lemma 2 of
the Appendix.

Valuation formula �3� has the disadvantage that it explicitly involves the
stopping time τ, rather than its hazard rate process. Proposition 1 allows us
to replace default, for valuation purposes, with a continuous dividend rate
over �0;T� and a payoff X at time T. The proposition makes use of an RCLL
process, a process with paths that are right continuous and with left limits.
Given any RCLL process, Y, we let 1Y be the corresponding jump process,
defined by 1Yt = Yt −Yt−, t ≥ 0, with the convention Y0− = 0.

Proposition 1. Let the RCLL process V be defined by

�4�
Vt = E

[∫ T
t
Zuhu exp

(
−
∫ u
t
�rv + hv�dv

)
du

+X exp
(
−
∫ T
t
�rv + hv�dv

) ∣∣∣ Ft

]
; t < T;

and Vt = 0 for t ≥ T. Then the claim’s price process, S, satisfies

St = Vt −E
[
exp

(
−
∫ τ
t
rv dv

)
1Vτ

∣∣∣ Ft

]
on �t < τ�; t ≥ 0:

If V is predictable, then St = Vt1�t<τ� for all t ≥ 0.

Recall that equalities of random variables are interpreted in the almost-
sure sense. In particular, when we write “Y1 = Y2 on F,” for some event F,
we mean that P�F\�Y1 = Y2�� = 0.
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The expression for V in Proposition 1 can be viewed as the risk-neutral val-
uation formula for a fictitious security that at each time t pays out dividends
at a rate of Ztht, under a fictitious short rate process r+ h.

Clearly, the valuation procedure of Proposition 1 is simpler when V is pre-
dictable. For example, this is the case if V is (almost surely) continuous on
�0;T�. A simple sufficient condition for the continuity of V on �0;T�, which is
useful in practice, is as follows. Suppose that Fc = �F c

t � is a subfiltration of
F with the property that the martingale �E �Y � F c

t �� has a continuous mod-
ification for every integrable random variable Y. This notion of a continuous
filtration is discussed by Huang (1985), and can be viewed as continuity of the
mapping t 7→ F c

t with the space of σ-algebras topologized as in Cotter (1986).
A typical example is one in which Fc is a Brownian filtration. Suppose also
that there is a another filtration �Gt� so that Ft = F c

t ∨Gt for every t. One can
then easily check that V, defined by �4�, is continuous on �0;T� (up to a mod-
ification) if, conditionally on F c

t , the quadruple �Z;X;h; r� is stochastically
independent of Gt, for every t ∈ �0;T�.

3. Recursive valuation. In this section, we further specify the model,
by letting the time-t default payoff Zt or the hazard rate ht to be (possibly
stochastic and time-dependent) functions of the underlying claim price, St−,
just prior to time t. The valuation formulas �3� and �4� then reduce to back-
ward integral recursive equations that give rise to possible price-dependence
on the underlying filtration, as discussed in Section 5.

In the remainder of this paper, we assume that the payoff of the claim in
case of default is specified by a (measurable) payoff function px �×�0;T�×R→
R. Upon default at �ω; t�, the claim’s payoff is Z�ω; t� = p�ω; t;St−�ω��. That
is, the payoff upon default possibly depends on the security price just prior to
default.

Example 3. Given fractional reduction in value on default. We can take
p�ω; t; x� = φ�ω; t�x, where φ is a given predictable process. This case is
considered by Pye (1974) and Duffie and Singleton (1994). As will be shown
in Example 4, the loss in generality is accompanied by a simplification of the
valuation model, at least for cases in which the default hazard rate process h
is exogenously given. One need not assume that φ�ω; t� ≤ 1 for all �ω; t�, but
this assumption naturally implies no gain in value upon default.

An example involving a nonlinear dependence of p on the security-price
argument is discussed in detail by Duffie and Huang (1994), and briefly in
Section 4.

The function p is assumed to satisfy the following conditions:

1. p� · ; · ; x� is adapted to F, for all x.
2. (Uniform Lipschitz condition). There is a constant K such that

�p�ω; t; x� − p�ω; t; y�� ≤K�x− y�; for all ω; t; x and y:

3. p�ω; t;0� = 0 for all ω and t.
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Condition (1) states that only available information can be used to deter-
mine the default payoff. Condition (2) is purely technical. Finally, condition
(3) states that a security that defaults right after it has lost all of its value
yields a zero payoff.

