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Abstract. The strange sets which arise in deterministic low-dimensional dynamical systems 

are analysed in terms of (unstable) cycles and their eigenvalues. The general formalism of 

cycle expansions is introduced and its convergence discussed. 

PACS numbers: 0320,0545 

1. Introduction 

The goal of the present series of papers is the development of a perturbation theory 
of the low-dimensional deterministic chaos of predictive quality comparable to that of 
the traditional perturbation expansions for nearly integrable systems. In the traditional 
approach the integrable motions are used as zeroth-order approximations to physical 
systems, and weak nonlinearities are then accounted for perturbatively. For strongly 
nonlinear, non-integrable systems such expansions fail completely; the asymptotic time 
phase space exhibits amazingly rich structure which is not at all apparent in the 
integrable approximations. However, hidden in this apparent chaos is a rigid skeleton, 
a tree of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcycles (periodic orbits) of increasing lengths and self-similar structure. The 
important role played by periodic orbits was already noted by Poincare [l], and has 
been at the core of much of the mathematical work on the theory of the dynamical 
systems [2] ever since. The insight of the modern dynamical systems theory [3] is 
that the zeroth-order approximations to the harshly chaotic dynamics should be very 
different from those for nearly integrable systems : a good starting approximation here 
is the linear stretching and folding of a baker’s map, rather than the winding of a 
harmonic oscillator. 

The present work is a physics application of the dynamical systems theory devel- 
oped in [3-71; we refer the reader to the above literature for a survey of rigorous results. 
Computations with such systems require techniques reminiscent of statistical mechan- 
ics; however, no probabilities are introduced and the actual calculations are crisply 
deterministic. The perturbation theory developed here is based on the observation 
that the motion in dynamical systems of a few degrees of freedom is often organised 
around a few fundamental cycles. The strategy will be to express averages over chaotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Tessellation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a dynamical system by cycles; a smooth flow is approximated by 
a piecewise linear mapping, with each ‘face’ centred on a periodic point. 

phase space regions in terms of short unstable periodic orbits, with the small expansion 
parameter being the non-uniformity of the flow (here referred to as curvature) across 
neighbourhoods of periodic points. The emphasis will be on the practical applications 
of cycle expansions, at some expense to the mathematical rigour. We are interested in 
the convergence of cycle expansions in generic settings, i.e. situations in which neither 
the symbolic dynamics is strictly controlled (there is no finite Markov partition), nor is 
the system uniformly hyperbolic (the phase space is a mixture of stability islands and 
chaotic regions). Our results will not depend on assumptions about the existence of 
invariant measures or structural stability of strange sets. 

We shall refer to the closure of the union of periodic points as the strange set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; all 
calculations undertaken here are carried out on strange sets. Our main computational 

tool will be the cycle expansions [8] of the dynamical [ functions [6]: 

l / i  = - t p )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -& -&. 
P f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

The fundamental cycles t f  have no shorter approximants; they are the ‘building blocks’ 
of the dynamics in the sense that all longer orbits can be approximately pieced together 
from them. They code exactly the topology of the strange set, and serve as the starting 
approximation to its scalings. A priori it is far from obvious that a few finite cycles 
suffice to describe the infinity of orbits characteristic of a chaotic dynamical system. 
We will show here how this infinity of orbits can be resummed and re-expressed in 
a form in which the short fundamental cycles dominate, and the errors arising from 
neglect of longer cycles can be controlled with exponential (and occasionally rather 
impressive) accuracy. 
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Periodic points are skeletal in the sense that even though they are determined at 

finite time, they remain there forever. One can visualise the description of a chaotic 
dynamical system in terms of cycles as a tessellation of the dynamical system (figure 1) 
with smooth flow approximated by the skeleton of periodic points of period length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, 
each region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  centred on a periodic point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i ,  and the size of the region determined by 
the linearisation of the flow around the periodic point. Instead of temporal averages 
(a long trajectory which explores the phase space ergodically) we shall always work 
with finite time, topologically partitioned space averages. The periodic points are dense 
on the asymptotic strange set, and their number increases exponentially with the cycle 
length. As we shall see, this exponential proliferation of cycles is not as daunting 
as one might fear; as a matter of fact, all our computations are carried out in the 
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc limit. The infinity of cycles required by the exact dynamics will be approximated 

by shadowing long orbits with sequences of nearby periodic orbits of finite lengths. 
Orbits that follow the same symbolic dynamics, such as orbit {ab} and a ‘pseudo-orbit’ 
{ a } { b } ,  lie physically close; longer and longer orbits resolve the dynamics with finer 
and finer resolution in the phase space. If the weights t ,  associated with the orbits 
are multiplicative along the flow (for example, products of derivatives) and the flow 
is smooth, the combination t,tb/tab - 1 falls off exponentially with the cycle length. 
The curvature corrections c, in (1) are built from such combinations, and the cycle 
expansions are therefore highly convergent. We show that this is the case even for 

non-hyperbolic dynamical systems (systems with orbits of marginal stability), provided 
that the averaging is done in the ‘hyperbolic phase’. 

The paper is organised as follows: in section 2 we derive a 5 function formula for 
a physically measurable quantity, the escape rate from a repeller, and in section 3 we 
repeat the derivation in a transfer operator formalism. In section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 we introduce our 
main tool, the cycle expansions. In section 5 we discuss the form the cycle expansions 
take for pruned symbolic dynamics; in section 6 we apply them to calculation of 
topological entropies, and in section 7 we discuss their convergence. In section 8 we 
introduce the notion of the stability of a strange set, and in section 9 we explain 
how the the standard thermodynamic averages can be computed in terms of cycle 
expansions. 

The present paper concentrates on the general properties of the cycle expansions; 
in the following paper (hereafter referred to as 11) we apply the cycle expansions 
to a series of examples of low-dimensional chaos: ID strange attractors, the period- 
doubling repeller, the Henon-type maps and the mode locking intervals for circle maps. 
Beyond the examples discussed in 11, the cycle expansions have also been applied to 
the irrational windings set of the critical circle maps [9], to the Hamiltonian period- 
doubling repeller [lo], to a Hamiltonian three-disk pinball [l 11, to the three-disk 
quantum scattering resonances [12,13] and to the extraction of correlation exponents 
[14]. Feasibility of analysis of experimental strange sets in terms of cycles is discussed 
in [8]. 

2. Escape rates 

A repeller escape rate is an eminently measurable quantity. The experimental measure- 
ment consists in shooting many projectiles into a non-confining potential and estimating 
the asymptotic escape rate; the task of the theory is to predict this rate. We shall 
show here that such escape rates (and other chaotic averages) can be predicted to very 
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high accuracy with rather little computation. We start with a simple one-dimensional 
repeller example, comment on its generalisation to continuous d-dimensional flows 
and then repeat the derivation in a more general transfer-operator setting in the next 
section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 - 00 01 7 1  -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. A hierarchical covering of a strange repeller by intervals that survive one, two 
and three iterations of a unimodal repelling map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x). Indicated are the binary itineraries 
of the neighbourhoods, the fixed points 8 and i and the 011 cycle. A 'daughter' interval 
ld expands into the 'mother' interval at rate well approximated by f'(xd): for example 
lOl/llOl = f'(Xl0l). 

