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AND SPANDAN MAITI‖

Abstract. Many problems in science and engineering require the solution of a long sequence
of slowly changing linear systems. We propose and analyze two methods that significantly reduce
the total number of matrix-vector products required to solve all systems. We consider the general
case where both the matrix and right-hand side change, and we make no assumptions regarding
the change in the right-hand sides. Furthermore, we consider general nonsingular matrices, and
we do not assume that all matrices are pairwise close or that the sequence of matrices converges
to a particular matrix. Our methods work well under these general assumptions, and hence form
a significant advancement with respect to related work in this area. We can reduce the cost of
solving subsequent systems in the sequence by recycling selected subspaces generated for previous
systems. We consider two approaches that allow for the continuous improvement of the recycled
subspace at low cost. We consider both Hermitian and non-Hermitian problems, and we analyze
our algorithms both theoretically and numerically to illustrate the effects of subspace recycling. We
also demonstrate the effectiveness of our algorithms for a range of applications from computational
mechanics, materials science, and computational physics.
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1. Introduction. We consider the solution of a long sequence of general linear
systems

A(i)x(i) = b(i), i = 1, 2, . . . ,(1.1)

where the matrix A(i) ∈ C
n×n and right-hand side b(i) ∈ C

n change from one system
to the next, and the systems are typically not available simultaneously. Such sequences
arise in many problems.
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1652 PARKS, DE STURLER, MACKEY, JOHNSON, MAITI

One important class of applications that we consider occurs in modeling fatigue
and fracture via finite element analysis. These analyses use dynamic loading, requir-
ing many loading steps, and rely on implicit solvers [13]. Generally, several thousand
loading increments, each corresponding to a linear system, are required to resolve
the fracture progression. The matrix and right-hand side, at each loading step, de-
pend on the previous solution, so that only one linear system is available at a time.
Further, the solution vectors are updates to a displacement vector and are therefore
uncorrelated. Although the change from one linear system to the next is small, the
cumulative change after many loading increments is significant. Rather than discard-
ing the Krylov space generated when solving a linear system, we judiciously select a
subspace and use it to reduce the number of iterations for solving the next system. We
refer to this process as Krylov subspace recycling. Clearly, similar sequences of linear
systems arise from other (nonlinear) time-dependent applications. Another important
source of such sequences of linear systems are Newton or Broyden-type methods for
solving nonlinear equations and optimization problems.

We consider methods for the solution of sequences of general matrices, and do not
assume that all matrices are pairwise close or that the sequence of matrices converges
to a particular matrix. In addition, we make no assumptions on the right-hand-side
vectors. A method that is effective under these assumptions must satisfy a number
of properties. First, the method must be able to identify and converge to an effective
subspace for recycling (the recycle space) in a reasonable number of iterations, and
it must be able to converge to an effective recycle space over the solution of multiple
linear systems. Otherwise, a good recycle space may never be found for a sequence of
changing matrices. Second, for efficiency a significant convergence improvement for
the linear solver must be obtained with a relatively small recycle space. Third, the
method must be able to converge quickly to an effective perturbed recycle space for an
updated matrix, and it must provide an inexpensive mechanism for regularly updating
the recycle space to reflect the changes in the linear systems. As we will show, our
proposed methods satisfy these properties, and they are effective under these general
assumptions. As such, they form a significant advancement with respect to related
work in this area.

We consider two approaches for the solution of (1.1) which are related to two ex-
isting truncated and restarted solvers. These solvers, GMRES-DR [21] and GCROT
[7], were developed for solving single linear systems; both recycle a judiciously se-
lected subspace between restarts to maintain good convergence. In the following, we
define a truncation in the sense used by GCROT, wherein the iteration is restarted
with a selected subspace and each new vector generated is orthogonalized against
this subspace. We define a cycle as the computation between truncations or restarts.
The first approach is to recycle an approximate invariant subspace and use it for
deflation, following the GMRES-DR method. Since GMRES-DR cannot be adapted
for recycling, we propose a more general method, GCRO-DR. The work by Rey and
Risler [25, 26] has a similar motivation as that for GMRES-DR; see below. However,
our implementation is cheaper, more effective, and more adaptive. An alternative
idea is to recycle a subspace that minimizes the loss of orthogonality with the Krylov
subspace from the previous system [7]. In either case, the recycled subspace will be
utilized by first minimizing the residual over this subspace and then maintaining or-
thogonality with the image of this space in the Arnoldi recurrence. We will show that
subspaces that are useful to retain for a subsequent cycle when solving a single linear
system are also useful for the next linear system in a sequence if the matrix does
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KRYLOV SUBSPACE RECYCLING 1653

not change significantly. The proposed methods can be tuned to recycle a variety of
subspaces based on computed information from the matrix, background knowledge of
the application, and other information; this is discussed in [15]. However, for a first
evaluation, it is reasonable to analyze the effectiveness of these existing methods ap-
propriately modified for solving (1.1). The application of these methods to sequences
of linear systems where both matrix and right-hand side change is new and provides
a significant advance on related methods discussed below. Our proposed methods
offer an efficient mechanism for continuous updating of the recycled subspace. As a
result, they quickly adapt to gradual changes in matrices. Further, they make few
assumptions on the linear systems and are applicable to general matrices. In addition,
we provide theoretical motivation and careful experimental analysis of these methods.
Our results show that significant convergence improvements are obtained using recy-
cled subspaces of a small dimension. The application of an early version of GCROT
to multiple right-hand sides was briefly discussed in [5]. The tuning of subspace re-
cycling for diffuse optical tomography, leading to further convergence improvements,
is discussed and relevant theory presented in [15].

We discuss the basic derivation of our methods from Morgan’s GMRES-DR and
de Sturler’s GCROT in section 2. We modify GCROT to recycle subspaces between
linear systems. GMRES-DR cannot be modified to do this, so we introduce GCRO-
DR, a more general variant of GMRES-DR, capable of Krylov subspace recycling. In
section 3, we discuss two important theorems and their consequences to explain why
GCRO-DR satisfies the three essential properties for an effective recycling method. A
similar convergence theory for GCROT is a topic of future research. This analysis is
complemented by careful experimentation in section 4, where we provide an extensive
experimental analysis to illustrate the behavior of both proposed methods and how
well they satisfy the required properties. Particular examples from section 4.4 suggest
that further improvements are possible in the subspace selection process, which is a
subject of future research. Finally, we discuss conclusions and future work in section 5.