In this context, prices will be shown to lie in the space S , consisting of every
semimartingale, S, such that E��supt �St��p� <∞. (Recall that p > 1 is a con-
stant that is fixed throughout the paper.) The following proposition presents
an adaptation of valuation formula �3� under the given payoff structure.

Proposition 2. The claim’s price process S is the unique element in S
such that

�5� St = E
[∫ T
t
�p�u;Su�hu − ruSu� du+X1�T<τ�

∣∣∣ Ft

]
; t < T;

and St = 0 for t ≥ T.

Uniqueness here is up to indistinguishability. That is, any two solutions S
and S̃ of �5� have identical paths with probability 1. Alternatively, the setting
of Antonelli (1993), which corresponds to the case p = 1, can be used. This
case is not covered here.

In certain settings, it is also reasonable to assume that the hazard rate pro-
cess (and hence the default stopping time) depends on the defaultable security
price process. We model such a dependence through a bounded and (product)
measurable function qx �× �0;∞�×R→ R, where q� · ; · ; x� is adapted to F,
for every x. We assume that h�ω; t� = q�ω; t;St−�ω��, for all �ω; t�. In this
case, valuation formula �5� is not helpful, since the stopping time τ is itself
a function of S. Instead, we have the following recursive pricing formula, in
terms of the function f, defined by f�ω; t; x� = �p�ω; t; x� − x�q�ω; t; x�.

In Proposition 3, f uniformly Lipschitz means that condition (2) is satisfied
with f in place of p. Condition (2) on p is in fact redundant in this context.
Also, condition (3) can be replaced by the weaker f�ω; t;0� = 0.

Proposition 3. Suppose that f is uniformly Lipschitz in its price argu-
ment. Then there exists a unique V in S that satisfies

�6� Vt = E
[∫ T
t
�f�u;Vu� − ruVu�du+X

∣∣∣ Ft

]
; t < T;

and Vt = 0 for t ≥ T. If V is predictable [ for example, continuous on �0;T�],
or if 1Vτ = 0, then the claim’s price process is given by St = Vt1�t<τ� for all
t ≥ 0.

Because of our almost-sure interpretation of equalities and the absolute
continuity of A, 1Vτ = 0 if V jumps only at a finite number of deterministic
times. In some settings of interest, the solutionV of �6� is continuous on �0;T�.
For example, suppose that there are filtrations Fc = �F c

t � and �Gt� with Fc

continuous under the Cotter topology, and Ft = F c
t ∨ Gt for all t, exactly as
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in the discussion following Proposition 1. Then V is continuous on �0;T� if,
for every t ∈ �0;T�, the triple �f; r;X� is stochastically independent of Gt,
conditionally on F c

t . [This is an easy consequence of the uniqueness of the
solution of �6�.]

Example 4. Suppose that f�ω; t; x� = −ψ�ω; t�x; for some adapted
bounded process ψ. Let

Vt = E
[
exp

(
−
∫ T
t
�ru + ψu�du

)
X
∣∣∣ Ft

]
; t < T:

Lemma 1 of the Appendix shows that V is the solution of equation �6�. For
example, in the case in which q�ω; t; x� = h�ω; t� and p�ω; t; x� = φ�ω; t�x,
for all �ω; t; x�, we have ψ = �1−φ�h. This example repeats, in a more general
setting, the simple valuation model exploited by Duffie and Singleton (1994),
allowing standard valuation methods for nondefaultable claims to be applied
with default, after substituting the default-adjusted short-rate process r+ψ for
the actual short-rate process r. Ramaswamy and Sundaresan (1986) assumed
the existence of a default-adjusted short rate process, which in this setting is
justified by exogenously given fractional loss rate 1 − φ and hazard rate h.
Pye (1974) obtains a similar expression in a discrete-time setting in which r,
h and φ are deterministic.

4. The effect of a change in the filtration. As stated in the introduc-
tion, the dependence of the defaultable claim’s default characteristics h and
Z on its own price process implies that the pattern of information revelation
between times zero and T can affect prices at time zero. In this section we
present a general result of price monotonicity with respect to the underlying
filtration, and, through a simple example, we show that the monotonicity can
be strict.