Take the unimodal repeller of figure 2, with f ( x , )  > xmax, and sprinkle the unit 
interval with a smooth distribution of starting values of x. In the first iteration an 
interval around the maximum x, escapes, in the second iteration its two pre-images 
escape, and so on. At time n the survivors are divided into 2" distinct neighbourhoods: 
the ith neighbourhood consists of all points x which follow the itinerary i = e,eZej.. .e,, 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAek = 0 if f ( k ) ( x )  c x,, and f k  = 1 if f ( & ) ( x )  =- x,. Let li be the width of such 
a neighbourhood, or, more generally, the fraction of inital x placed into the ith 
neighbourhood. The fraction of the initial x which survive n iterations is given by 

The map is smooth, and its derivative bounded and everywhere expanding, 1 < IAminI I 
Idf/dxl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI IAmaxI, so each interval in (2) is bounded by Replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
li in (2) by its over (under) estimates in terms of IAmaxI, IAminI immediately leads to 
exponential bounds (2/lAmaxl)fl I Ti I (2/lAmin/)". A finer graining and counting of 
scales would lead to improved bounds-establishing these bounds is in a sense precisely 
the goal of the present series of papers. Hence one expects the sum (2) to fall off 
exponentially with n, and tend to a limit 

I li 5 

r, = e-"?. (3) 

y = 1/T is the escape rate from the repeller; T is the asymptotic fifetime of a random 
initial x. We shall now show that this asymptotic escape rate can be extracted from a 
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highly convergent exact expansion by reformulating the sum (2) in terms of unstable 
periodic orbits. 

Each neighbourhood i in figure 2 contains a periodic point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i .  The finer the 
intervals, the smaller the variation in slope across them, and the expansion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAli onto 
the unit interval in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn iterations is well approximated by the stability of the periodic 
point x i ,  li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ai/lAil. Here 

n-1 

k-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

is the derivative evaluated along the periodic orbit, and ai is a prefactor defined by 

To proceed with the derivation of the 5 function we need the hyperbolicity assumption: 
for large n the prefactors ai x 0(1) are overwhelmed by the exponential growth of Ai, 
so we neglect them. The ai reflect a particular distribution of starting values of x; the 
asymptotic trajectories are strongly mixed by bouncing chaotically around the repeller 
and we expect them to be insensitive to smooth variations in the initial distribution. If 
the hyperbolicity assumption is justified, we can replace l i  in (2) by l /Ai  and form a 
formal sum over all periodic orbits of all lengths: 

For sufficiently small z this sum is convergent. As for large n the nth-level sum (2) 
tends to the limit e-"?, the escape rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is determined by the smallest z = e? for which 

(6) diverges : 

This observation motivates the introduction of the sum (6). Rather than attempting to 
extrapolate the escape rate from the finite n sums (2), we shall determine y from the 
singularities of (6). 

If a trajectory retraces itself r times, its derivative is A;, where p is a prime cycle. 
A prime cycle is a single traversal of the orbit; its label is a non-repeating symbol 
string. There is only one prime cycle for each cyclic permutation class. For example, 
p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = is not. (a bar over a finite 
block of symbols denotes a symbol sequence with infinitely repeating basic block). The 
stability of a cycle is (by the chain rule, see (4)) the same everywhere along the orbit, 
so each prime cycle of length np contributes np terms to the sum (6). Hence (6) can be 
rewritten as 

- - - -  
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where the index p runs through all distinct prime cycles. The npznp factors in the sum 
suggest rewriting it as a derivative Q(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -z(d/dz) Eln(1 - znp/lA,l). Hence n(z) is a 
logarithmic derivative of the infinite product 

l / l (z )  = n(l -zZ"pIA\P1/). 

P 

This is an example of a dynamical [ function [6 ] .  The name is motivated by the (purely 
formal) similarity of the infinite product to the Euler product representation of the 
Riemann ( function. 

The above ( function can be immediately generalised to higher dimensions by 
defining [15] the escape rate from a finite enclosure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV around a d-dimensional repeller 

by 

An argument similar to the one that leads to the neglect of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai prefactors in ( 5 )  
leads to a replacement of (9) by a periodic orbit sum 

where 

is the i-cycle [d x d] Jacobian matrix, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA!, A?, . . ., At are its eigenvalues. If 1A91 # 1 

(no eigenvalues are marginal), in the large-n limit only the expanding eigenvalues 
contribute, and (10) becomes 

where Ai = nyp A; is the product of the expanding eigenvalues. Hence the [ function 
(8) is correct for d-dimensional maps as well, with Ap interpreted as the product of the 
expanding eigenvalues. 

The [ function for continuous flows (which we shall not need for the applications 
considered here and in paper 11) is given in [ l l ,  161. 

Expression (8) is the main result of this section; the problem of estimating the 
asymptotic escape rates from finite n sums such as (2) is now reduced to studying the 
singularities of the { function (8). The escape rate is related by (7) to a divergence of 
O(z), and n(z) diverges whenever 1/[ (z) or [ (z) has a zero. 

We conclude this section by a general comment on the relation of the finite sum 
(2) to the dynamical [ function (8). Not so long ago most physicists were inclined 
to believe that given a deterministic rule, a sum like (2) could be evaluated to any 
desired precision. For short finite times this is indeed true: every interval in (2) can 
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be accurately determined, and there is no need for an elaborate theory. However, if a 
dynamical system is unstable, local variations in initial conditions grow exponentially 
and in finite time attain the size of the system. The difficulty with estimating the n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ CO 

limit from (2) is then at least twofold: 
(1) due to the exponential growth in number of intervals, and the exponential 

decrease in attainable accuracy, the maximal n attainable experimentally or numerically 
is in practice of order of something between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 20; 

(2) the pre-asymptotic sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy n  is not unique, because r, are not scale invariant, 
and because in general the intervals l i  in the sum (2) should be weighted by the 
probability distribution of initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo. For example, a rescaling li + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, introduces l / n  
corrections in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  defined by the sum (2): y, -+ y, - In a/n .  This is usually fixed by 
extracting y, from successive ratios eYn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE r,/r,+l. In contrast, the [ function (8) is 
already invariant under all smooth nonlinear conjugacies x -+ h(x),  not only linear 
rescalings, and requires no n -+ CO extrapolations. 

The pleasant surprise implicit in (8) is that the infinite time behaviour of an unstable 
system will be as easy to determine as the short time behaviour. The only critical step 
in the derivation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 function was the hyperbolicity assumption, i.e. assumption 
of exponential growth for all parts of the strange set. By dropping the prefactors (5 ) ,  
we have given up on any possibility of recovering the precise distribution of starting x 
(which should anyhow be impossible due to the exponential growth of errors), but in 
return gained an effective description of the asymptotic behaviour of the system. 

3. Transfer operators 

The formalism of the preceding section is vastly more powerful than the ID  repeller 
example might suggest-the technique is meant to apply to any average in which the 
weight assigned to a trajectory is multiplicative along the dynamical flow. In order to 
place the method in this larger setting, we now rederive the dynamical 5 function (8) 
by the transfer operator technique. 