To conclude this section, we discuss a number of related approaches. For the
Hermitian positive definite case, Rey and Risler have proposed reducing the effec-
tive condition number by either explicitly retaining all converged Ritz vectors from
previous CG iterations or implicitly approximating the dominant invariant subspace
by retaining all previously generated complete Krylov spaces [25, 26]. Moreover,
both approaches use full recurrences, so the CG iteration is really a FOM (full or-
thogonalization method) iteration [27]. Clearly, both in memory and floating point
operations, these methods are very expensive. This drawback is somewhat alleviated
as the methods are presented in the context of the finite element tearing and inter-
connecting (FETI) method [10], which operates on a reduced-size problem. How-
ever, for general problems the approach would appear impractical. Furthermore,
both approaches lack the possibility to gradually improve the recycle space. In-
stead, the recycle space is computed once and periodically replaced by starting from
scratch. There is no effective mechanism for adapting this space for a sequence of
linear systems that change gradually but substantially over many steps. For this
reason, the authors make the explicit assumption that all matrices remain close. Al-
though the approaches are motivated by well-known properties of CG, no theoreti-
cal or quantitative analysis is provided of the quality of the approximate invariant
subspaces or the convergence rate for CG with recycling. Finally, the reported re-
ductions in the number of iterations are modest at about 20%, even though large
recycle spaces are used (e.g., of dimension 100 in [25]). In [26] the authors report
about a 20% reduction in CPU-time with respect to CG with a full recurrence.
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1654 PARKS, DE STURLER, MACKEY, JOHNSON, MAITI

Another interesting approach for solving a sequence, or better a collection, of
linear systems was proposed by Chan and Ng [3] developing two related Galerkin
projection methods. Unfortunately, these methods require all systems to be available
simultaneously, or at least the right-hand sides. They do not recycle subspaces that
arise in the iteration, but instead use all vectors arising in the iteration immediately
for all systems. Therefore, they focus on situations where all the matrices are close.
However, this is generally not the case for the problems we target. Although the
matrices change slowly, the cumulative change over many steps is usually significant.

Solving a sequence of linear systems where the matrix is fixed is a special case
of (1.1). When all right-hand sides are available simultaneously, block methods are
often suitable, such as block CG [22], block GMRES [37], and the family of block
EN-like methods [39]. However, block methods do not generalize to the case (1.1).
If only one right-hand side is available at a time, the method of Fischer [11], the
deflated CG method [29], or the hybrid method of Simoncini and Gallopoulos [30]
may be employed. Fischer’s method looks for a starting vector in the space spanned
by the previous solution vectors in the sequence, which is helpful if the solution vectors
are correlated. The method does not maintain orthogonality to this subspace, and
so no further speed-up is obtained. In deflated CG, only a small number of the
initial Lanczos vectors for every system is used to update the approximate invariant
subspace. This is efficient in computation and memory use, but the convergence to
an invariant subspace is slow. Hence, the improvement in iterations is modest. The
hybrid method of Simoncini and Gallopoulos is most effective when the right-hand
sides share common spectral information.

2. Recycling Krylov methods. Restarting GMRES [28] may lead to poor
convergence and even stagnation. Therefore, recent research has focused on trun-
cated methods that improve convergence by retaining a judiciously selected subspace
between cycles. A taxonomy of popular choices is given in [9]. In this section, we
discuss two choices and solvers implementing them. We then modify those solvers to
recycle subspaces between linear systems. Although these linear solvers are not new,
their extension to sequences of linear systems has not been discussed and analyzed
before.

One strategy for subspace selection was proposed in [7] for the GCROT method.
We discuss this approach and its modification for solving (1.1) in section 2.2.

We discuss Morgan’s GMRES-DR, which retains an approximate invariant sub-
space between cycles, in section 2.3. In particular, it focuses on removing the eigenval-
ues of smallest magnitude by recycling an approximate invariant subspace associated
with those eigenvalues. Note that GMRES-DR must use only harmonic Ritz vectors,
and that it cannot be modified for Krylov subspace recycling even when the matrix
does not change. Therefore, we combine ideas from GCRO [6] and GMRES-DR to
produce a new linear solver, GCRO-DR, which is suitable for the solution of individual
linear systems as well as sequences of them, and is more flexible than GMRES-DR.
We discuss GCRO-DR in section 2.4.

2.1. Definitions. The Arnoldi recurrence in GMRES leads to the following re-
lation, which we denote as the Arnoldi relation:

AVm = Vm+1Hm,(2.1)

where Vm ∈ C
n×m and Hm ∈ C

(m+1)×m is upper Hessenberg. Let Hm ∈ C
m×m

denote the first m rows of Hm.
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KRYLOV SUBSPACE RECYCLING 1655

For any subspace S ⊆ C
n, y ∈ S is a Ritz vector of A with Ritz value θ if

Ay − θy ⊥ w ∀w ∈ S.(2.2)

Frequently, we choose S = K(j)(A, r), the jth Krylov subspace associated with the
matrix A and the starting vector r. In this case the eigenvalues of Hm are the Ritz
values of A. Ritz values tend to approximate the extremal eigenvalues of A well, but
can give poor approximations to the interior eigenvalues. Likewise, the Ritz values
of A−1 tend to approximate the interior eigenvalues of A. We define harmonic Ritz
values as the Ritz values of A−1 with respect to the space AS,

A−1ỹ − μ̃ỹ ⊥ w ∀w ∈ AS,(2.3)

where again S = K(j)(A, r) and ỹ ∈ AS. We call θ̃ = 1/μ̃ a harmonic Ritz value.
In this case, we have approximated the eigenvalues of A−1, but using a Krylov space
generated with A. In GCRO-DR, we construct harmonic Ritz vectors using a modified
operator rather than A.

2.2. GCROT. GCROT is a truncated minimum residual Krylov method that
retains a subspace between cycles such that the loss of orthogonality with respect to
the discarded space is minimized [7]. This process is called optimal truncation. We
discuss optimal truncation in the context of restarted GMRES, although it can be
described in more general terms, independently of any specific linear solver [7, 18].
Consider solving Ax = b with initial residual r0. At the end of the first cycle of
GMRES, starting with v1 = r0/‖r0‖2, we have the Arnoldi relation (2.1).

Let r1 denote the residual vector after m iterations. Consider some iteration
s < m. For s iterations of GMRES, we have the Arnoldi relation

AVs = Vs+1Hs.(2.4)

Let r denote the residual after s iterations. Now suppose that we had restarted after
iteration s, with initial residual r, and made m − s iterations, yielding residual r2.
The optimal residual after m iterations is r1. At best, we may have ‖r2‖2 = ‖r1‖2,
but in general, ‖r2‖2 > ‖r1‖2, because GMRES restarted after iteration s ignores
orthogonality to the Krylov subspace AK(s)(A, r0). The deviation from optimality
incurred by restarting after iteration s is e = r2 − r1, which we call the residual
error. The residual error e depends on the principal angles [12, pp. 603–604] between
the subspaces AK(s)(A, r0) and AK(m−s)(A, r). Instead of completely discarding
the space AK(s)(A, r0), suppose we had maintained orthogonality to a k-dimensional
subspace (k < s) of AK(s)(A, r0) for the remaining m − s iterations to produce a
new residual vector r3. If we chose our k-dimensional subspace of AK(s)(A, r0) to
correspond to the k largest principal angles, we would minimize the norm of the
new residual error ‖e′‖2 = ‖r1 − r3‖2. This process is what is meant by optimal
truncation. Since the Krylov space generated with r contained vectors close to the
recycled subspace, this is likely to happen again after restarting with r1. Therefore,
we retain the selected k-dimensional subspace for the next cycle.

GCROT maintains matrices Uk, Ck ∈ C
n×k satisfying the relations

AUk = Ck,(2.5)

CH
k Ck = Ik.(2.6)

The minimum residual solution over range(Uk) is known from the previous cycle. In
the following cycle, we carry out the Arnoldi recurrence while maintaining orthogonal-
ity to Ck. This corresponds to an Arnoldi recurrence with the operator (I−CkC

H
k )A.
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1656 PARKS, DE STURLER, MACKEY, JOHNSON, MAITI

Then, we compute the update to the solution as in GMRES, taking the singularity
of the operator into account using the relation A−1(I − CkC

H
K )A = I − UkC

H
k A [6].