We compare the prices of a defaultable security in two markets that are
distinguished by the amount of available information. The two markets share
the same defaultable security, as defined by the primitives p, q and X. While
the equivalent martingale measure P and short-rate process r are the same
in the two markets, each market has its own information filtration, denoted
�F 1

t � and �F 2
t �, respectively. Let S1 and S2 be the claim’s price processes in

the respective markets. We will show below that the two price processes are
not in general equal. The default-payoff process, Zi, of the security in market
i is defined by Zi

t = p�t;Sit−�. It follows that Z1 and Z2 are not in general
the same, unless the payoff p is assumed not to vary with its price argument.
Similarly, the hazard-rate process hi in market i is defined by hit = q�t;Sit−�,
and h1 and h2 are not in general equal, unless q is assumed not to vary with its
price argument. The default times, τ1 and τ2, in the two markets are therefore
also not necessarily equal.

Suppose for now that F 1
0 = F 2

0 and F 1
T = F 2

T . If p does not depend on its
price argument and the default times, τi, are equal in the two markets (or
q is also independent of its price argument), then it follows from the pricing
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formula �3� that S1
0 = S2

0. On the other hand, suppose that the following as-
sumption holds, for example, because either one of Propositions 2 or 3 applies.

Assumption A. There exist a function gx � × �0;T� × R → R, satisfying
conditions (1) through (3) with g in place of p, and an integrable random
variable Y such that, for both i ∈ �1;2�, Sit = Vi

t1�t<τi�, t ≥ 0, where Vi is the
unique process in S satisfying

Vi
t = E

[∫ T
t
g�u;Vi

u�du+Y
∣∣∣ F i

t

]
; t < T;

and Vi
t = 0 for t ≥ T.

Then the following can be shown: if the default characteristic g is convex
in its price argument and F 1

t ⊆ F 2
t for all t, then S1

0 ≤ S2
0. In the case

that g is concave in its price argument, the reverse ranking of prices results.
In the context of Proposition 2, the convexity or concavity of g in its price
argument is equivalent to the corresponding property of p, while in the context
of Proposition 3, the convexity or concavity of g in price is the same as that
of f.

A refined version of this result is given in the following proposition. Given
an event F and time t, we say that gx �× �0;T� × R→ R is convex (concave)
on F × �t;T�, if for every �ω;u� in F × �t;T�, g�ω;u; ·� is convex (concave).
The notation F ∩ F i, where F is an event, denotes the class of sets that are
obtained as intersections of F and members of F i.

Proposition 4. Suppose that Assumption A holds, and that for some time
t and event F ∈ F 1

t ∩ F 2
t , F ∩ F 1

t = F ∩ F 2
t and F ∩ F 1

u ⊆ F ∩ F 2
u , for all

u ≥ t. If g is convex (concave) on F× �t;T�, then S1
t ≤ S2

t (S1
t ≥ S2

t ) on F.

The proposition follows from a result on the monotonicity of backward re-
cursive equations with respect to the underlying filtration proved in Skiadas
(1996).

Duffie and Huang (1994) consider an extensive example in which concav-
ity of g (in its dependence on V) arises naturally from a difference in the
credit quality of the counterparties to a swap or forward contract. Suppose,
for example, that there are two counterparties A and B, with respective de-
fault characteristics gA and gB. As explained by Duffie and Huang (1994),
a natural interpretation of the settlement features of the contract implies a
valuation model in which Assumption A applies, with

g�ω; t; v� = gA�ω; t; v�1v≥0 + gB�ω; t; v�1v<0:

Thus, even if gA and gB are linear (which is the case that applies if each coun-
terparty has exogenously given hazard rate and fractional loss on default), a
difference in the credit quality of the two counterparties implies concavity or
convexity of g. Proposition 4 could then be applied to infer that the counter-
party of better credit quality would prefer not to advance the public release
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of information regarding the outcome of audits or credit reviews of the other
counterparty. For details, see Duffie and Huang (1994).

We close this section with a simple parametric example of strict price de-
pendence on the timing of resolution of uncertainty.

Example 5. In this example the hazard rate and short rate are constants,
h�ω; t� = h and r�ω; t� = r ≥ 0, while the payoff function p takes the para-
metric form p�ω; t; x� = ax + bxl, for some constants a ∈ �0;1�, b ≥ 0 and
l 6= 1. For simplicity, we assume that X is positive and bounded above by
a constant X̄ specified below. Provided b > 0, p is convex (concave) in x if
l > 1 (l < 1), in which case the claim price is increasing (decreasing) in the
underlying information filtration. In the case of b = 0, f is linear in x and the
claim price does not change with an augmentation of the filtration.