Consider-the classical example of a fractal [17], the Cantor set. The set is generated 
by a single rule: replace a mother interval 1 by two daughters of length 1/3; repeat this 
replacement ad infinitum. Given the rule, one can immediately compute the Hausdorff 
dimension; at the nth level the set can be covered with 2" intervals of size 3-", hence 
D = log 2/ log 3. A transfer operator is a generalisation of such a rule to strange sets 
for which the dynamics generates an infinity of scales, not just a single scale as in 
the Cantor set case. For example, for a repeller like the one illustrated in figure 2 
the dynamics associates with each 'mother' interval l,, m = e2e3 . . .E, , ,  two 'daughter' 
intervals ld ,  d = O E ~ . .  . E , ,  IC,. . . E , ,  at the next level of resolution. The transfer operator 
appropriate to the evaluation of (2) is defined by the set of daughter/mother ratios 

For the Cantor set Tdm = 1/3 for all d ;  for a generic dynamical 
on an infinity of values. The sum (2) can now be expressed in 
transfer operators : 

strange set Tdm takes 
terms of products of 
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As it stands, this is a purely formal rewrite of (2); the ‘mother’ to ‘daughters’ relations 
place the pieces of a strange set onto a hierarchical tree, and that can be done in 
various ways. To proceed, we require that the tree provide a hierarchical nesting of the 

scaling ratios in the following sense: the value of TcIe2 , , , E .  should depend strongly 
on the head of the symbol sequence e l f2 . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA., and weakly on the tail . . . enW1e,. More 
precisely, we assume that the specification of first k symbols determines Tcle2 ,,,e.,E , , ,E . ,  

n > k, within accuracy A, 

and that /Ak[  decrease monotonically towards zero with increasing k. Here F(k)  is an 
approximate ‘mean’ scaling for all T,, with the same first k symbols. Replacing the 
infinite number of scaling ratios (13) by a finite matrix F(k)  amounts to approximating 
the strange set by a Cantor set with a finite number of scales. 

An example of such hierarchy is the repeller of the preceding section, for which 
T,, % l/lf’(x)[, where f ’ ( x )  is a slope of the mapping evaluated at a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx inside 
the dth neighbourhood. With the labelling conventions of figure 2, the points whose 
itineraries have the same head e1e2.. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAen are spatially close, and hence the associated 
derivatives and transfer matrix elements are close. 

Now we can study the transfer operator T as a limit of p(k)  finite matrix ap- 
proximations. For example, for the binary labelled repeller of figure 2, k = 2 level 
approximation to T is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F is in general a sparse matrix, as the only non-vanishing entries in the m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2e3 . . . ek+l 

column of p;dm are in the rows 0e2. . .ek and l e 2 . .  . fk. 

In the kth-order approximation the sum (14) is given by 

Here I is the vector of all intervals li at the kth level. It plays the same role as 
the prefactors ai in (5) of the preceding section; in the n b k limit, the kth-level 
approximation (17) is dominated by the leading eigenvalue of p(k)  

rLk) OC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[n$g,ln 

and, as far as the n -, CO limit is concerned, the pre-asymptotic intervals bk) contribute 
only an irrelevant prefactor (unless bk) happens to be normal to the leading eigendi- 
rection of f ( k ) ) .  This method of evaluating sums is familiar from statistical mechanics, 
whence the designation ‘transfer operator’. The analogy is purely formal, but often 
suggestive. 
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One could now pull out a sequence of leading eigenvalues A$kx by brute numerical 
iteration of F(k) and study their k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO limit; this is the essence of the functional 
equation techniques, such as those employed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[18]. However, as we shall now show, 
one can do much better: the characteristic equation 0 = det(1 - z T )  for the exact 
transfer operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is available in closed form. We start by observing that det(1 -zT)  
can be expressed in terms of traces of T by the identity 

det(1 - z T )  = exp[trlog(l - zT)]  = exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n=l 

Consider evaluating tr(T) from finite approximations + fl,l, 
tr(F(*)) = F ,,, + F1l,ll, . . . . Clearly the trace of the exact transfer operator is simply 
the sum of scaling evaluated at the fix points, tr(T) = T6,6 + Ti,i. More generally, 
each closed walk through n entries of T contributes a product of the entries along 
the walk to tr(T"). Each step in such a walk shifts the symbolic label by one index; 
the trace ensures that the walk closes into a periodic string c. We define t, to be the 
product of matrix elements along a cycle c; tr(T") is the sum of all such cycles of 
length n. For example, in figure 2, the cycle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 contributes t,, = T ~ , ~ ~ T ~ , E T ~ , ~  
to tr(T3). In this case the walk is weighted by the product of derivatives along 

the cycle, tl, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~f'(xl,)f'(xolo)f'(x,l)~~l. This is clearly cyclically symmetric, so 
tl, = tOlO = tml. For the binary labelled strange sets the first few traces are given by 

: tr(F(')) = 

In general, the nth-order trace picks up contributions from all repeats of prime cycles 
(mln means that m is a divisor of n); 

npln 

so the determinant (18) can be re-expressed in terms of prime cycles: 

det(1 -zT)  = exp ( - ~ g - )  =exp(~ln( l -z"Pt , ) )  =n ( l - znp tp ) .  

P 

This is the main result of this section; comparing with the (8) of the last section, we 
see that the dynamical ( function is related to the transfer operator by 

l/( = det(1 - T) = n ( 1  - tP)  
P 

(we shall usually absorb z into the transfer operator: Z T  --f T, z"Ptp --f tp). Glancing 
back, we see that the derivation is very general, and should work for any average over 
any strange set which satisfies two conditions: (1) the weight associated with a cycle 
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is multiplicative along the trajectory; (2) the set is organised in such a way that the 
nearby points in the symbolic dynamics have similar weights. 

We summarise the above derivations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( functions by recasting them into a more 
general form. Let the effect of a &dimensional deterministic map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (x)  (or a PoincarB 
section of a d + 1-dimensional flow) on a distribution q 5 u ( ~ )  be given by a transfer 

operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 q5)&dY), 

Here wga(x) is any weight factor multiplicative along the trajectory, and the indices 
refer to possible extra matrix structure (for example, group elements associated with 
discrete symmetries [12,11]). The eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs of 9 are given by the zeros of 

det(1 - z 9 )  = n(l - zA,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

and the determinant is related by (18) to the traces 

We assume that no eigenvalue is marginal and factorise the determinant into the 
product (10) of expanding eigenvalues Ai,l, Ai,2, . . ., Ai,e and contracting eigenvalues 

Ai,e+l, . . 3 Ai,d 

1 1 1 fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. = -  
1 

I deW - J(")(xi)l IAiI fi 1 - 1/Ai,a b=e+l 

As in (12), Ai is the product of expanding eigenvalues. Expanding 1/(1- l/Ai,J, 
1/(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi,J as geometric series, and substituting (22) back into (18), one finds that 
det(1 - 2 9 )  is given by the infinite product 

Here 'det' refers to the oBu indices, and op = ~ & l o c f ~ ) ( x p ) ) .  In the escape rates 
examples considered above, map = 1, and the dynamical function (8) is the first, /Ap/ 
'volume' weighted term co,,,o(z) in the above infinite product. The other terms determine 
the non-leading, anisotropy-dependent eigenvalues of 9. 

The transfer operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, 9, . . ., appear in the literature under a variety of names, 
such as the Frobenius-Perron operator [19], etc. The original Ruelle dynamical zeta 
function [20] is an example of such an average: 
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Here the sum goes over all periodic points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i  of period n, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( x )  is a weighting 
function corresponding to the average one wishes to evaluate. In this case the ‘daughters’ 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, are its pre-images f(-l)(x,), and Tdm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (p(xd).  We shall, however, also apply the 
c function technique to other types of transfer operators, such as the renormalisation 
group scaling functions (see paper 11). 

As we shall show below, a variety of physically interesting averages are determined 
by the eigenvalues of the transfer operator. By the above relations, those correspond 
to the zeros of l /c, in agreement with the way we have determined the escape rate in 
the previous section. 

