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Figure 1: Zooming into a stippled non-photorealistic rendering. Each image shows a subset of the same implicitly infinite point set: while
zooming in, more points are shown to maintain the apparent density. Only the local visible area of the point set was evaluated for each image.

Abstract

Well distributed point sets play an important role in a variety of
computer graphics contexts, such as anti-aliasing, global illumina-
tion, halftoning, non-photorealistic rendering, point-based model-
ing and rendering, and geometry processing. In this paper, we in-
troduce a novel technique for rapidly generating large point sets
possessing a blue noise Fourier spectrum and high visual quality.
Our technique generates non-periodic point sets, distributed over
arbitrarily large areas. The local density of a point set may be pre-
scribed by an arbitrary target density function, without any preset
bound on the maximum density. Our technique is deterministic and
tile-based; thus, any local portion of a potentially infinite point set
may be consistently regenerated as needed. The memory footprint
of the technique is constant, and the cost to generate any local por-
tion of the point set is proportional to the integral over the target
density in that area. These properties make our technique highly
suitable for a variety of real-time interactive applications, some of
which are demonstrated in the paper.

Our technique utilizes a set of carefully constructed progressive and
recursive blue noise Wang tiles. The use of Wang tiles enables the
generation of infinite non-periodic tilings. The progressive point
sets inside each tile are able to produce spatially varying point den-
sities. Recursion allows our technique to adaptively subdivide tiles
only where high density is required, and makes it possible to zoom
into point sets by an arbitrary amount, while maintaining a constant
apparent density.

Keywords: non-periodic tiling, Poisson disk distribution, blue
noise, Wang tiles, anti-aliasing, object positioning, sampling, stip-
pling, texture synthesis.

1 Introduction

Generation of point sets is a fundamental task in computer graphics,
as well as many other fields, since they lie in the very foundation
of any sampling technique. In computer graphics, point patterns
were studied in a variety of contexts, such as anti-aliasing, distrib-
ution ray tracing, Monte Carlo path tracing, geometry processing,
point-based modeling and rendering, digital halftoning, object po-
sitioning, and primitive placement in non-photorealistic rendering
(NPR). Thus, it is not surprising that the properties of various distri-
butions have been extensively studied, and a variety of techniques
have been proposed for their generation.

When generating a point set, there are various aspects that should
be considered. In applications such as object positioning, the main
concern is the visual quality of the resulting pattern, such as absence
of noticeable repetitions. Other applications, such as anti-aliasing,
are primarily concerned with the spectral characteristics of the dis-
tribution, typically preferring distributions with a blue noise Fourier
spectrum. Halftoning and non-photorealistic rendering are exam-
ples of applications concerned with dynamic range (the ability to
reproduce high contrasts) and resolution-independence (the abil-
ity to maintain the same apparent density under varying degrees
of magnification).

Beyond the concerns above, space and time efficiency is of utmost
importance for any interactive application that requires distributing
a large number of points. A common practical approach in such
cases is to utilize tiling techniques, where one or more tiles are
precomputed and then placed next to each other to form point sets
of arbitrary sizes. However, designing a good set of tiles is a very
challenging problem, since the goal is to encapsulate the desired
global characteristics of the distribution into a small set of local
building blocks.

In this paper we introduce a novel technique for tile-based genera-
tion of blue noise point sets. Our technique utilizes Wang tiles, each
containing a carefully constructed point set. The use of Wang tiles
enables the generation of infinite non-periodic tilings. The points in
each tile form a progressive sequence, enabling matching arbitrary
spatially varying point densities. The tiles are also recursive, mak-
ing it possible to employ adaptive subdivision only in regions where

Konstanzer Online-Publikations-System (KOPS) 
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2007/2399/ 
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-23996

First publ. as: Paper / International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2006

http://www.ub.uni-konstanz.de/kops/volltexte/2007/2399/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-23996
http://www.cs.brown.edu/~tor/sig2006.html


 

Frequency

P
o
w
e
r

 

Frequency

A
n
is
o
tr
o
p
y

 

Frequency

P
o
w
e
r

 

Frequency

A
n
is
o
tr
o
p
y

 

Frequency

P
o
w
e
r

 