The correction to the solution vector and other vectors selected via optimal trunca-
tion of the Krylov subspace are appended to Uk, and then Uk and Ck are updated
such that (2.5)–(2.6) again hold. At the end of each cycle, only the matrices Uk and
Ck are carried over to the next cycle. Each cycle of GCROT requires approximately
m−k matrix-vector products and O(nm2 +nkm) other floating point operations. For
details, see [7].

GCROT can be modified to solve (1.1) by carrying over Uk from the ith system
to the (i + 1)st system. We have the relation A(i)Uk = Ck. We modify Uk and Ck to
satisfy (2.5)–(2.6) with respect to A(i+1) as follows:

[Q,R] = reduced QR decomposition of A(i+1)Uold
k ,(2.7a)

Cnew
k = Q,(2.7b)

Unew
k = Uold

k R−1. 1(2.7c)

Now, A(i+1)Unew
k = Cnew

k , and we can proceed with GCROT on the (i + 1)st linear
system. Note that in many cases computing A(i+1)Uold

k = Cold
k + ΔA(i)Uold

k is much
cheaper than k matrix-vector products, because ΔA(i) is considerably sparser than
A(i) or has a special structure. See our example problem in section 4.1. Moreover, even
if we were to compute A(i+1)Uold

k directly, this can be faster than k separate matrix-
vector multiplications [8]. So long as A(i+1) has not changed significantly from A(i),
the use of Unew

k should accelerate the solution of the (i + 1)st linear system.

2.3. GMRES-DR. GMRES-DR [21] recycles an approximate invariant sub-
space to deflate eigenvalues of smallest magnitude. Deflating these eigenvalues can
greatly improve convergence in certain circumstances.

In each cycle, GMRES-DR carries forward k harmonic Ritz vectors Ỹk ∈ C
n×k

computed at the end of the previous cycle. For the first cycle, the harmonic Ritz
vectors can be computed from Hm in (2.1). It can be shown that these harmonic
Ritz vectors fit naturally into a Krylov subspace [20]. In each cycle, GMRES-DR

proceeds by first orthogonalizing Ỹk to give Υ̃k. GMRES-DR then carries out the
Arnoldi recurrence for m− k iterations while maintaining orthogonality to Υ̃k. This
gives the Arnoldi-like relation

A[Υ̃k Vm−k] = [Υ̃k Vm−k+1]Hm,(2.8)

where Hm is upper Hessenburg, except for a leading dense (k+1)×(k+1) submatrix.
GMRES-DR updates the solution and residual as in GMRES. It then computes the
harmonic Ritz vectors associated with the k smallest harmonic Ritz values using (2.8),
and finally restarts with those vectors.

GMRES-DR cannot be used to solve (1.1) directly, even if the matrix is fixed. The

harmonic Ritz vectors of A in Ỹk do not form a Krylov subspace for another matrix
or even just another starting vector. These and other reasons lead us to develop
GCRO-DR, a generalization of GMRES-DR capable of solving (1.1).

2.4. GCRO-DR. We introduce a new Krylov method that uses recycling. We
call this method GCRO-DR because it uses deflated restarting within the framework
of GCRO [6]. The method is a generalization of GMRES-DR to solve (1.1). GCRO-
DR is more flexible because any subspace may be recycled for subsequent cycles or

1For efficiency, Unew
k need not be computed explicitly.

D
ow

nl
oa

de
d 

09
/1

0/
15

 to
 1

29
.1

86
.1

76
.9

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



KRYLOV SUBSPACE RECYCLING 1657

linear systems. In the pseudocode given in the appendix, the harmonic Ritz vectors
corresponding to the harmonic Ritz values of smallest magnitude have been chosen.
However, any combination of k vectors may be selected. An interesting possibility
would be to select a few harmonic Ritz vectors corresponding to the harmonic Ritz
values of smallest magnitude, and a few Ritz vectors corresponding to the Ritz values
of largest magnitude. This would allow simultaneous deflation of eigenvalues of both
smallest and largest magnitude using the better approximation for each.

When solving a single linear system, GCRO-DR and GMRES-DR are algebraically
equivalent. The primary advantage of GCRO-DR is its capability for solving sequences
of linear systems.

GCRO-DR is a combination of GMRES-DR and GCRO. Suppose that we have
solved the ith system of (1.1) with GCRO-DR, and we retain k approximate eigenvec-

tors, Ỹk = [ỹ1, ỹ2, . . . , ỹk]. Then, GCRO-DR computes matrices Uk, Ck ∈ C
n×k from

Ỹk and A(i+1) such that A(i+1)Uk = Ck and CH
k Ck = Ik, in the same manner as in

(2.7). In the remainder of this section we drop the superscript in A(i+1) for notational
convenience.

We find the optimal solution over the subspace range(Uk) as x = x0 + UkC
H
k r0,

and set r = r0 − CkC
H
k r0 and v1 = r/‖r‖2. Next, we generate a Krylov space of

dimension m− k + 1 with (I − CkC
H
k )A, which produces the Arnoldi relation

(I − CkC
H
k )AVm−k = Vm−k+1Hm−k.(2.9)

Since Vm−k+1 ⊥ Ck, we have

A[Uk Vm−k] = [Ck Vm−k+1]

[
Ik Bk

0 Hm−k

]
,(2.10)

where Bk = CH
k AVm−k. To reduce unnecessary ill-conditioning of the rightmost

matrix in (2.10) we proceed as follows. We compute the diagonal matrix Dk such

that Ũk = UkDk has unit columns, and we define

V̂m = [Ũk Vm−k], Ŵm+1 = [Ck Vm−k+1], Gm =

[
Dk Bk

0 Hm−k

]
.

We rewrite (2.10) as

AV̂m = Ŵm+1Gm,(2.11)

where the columns of V̂M and Ŵm+1 have unit norm. Note that Gm = ŴH
m+1AV̂m is

upper Hessenberg, with Dk diagonal. The columns of Ŵm+1 are orthogonal, but this

is not true for the columns of V̂m.
At the end of each cycle, GCRO-DR solves the minimization problem

t = arg min
z∈ range(V̂m)

‖r −Az‖2,(2.12)

which reduces to the (m+1) ×m least squares problem

Gmy ≈ ŴH
m+1r = ‖r‖2ek+1,(2.13)

with t = V̂my. The residual and solution are given by

r = r −AV̂my = r − Ŵm+1Gmy,(2.14)

x = x + V̂my.(2.15)
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1658 PARKS, DE STURLER, MACKEY, JOHNSON, MAITI

Next, the method solves the generalized eigenvalue problem

GH
mGmz̃i = θ̃iG

H
mŴH

m+1V̂mz̃i,(2.16)

derived from (2.3), and recovers the harmonic Ritz vectors as ỹi = V̂mz̃i. In general,
(2.16) will have complex eigenvalues. When storing the harmonic Ritz vectors in
GCRO-DR, we use a real representation of a complex conjugate pair. To ensure that
we retain both complex conjugate harmonic Ritz vectors associated with a selected
eigenvalue, it is sometimes necessary to store k + 1 vectors rather than k vectors per
cycle.