Perhaps it is worth emphasising again that the Euler product formula (21) is 
an expression for the exact transfer operator T. We shall extract its eigenvalues 
directly from (21) with no recourse to any explicit (and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoordinatisation-dependent) 
eigenfunctions. Our cycle expansions will be dominated by short cycles, but that does 
not mean that we are using finite covers to approximate the set: by resummation that 
led to (21) we have already been lifted to the topologically exact k -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO strange set. 
The approximation will consist of approximating the strange set under investigation 
by ‘closeby’ Cantor sets with a finite number of already asymptotically exact scales. 
The finite approximations p(k) were introduced only for reasons of pedagogy: our 
experience is that computations with the asymptotically exact cycles expression (21) are 
both quicker and of better convergence than computations that go through sequences 
of finite matrix estimates such as the Markov diagram approximations of [21]. 

4. Cycle expansions 

How are formulae such as (8) used? We start by computing the lengths and eigenvalues 
of the shortest cycles. This usually requires some numerical work, such as the Newton 
method searches for periodic solutions; we shall assume that the numerics is under 

control, and that all short cycles up to given length have been found. It is very 
important not to miss any short cycles, as in this approach the consequences are 
catastrophic. The result is a list of cycles like figure 3 or table 1 of paper 11. 

Now we formally expand the Euler product (21) 

where the sum goes over all distinct non-repeating combinations of prime cycles. For 
k > 1, tPl+pz,,,+Pt are ‘ pseudo’ orbits; they are sequences of shorter orbits that shadow 
the orbit with the symbol sequence plp2.. . p k  along segments pl ,  p 2 , .  . ., p k  (see figure 4). 

For sufficiently small z (we have absorbed z into the weights by z n p t p  + t p  
substitution) the sum makes sense as a power series in z. For the binary dynamics 
(example of figure 2, listing of prime cycles in table 1) 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.- o"1 

1.2 1.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.4 

** 0 ;  

2.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. The distribution of the prime cycle eigenvalues for the tent map (30): plotted 

are the cycle Lyapunov exponents I, = p p / n p  log 2 against the inverse of the cycle length 

n,. The regular structure arises from the factorisation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, = A?A;', where (nl) is the 

number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOs (1s) in the cycle p. In the l/[ cycle expansion this infinity of cycles is 

resummed to the two fundamental cycles, l/[ = 1 - to - t l .  

the first few terms of the expansion are: 

l / i  = 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto - t l  - to1 - t,l - toll - tml - t,ll - tolll - . . . 
- to+1 - tOfOl - to1+1 - to+oo1 - btOl1 - too1+1 - t011+1 

-to+o1+1 - * * *  (27) 

The next step is the key step in our approach: we observe that the expansion 
(25) allows a regrouping of terms into dominant fundamental contributions tf and 
decreasing curvature corrections cn : 

r n 

We shall refer to such series as the cycle expansions. For the binary case the cycle 
expansion is obtained by grouping together the terms of the same total symbol string 
length (see table 2): 

l/i = 1 - to  - 61 - it10 - 4 t O l  - [(tloo - tlOt0) + (ho, - tl0tl)l 
- [(~looo - tot,,) + (t1110 - tlt110) + (tlool - tit,, - ~ 1 0 1 ~ 0  + t10~0~1)l - * * * 

(29) 
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0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi o  2 0  3 0  4 0  5 0  6 0  7 0  a 0  

n 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. Shadowing of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% cycle by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi cycle followed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 cycle. Here a = 001, b = 1001 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAab = 0011001. The distance between the cycles is the smallest when the largest number 
of symbols coincide; then x d  - xo z 1/&. 

The fundamental cycles to, t l  have no shorter approximants; they are the 'building 
blocks' of the dynamics in the sense that all longer orbits can be approximately pieced 
together from them. We call the sum of all terms of the same total length n (grouped 
in brackets above) the nth curvature correction c,, for geometrical reasons we shall 
explain in section 7. If all orbits are weighted equally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( tP = z " p ) ,  such combinations 
cancel exactly; if orbits of similar symbolic dynamics have similar weights, the weights 
in such combinations will almost cancel. 

For example, consider the tent map 

f O ( 4  = Aox 
fl(x) = Al ( l  - x )  

0 I x I 
1 - 1/A1 I x I I. 

By the chain rule the stability of any n-cycle factorises as AE,c2,,,C, = &"A?-", and 
the stabilities of prime cycles arrange themselves into the regular pattern of figure 3. 
Clearly the information carried by individual cycles is highly redundant; the cycle 

expansions, by resumming this infinity of cycles, eliminate the redundancy and extract 
the generating scales of a strange set. In the example at hand, all curvature terms in 
(29) vanish (we shall prove this in section 6), and the 5 function is simply 

1 / r  = 1 - z/lAol - Z/IAll. (31) 

For strange sets of non-uniform hyperbolicity, the cycle expansions truncated to the 
fundamental cycles correspond to approximations by strange sets of correct topol- 
ogy but with approximate scales (compare figure 3 with 11, figure 5 ) ;  the curvature 
corrections account systematically for deviations. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Prime cycles for the binary symbolic dynamics up to length 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"P Cycle np Cycle np Cycle np Cycle np Cycle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
1 
2 
3 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 
4 
4 
5 
5 
5 
5 
5 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 

0 7  
1 7  

01 7 
001 7 
011 7 

oO01 7 
0011 7 
0111 7 

m 1  7 
oO011 7 
00101 7 
00111 7 
01011 7 
01111 7 

000001 7 
oooO11 8 
oO0101 8 
oO0111 8 
001011 8 
001101 8 
001111 8 
010111 8 
011111 8 

0000001 8 
0000011 8 
~ 1 0 1  8 

oO01001 8 
~ 1 1 1  8 
oO01011 8 
oO01101 8 
0010011 8 
0010101 8 
oO01111 8 
0010111 8 
0011011 8 
0011101 8 
0101011 8 
0011111 8 
0101111 8 
0110111 8 
0111111 8 

OOOOOOO1 8 
00000011 8 
00000101 8 
oooO1001 8 
00000111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
m 1 0 1 1  9 
m 1 1 0 1  9 
oO010011 9 
oO010101 9 
oO011001 9 
00100101 9 

m 1 1 1 1  
oO010111 
oO01lOll 
oO011101 
00100111 
00101011 
00101101 
00110101 
oO011111 
001011 11 
001101 11 
0011101 1 
00111101 
010101 11 
0101 1011 
00111111 
010111 11 
011011 11 
01 11 11 11 

OOOOOOOO1 
OOOOOOOll 
000000101 
000001001 
m1oO01 
OOOOOO111 
000001011 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

m 1 1 0 1  
m 1 0 0 1 1  
m 1 0 1 0 1  
m 1 1 0 0 1  
oO01oO011 
oO0100101 
oO0101001 
000001111 
m 1 0 1 1 1  
m 1 1 0 1 1  
m 1 1 1 0 1  
oO0100111 
oO0101011 
oO0101101 
oO0110011 
oO0110101 
oO0111001 
001001011 
001001101 
001010011 
001010101 
m 1 1 1 1 1  
oO0101111 
oO0110111 
o0o111011 
oO0111101 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

001001 111 
001010111 
001011011 
001011101 
001 1001 11 
00110101 1 
001 101 101 
001110101 
010101011 
oO0111111 
001011111 
001101 111 
001 1101 11 
00111101 1 
001111101 
010101111 
0101 101 11 
010111011 
001111111 
0101 11 11 1 
0110111 11 
011101111 
011111111 

Now compare (31) with the Euler product (21). For simplicity take the two scales 
equal, IAol = lAll = eA. It is a novice error [22] to assume that the infinite Euler 
product (21) vanishes whenever one of its factors vanishes. If that were true, the factor 

(1 - z / I A. I) would yield 

0 = 1 - eY-1 (32) 

i.e. the escape rate y = lnz would equal the stability exponent of the repulsive fixed 
points. The correct formula follows from (31): 

(this is a special case of a general relation between escape rates, Lyapunov exponents 
and entropies; see section 9). The physical interpretation is that the escape induced 
by repulsion by each unstable fixed point is diminished by the rate of backscatter 
from other repelling segments, i.e. the entropy h ;  the 'false zeros' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz"p = eAp of the 
Euler product (21) are shifted by the positive entropy of orbits of the same stability 
to z = e*-h, The fundamental cycles tf in (28) in this way capture the essential orbit 
counting and scaling of a dynamical system; as we shall see, the remainder of a cycle 
expansion are exponentially small curvature corrections. 