Frequency
A
n
is
o
tr
o
p
y

Figure 2: Uniform density blue noise point sets created with periodic tiling (top), Penrose tiling (middle), and our method (bottom). Each
row shows an extract of the point set, the Fourier power spectrum, and the mean radial power and radial anisotropy plots. The repetitions in
the periodic tiling are easily noticed, revealing the underlying lattice, and are also manifested by a grid of spikes in the spectrum. While the
energy of the spectrum is distributed quite evenly, the anisotropy is quite strong. The energy of the Penrose tiling spectrum is concentrated
into isolated spikes of energy, resulting in extreme anisotropy values. The spectrum reveals the rotational ten-fold symmetry of the Penrose
tiling. Our method, in contrast, produces few repetition artifacts both spatially and in the spectrum. The energy of the power spectrum is well
distributed and the anisotropy is very low, as desired for a blue noise spectrum.

high density is desired. Recursion also enables zooming into point
sets by an arbitrary amount while maintaining a constant apparent
density. Constructing a recursive set of tiles while maintaining pro-
gressivity and blue noise properties is challenging, as it requires the
point set in each tile to become a proper subset of the point set after
the subdivision.

Consequently, our method is capable of generating very large non-
periodic and non-uniform density point sets possessing a blue noise
Fourier spectrum and featuring high visual quality. The points may
be distributed over arbitrarily large areas. The local point density
may be prescribed by an arbitrary target density function, without
any preset bound on the maximum density. Since our technique is
deterministic and tile-based, any local portion of a potentially in-
finite point set may be consistently regenerated upon need. The
memory footprint of the technique is constant, and the cost to gen-
erate any local portion of the point set is proportional to the integral
over the target density in the area of interest. In practice, point
generation speed reaches a few million points per second. These

properties make our technique an ideal candidate for a variety of
real-time interactive applications. As we shall show in the remain-
der of this paper, no other single method to date features all of these
characteristics combined.

We demonstrate our method in the context of three applications:
anti-aliasing, stippled non-photorealistic rendering, and interactive
texture synthesis by painting texton densities.

2 Background

As mentioned earlier, the analysis of various point distributions and
the development of efficient algorithms for generating point sets
with various desirable characteristics has been the subject of much
previous and current research over the past twenty years. Below we
survey only a handful of the methods that are most relevant to this
work.



Many previous authors have pointed out that for sampling in 2D,
isotropic point distributions with a blue noise Fourier spectrum —
minimal energy in low frequencies and lack of concentrated energy
spikes — are desirable in many applications (see, e.g., [Dippé and
Wold 1985; Cook 1986; Mitchell 1987; Ulichney 1988; Shirley
1991; Mitchell 1991; McCool and Fiume 1992; Glassner 1994;
Hiller et al. 2001; Kollig and Keller 2002; Kollig and Keller 2003;
Keller 2004; Ostromoukhov et al. 2004]). For example, when sam-
pling a non-bandlimited function with a blue noise point set, alias-
ing manifests itself as high-frequency uncorrelated noise, rather
than the more objectionable low frequency structures.

The dart throwing algorithm [Cook 1986] is one of the simplest,
but also slowest, techniques for generating Poisson disk distributed
point sets, which possess blue noise spectral characteristics. Ran-
dom point locations are generated sequentially, and each new point
is discarded if another point already exist within a certain radius
around it. McCool and Fiume [1992] describe a more practical vari-
ant of dart throwing, where the dart radius is gradually decreased as
more samples are placed. The order in which samples are added to
the set is recorded. The result is a progressive sequence of points,
which has the desirable property that any prefix subsequence is also
Poisson disk distributed (no two points are closer to each other than
the dart radius of the last point in the subsequence). This property
enables generation of point sets according to a spatially varying tar-
get density function by using only those points in the set whose
rank in the progressive sequence does not exceed the desired den-
sity at the corresponding location. This approach is still too slow
for directly generating large point sets, but it may be used to gener-
ate a tile containing a well distributed set of points with toroidal
boundary conditions, which may then be used to tile arbitrarily
large portions of the plane periodically. Unfortunately, such pe-
riodic tilings typically suffer from obvious repetition artifacts and
high anisotropy in the Fourier spectrum, as shown in Figure 2 (top
row).

Ostromoukhov et al. [2004] introduced a much faster technique for
generating blue noise patterns. The idea is to hierarchically subdi-
vide a Penrose tiling of the plane and apply pre-computed correc-
tion vectors to improve the resulting pattern. Through a clever use
of the Fibonacci number system, this technique is well suited for
generation of non-uniform sampling patterns. However, uniform
density patterns generated by this technique reveal some visual ar-
tifacts, which also manifest themselves in the Fourier spectrum, as
demonstrated in Figure 2 (middle row).