GCRO-DR and GMRES-DR have about the same computational cost per cycle.
In particular, they have the same number of matrix-vector products and orthogonal-
izations per cycle. GCRO-DR stores k additional vectors. If the new Uk is computed
explicitly (which is not necessary), GCRO-DR has a modest additional computational
cost of about nk2/2. Given Uk and Ck, generating (2.11) with GCRO-DR(m, k) re-
quires approximately 2kn (1 + k) fewer floating point operations than generating (2.1)
with GMRES(m), although GMRES(m) stores k fewer vectors. The number of dot-
products and vector updates per cycle is of the same order for GCRO-DR(m, k) and
GMRES(m); the cost savings in GCRO-DR(m, k) arise because (2.5) and (2.6) are
already satisfied.

3. Convergence analysis for deflation-based Krylov subspace recycling.
Recent work on the convergence of GMRES [31] together with the theory on invariant
subspaces and their perturbations [34] provides a good framework for analyzing the
GCRO-DR method. Unfortunately, a similar convergence theory for the GCROT
method is still lacking. However, in section 4 we show by numerical experiment that,
regarding recycling, GCROT shares many of the properties of GCRO-DR. A full
theoretical analysis of GCRO-DR is beyond the scope of the present paper; instead
we discuss two main theoretical results and their implications and demonstrate these
numerically in section 4. For more details on these theoretical results we refer to
[15, 23, 24].

The first result concerns the convergence of GCRO-DR; see [23, 24]. We show that
the recycle space need not approximate an invariant subspace accurately to improve
the rate of convergence significantly.

Let Q be an �-dimensional invariant subspace of A, and let C = range(Ck) be
a k-dimensional space (k ≥ �) selected to approximate Q, where Ck is defined in
section 2.4. We define ΠC to be the orthogonal projector onto C, and we define ΠQ
similarly. Furthermore, we define PQ to be the spectral projector onto Q. Finally, we
define the one-sided distance from the subspace Q to the subspace C as

δ (Q, C) ≡ ‖ (I − ΠC) ΠQ‖2,(3.1)

which is equal to the sine of the largest principal angle between Q and C [1]. This
means that any unit vector in Q has a component of at most length δ orthogonal to C.

Theorem 3.1. Given a space C, let V = range
(
Vm−k+1Hm−k

)
be the (m − k)-

dimensional Krylov subspace generated by GCRO-DR as in (2.9). Let r0 ∈ C
n, and

let r1 = (I − ΠC) r0. Then, for each Q such that δ (Q, C) < 1,

min
d1∈V⊕C

‖r0 − d1‖2 ≤ min
d2∈(I−PQ)V

‖ (I − PQ) r1 − d2‖2

+
γ

1 − δ
‖PQ‖2 · ‖ (I − ΠV) r1‖2,

where γ = ‖(I − ΠC)PQ‖2.
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KRYLOV SUBSPACE RECYCLING 1659

If, in addition, A is Hermitian, then we have

min
d1∈V⊕C

‖r0 − d1‖2 ≤ min
d2∈(I−ΠQ)V

‖ (I − ΠQ) r1 − d2‖2

+
δ

1 − δ
· ‖ (I − ΠV) r1‖2.

Proof. For the proof, see [23, Chapter 3] or [24].
Theorem 3.1 was inspired by a related theorem in [31] used to explain superlinear

convergence in GMRES. In the two bounds above, the left-hand side represents the
residual norm after m− k iterations of GCRO-DR with the recycled subspace C. On
the right-hand sides, the first term represents the convergence of a deflated problem
where all components in the subspace Q have been removed, which typically leads to
an improved rate of convergence [21, 31, 36]. The second term in the right-hand sides
represents a constant times the residual of m − k iterations of GCRO-DR, solving
for r1. If the recycle space C contains an invariant subspace Q, then δ = γ = 0 for
this Q, and GCRO-DR converges at least as fast as the deflated problem. In our
numerical experiments we demonstrate that the method fairly quickly gets to values
of δ = O(10−2). In that case, we still obtain the convergence rate of the deflated
problem, so long as ‖PQ‖2 is not large in the non-Hermitian case. Notice that for
δ = O(10−2) the invariant subspace Q is not approximated very accurately, and
that such values of δ are relatively easily obtained. Finally, we point out that for a
given subspace C, Theorem 3.1 is applicable to any invariant subspace Q such that
δ(Q, C) < 1. Hence, the sharpest bound for any Q applies, and the result appears to
be fairly insensitive to conditioning issues of invariant subspaces for non-Hermitian
A.

The second result concerns the perturbation of invariant subspaces associated with
the smallest eigenvalues when the change in the matrix is concentrated in an invariant
subspace corresponding to large eigenvalues. When the magnitude of the change
is smaller than the gap between smallest and large eigenvalues, then the invariant
subspace associated with the smallest eigenvalues is not significantly altered. As we
aim to recycle exactly this subspace, this is a desirable property.

For simplicity we deal specifically with a Hermitian positive definite matrix A
and a corresponding Hermitian perturbation E, as in our main numerical example in
section 4. Following the discussion in [15], let A have the eigendecomposition

A = [Q1 Q2 Q3] diag(Λ1,Λ2,Λ3) [Q1 Q2 Q3]
H ,(3.2)

where Q = [Q1 Q2 Q3] is an orthogonal matrix, Λ1 = diag(λ
(1)
1 , . . . , λ

(1)
j1 ), and Λ2 and

Λ3 are defined analogously. Furthermore, let

λ
(1)
1 ≤ · · · ≤ λ

(1)
j1 < λ

(2)
1 ≤ · · · ≤ λ

(2)
j2 < λ

(3)
1 ≤ · · · ≤ λ

(3)
j3 .

Now we consider the change in the invariant subspace range(Q1) under a symmetric
perturbation E of A. Let θ1(. , .) denote the largest canonical angle between two
spaces. We do not require that ‖E‖F be small, but we assume that the projection
of E onto the subspace range([Q1 Q2]) is small. We assume that ‖[Q1 Q2]

HE‖F ≤ ε

and that ε is small relative to λ
(2)
1 − λ

(1)
j1 . We also assume that η ≡ ‖QH

3 E‖F is small

relative to λ
(3)
1 − λ

(1)
j1 . Note that we do not need to assume that λ

(2)
1 − λ

(1)
j1 is large.
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1660 PARKS, DE STURLER, MACKEY, JOHNSON, MAITI

Also, let

μ ≡ min(λ
(2)
1 − ε, λ

(3)
1 − η) − 2ε− (λ

(1)
j1 + ε) > 2ε,

μ̂ ≡ μ

(
1 − 2ε2

μ2

)
+ λ

(1)
j1 + ε.

Theorem 3.2. Let A be Hermitian positive definite and have the eigendecompo-
sition given in (3.2), and let E, ε, η, μ, and μ̂ be defined as above. Then there exists
a matrix Q̂1 conforming to Q1 such that range(Q̂1) is a simple invariant subspace of
A + E, and

tan θ1

(
range(Q1), range(Q̂1)

)
≤ ε

μ̂
.

Proof. For the proof, see [15].
A similar bound holds for the perturbation of the eigenvalues associated with Q1.
In relation to Theorem 3.1 and GCRO-DR, Q1 corresponds to Q, whereas Q2

and Q3 can be chosen to fit the theorem. We need a specialized perturbation result
of this kind, because in general the changes in the matrices are too large to show by
standard perturbation theory that the invariant subspaces of interest remain intact.
This perturbation theorem is of general importance, as there are many applications
that involve a sequence of problems that undergo small local changes. In a problem
like crack propagation we do not expect the smooth global modes associated with the
smallest eigenvalues to change much from one system to the next, but only gradually
over many systems as the crack propagates over some distance. We show experimen-
tally that this is the case in section 4. The continual adaptation of the recycle space
needs to track only these gradual changes. Another example is given in [15], where we
optimize a parameterized medium in a tomography application to fit measured data.