Given the cycle expansion (29), the calculation is straightforward. We substitute 
the eigenvalues and lengths of prime cycles (for example, the distinct prime cycles up 
to length 9 listed in table 1) into the cycle expansion (29), and obtain a polynomial 
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approximation to l / (  (in variable z). The escape rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lnz is determined by finding 
the leading root of the polynomial approximation. The zeros l/C(z) = 0 can be easily 
determined by standard numerical methods, such as the iterative Newton algorithm 

Here z = e-4 and, if the weights are of form tP = efiPT-"pq (such weights are used in 
the thermodynamic av.erages of section 9), the derivative is given by an explicit cycle 
expansion (no extra numerical work needed), which follows from (25): 

It is easy to check that this cycle expansion also separates into fundamental cycles and 
curvature corrections. 

As we have seen above, the ( function reduces to a finite polynomial for piecewise 
linear mappings, but in general the curvature corrections c, in (28) do not vanish. 
While the polynomial truncations of the cycle expansions usually already converge 
well enough, we routinely improve them by fitting c2, cj, ..., cN with an exponential 

c, = A(zc)", and summing the tail estimate 

A(zc)~+'  
1 -zc  

N 

l / (  a l - z t f -  c c,-  
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,=,min 

We shall justify such exponential tail estimates in section 7; this particular estimate 
works if the leading pole is real. Alternatively, one can work with cycle expansions 
of Selberg products, as discussed in 11, section 4 and in [14]. Tail resummations 

often significantly improve the accuracy of the leading root in the cycle expansion; 
convergence can be further accelerated by Pad& approximants [23] or other acceleration 
techniques [24]. Note also that the existence of a pole at z = l /c  implies that the cycle 
expansions have a finite radius of convergence, and that analytic continuations will be 
required for extraction of the non-leading zeros of l / ( .  

A simple illustration of such tail resummation is the function for the Ulam map 

f(x) = 4 4 1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) (37) 

for which the cycle structure is exceptionally simple: the eigenvalue of the xo = 0 fixed 
point is 4, while the eigenvalue of any other n-cycle is k2". Typical cycle weights used 
in thermodynamic averaging are to = 4'2, t, = t = 2 r ~ ,  tp = t " ~  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp # 0. The simplicity 
of the cycle eigenvalues enables us to evaluate the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 function by a simple trick: we 
note that if the value of any n-cycle eigenvalue were t", (31) would yield l/c = 1 - 2t. 
There is only one cycle, the xo fixed point, that has a different weight (1  - to), so we 
factor it out, multiply the rest by (1 - t)/(l - t ) ,  and obtain a rational ( function 
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Consider how we would have detected the pole at z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l / t  without the above trick. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As the fi fixed point is isolated in its stability, we would have kept the factor (1 - to) in 
(26) unexpanded, and noted that all curvature combinations in (29) which include the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to factor are unbalanced, so that the cycle expansion is an infinite series: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (1 - t P )  = (1 - to)(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2  - t 3  - t -.  . .) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

(39) 

(we shall return to such infinite series in the next section and in 11, section 6).  The 
geometric series in the brackets sums up to (38). Had we expanded the (1 - to) factor, 
we would have noted that the ratio of the successive curvatures is exactly C,+~/C, = t ;  
summing as in (38) we would recover the rational ( function (36). 

Table 2. The binary cycle expansion (29) up to length 6, listed in such way that the sum of 

terms along the pth horizontal line (with the exception of the tlwl01 + t100110 pair) is the 
curvature c,, associated with a prime cycle p .  

We conclude this section by a comment on the fine structure of curvatures. A glance 
at the low-order curvatures in table 2 leads to a temptation of associating curvatures 
with individual cycles, such as coool = tml - totm1. Numerically such combinations 
tend to be numerically small (see for example paper 11, table 1). Reference [23] goes 
partially toward fine graining of the curvatures by associating with longer cycles sets 
of diagrammatically motivated ‘complexes’. However, splitting c, into individual cycle 
curvatures does not seem possible in general; the first example of such ambiguity in 
the binary cycle expansion (29) is given by the (001011, OlOOll} 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc-) 1 symmetric pair 
of 6-cycles; the counterterm tOOltOl l  is shared by the two cycles (see table 2). 

-- 
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5. Pruning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The splitting of cycles into the fundamental cycles and the curvature corrections 
depends on balancing long cycles tab against their pseudo-trajectory shadows ta tb .  If 
the cycle or either of the shadows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 6 do not exist, such curvature cancellation 
is unbalanced. In a generic dynamical system not every symbol sequence is realised 
as a physical trajectory; as one looks further and further, one discovers more and 
more rules which prohibit families of cycles, with unbalanced curvatures of any length, 
and consequently the cycle expansions are not expected to have significantly better 
convergence than averages computed from sums over covers. Hence the key to a 
theory of a chaotic dynamical system is firm control of the qualitative, topological 
enumeration of its possible motions, or the symbolic dynamics of the system. In the 
above we have used examples for which all possible orbits can be labelled by all 
possible binary sequences. In this section we discuss briefly the cycle expansions for 
systems with more complicated symbolic dynamics. 

A symbolic dynamics is constructed by partitioning the phase space into topologi- 
cally distinct regions, associating with each region a symbol from an alphabet, and using 
those symbols to label every possible trajectory. Cooering symbolic dynamics assigns 
a distinct label to each distinct trajectory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: however, there might be symbol sequences 
which correspond to no trajectory. If all possible symbol sequences can be realised as 
physical trajectories, the symbolic dynamics is called complete ; if some sequences are 
not allowed, the symbolic dynamics is pruned (the word is suggested by ‘pruning’ of 
branches corresponding to forbidden sequences for symbol dynamics organised by a 
hierarchical tree). In that case the alphabet must be supplemented by a set of pruning 
rules, which we shall refer to as the pruning grammar. 

Symbolic dynamics of a generic dynamic system is arbitrarily complex; even for 
the logistic map the grammar is finite only for special parameter values. Our strategy is 
akin to bounding a real number by a sequence of rational approximants; we converge 
toward the strange set under investigation by a sequence of self-similar Cantor sets. A 
‘self-similar’ Cantor set (in the sense in which we use the word here) is a Cantor set 
equipped with a subshift of finite type [3,25] symbol dynamics, i.e. the corresponding 
grammar [26,27] can be stated as a finite number of pruning rules, each forbidding a 
finite subsequence - e l f 2 . .  ..E,,-. Here the notation - e 1 e 2 . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,E,- stands for n consecutive 
symbols c l ,  e2,  . . ., f,, preceded and followed by arbitrary symbol strings. In practice 
we often find it most expedient to retain the binary labelling and prune directly by 
setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,- = 0 for any cycle which contains a forbidden substring s. However, the 
cycle expansions are more efficient if the pruning rules are implemented by redefining 
the alphabet, as we shall now show by a few examples. They are only illustrative, and 
the reader is referred to the theory of formal languages textbooks [26-281 for more 
comprehensive treatment. 