The method presented in this paper avoids the repetition artifacts
present in periodic and Penrose tilings, and exhibits higher spectral
quality, as evidenced by the bottom row of Figure 2.

Another difficulty with utilizing Penrose tilings for generating very
large point sets over arbitrarily large areas is that they are strictly
aperiodic. Thus, it does not seem possible to quickly generate only
a small local portion of the point set without starting from a very
large base tiling and using recursive subdivision around the region
of interest. In contrast, our method supports rapid “random access”
to local portions of arbitrarily large point sets.

Non-periodic tilings of the infinite Euclidean plane may also be
generated using a small set of Wang tiles [Wang 1961; Wang 1965],
unit square tiles with color-coded edges. Wang tilings of the plane
are obtained by placing tiles such that all adjoining edges have
matching colors. Cohen et al. [2003] used a set of eight Wang
tiles to stochastically create infinite non-periodic seamless 2D tex-
tures. Note, that although this eight-tile set is not strictly aperiodic
in the sense that it can never produce periodic tilings, the stochas-
tic process used when laying down tiles guarantees non-periodicity.
Although repetitions cannot be avoided altogether when using a fi-

nite tile set, non-periodicity makes them difficult to detect visually.
Hiller et al. [2001] and Cohen et al. [2003] used Wang tiles to gen-
erate non-periodic point sets with blue noise properties, utilizing
Lloyd’s relaxation [Lloyd 1983] to optimize an initial set of posi-
tions.

Recently, Lagae and Dutré [2005] introduced Poisson disk tiles,
an interesting extension of Wang tiles aimed at rapid generation of
Poisson disk distributed point sets. They construct a set of 4096
Poisson disk tiles, and introduce a “direct stochastic tiling” algo-
rithm that uses a hashing function to support real-time placement
of their tiles at arbitrary locations on the plane, without generating
a complete tiling. They also describe a variant of the direct sto-
chastic algorithm that works with the eight-tile set of Cohen et al.
[2003], which we also use in our method.

The above Wang tiling based methods are able to generate high-
quality point sets of uniform density. However, they have not been
designed for directly generating the non-uniform density point sets
needed by many applications. It should be noted that non-uniform
density point sets may be generated by warping a uniform density
one, as described by Secord et al. [2002] (a technique known as
inversion or transformation method in the Monte Carlo literature).
Indeed, this approach was used by Lagae and Dutré [2005] for stip-
pling and for environment map importance sampling. However,
warping point sets in this manner is inferior to direct generation
of non-uniform density Poisson disk point sets, as demonstrated in
Figure 3. This was also pointed out by Ostromoukhov et al. [2004].

In a contemporaneous work, Dunbar and Humphreys [2006] de-
scribe two modified dart throwing algorithms that run in O(n logn)
and O(n) time, respectively, and are guaranteed to terminate. The
core of their method is a data structure, which allows sampling only
the regions where it is legal to place a dart. The spectral quality of
the resulting patterns is comparable to true dart throwing; in the
O(n logn) case the results are equivalent. However, their method is
currently limited to uniform point sets.

Figure 3: Non-uniform point sets generated by warping a uniform
blue noise point set (left) vs. our method (right). Top: 28,493
points, bottom: 20,220 points. The images on the left are noisier
and exhibit lower dynamic range.



3 Overview

The following steps provide a high-level summary of our method
for generating a set of recursive Wang tiles containing progressive
blue noise point sets:

1. Generate a set of source tiles (progressive toroidal blue noise
tiles) using dart throwing with gradually decreasing dart ra-
dius [McCool and Fiume 1992].

2. Construct a set of progressive Wang tiles. This is done using
a new algorithm for merging source tiles together, while pre-
serving a progressive ordering and maintaining the blue noise
properties of the original tiles.

3. Make the Wang tile set recursive, by establishing a subdivi-
sion rule for each tile in the set. A subdivision rule is a recipe
for replacing a base tile with an n×n grid of scaled-down ver-
sions of base tiles.

4. Apply a relaxation process to make the points of each base tile
a proper subset of the point set after the subdivision. This step
is necessary for generation of continuous progressive transi-
tions from the base point set to the subdivided one.