Finally, we note that GCRO-DR uses more or less the Arnoldi method with dense
restarting for approximating an invariant subspace [33, 38]. This method generally
offers fast convergence for the exterior components of the spectrum. This fast conver-
gence together with Theorems 3.1 and 3.2 indicates that GCRO-DR satisfies the three
important properties mentioned in the introduction, especially for problems such as
crack propagation.

The perturbation result indicates that if the recycle space provides a reason-
able approximation to an invariant subspace, then it will also provide a reasonable
approximation to the slightly perturbed invariant subspace of the updated matrix.
The convergence result indicates that GCRO-DR will have fast convergence as the
method does not require an accurate approximation to the invariant subspace. More-
over, Arnoldi’s method with dense restarting will quickly improve the approximation
to the invariant subspace of the perturbed matrix. In general, it is not hard to get
a reasonable approximation to an invariant subspace corresponding to the outermost
eigenvalues [34]. We will demonstrate this behavior of GCRO-DR using numerical
experiments in the next section.

4. Test problems and numerical results. We discuss our main example in
section 4.1, a problem from fracture mechanics that produces a long sequence of
linear systems. The matrices are symmetric positive definite (SPD), and both the
matrix and right-hand side change from one system to the next. For this problem
we also provide a more detailed experimental analysis of the GCRO-DR and GCROT
methods following the theory described in section 3. In addition, we provide results for
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KRYLOV SUBSPACE RECYCLING 1661

three problems that involve real nonsymmetric matrices and complex non-Hermitian
matrices. We consider two examples from physics to illustrate the effectiveness of our
approach for the case of a fixed matrix. We discuss electronic structure calculations
in section 4.2, and a problem from lattice quantum chromodynamics in section 4.3.
Finally, in section 4.4, we apply GCROT and GCRO-DR to a simple convection-
diffusion problem to evaluate the effects of subspace recycling in the nonsymmetric
case, independent from perturbations in the matrix or right-hand side.

In the following sections, GMRES(m) indicates restarted GMRES with a max-
imum subspace of dimension m, and GMRES(∞) indicates full GMRES. CG refers
to the conjugate gradient method. For GMRES-DR(m,k) and GCRO-DR(m,k), m
is the maximum subspace size, and k is the dimension of the recycle space. For
GCROT(m,kmax,kmin,s,p1,p2), m is the maximum subspace size over which we op-
timize. The maximum number of column vectors stored in Uk and Ck (as described
in section 2.2) is kmax. The argument kmin indicates the number of column vectors
retained in Uk and Ck after truncation to make room for new vectors. The argument
s indicates the dimension of the Krylov subspace from which we select p1 vectors to
place in Uk. We also include in Uk the last p2 orthogonal basis vectors generated in the
Arnoldi process. See [7, 18] for more discussion regarding the choice of parameters.
At each restart for GCROT, the GMRES part is run for m− kmin steps.

In comparing restarted GMRES, GCROT, GMRES-DR, and GCRO-DR, we de-
cided to make the solvers minimize over a subspace of the same dimension. An
alternative choice would be to provide the same amount of memory to each solver,
but we felt that our choice would provide a more informative comparison.

4.1. Fatigue and fracture of engineering components. Research on failure
mechanisms (e.g., fatigue and fracture) of engineering components often focuses on
modeling complex, nonlinear response. Finite element methods for quasi-static and
transient responses over longer time scales generally adopt an implicit formulation.
Together with a Newton scheme for the nonlinear equations, such implicit formulations
require the solution of linear systems, thousands of times, to accomplish a realistic
analysis [13].

We study a sequence of linear systems taken from a finite element code developed
by Philippe Geubelle and Spandan Maiti (both Aerospace Engineering, University
of Illinois at Urbana-Champaign (UIUC)). In our example, the code simulates crack
propagation in a metal plate using so-called cohesive finite elements. The plate mesh
is shown in Figure 4.1. The problem is symmetric about the x-axis, and the crack
propagates exactly along this symmetry axis. The cohesive elements act as nonlinear
springs connecting the surfaces that will define the crack location. As the crack prop-
agates, the cohesive elements deform following a nonlinear yield curve and eventually
break. The element stiffness is set to zero for a broken cohesive element. These ele-
ments are usually inserted dynamically, but that is not the case here. This simulation
results in a sequence of sparse, symmetric, positive definite stiffness matrices that
change slowly from one system to the next. Each stiffness matrix can be expressed
as A(i+1) = A(i) + ΔA(i). Although ΔA(i) is considerably more sparse than A(i), it
is not low-rank, as the terms in the update ΔA(i) come from all nonbroken cohesive
elements. The other finite elements model linear elasticity and have constant stiffness
matrices. The matrices produced in our examples are 3988 × 3988, and have a con-
dition number on the order of 104 before preconditioning. They have an average of
13.4 nonzero entries per row. Over 2000 linear systems must be solved to capture the
fracture progression.
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Fig. 4.1. Two-dimensional plate mesh for the crack propagation problem.
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Fig. 4.2. Number of matrix-vector products versus timestep for various solvers for the crack
propagation problem without preconditioning. All solvers use a recurrence of at most 40 vectors,
except GMRES(∞) and CG.

We examine the 151 linear systems 400–550, representing a typical subset of
the fracture progression in which many cohesive elements break. We start with a
straightforward comparison of GCRO-DR and GCROT with subspace recycling with
CG, restarted GMRES, GMRES(∞), GMRES-DR, and GCROT without subspace
recycling. We always start with a zero initial guess, since we solve for the incremental
displacement associated with the loading increment. We give both preconditioned and
nonpreconditioned convergence results. All solvers are required to reduce the relative
residual to 1.0 × 10−10. In Figure 4.2 we give the number of matrix-vector products
needed to solve each of these systems without preconditioning for GMRES(∞), CG,
GMRES-DR(40,20), GCRO-DR(40,20), and GCROT(40,34,30,5,1,2), both with and
without subspace recycling. Except for GMRES(∞) and CG, all methods in Figure 4.2
minimize over a subspace of dimension 40 in each cycle. GMRES(40) is not shown,
because it required too many matrix-vector products. In Figure 4.3 we give results for
the same sequence of problems and the same methods but with incomplete Cholesky
(IC(0)) preconditioning. A new preconditioner was computed for each matrix, which
is not the most efficient approach. The total number of matrix-vector products needed
to solve all 151 preconditioned linear systems is given in Table 4.1.
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Fig. 4.3. Number of matrix-vector products versus timestep for various solvers for the crack
propagation problem with incomplete Cholesky preconditioning. All solvers use a recurrence of at
most 40 vectors, except GMRES(∞) and CG.

Table 4.1

The total number of iterations required to solve 151 consecutive IC(0) preconditioned linear
systems. Only GCRO-DR and GCROT(recycle) exploit subspace recycling.