To demonstrate these results in a simple setting, suppose that F reveals no
information up to some time R < T, when all information is revealed. That
is, for t < R, Ft consists only of events of probability 1 or 0, while for t ≥ R,
Ft = F . Clearly, the smaller R is, the earlier the resolution of uncertainty
and the larger the observed filtration.

The solution of �6� in this setting is straightforward. On the intervals �0;R�
and �R;T� the price dynamic reduces to

dVt
dt
= αVt − βVl

t ;

where α = �1−a�h+r ≥ 0 and β = bh ≥ 0, while VT− =X and VR− = E�VR�.
SinceP�τ = R� = 0, 1Vτ = 0 almost surely, and the conclusion of Proposition 3
holds. For simplicity, we assume α > 0; the case of α = 0 is similar. The above
differential equation can be rearranged as

d log��αV1−l
t − β��
dt

= α�1− l�:

If β > 0, the value V∗ = �α/β�1/�l−1� is a stationary point, and to guarantee
integrability, we assume X ≤ X̄ = V∗. If β = 0, we set X̄ = ∞. Integrating,
we have

V1−l
0 = 1

α

(
e−α�1−l�R

(
αV1−l

R− − β
)
+ β

)
:

Notice here that X̄ = V∗ is just a simple bound that works. A sharper bound
would be X̄ = V∗�1− exp�α�1− l�T��1/�1−l� if l > 1, and X̄ = ∞ if l ≤ 1.

We can now differentiate both sides with respect to R. Using the fact that
VR− = E�VR� and dVR/dR = αVR − βVl

R, we obtain

∂V1−l
0

∂R
= b

(
E�VR�l −E�Vl

R�
)h�1− l�e−α�1−l�R

Vl
R−

:

(To be more precise, we computed here the right derivative, since V is dis-
continuous at R. By integrating all the way up to T, however, it is easy to
show that V0 is smooth in R.) If b = 0, the derivative vanishes, as it should.
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For b 6= 0, we can apply Jensen’s inequality to conclude that the initial price
S0 = V0 is strictly decreasing (increasing) in R if l > 1 (l < 1).

5. Valuation of interdependent issues. Finally, we consider, for gen-
erality, a situation in which the hazard rate for default by the issuer, and
the default recovery of a given issue, depend on, among other pieces of in-
formation, the prices of other issues of the same firm. These various prices
are likewise influenced, and therefore jointly determined. For simplicity, we
assume that all interdependent issues default simultaneously.

We now take X, T, p, S and V to be valued in Rn. In particular, for any
i, claim i pays Xi at Ti in the event of no default prior to Ti, and otherwise
pays pi�ω; t;St−� given default at time t, where pix �× �0;Ti� ×Rn→ R. For
convenience, we define pi�ω; t; x� = 0 for t > Ti.

The function p is assumed to satisfy the following analogues to the condi-
tions for n = 1:

1. p� · ; · ; x� is adapted to F, for all x.
2. (Uniform Lipschitz condition). There is a constant K such that

�p�ω; t; x� − p�ω; t; y�� ≤K �x− y� ; for all ω; t; x and y:

3. pi�ω; t; x� = 0 for all ω and t and x with xi = 0.

In this context, prices will be shown to lie in the space S n, consisting
of every semimartingale S valued in Rn, such that E

[
�supt �St��p

]
< ∞.

The hazard rate process is specified by a (measurable and bounded) function
qx � × �0;∞� × Rn → R, where q� · ; · ; x� is adapted to F, for every x in Rn.
We assume that h�ω; t� = q�ω; t;St−�ω��, for all �ω; t�. We have the following
adaptation of Proposition 3, in terms of the function fx �×�0;maxiTi�×Rn→
Rn, defined by f�ω; t; x� = �p�ω; t; x� − x�q�ω; t; x�.

Proposition 5. Suppose that f is uniformly Lipschitz in its price argu-
ment. Then there exists a unique V in S n that satisfies, for each i ∈ �1; : : : ; n�,

�7� Vit = E
[∫ Ti
t
�fi�u;Vu� − ruViu�du+Xi

∣∣∣ Ft

]
; t < Ti;

with Vit = 0 for t > Ti. If V is predictable [for example, continuous on �0;T�],
or if 1Vτ = 0, then the n claims have a price process valued in Rn given by
St = Vt1�t<τ� for all t ≥ 0.