Example 1 .  Alphabet (0, l } ,  prune -00- . 
The pruning rule implies that ‘0’ must always be bracketed by ‘1’s; in terms of a new 
symbol 2 = 10, the dynamics becomes unrestricted symbolic dynamics with alphabet 
{ 1,2}. The cycle expansion (26) becomes 

l/i = ( 1  - t l ) ( l  - t2)(1 - tl2)U - t 112 ) .  . . 
= 1 - tl - t2 - ( 4 2  - tIt2) - @ll*  - 4 2 4 )  - ( 4 2 2  - t12t2). . 
= 1 - t ,  - t,o - (t1,o - tltl0) - ( t l l l 0  - t l l 0 t l )  - (t11010 - t110t10) . . .* (40) 
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Table 3. The infinite sequences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof cycles used in computing the curvature corrections 
for binary dynamics with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 fixed point pruned. The left-hand side is labelled by 
the integer labels of equation (42), ?a,,,,ak = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto,,,.ak-l,a; the right-hand side by the 
corresponding binary labels. In the application of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, section 6, the left-hand side labels are 
the corresponding continued-fraction entries, and the right-hand side are the corresponding 
binary Farey labels. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n = 1  2 3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6 7 

?I 

?I2 

?I12 

f122 

f1122 

i23 

t1112 

2132 

t11112 

$4 

f142 

f223 

51213 

f1132 

f1222 

:I1122 

$212 

t111112 

This symbolic dynamics describes, for example, circle maps with the golden mean 
winding number [29]. 

Example 2. Alphabet (0, l}, prune n repeats of '0' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0oO.. .00- . 
This is equivalent to the n symbol alphabet { 1,2,. . . , n} unrestricted symbolic dynamics, 
with symbols corresponding to the possible 10.. .00 block lengths: 2 = 10, 3 = 100, . . ., 
n = 100.. .00. The cycle expansion (26) becomes 

1/{ = 1 - t ,  - t , .  . . - t ,  - ( t 12  - t1 t* ) .  . . - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t l ,  - tit,). . * .  (41) 

Example 3. Alphabet (0, l}, prune only the fixed point 0 . 
This is equivalent to the infinite alphabet { 1,2,3,4,. . .} unrestricted symbolic dynamics. 

The prime cycles are labelled by all non-repeating sequences of integers, ordered 
lexically: t,, n > 0 ;  t,,, tmm,, . .  . , n  > m > 0 ;  tmnr,r > n > m > O,.. . (see table 3). Now 
the number of fundamental cycles is infinite as well: 

,To n>m>o n>m>O n>m>O 

- C ( tmnr  + tmrn - tmnt r  - tmrtn - t m t n r  + tmtntr) * - .  . (42) 
r>n>m>O 

We have already encountered this sum in the Ulam map cycle expansion in section 4. 
As we shall see in 11, section 6, this grammar plays an important role in description of 
fixed points of marginal stability (see also [9,30]). 
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Example 4 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlphabet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a, b,c } ,  prune -ab- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
The pruning rule implies that any string of ‘b’s must be preceded by a ‘c’; so one 

- possible alphabet is {a, cbk;  b}, k = 0, 1,2. .  .. As the rule does not prune the fixed point 
b, it is explicitly included in the list. The cycle expansion (26) becomes 

l / l  = ( l  - - tb)(l - tc)(l - tcb)(l - t,)(l - tcbb) - * 

= 1 - t ,  - tb  - tc + t,tb - (tcb - tctb) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(lac - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtatc) - (tcbb - t cb tb ) ,  a (43) 

The effect of the -ab- pruning is essentially to unbalance the 2-cycle curvature t ,b-t, tb; 
the remainder of the cycle expansion retains the curvature form. 

Example 5 .  Alphabet (0, l}, prune -10o0, -00100, -01 100- . 
This example is motivated by the pruning front description of the symbolic dynamics 
for the Hinon-type maps [31], but that is of no importance here; we offer it as an 
illustration of a typical pruning sequence. 

Step 1 .  -10o0- prunes all cycles with a -0o0- subsequence with the exception of the 
fixed point a; hence we factor out (1  - to) explicitly, and prune -0o0- from the rest. 
Physically this means that xo is an isolated fixed point - no cycle stays in its vicinity 
for more than two iterations. In the notation of example 2, the alphabet is { 1, 2, 3;  a}, 
and the remaining pruning rules have to be rewritten in terms of symbols 2 = 10, 
3 = 100. 
- -  Step 2. Alphabet (1 ,  2, 3;  a}, prune -33,-213,-313-. Physically, the 3-cycle 
3 = 100 is pruned and no long cycles stay close enough to it for a single -100- repeat. 
As in example 1, prohibition of -33- is implemented by dropping the symbol ‘3’ and 
extending the alphabet by the allowed blocks 13, 23. 

Step 3. Alphabet (1 ,  2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl3- 23; a}, prune -213,2213,-1313, where 13 = 13, 
- 23 = 23 are now used as single letters. Pruning of the repetitions -133- (the 4-cycle 
13 = 1100 is pruned) yields the following. 

Result. Alphabet (1, 2, 23, 113; a}, unrestricted 4-ary dynamics. The other 
remaining possible blocks -213, -2313- are forbidden by the rules of step 3. The cycle 
expansion is given by 

- -  

where c, are curvature combinations, easily obtained by expanding the 4-ary Euler 
product. 

Example 6. Alphabet (0, l}, prune -10o0, -00100, -01100, -1001 1 -  . 
This somewhat random example of pruning was used in [31], and we shall use it again 
in 11, section 5, to compare the cycle expansions with the more traditional methods. The 
first three pruning rules were incorporated in the previous example; the last pruning 
rule -10011- leads (in a way similar to example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) to the alphabet {21k,23.21k113; T,o}, 
and the cycle expansion 

This concludes our list of examples. 
The most important lesson of the pruning of the cycle expansions is that prohibition 

of a finite subsequence unbalances the head of a cycle expansion and increases the 
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number of the fundamental cycles in (28). Hence the pruned expansions are expected 
to start converging only after all fundamental cycles have been incorporated-in the 
last example, the cycles 1, 10, 10100, 1011100 (this is illustrated in 11, figures 8, 10). 
Before the introduction of cycle expansions, no such crisp and clear-cut definition of 
the fundamental set of scales was available. 

If the dynamics is invariant under interchanges of symbols, the symmetry leads to 
factorisations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( functions and significant simplifications and further improve- 
ments of the convergence of the cycle expansions. Such factorisations are discussed in 

- - - -  

D11. 

6. Counting cycles 

In this section we shall develop the simplest application of the cycle expansions: the 
cycle counting, or evaluation of the topological entropies. This information is useful in 
checking the cycle expansions. 

The number of periodic points of length n is given by 

and the corresponding generating function (6) is given by 

m 

n(z) = z"Nn. 
n= l  

Hence the periodic points are counted by simply setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, = z"p if cycle p exists, tp = 0 
if p is pruned. The growth of the number of orbits as a function of the symbol string 
length is characterised by the topological entropy : 

By the arguments of section 2, h can be determined from the leading zero z = e-h of 
the topological ( function [3, 321 

l/( = f l (1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ"P) = 1 - C t f .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P f 

(47) 

We emphasise that this expression for the entropy is exact ; in contrast to the definition 
(46), no n -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 extrapolations of In NJn are required. 