The technique outlined above is used once and for all to generate
a set of tiles. Once available, these tiles may be used to rapidly
generate non-uniform density blue noise point sets. We begin by
constructing a coarse non-periodic base tiling locally using the di-
rect stochastic tiling algorithm of Lagae and Dutré [2005]. The pro-
gressive ordering of the points in each tile is then used to reproduce
the target density; we sample the density function for each point of
each visible tile and decide whether to include the point based on
its rank. Simultaneously, we check for density values exceeding the
maximum density of the current subdivision level. Next, we subdi-
vide the tiling and process only those sub-tiles covering areas where
the target density has not yet been matched. We repeat the process
recursively, until the target density is achieved. It is easy to see that
the computational cost of the above method is roughly proportional
to the integral of the target density function over the visible region
of interest.

4 Progressive Blue Noise Wang Tiles

In this section we introduce our algorithm for construction of pro-
gressive blue noise Wang tiles, a tile set that enables us to rapidly
distribute points over arbitrarily large areas on the plane according
to an arbitrary target density function, such that the resulting point
sets possess a blue noise spectrum.

As explained in Section 2, a progressive toroidal blue noise tile
may be generated using a dart throwing algorithm, where the radius
of the darts is slowly decreased [McCool and Fiume 1992]. The
algorithm assigns each point a rank, so that the resulting ranking
defines a progressive sequence of points with increasing density.
Using such a tile it is possible to quickly generate large point sets
with arbitrary non-uniform density. However, since a single tile is
used to generate the point set, the tiling is periodic and repetition
artifacts are apparent (Figure2).

To avoid repetition, we turn to Wang tiles, which make it possible to
tile the plane non-periodically using a small set of square tiles. Co-
hen et al. [2003] describe how to generate Wang tiles that produce
non-periodic point sets with blue noise properties. However, the
method does not generate a progressive ranking of the point in each
tile, and therefore their tiles are not suitable for matching arbitrary
non-uniform target density functions.

It should be noted that creating a set of progressive Wang tiles is
much harder than creating a single progressive tile. Recall that
the edges of Wang tiles are color coded, and that any two tiles are
allowed to be adjacent in a tiling if the colors of their adjoining
edges match. Thus, each tile must be constructed so as to maintain
the Poisson disk property across each of its edges with respect to
several possible neighboring tiles. As explained by Cohen et al.
[2003], dart throwing does not work in this case. Whenever a dart
lands near a tile boundary, its Poisson disk must be checked against
points in all the possible neighbor tiles. This typically results in
fewer points being inserted in the vicinity of tile edges.

Therefore, we developed a new method to create a progressive blue
noise Wang tile set. Our idea is to create a set of Wang tiles by
merging together several progressive toroidal source tiles, similarly
to the merging of texture tiles in [Efros and Freeman 2001; Cohen
et al. 2003]. Our goal is to generate a set of 2K2 Wang tiles, where
K is the number of different edge colors. We begin by comput-
ing a unique source tile for each of the K edge colors. To create
each one of the 2K2 Wang tiles, we begin with a new source tile,
and merge it with the source tiles corresponding to the colors of
its edges, as shown in Figure 4. After merging the source tiles we
define a sequential ordering of the resulting points to make the tile
progressive. The tiles generated in this manner fit together seam-
lessly, because the points in the vicinity of each edge of a particular
color always originate in the same source tile. In the remainder of
this section we describe the two steps (merging and reordering) in
more detail.

As outlined above, to create each Wang tile we start with a fresh
unique source tile T and merge in four other source tiles N,E,S,W
corresponding to the colors of the edges, one at a time. Consider
the situation shown in Figure 4b, where T has been merged with a
tile E corresponding to the color of its east edge (pink). To merge
these two tiles we compute a seam connecting the endpoints of the
right tile edge (shown in orange). Points to the left of this seam
come from tile T , while points to the right of the seam come from
tile E. Since both T and E are blue noise tiles, points away from
the seam are well separated from each other, so our goal is to find a
seam that avoids short distances between points across the seam.