Method Matrix-vector products
GMRES(40) 27188

GMRES-DR(40,20) 14305
GCROT(40,34,30,5,1,2) 14277

CG 14162
GMRES(∞) 14142

GCROT(40,34,30,5,1,2) (recycle) 7482
GCRO-DR(40,20) (recycle) 6901

We see in Figure 4.2 that GCRO-DR requires the fewest matrix-vector products,
except for the first system in the sequence when no recycle space is available. For the
first system, GCROT outperforms GCRO-DR. For all but the first system, GCRO-DR
and GCROT with recycling require significantly fewer matrix-vector products than
the solvers without subspace recycling. Furthermore, GCROT without recycling and
CG show about the same convergence. GMRES(∞) outperforms CG, indicating that
the convergence of CG is delayed due to effects of finite-precision arithmetic.

For the preconditioned case shown in Figure 4.3, GCRO-DR performs best, with
GCROT with subspace recycling a close second. All the other solvers cluster near
GMRES(∞).

Comparing GMRES-DR and GCRO-DR, we see a significant difference in con-
vergence, even though both methods aim to retain the same approximate invariant
subspace. This difference is due solely to subspace recycling. Without the space recy-
cled from previous linear systems, GCRO-DR is algebraically equivalent to GMRES-
DR. The results indicate that the invariant subspace associated with the smallest
eigenvalues is hard to estimate accurately. GCRO-DR exhibits superior performance,
because it does not have to compute that space from scratch for each new linear sys-
tem. Indeed, we show below that after solving only three linear systems, GCRO-DR
has computed a reasonable approximation to the invariant subspace associated with
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Fig. 4.4. Convergence curves for GCRO-DR on five consecutive linear systems from the pre-
conditioned crack propagation problem, along with the bound described in Theorem 3.1. The bound
was computed with Q the eigenspace corresponding to the 20 smallest eigenvalues of the precondi-
tioned operator. Since the bound is tight and δ is small, GCRO-DR achieved the convergence rate
of the deflated problem in Theorem 3.1.

Table 4.2

Table of δ (Q, C) for GCRO-DR(40, 20) on the preconditioned crack propagation problem, where
Q has been selected as the invariant subspace associated with the 15 eigenvalues of smallest mag-
nitude. The decrease of δ within a column indicates the improvement of the approximation to Q
for a particular system. The small perturbation of the invariant subspace is reflected in the minor
increase in δ from the last cycle of one system to before the first of the next system. At each cycle,
GCRO-DR updates its approximate invariant subspace.

Linear system 401 402 403 404 405

Before cycle 1 0.9994 0.2380 0.0464 0.0607 0.0794
After cycle 1 0.9180 0.1448 0.0463 0.0606 0.0787
After cycle 2 0.2446 0.0302 0.0416 0.0568 0.0690
After cycle 3 0.2331 0.0302 0.0415 0.0567 0.0684

the fifteen smallest eigenvalues; GMRES-DR cannot do this.
Next, we evaluate some of the properties of GCRO-DR related to the two theo-

retical results in section 3 and the three properties mentioned in the introduction.
As GCRO-DR approximates an invariant subspace better, it gets closer to the

convergence rate of a deflated problem, as described in Theorem 3.1. The conver-
gence curves for five consecutive systems from the preconditioned crack propagation
problem are shown in Figure 4.4, along with the bound described in Theorem 3.1.
The bound was computed with the invariant subspace, Q, corresponding to the 20
smallest eigenvalues of the preconditioned matrix. We see that the bound is sharp.
Additionally, note that for each problem the initial convergence rate for GCRO-DR
is approximately the same as the final convergence rate of GMRES(∞).

In Table 4.2, for the preconditioned example we show how the one-sided distance
δ, defined in (3.1), from the invariant subspace associated with the 15 smallest eigen-
values to the recycle space evolves over multiple cycles and multiple linear systems.
This table illustrates a number of important issues.

The first system solved in this experiment is system 400, and so system 401 is the
first system that starts with a recycle space. For the chosen invariant subspace δ is

D
ow

nl
oa

de
d 

09
/1

0/
15

 to
 1

29
.1

86
.1

76
.9

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



KRYLOV SUBSPACE RECYCLING 1665

quite poor at the start, but δ improves quickly over the next two linear systems, and
after cycle 2 for system 402, δ has taken a reasonably small value. So, GCRO-DR is
able to compute from scratch increasingly good approximations to invariant subspaces
that change slightly from system to system. Note that GMRES-DR starts from scratch
for every new system. Therefore, it never obtains a sufficiently good approximation,
and hence requires many additional iterations per linear system. Any other method
that cannot continually update the approximation to the invariant subspace will suffer
from the same problem.

Next, note how δ improves during the solution of a single linear system, whereas
the small perturbation of the invariant subspace for the next linear system is reflected
in the minor increase in δ from the last cycle of one system to before the first cycle
of the next system. This confirms our earlier statement, based on Theorem 3.2, that
the invariant subspace associated with the smallest eigenvalues and smooth global
modes changes little under small local changes in the model. We have also verified this
explicitly by computing the principal angles between invariant subspaces of successive
matrices. However, in the next experiment we show that the cumulative change over
a larger number of loading steps requires the continual or at least periodic updating
of the recycle space to keep the number of iterations small.

Finally, this particular Q was chosen to illustrate the role and behavior of δ, not
to get the best bound from Theorem 3.1. Initially, a smaller invariant subspace might
have a much smaller δ and may lead to a tighter bound. The bound holds for any
invariant subspace with δ < 1, and so the smallest bound is the effective one.

Next, we provide a number of experiments that illustrate how quickly GCRO-DR
and GCROT learn and adapt to an updated linear system, and how the convergence
rate deteriorates if we stop updating the recycle space.

Figure 4.5 shows the results for three variants of GCRO-DR applied to the non-
preconditioned problem. Standard GCRO-DR, as discussed so far, updates the recycle
space every cycle, as this update is generally quite cheap. We also show a GCRO-DR
variant that runs standard GCRO-DR for the first five linear systems in the sequence,
but after that never updates the approximate invariant subspace. This also means
that it makes no updates while solving each single system. In this case, convergence
deteriorates slowly for the first few linear systems but then more rapidly as the gradual
changes in the matrices accumulate. Eventually, the number of iterations per linear
system exceeds that of GMRES-DR (cf. Figure 4.2). The third variant of GCRO-DR
runs normal GCRO-DR for the first five linear systems in the sequence, then stops
updating, except that it runs a standard GCRO-DR every 250th linear system. This
frequency was chosen solely for the purpose of demonstration. Clearly, for this prob-
lem, the recycled subspace must be updated more frequently for good convergence,
say every 25 or 50 systems. Note how, despite the significant deterioration in the
number of iterations per system, GCRO-DR recovers the rate of convergence of stan-
dard GCRO-DR over the solution of a single system. This shows how quickly the
method is able to recover (learn) a sufficiently accurate approximation to the invari-
ant subspace. This example also suggests that the convergence is quite sensitive to
the δ values for the relevant invariant subspaces. For this example, the average value
of ‖A(i)‖2 is 3.1357 × 1010, and the average value of ‖ΔA(i)‖2 is 2.9076 × 108. In a
relative sense, the change from one matrix to the next is small, but the cumulative
change over many linear systems can be quite large. As mentioned before, ‖ΔA(i)‖2 is
larger than the smallest eigenvalues. However, the values of δ in Table 4.2 show that
the perturbation of the corresponding invariant subspace is quite small, as suggested
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Fig. 4.5. Number of matrix-vector products versus timestep for GCRO-DR(40, 20) with subspace
recycling on the nonpreconditioned crack propagation problem. We also show a modified version of
GCRO-DR(40, 20) that stops updating the recycled subspace after linear system 405, and a version
that stops updating after linear system 405 but does update every 250 systems thereafter. Convergence
quickly deteriorates in the latter two cases, showing the importance of updating the approximate
invariant subspace regularly.

by the discussion in section 3 regarding small localized changes in the problem and
by Theorem 3.2. Figure 4.5 shows that GCRO-DR can adapt to the slow change of
the invariant subspace. Finally, it would not be hard to dynamically balance the cost
of updating the recycle space with the improved rate of convergence.