Note that for the cycle counting both tab and the pseudo-orbit combination ta+b = 
t,t, in (25) have the same value znofnb,  so all curvature combinations t,b - t,tb vanish 
exactly, and (47) offers a a quick way of checking the fundamental part of a cycle 
expansion. If the number of t f  is finite, we refer to this cycle expansion as the 
topological polynomial. 
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6.1. Counting prime cycles 

Our first objective is to evaluate the maximum number of prime cycles M,, for a 
dynamical system whose symbolic dynamics is built from N symbols. The problem 
of finding M ,  is classical in combinatorics [34,35] (counting necklaces made out of n 
beads out of N different kinds) and is easily solved. There are N" possible distinct 
strings length n composed of N letters. These N" strings include all Md prime d-cycles 
whose period d equals or divides n. A prime cycle is a non-repeating symbol string: 
for example, p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 011 = 101 = 110 = . . .011011.. . is prime, but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0101 = 010101. .. = 
is not. A prime d-cycle contributes d strings to the sum of all possible strings, one for 
each cyclic permutation. The total number of possible symbol sequences of length n is 
therefore related to the number of prime cycles by 

- - -  

N" = dMd. 

The number of prime cycles follows by Mobius inversion 

M,, = n-1 C p (!)  d. 
d 

dln 
(49) 

where the Mobius function p(1) = 1, p(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 if n has a squared factor, and 
p(p lpz . .  . p k )  = (-11~ if all prime factors are different. 

For example, from two symbols 0,l  one can form M,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,1,2,3,6,9,18,30,56,99.. . 
prime cycles, i.e. there are two fixed points 0 and i, one 2-cycle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo, two 3-cycles 
100 and 101, three prime 4-cycles 1OOO,1001, 1011, etc (see table 1). Similarly, there 
are M,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,3,8,18,48,116,312,810,. . . prime cycles built from three symbols, M,, = 
4,6,20,60,204,669,2340.. . prime cycles built from four symbols, and so forth. 

- --- 

6.2. Evaluation of topological entropy 

Counting cycles amounts to giving each (allowed) prime cycle p weight t ,  = z"p and 
expanding the Euler product (47) as a power series in z. As all M,, prime cycles of 
length n have the same weight, the ( function reduces to 

CO 

l/((z) = n (1 - z y n  = 1 - C Ck Z k  

fl=l k=l  

For complete symbolic dynamics of N symbols, the cycle expansion is given simply 

by 

CO 

l/((z) = n (1 - z " ) ~ "  = 1 - N z .  
fl=l 

This follows from the relation of the partition function, in this case 

N z  CO 

n(z) = C z " N "  = - 
1 - N z  

fl= 1 
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to the function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -z(d/8z)log([). Hence for the complete N-ary symbolic 
dynamics, the topological entropy equals h = logN, as is already clear from the 

definition (46). 
Finiteness of topological polynomials has important implications. In the expansion 

(28) each curvature c, is the sum of the M, prime n-cycle contributions plus or minus 
'counterterms' given by products of lower-order cycles: for example, for the binary 
symbolic dynamics a typical term is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(52) 
Note that the half of the contributions to ck are of negative sign; indeed, if the 
topological entropy is determined by a finite polynomial of order k, then in the cycle- 
counting expansion (tP = z " p )  all c, for n > k must vanish. That means that the first k 
terms in the cycle expansion are necessary to correctly count the pieces of the Cantor 
set generated by the dynamical system; they are topologically the fundamental cycles of 
the strange set. It is only after these terms have been included that the cycle expansion 
is expected to converge smoothly, i.e. only for n > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk are the curvatures c, a measure 
of the variation of the quality of a linearised covering of the dynamical Cantor set by 
n-cycle eigenvalues, and expected to fall off rapidly with n. Conversely, if the dynamics 
is not of a finite subshift type, there is no finite topological polynomial, there are no 
'curvature' corrections, and the convergence of the cycle expansions will be poor. 

The entropy polynomial also provides useful checks on the correctness of the 
curvature expansion. For example, observe that in (52) 23 terms contribute to c4, and 
exactly half of them appear with a negative sign. Such counting rules arise from the 
identity 

c4 = tom1 + tool1 + to111 + to to14  - tot,, - toto11 - t,ltl - t0lltl. 

1 - t p 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtP> = n -. P P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - tp 
(53) 

Substituting tp = z " p  and using (51) we obtain 

m 
1 - Nz2 

(1 +z"p) = - - - 1 + Nz + Z k ( P  - Nk-1). 
k=2 

1-Nz 
P 

The z" coefficient in the above expansion is the number of terms contributing to c, 
curvature, so we find that for a complete symbolic dynamics of N symbols and n > 1, 
the number of terms contributing to c, is (N - l)Nk-' (of which half carry a minus 
sign). 

This technique can be generalised to counting subsets of cycles. Consider the 
simplest example of a dynamical system with a complete binary tree, a repeller map 
(30) with two straight branches, which we label 0 and 1. Every cycle weight for such 
map factorises, with a factor to for each 0, and factor t, for each 1 in its symbol string. 
The transfer matrix traces (19) collapse to tr(Tk) = (to + tl)k, and l/[ is simply 

JJ (1 - tP> = 1 - t o  - tl .  
P 

Substituting into (53) we obtain 

1 - t i  - ti 
1 - t o  - tl 

2tOtl 
1 -to-tl 

= 1 + t o  + tl + I-J (1 + tP> = 
P 

m n-1 
n-2  

k - 1  
n=2 k=l  

(54) 

(55 )  
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Hence for n 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 the number of terms in the expansion (50) with k Os and n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- k 1s in 
their symbol sequences is 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(;I;). This is the degeneracy of distinct cycle eigenvalues 
in figure 3; for systems with non-uniform hyperbolicity this degeneracy is lifted (see 11, 
figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  

In order to count the number of prime cycles in each such subset we denote with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M,,,k (n = 1,2 ,... ; k = {0,1} for n = 1; k = 1 ,..., n - 1 for n 2 2) the number of 
prime n-cycles whose labels contain k zeros, use binomial string counting and Mobius 
inversion and obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

My,,. = M1,1 = 1 

where the sum is over all m which divide both n and k. 

6.3. Counting pruned cycles 

In general, not all prime periodic symbol strings are realised as physical orbits: the 

M,, calculated above are only an upper bound to the actual number of prime n-cycles. 
The correct counting requires that the forbidden orbits are pruned, as discussed in 
section 5. Pruning of the forbidden cycles amounts to setting t, = 0 in (50) for each 

forbidden sequence p. 
The simplest example of pruning is the 'golden mean' pruning, defined in example 

1 of section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The fundamental cycles in (40) are of length 1 and 2, so the topological 
polynomial is simply 

(56) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 r]: (1 - z"p) = 1 - z - z 
P 

and the entropy is h = log(1 + fi)/2. 
Example 4 of section 5 with the alphabet {a,cbk; b} is more interesting. In the 

cycle counting case, the dynamics in terms of a -, z ,  cbk -, z/(l - z )  is a complete 
binary dynamics (with the explicit fixed point factor (1 - tb) = (1 - z ) )  : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z 
l /c = (1 - Z )  (1 - z - -) = 1 - 32 + z2. 