We begin by computing a Voronoi diagram of the union of the point
sets T ∪E. Each edge in the Voronoi diagram separates two neigh-
boring points in the unified point set. Thus, our idea is to construct
the seam from a sequence of Voronoi edges which separate pairs
of points that are as far from each other as possible. More pre-
cisely, we construct a planar graph whose edges are the edges of
the Voronoi diagram, clipped by the boundary of the tile. The cor-
ners of the tile are added as vertices to this graph. Each Voronoi
edge is assigned a cost c = (1−d/dmax)

r, where d is the distance
between the two points separated by the edge and dmax is the max-
imum among these distances. Thus, the cost penalizes short dis-
tances. The exact penalty is determined by the exponent r (we used
r = 10 in our experiments). Let s and t denote the vertices corre-
sponding to the endpoints of the tile’s east edge. We compute the
min-cost path between s and t using Dijkstra’s shortest path algo-
rithm [Cormen et al. 2001], and use the result as our seam. Using
the shortest path has the nice property that it prevents the seam from
venturing too deep into the interior of the tile, so that each tile in
the resulting set has a unique interior part (the black points in Figure
4c). This reduces repetitions and improves the spectral characteris-
tics of the resulting tiled point sets.

Merging in the four edge source tiles yields the full density point
set for the Wang tile. In order to make this tile progressive, we
must find an appropriate ranking (sequential ordering) of the points
in the set. We initialize the ranking by sorting the points according
to their ranks in the original source tiles, resolving conflicts (points



(a) (b) (c) (d)

Figure 4: Merging source tiles to create a blue noise Wang tile (a) Each edge has an associated source tile. The Wang tile is initialized to a
unique source tile (black points). (b) After merging with the source tile associated with the east edge. (c) After merging with all four edge
tiles. Note that a large portion of the resulting point set comes from the initial unique tile. (d) The same point set with seams removed and all
points colored black. The resulting set is well distributed and the seams are impossible to detect.

from different source tiles having the same rank) in a random fash-
ion. This effectively “interleaves” the original sequences to yield a
single new sequence.

Since the resulting ranking is consistent with the original ranking, it
works fine inside the contiguous regions originating in the different
source tiles (and in particular across tile boundaries). However,
this ranking fails to account for the adjacencies across the seams.
Thus, it is possible for two points with a low rank to be too close to
each other. Our goal is now to prevent this from happening, while
perturbing the ranking as little as possible.

Beginning with the initial ranking described above, we generate a
new ranking iteratively, by fixing the ranks of the points one by
one, until all ranks have been fixed. In each step, we assign the next
available rank to the first point from the initial ranking, whose mini-
mal distance to all previously fixed points is greater than a threshold
function. In the densest possible packing of the unit square with k
non-overlapping disks (hexagonal lattice), the radius of each disk

is approximately 0.54/
√

k. We thus choose α/
√

k with α = 0.5
as our threshold function. The entire process is summarized in
pseudocode in Figure 5.

foreach tile in the Wang tile set do
// create a blue noise tile
create a unique initial blue noise source tile T
foreach edge tile in (N,E,S,W) do

T ←Merge(T , edge tile)
end

// create a progressive ranking
interleave the original rankings
for i=2 to n−1 do

for j= i to n−1 do

d = mink<i

∥

∥p j− pk

∥

∥

if d > α/
√

i then break

end
swap pi and p j

end

end

Figure 5: Progressive blue noise Wang tile set creation
pseudocode. pk denotes the position of the k-th point in the
current ordering.

5 Recursive Point Sets

Our progressive Wang tiles enable generation of point sets with su-
perior spectral quality at the same speed as periodic progressive
tilings; specifically, the anistropy is much lower and the mean ra-
dial power is closer to the desired blue noise profile (see Figure 2).
The maximal density of these point sets is determined by the num-
ber of points in each tile, and by the area of the tile. This causes
some visual artifacts when the target density function has high dy-
namic range: in order to match the highest target density the tiles
must be scaled down, but then in regions with low target density
only a few points in each tile are selected, sometimes revealing the
underlying tile grid.

Furthermore, although arbitrarily high densities may be generated
by scaling down the tiles, the maximum density must be known in
advance. In certain scenarios, such as interactive object placement
or adaptive sampling, this is a limiting requirement.

In this section we introduce recursive Wang tiles, an extension of
our progressive Wang tiles that makes it possible to generate ar-
bitrarily high densities in a fully adaptive manner using recursive
subdivision. The idea is to associate one or more subdivision rules
with each base tile in the Wang tile set. A subdivision rule replaces
a base tile with a grid of n×n scaled down versions of tiles from the
same set.