APPENDIX

This Appendix contains proofs not contained in the main text. We first
present two lemmas that will be of repeated use. We recall once again that all
equalities are to be interpreted in the almost-sure sense.
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Lemma 1. Suppose that B is an adapted RCLL process of integrable vari-
ation, and ξ is a progressively measurable bounded process. Then

dYt = −dBt −Ytξt dt+ dmt; t ≤ T;
for some martingale m, if and only if

Yt = E
[∫ T
t

exp
(∫ u

t
ξv dv

)
dBu + exp

(∫ T
t
ξv dv

)
YT

∣∣∣ Ft

]
; t ≤ T:

Proof. Let Rt = exp�
∫ t

0 ξv dv�, t ≥ 0. The above integral equation can be
rewritten in terms of R as

�8� YtRt = −
∫ t

0
Ru dBu +E

[∫ T
0
Ru dBu +RTYT

∣∣∣ Ft

]
; t ≤ T:

Equation �8� can be equivalently written as

�9� d�YtRt� = −Rt dBt + dnt; t ≤ T;
for some martingale n. To prove that �8� implies �9�, we simply take n to be
the (uniformly integrable) martingale corresponding to the second integral in
�8�. For the converse, we can integrate �9� from t to T, and take conditional
expectations with respect to Ft to recover �8�. (The term corresponding to n
disappears during this operation, because of the martingale property.) Using
now integration by parts, we have

d�YtRt� = Rt�dYt +Ytξt dt�; t ≤ T:
Therefore, �9� is in turn equivalent to dYt = −dBt − Ytξt dt + dmt, t ≤
T, where dmt = R−1

t dnt. The lemma follows, after observing that m is a
martingale if and only if n is a martingale. 2

Lemma 2. If Y is predictable and E��supt �Yt��p� < ∞, then
∫
YdM is a

martingale.

The proof of Lemma 2 is a consequence of Emery’s inequality. [See Theo-
rems V.2 and V.3 in Protter (1990).]

Proof of Proposition 1. For all t ≥ 0, we let Ṽt = Vt1�t<T� +X1�t≥T�.
Notice that Ṽ satisfies the same integral equation as V, but on �0;T� rather
than �0;T� only. By Lemma 1 [with ξ = −�r+h� and dBt = Ztht dt], it follows
that

dṼt = −�Ztht − �rt + ht�Ṽt�dt+ dmt; t ≤ T;
where m is some martingale.

Define now, for any t ≥ 0, Lt = 1 −Ht = 1�t<τ�, and notice that dLt =
−dHt = −htLt dt− dMt. Letting Ut = ṼtLt, we have, for all t ∈ �0;T�,

Lt− dṼt = −ZtLtht dt+ �rt + ht�LtṼt dt+Lt− dmt

= −Zt dHt + �rt + ht�Ut dt+Zt dMt +Lt− dmt:
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On the other hand, integration by parts for semimartingales [see, for example,
Protter (1990)] implies that

Lt− dṼt = d�ṼtLt� − Ṽt− dLt − 1Ṽt1Lt
= dUt +Utht dt+ 1Ṽτ dHt + Ṽt− dMt:

Combining the two expressions for Lt− dṼt, we obtain

dUt = −�Zt + 1Vτ�dHt + rtUt dt+ dNt; t ≤ T;

where

dNt = �Zt −Vt−�dMt +Lt− dmt; t ≥ 0:

We have used here the fact that 1Ṽτ = 1Vτ, the event �τ = T� being null.
Clearly, N is a local martingale.

Assuming for now that N is a true martingale and applying Lemma 1, we
obtain

�10� Ut = E
[∫ T
t

Rt

Ru

�Zu + 1Vτ�dHu +
Rt

RT

UT

∣∣∣ Ft

]
; t ≤ T;

where

Rt =
∫ t

0
ru du; t ≥ 0:

Consider first the term involving the jump process of V:

∫ T
t

Rt

Ru

1Vτ dHu =
Rt

Rτ

1Vτ1�t<τ≤T� =
Rt

Rτ

1Vτ1�t<τ�;

since 1Vt = 0 for t > T. Also, we have UT =X1�τ>T�, and Vt = Ut on �t < τ�.
Returning to �10�, we can therefore rearrange it to derive the equation:

Vt −E
[
Rt

Rτ

1Vτ

∣∣∣ Ft

]
= E

[∫ T
t

Rt

Ru

Zu dHu +
Rt

RT

X1�τ>T�
∣∣∣ Ft

]
on �t < τ�:

Recalling pricing equation �1� and the expression for the claim’s dividend
process, �2�, we see that the right-hand side of the above expression is equal
to St, and the result follows.