In Figure 4.6, we give the results for a similar experiment with GCROT. We show
results for standard GCROT with recycling, a GCROT variant that stops updating the
recycle space after the first five linear systems, and for a variant that stops updating
after the first five linear systems except that it runs a standard GCROT every 100th
system. Without the continual updating of the recycle space, the convergence of
GCROT degrades more severely than that of GCRO-DR. After each linear system
solved by standard GCROT, the number of iterations per system remains small for
four or five subsequent systems, but then increases rapidly. This is likely caused
by two factors. Since GCROT recycles a subspace that is important for maintaining
orthogonality for the current iterations, the recycled space may have a more temporary
relevance than an invariant subspace. If we stop updating, then GCROT more or
less reduces to restarted GMRES after a number of updates to the matrix when the
recycle space is no longer relevant. In addition, after solving a linear system, standard
GCROT recycles a subspace that was relevant at the end of that iteration, which may
not be the best recycle space for the start of the iteration for the next system. Note
that solving a single linear system with standard GCROT restores the convergence
rate to that for using standard GCROT for each system. This shows that the method
is able to learn quickly.

These experiments demonstrate that GCRO-DR and GCROT are able to make
the small changes to the recycle space necessitated by small localized changes in the
problem. For GCRO-DR this is explained by the perturbation result from Theorem 3.2
in combination with the convergence predicted by Theorem 3.1 for small enough δ
(say, δ = O(10−2)).
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Fig. 4.6. Number of matrix-vector products versus timestep for GCROT(40, 29, 25, 7, 1, 2) with
subspace recycling on the nonpreconditioned crack propagation problem. We also show a modified
version of GCROT(40, 29, 25, 7, 1, 2) that stops updating the recycled subspace after linear system
405, and a version that stops updating after linear system 405 but runs standard GCROT every
100th system thereafter. In the latter case, convergence remains small for about four or five systems
after using standard GCROT, but then quickly deteriorates, showing the importance of updating the
approximate invariant subspace regularly. Note that GCROT, too, is able to restore rapid conver-
gence in the course of a single linear system.

4.2. Electronic structure. First-principles, electronic-structure calculations
based on the Schrödinger equation are used to predict key physical properties of
materials systems with a large number of atoms. We consider systems arising in the
KKR (Korringa–Kohn–Rostoker) method [16, 17] and seek to compute entries in the
inverse of the matrix

G = (I − (t− tref)Gref)
−1(t− tref),

where Gref is a sparse and easily invertible matrix and t and tref are block-diagonal
matrices. G is a sparse, complex, non-Hermitian matrix whose relative number of
nonzeros decreases with the number of atoms [14, 40, 32].

Only the block-diagonal elements of G−1 are needed to calculate physical proper-
ties, such as charge densities, total energy, force, and formation and defect energies.
As such, we solve GX = I, column-by-column. Iterative methods offer the advan-
tage of storing only those components of the inverse that we need. Standard direct
inversion methods are infeasible for large numbers of atoms (N ≥ 500) on regu-
lar workstations, because the memory and computational costs grow as O(N2) and
O(N3), respectively.

We consider a small model problem provided by Duane Johnson (Materials Sci-
ence and Engineering, UIUC) and Andrei Smirnov (Oak Ridge National Laboratory).
The problem involves the simulation of a cubic lattice of 54 copper atoms (treated as
inequivalent) for a complex energy point close to the real axis. This is the key physical
regime for metals and leads to problems that converge poorly. The matrix is 864×864
and has about 300,000 nonzeros. However, for increasingly larger systems the matrix
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Fig. 4.7. Convergence for 16 consecutive right-hand sides for a small electronic structure
problem. Each distinct curve gives the convergence for a subsequent right-hand side, plotted against
the total number of matrix-vector products. The first two right-hand sides together take about 500
iterations, while the remaining right-hand sides take about 140 iterations each, a reduction of almost
50%.

becomes more sparse; the number of nonzeros grows roughly linearly with the size of
the matrix. We solved this problem using GCRO-DR(50,25) with subspace recycling
for 32 consecutive right-hand sides (the first 32 unit Cartesian basis vectors). We
give the convergence history for the first atom in Figure 4.7. Note that the first two
right-hand sides together take about 500 iterations; the remaining right-hand sides
take approximately 140 iterations each, a reduction of almost 50%. Each right-hand
side for the second atom (not shown) also takes approximately 140 iterations. Al-
though for problems of this size iterative methods are not competitive with direct
solvers, we have observed this convergence behavior for larger problems, in particular
the immediate acceleration in convergence for subsequent right-hand sides.

4.3. QCD. Quantum chromodynamics (QCD) is the fundamental theory de-
scribing the strong interaction between quarks and gluons. Numerical simulations of
QCD on a four-dimensional space-time lattice are considered the only way to solve
QCD ab initio [4, 35]. As the problem has a 12 × 12 block structure, we are often
interested in solving for 12 right-hand sides related to a single lattice site. The linear
system to be solved is (I − κD)x = b with 0 ≤ κ < κc, where D is a sparse, complex,
non-Hermitian matrix representing periodic nearest neighbor coupling on the four-
dimensional space-time lattice [19]. For κ = κc the system becomes singular. The
physically interesting case is for κ slightly smaller than κc; κc depends on D.

As a model problem we use the matrix conf5.0 00l4x4.1000.mtx downloaded
from the Matrix Market website at NIST [2]. The model problems were submitted by
Medeke [19]. For this problem we have κc = 0.20611, and we used κ = 0.202.

We solve for 12 consecutive right-hand sides (the first 12 Cartesian basis vectors)
using the GCROT method with subspace recycling. The results are presented in
Figure 4.8.
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Fig. 4.8. Convergence for 12 consecutive right-hand sides for a model QCD problem from the
NIST Matrix Market. Each distinct curve gives the convergence for a subsequent right-hand side,
plotted against the total number of matrix-vector products. Note that the final convergence rate for
the first system is the starting convergence rate for the rest of the systems.

4.4. Convection-diffusion. We consider the finite difference discretization of
the partial differential equation

uxx + uyy + cux = 0

on (0, 1) × (0, 1) with boundary conditions

u(x, 0) = u(0, y) = 0,

u(x, 1) = u(1, y) = 1.

Central differences are used, and we set the mesh width to be h = 1/41 in both
directions, which results in a 1600 × 1600 matrix. We consider the symmetric case,
c = 0, and a nonsymmetric case for c = 40. The eigenvalues are real for both these
examples. In order to study how a recycled subspace affects convergence, we will
consider the “ideal” situation for subspace recycling by solving a linear system twice
with GCRO-DR and GCROT, recycling the subspace generated from the first run.