Using recursive Wang tiles, we start by tiling the plane using a
coarse grid of large base tiles. In areas where the desired density
exceeds the maximum density of the base tile, the tile is recursively
subdivided until the desired density is met, as was described in Sec-
tion 3. Our method for deriving the subdivision rules is described
in Section 5.1. In order to obtain a smooth progressive transition
from a base tile to its subdivision we carefully design the tiles such
that the point set of each base tile is a proper subset of the point set
after the subdivision. This is achieved by relaxation, as described
in Section 5.2.

5.1 Subdivision Rules

When subdividing a base tile, the resulting arrangement of the n×n
sub-tiles must respect the color matching constraints of a valid
Wang tiling. These constraints must be enforced both (i) across
the subdivided boundaries of adjacent base tiles, and (ii) across the
edges between the sub-tiles in the interior of the base tile. We sat-
isfy the first constraint by associating each base tile edge color with



(a) (b) (c) (d) (e)

Figure 6: Recursive Wang Tiling: (a) base tile; (b) exterior edge constraints; (c) initial random subdivision tiling; (d) repaired subdivision; (e)
recursive subdivision of (d). Note that steps b–d are done in pre-processing once and for all.

(a) (b) (c) (d)

Figure 7: Generation of a recursive progressive Wang tile: (a) Original base (black) and subdivision points (outlined); (b)–(c) Point set after
the relaxation procedure, the base points are now a subset of the subdivision points: the tile is self-similar. (d) Base points of the tile only.
Note that the points in the zoomed window correspond to the base points exactly.

a unique n-color sequence (see Figure 6a–b). Now we must find
an arrangement of sub-tiles that agrees with these color sequences,
while also satisfying the second constraint.

With complete Wang tile sets (K4 tiles for K edge colors), we can
simply use the scanline algorithm of Cohen et al. [2003] to deter-
mine the interior sub-tiles. However, this is not possible with the
compact tile sets having 2K2 tiles, which cannot guarantee satisfy-
ing more than two simultaneous edge constraints, as is necessary at
the borders of the base tile.

We employ a stochastic search in order to find a valid interior
arrangement of sub-tiles. We begin by tiling the base tile with sub-
tiles chosen at random, without accounting for the color match-
ing constraints (Figure 6c). Next, we iteratively “repair” the tiling:
in each step we randomly select a sub-tile and count the number
of constraints it violates. The sub-tile is then replaced with an-
other one that has a fewer or equal number of violations. If a valid
arrangement exists, the search converges rather quickly, e.g., in the
order of milliseconds for 1→ 4×4 or seconds for 1→ 64×64. If the
process fails to converge, we simply start over with a different as-
signment of n-color sequences to the external base tile edges. This
process is illustrated in Figures 6c–d. Figure 6e shows the result of
applying two levels of recursive subdivision to the base tile in Fig-
ure 6a. Recall that this procedure is merely a pre-processing step,
computed once for all the tiles in a particular Wang tile set. Valid
recursive Wang tile sets are included in the supplementary material.

We use the direct stochastic tiling algorithm by Lagae and Dutré
[2005] to generate an infinite non-periodic base tiling. The algo-
rithm allows randomly accessing arbitrary parts of the tiling. To
further increase the variety of the recursive tiling, it is possible to
use a set of l different subdivision rules for each tile. During run-
time, a deterministic hashing function is evaluated at the integer

lattice position of the tile to select one of the l subdivisions. How-
ever, for the recursive point sets described in the next section, we
used only one subdivision rule per tile.

5.2 Progressive Recursive Point Sets

As mentioned earlier, our goal is to produce a set of base tiles and
subdivision rules, such that the point set of each base tile (base
points) is a proper subset of the subdivision point set. We achieve
this property with a relaxation procedure. At first, after subdivid-
ing a base tile, the base points do not coincide with points in the
subdivision set (Figure 7a). In each relaxation step, each base point
is moved slightly towards its nearest point in the subdivision set.
This adjustment is performed simultaneously for all the base tiles.
Note that moving the base points affects all subdivision sets as well,
since they are formed from scaled down versions of the base tiles.
The relaxation process converges after a small number of iterations
(typically 30–40). The result is illustrated in Figure 7b–c.