To complete the proof, it remains to show that N is a martingale. The term∫
L− dm is clearly a martingale, since L is bounded. That

∫
�Z − V−�dM

is a martingale follows by Lemma 2, with Y = Z − V−, given the assumed
integrability condition on Z and the fact that V ∈ S . [The space S is defined
in Section 2 as the set of every semimartingale, S, such that E �supt �St�p� <
∞. The constant p > 1 is fixed throughout.] That V is in S follows from our
assumptions on Z, h and r, and Doob’s maximal inequality [Protter (1990),
Theorem I.20].
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In the case that V is predictable, the jump term in the expression for St
vanishes, since

E

[
1Vτ
Rτ

∣∣∣ Ft

]
= E

[∫ T
t

1Vu
Ru

dHu

∣∣∣ Ft

]

= E
[∫ T
t

1Vu
Ru

huLu du
∣∣∣ Ft

]
= 0:

Here we have used the decomposition H = A +M and the fact that almost
every path of V, being RCLL, has at most a countable number of jumps. The
elimination of the martingale part is again justified by Lemma 2, as in the
last paragraph. 2

Proof of Proposition 2. From equation (3) and the specification of Z, we
obtain

St = E
[∫ T
t

exp
(
−
∫ u
t
rv dv

)
pu�Su−�1�u<τ�hu du

+ exp
(
−
∫ T
t
rv dv

)
X1�T<τ�

∣∣∣ Ft

]
; t < T:

Since almost every path of S has at most countably many discontinuities
(a property of RCLL processes), we can substitute Su for Su− in the above
expression. Also, by condition (3) on p, and the fact that prices vanish upon
default, we have p�Su�1�u<τ� = p�Su1�u<τ�� = p�Su�. Therefore,

St = E
[∫ T
t

exp
(
−
∫ u
t
rv dv

)
pu�Su�hu du

+ exp
(
−
∫ T
t
rv dv

)
X1�T<τ�

∣∣∣ Ft

]
; t < T:

We define S̃t = St for t < T, and S̃T = X1�T<τ�, so that S̃ satisfies the last
integral equation on the closed interval �0;T�. Using Lemma 1 with ξ = −r,
we obtain

dS̃t = −�pt�S̃t�ht − rtS̃t�dt+ dmt; t ≤ T;
for some martingale m. Applying Lemma 1 once again, but with ξ = 0 this
time, we obtain �5�. Existence and uniqueness of a solution to the recursive
equation follows from Appendix A of Duffie and Epstein (1992). 2

Proof of Proposition 3. Existence and uniqueness of a solution to �6�
follows from Duffie and Epstein (1992). Under our specification of Z and h,
recursion �6� is in fact equivalent to the recursion of Proposition 1. This follows
by a now familiar argument. Briefly, let Ṽt = Vt for t < T, and ṼT = X. Ap-
plying Lemma 1 with ξ = −�r+h�, we find that the recursion of Proposition 1
is equivalent to the existence of some martingale m such that

dṼt = −�Ztht − �rt + ht�Ṽt�dt+ dmt; t ≤ T:
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Substituting pt�St� and qt�St� for Zt and ht, respectively, and using Lemma 1
once again, but with ξ = 0 this time, we obtain �6�. [As in the proof of Propo-
sition 2, writing pt�St� instead of pt�St−� in the integrand is inconsequential,
since S has paths that are almost surely continuous. Similarly with q.] Given
this equivalence, Proposition 3 becomes a corollary of Proposition 1. 2

Proof of Proposition 5. The existence of a unique solution V in S n to
(7) follows from an immediate extension of the contraction argument in Ap-
pendix A of Duffie and Epstein (1992) for the case of n = 1. As far as the
valuation of an individual issue, the existence of a unique solution V to (7)
fixes the hazard rate process h through q, and fixes the recovery process Zi

for the ith claim by Zit�ω� = pi�ω; t;Vt−�ω��. The proof of Proposition 3 then
applies to claim i directly. 2
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