In this example, we consider GMRES(∞), GMRES(25), GMRES-DR(25,10),
GCRO-DR(25,10), and GCROT(25,18,15,5,1,1). To explore the effects of subspace
recycling on this example problem, we rerun GCRO-DR and GCROT on the same
linear system, and recycle the subspace from the first run. We do this to exclude the
effects of right-hand sides having slightly different eigenvector decompositions. In a
sense, this is the ideal case for subspace recycling. The first run for GCRO-DR is
the same as GMRES-DR. The results for the c = 40 (nonsymmetric) case are quite
interesting and counterintuitive. In particular, this example suggests that there are
better choices for a recycle space than approximate invariant subspaces. This topic
is discussed further in [23]. We give the results for the symmetric case, c = 0, in
Figure 4.9 and for the nonsymmetric case with c = 40 in Figure 4.10. In the legend
for each of these figures, Recycle denotes the second run of a solver that was run twice.
All solvers were required to reduce the relative residual to 1.0 × 10−10.
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Fig. 4.9. Residual norm versus number of matrix-vector products for various solvers for the
convection-diffusion problem with c = 0.
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Fig. 4.10. Residual norm versus number of matrix-vector products for various solvers for the
convection-diffusion problem with c = 40.

For the c = 0 case, we see that the second runs of GCRO-DR and GCROT both
converged faster than GMRES(∞). Note that on its first run GCROT converges as
fast as full GMRES and slightly faster than GCRO-DR/GMRES-DR. On the rerun,
however, GCRO-DR is faster than GCROT, suggesting a more effective recycle space.
Clearly, GCRO-DR and GCROT recycled a small subspace from their first run that
improved convergence significantly. For the c = 40 case, GMRES(∞) and the second
run of GCROT terminate in about the same number of iterations, but the second run
of GCROT had a significantly smaller residual for almost the entire run. Only near
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Table 4.3

Cosines of principal angles between the recycled subspace and the invariant subspaces spanned
by the 10 and 21 eigenvectors associated with the eigenvalues of smallest magnitude, respectively,
for the c = 0 and c = 40 cases.

Cosines of principal angles between recycled
subspace and subspace associated with 10
smallest magnitude eigenvalues

Cosines of principal angles between recycled
subspace and subspace associated with 21
smallest magnitude eigenvalues

c = 0 c = 40 c = 0 c = 40
1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 0.99999999999997 1.00000000000000 1.00000000000000
1.00000000000000 0.99999999839942 1.00000000000000 1.00000000000000
1.00000000000000 0.99999970490203 1.00000000000000 0.99999999999937
0.99999999999703 0.99990149788562 1.00000000000000 0.99999999545394
0.00000000593309 0.98844658524616 1.00000000000000 0.99999681064565
0.00000000003840 0.89957454665058 0.99999999999988 0.99983896006215
0.00000000000003 0.54237185670110 0.99999999316379 0.99393007943547
0.00000000000000 0.06426938073642 0.99993817690380 0.94584519976471
0.00000000000000 0.02603228754605 0.99792215267787 0.20867650942988

the end, with a much larger search space, does GMRES(∞) catch up. The second run
of GCROT also does better than its first run, indicating that it recycled a subspace
useful for convergence. However, GCRO-DR performed initially somewhat better
on the second run than the first, but the overall iteration count was approximately
the same for both runs. This means that the subspace it recycled failed to improve
convergence. For more analysis on the selection of good recycle spaces, see [23, 15, 24].

Table 4.3 shows the cosines of the principal angles between the subspace recycled
by GCRO-DR and the invariant subspaces associated with the 10 and 21 eigenvalues
of smallest magnitude, respectively, for the c = 0 and c = 40 cases. For the comparison
with 10 eigenvectors, we see that the recycle space for the c = 0 case captures only
5 eigenvectors. We compare with the space spanned by 21 eigenvectors because it
captures the entire recycled subspace for the c = 0 case. This means that GCRO-DR
does not select the invariant subspace spanned by the eigenvectors for the 10 smallest
eigenvalues, but rather selects some subspace of the space spanned by the 21 smallest.
The table also shows that the approximation of an invariant subspace for the c = 40
case is nearly as good as for c = 0. However, this does not lead to similar convergence.

5. Conclusions and future work. We have presented an overview of Krylov
subspace recycling for sequences of linear systems, where both the matrix and right-
hand side change. Different choices for subspace selection and recycling have been
shown, as well as methods implementing those choices. We propose the new solver
GCRO-DR to implement Krylov subspace recycling of approximate invariant sub-
spaces for Hermitian and non-Hermitian systems. We provide two important theo-
retical results complemented by a set of experiments to analyze the convergence of
GCRO-DR for a typical application generating a long sequence of linear systems.
GCROT has convergence behavior similar to GCRO-DR regarding recycling, but
theoretical results for this method are a topic of future research. When solving a
sequence of linear systems, methods employing Krylov subspace recycling frequently
outperformed GMRES(∞) while recycling a subspace of only small dimension and
minimizing over a small subspace. However, as particular examples in section 4.4
show, it is not completely clear how subspace selection affects convergence, so fur-
ther theory is needed. Short recurrence methods for the Hermitian case have been
developed [15].
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Appendix. GCRO with deflated restarting (GCRO-DR).

1: Choose m, the maximum size of the subspace, and k, the desired number of

approximate eigenvectors. Let tol be the convergence tolerance. Choose an initial

guess x0. Compute r0 = b−Ax0, and set i = 1.

2: if Ỹk is defined (from solving a previous linear system) then

3: Let [Q,R] be the reduced QR-factorization of AỸk.

4: Ck = Q

5: Uk = ỸkR
−1

6: x1 = x0 + UkC
H
k r0

7: r1 = r0 − CkC
H
k r0

8: else

9: v1 = r0/‖r0‖2

10: c = ‖r0‖2e1

11: Perform m steps of GMRES, solving min ‖c−Hmy‖2 for y and generating Vm+1

and Hm.

12: x1 = x0 + Vmy

13: r1 = Vm+1(c−Hmy)

14: Compute the k eigenvectors z̃j of (Hm+h2
m+1,mH−H

m emeHm)z̃j = θ̃j z̃j associated

with the smallest magnitude eigenvalues θ̃j and store in Pk.

15: Ỹk = VmPk

16: Let [Q,R] be the reduced QR-factorization of HmPk.

17: Ck = Vm+1Q

18: Uk = ỸkR
−1

19: end if

20: while ‖ri‖2 > tol do

21: i = i + 1

22: Perform m − k Arnoldi steps with the linear operator (I − CkC
H
k )A, letting

v1 = ri−1/‖ri−1‖2 and generating Vm−k+1, Hm−k, and Bm−k.

23: Let Dk be a diagonal scaling matrix such that Ũk = UkDk, where the columns

of Ũk have unit norm.

24: V̂m = [Ũk Vm−k]

25: Ŵm+1 = [Ck Vm−k+1]

26: Gm =

[
Dk Bm−k

0 Hm−k

]
27: Solve min ‖ŴH

m+1ri−1 −Gmy‖2 for y.

28: xi = xi−1 + V̂my

29: ri = ri−1 − Ŵm+1Gmy

30: Compute the k eigenvectors z̃i of GH
mGmz̃i = θ̃iG

H
mŴH

m+1V̂mz̃i associated with

smallest magnitude eigenvalues θ̃i and store in Pk.

31: Ỹk = V̂mPk

32: Let [Q,R] be the reduced QR-factorization of GmPk.

33: Ck = Ŵm+1Q

34: Uk = ỸkR
−1

35: end while

36: Let Ỹk = Uk (for the next system).D
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