Finally, we must determine a new ranking for the points of the sub-
division set. The first N ranks are reserved to the points coinciding
with points of the base set. The ranking of the remaining points
is established using a modified dart throwing algorithm (with a de-
creasing dart radius), where the dart locations are generated by ran-
domly selecting points from the subdivision set. The order in which
the dart throwing algorithm accepts the points becomes their new
ranking. For more details we refer to the pseudocode presented in
Figure 8 and the source code in the supplementary material.



Regular Grid

Generation Time: 17ms
RMS Error: -8.1548dB

Penrose Tiling

Generation Time: 4983ms
RMS Error: -8.0873dB

Jittered Grid

Generation Time: 25ms
RMS Error: -8.1218dB

Our Method

Generation Time: 17ms
RMS Error: -8.2463dB

Figure 9: The zone plate test pattern sampled with one sample per pixel using various patterns. The center is in the lower left corner. A
Gaussian filter was used to reconstruct the shown images. Regular sampling yields strong aliasing artifacts. Penrose tiling improves over this,
but artifacts may still be observed. The jittering removes the aliasing almost completely, but the reconstructed image shows a considerable
amount of noise. Our method similarly reduces the aliasing, but at a significantly lower noise level. Note that the pattern generation time with
our method was even lower than jittering with a fast random number generator.

// Relax until base points ⊂ subdivision sets
repeat

foreach base point p in any tile do
s← closest point to p in subdivision set
dp← s− p

end
foreach base point p in any tile do

p← p+αdp // α = 0.1
end

until ∑
p

dp < ε // ε = 0.000001

// Create progressive ranking
candidates← subdivision point set − base points
ranking← base points
radius← 1
repeat

c← random candidate
if minp∈ranking ‖c− p‖> radius then

remove c from candidates
append c to ranking

end
if some number of consecutive failures then

radius← γ · radius // γ = 0.99
end

until no candidates left

Figure 8: Progressive and recursive point sets creation
pseudocode. The algorithm is executed simultaneously for all
tiles. See the source code in the supplementary materials for
full details.

6 Results and Applications

Using the techniques described above, we have constructed a set of
eight progressive and recursive Wang tiles with 2048 points per tile.
The entire construction process took about 20 minutes. Once the
tile set has been constructed, point sets are generated as described
in Section 3. We found point generation to be extremely fast on the
order of several millions of points per second (see Figures 1 and 11).
Almost all of the time is spent sampling the density function, while
the time spent on tile subdivision is negligible in comparison. The

actual time to generate the points in a particular region of interest is
proportional to the integral over the density in that region.

As discussed earlier, our technique features several desirable prop-
erties that make it well suited for a large variety of applications. In
the remainder of this section we demonstrate its use in three dif-
ferent contexts: blue noise sampling, non-photorealistic rendering,
and object distribution.

6.1 Blue Noise Sampling

The spectral quality of the point sets generated by our technique
has already been demonstrated in Figure 2. Next, we test the effec-
tiveness of such point sets for anti-aliasing. Figure 9 shows several
reconstructions of the “zone plate” test pattern (sin(x2 + y2)). Each
512×512 image shows the result of sampling the pattern with one
sample per pixel and filtering with a three pixel wide Gaussian ker-
nel.

As expected, sampling using a regular grid causes severe aliasing:
the upper and right circular patterns are aliasing artifacts. With a
Penrose tiling pattern [Ostromoukhov et al. 2004] the situation is
improved, however significant aliasing may still be observed, par-
ticularly at higher frequencies (note how the aliasing corresponds to
the locations of energy spikes in Figure 2). Jittered regular grids are
commonly used for anti-aliasing. The aliasing is almost completely
removed; however, a considerable amount of noise is present in the
reconstructed image. Our method similarly reduces the aliasing,
but features a significantly lower noise level. Note that the genera-
tion of uniform density point sets with our method is just as fast as
generating jittered regular grids. Results for additional test patterns
are included in the supplementary material.

6.2 Non-photorealistic rendering

Many non-photorealistic rendering techniques require distributing
primitives, such as pen or brush strokes or stipples (see, e.g.,
[Winkenbach and Salesin 1994; Salisbury et al. 1994; Hertzmann
1998; Deussen et al. 2000; Durand et al. 2001; Praun et al. 2001;
Kalnins et al. 2002; Secord et al. 2002; Hiller et al. 2003]). Differ-
ent gray tones are often reproduced by varying the local density of
primitives: in dark regions they are placed closer together than in
light regions.



(a) (b) (c) (d)

Figure 10: Our interactive texture painting application. (a) Snapshot from a painting session. (b) One of the texton classes. The full set
contains 6 classes. A blue noise placement of textons using our method results in superior visual quality (c), compared to random texton
placement (d).

The visual quality of the result depends directly on the quality of
the primitive distribution. Human viewers easily detect unwanted
regularities or clumping of primitives. In particular, the stippling
technique [Deussen et al. 2000; Secord 2002; Secord et al. 2002;
Hiller et al. 2003] is sensitive to these artifacts, because the simple
primitives (pure circular dots) are unable to hide flaws in the distri-
bution. Another important aspect is the frame-to-frame coherence
in NPR animations: the positions of primitives in each new frame
should be consistent with their positions in the previous frame.

We should note that progressive stroke textures may also be used to
create coherent hatched images [Salisbury et al. 1994; Praun et al.
2001]. Instead of computing positions of independent strokes, a set
of textures captures hatchings at various tones and scales. These
textures are applied to objects at runtime. However, due to the dis-
crete nature of texture, these methods provide only limited zooming
abilities.

Our method is well suited for real-time stippling. The non-
periodicity of our point sets reduces detectable repetitions, and the
even spacing of stipples reduces overlaps, and allows producing
a high dynamic range using a low number of stipples, as demon-
strated in Figure 3. Furthermore, our technique provides superior
frame-to-frame coherence: when panning and zooming over stip-
pled illustrations points move consistently with the camera motion
and new points are inserted in-between, when necessary, to main-
tain a constant apparent tone. Generating additional stipples while
zooming in comes without a performance penalty due to the local
nature of our technique. This is demonstrated in Figure 1 and in the
accompanying video.

6.3 Object positioning

Many scenes in computer graphics consist of extensive distributions
of objects, e.g., ecosystems or crowds. In most cases, only a small
set of representative objects are created, and instances (possibly
with transformations) are distributed throughout the scene [Suther-
land 1964]. Avoiding very small distances between adjacent in-
stances is often a desirable property. For example, biological and
environmental forces in nature often do not result in random plant
locations. Instead, plants prevent others from growing in their di-
rect vicinity and, thus, Poisson disk distributions arise.

Large scenes might contain many millions of instances; thus, it
might not be feasible to even store their positions explicitly. In
contrast, a density map is a much more compact representation,
and it may be compressed even further using standard image cod-
ing techniques. The high speed of our technique allows computing
the instance positions on-the-fly from the density maps only where
needed at any given time.

We demonstrate our technique for instance positioning in an inter-
active texture painting application (see Figure 10). The user pro-
vides an ordered set of “texture classes”, each consisting of a few
representative textons (small cut-out images). During runtime, the
textons are simply rendered with alpha blending. We allow the user
to control the placement of textons by directly painting individual
density maps for the texton classes using various brushes.

As the user paints, the texton positions are generated in real-time
using our technique. First, we generate a point set according to a
combined density map, which is the sum of the individual density
maps. Then, we determine a texton class for each point based on
the values of the individual density maps at the corresponding lo-
cation. Each texton is deterministically assigned a random-looking
rotation angle, based on its coordinates. Using our method for the
placement of textons results in a much higher visual quality com-
pared to simpler distributions, such as randomly positioned textons
(Figure 10c–d). This application is also demonstrated in the accom-
panying video.

7 Conclusions

We have presented a technique for the rapid generation of blue noise
point sets with non-uniform density. The global characteristics of
blue noise distributions are encapsulated into a small set of tiles.
The point set in each tile is carefully precalculated so that the tiles
can fit together spatially as well as recursively among themselves
in scale space. The strength of the recursiveness of our tiles is that
it provides unlimited dynamic range of the point sets.

With our technique, the online distribution of points is extremely
fast since all expensive calculations are applied in a preprocessing



stage. Any local window of the point set is generated at a cost pro-
portional to the integral over density in that window with a constant
memory footprint.

In future work, we plan to explore additional applications which
require a high speed generation of high quality point sets. An in-
teresting research direction is the extension of our technique for
generation of Poisson hyper-ball distributions in higher dimensions.
Another important direction for further research is the creation of
point sets with characteristics other than blue noise.
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Figure 11: Stippling images created with our system. Large Image: 250,869 points, generated in 99.2ms (2,528,921 points per second). Small
Image: 53,042 points, generated in 19.3ms (2,748,290 points per second).
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