1-2 

The topological polynomial for example 6 of section 5 

i/c = (1 - ~ ) ( i  - z - z2 - zS + - z7) (57) 

yields the exact value of the entropy h = 0.522 737 642.. ., in agreement with the 

numerical results of [31]. Further examples of topological polynomials for pruned 
symbolic dynamics are discussed in [l l] ;  there it is also shown that symmetries can 
lead to factorisations of topological polynomials (and the 

We conclude this section with a general comment: going from N" periodic points 
of length n to M,, prime cycles reduces the number of computations from N" to 
M,, z N("-')/n. Use of symmetries can reduce the number of computations by another 
constant factor [ll]. While the resummation of the theory from the partition sum 
(6) to the cycle expansion (50) thus does not eliminate the exponential growth in the 
number of orbits, in practice only the short orbits are used, and for them the labour 
saving is dramatic. 

functions in general). 
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7. Curvatures and nonlinearity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we interpret the curvatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, as variations of the weighting function 
across a flow, and estimate the radius of convergence of cycle expansions by locating 
the leading pole of 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/<. 

As we have seen above, the 'curvature' terms in the cycle expansion (28) are built 
up from combinations of form tab - tatb, where a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAelel.. . ck, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = ek+lek+Z.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.e, are 
shorter cycles that shadow the cycle ab = eleZ.. .e, along parts of its orbit (see figure 4). 
If the cycle weights are multiplicative, as in (24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j=O 

the tab - tatb combination can be estimated from the variation of the weight function 
q ( x )  across the gap between and its shadows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 6. Writing the curvature as 

and using 

we can write the logarithm in (58) as an integral 

over the nonlinearity [36] 

In the above, x, is the fixed point of f a ( x )  (i.e. the periodic point x ~ , ~ ~ , , , ~ ~  of the 

original map), xb the fixed point of f b ( X ) ,  x,b is the &cycle point nearest to x,, 
and Xb,  is the Z-cycle point nearest to xb (see figure 5) .  Intuitively, cycle Z owns 
a region vab of the strange set of size 1/A,b, and the integration intervals in (59) 
Axab = x, - x,b, Axba = xb - Xba are of order l/A,, l /Aa respectively. The mean 
nonlinearity can be defined by 

The curvature corrections for smooth flows are small because of the exponential 
shrinking of intervals Axab, Axba across which the nonlinearity is evaluated. Substituting 
(61) into (58) we have 
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Figure 5. The maps fa, f b  and the intervals AXab, AXba used in the evaluation of the 
nonlinearity (61). The nonlinearity (59) is nearly constant across intervals AXab, AXba zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% l/Aab. 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the limit of no variation of cp this expression tends to zero, Nub is a 'small' 
constant. Nab is bounded in the following sense; for every pair of cycles a # b the cycle 
expansion (28) contains a series of the form 

m 

Cabk-1 = ( l a b  - lath) f (t&b - tab tb)  (tabbb - tabb tb)  * * * + (labk - tub'-ltb) * * 

k= 1 

m 
x - Nab"--. tabk 

k=l Aabk 

This sequence accumulates toward the b cycle, so t abk /Aabk  + (constant) x(tb/Ablk,  and 
the nonlinearities Nab" are bounded as they are essentially evaluated at x b ,  Nab" + N ( x b ) ,  
so 

An explicit calculation of such sequence is presented in 11, section 3. The cycle 
expansion contains terms with any block b repeated any number of times, so we expect 
that the singularities of l/[ arise from 

1 
l/[ = 1 -e cn cNb 1 - tb /Ab '  

b 

This sum is of the same structure as the Q(z) considered in the derivation of escape 
rates, with t b  of the partition sum (6) replaced by t b / A b .  This time the hyperbolicity 
assumption implies that we can neglect the constant prefactors Nb, just as we dropped 
prefactors ui from (6). The same chain of arguments that lead from the partition sum 
(6) to the [ function now tells us that the poles of (64) should be given by the zeros of 

P 
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In other words, l/[(z) is expected to have a pole (36) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A(z/zl)N+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

l/i  =l-Ctf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- c n -  
n=n- 1 - z/zl 

f 

exactly at the leading zero z1 of the Cl.  This can be seen by considering a pair of 
transfer operators [37]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-!Yo(y,x) = S ( y  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x)), U l ( y , x )  = c f ' (x ) ) - 'S (y  - f ( x ) ) .  The 
ratio of the associated Selberg products (23) yields l/[ : 

For nonlinear f ( x )  the leading eigenvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt) of det(1 -29') induces a pole in l/C0(z) 

and limits the radius of convergence of its cycle expansion (28) to the disk IzI < ll/A.~)l. 
The product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-'[rl is finite at zl, with the radius of convergence extended beyond z ,  so 
that the further zeros of l/[ (the next-to-leading eigenvalues of the transfer operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T ,  section 3) can now be determined. We give an example of such cancellation in 
the next section, and verify it numerically (and find that it leads to a considerable 
convergence improvement) in 11, section 4. The l/C1 function has a cycle expansion of 
its own, with curvatures summing up to a pole coinciding with the zero of 1/l2, and 
so forth: this generates an infinite chain of 1/[k, whose product is a Selberg [38]-type 
zeta function 

k=O k=O p 

which should have no poles. Indeed, this product is a special case of of det(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzU), 
equation (23), which, for hyperbolic averages, is an entire function. Note that the 
sign of the eigenvalue Ap is used in this new zeta function, in contrast to the escape 
rate formulae which depended only on lApl. Cycle expansions for such products are 
discussed in [30] and applied to evaluation of correlation exponents in [14]. 

The above crude arguments are meant to give the reader a hint of the rich analytic 
structure of [ functions, a topic beyond the scope of the present paper; our purpose 
here is only to sketch how such results can be recovered from cycle expansions. We 
refer the reader to [7] for rigorous results, and to [23] for the numerical evidence 
supporting the above guesses about the poles of l/[ functions. As far as practical 
applications of cycle expansions are concerned, such analytic information about the 
poles and the zeros of [ functions is very useful because, as we shall show in paper 11, 
it can lead to dramatic improvements in the convergence of cycle expansions. 

In conclusion, a curvature contribution tab - tat, associated with a cycle ab and its 
shadow cycles a, b is a measure of the inhomogeneity of the weighting functions q ( x )  
across the associated phase-space region = l/Aab. The cycle expansions are expected to 
converge exponentially, provided that the symbolic dynamics is of finite subshift type 
(so that the contributions of long cycles are always counterbalanced by shorter shadow 
cycles), that all fundamental cycles are taken into account, and that the non-hyperbolic 
cycles are excluded from the averages. 
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8. Stability of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa strange set 

In this section we introduce the concept of the stability of a strange set. It is a part of 
Sullivan's formulation of the renormalisation theory [39] applied in 11, section 4, but 
we discuss it here because (a) it might be a useful general characterisation of strange 
sets in its own right; (b) it offers a simple example of improving the convergence of 
cycle expansions by exploiting the analytic information about the i function. 

A strange set (such as the repeller of section 2) is an invariant set of the dynamical 
flow. The stability of such set can be probed by perturbing infinitesimally its points 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ x + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x) ,  h(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 0, and investigating the growth of the perturbation under 
iterations of the mapping. In the nth-level approximation, the strange set can be 
covered by intervals ti, as in section 2; we assume that the perturbation h(x)  is smooth 
and essentially constant across small intervals, and replace it by h,(xi), where xi  is the 
periodic point with symbol sequence e l f Z . .  .e,. In one iteration the perturbation h(x)  
will expand to f ' ( x )h (x ) ;  for any set of 'daughters' d = {Oel ... e,,, l e ,  ... e,,, ...} we 
define the 'mother' interval perturbation by 

(68) hn-l(Xm) = fA(xom)hn(xom) + fi(x1m)hn(x,m) + . * * *  

By the same argument as in the derivation of escape rates (section 2) we expect the 
nth iterate perturbation for the entire strange set 

to grow exponentially as r,, a 6". We shall introduce here a cycle expansion for 
estimating the stability eigenvalue 6. Note that the stability defined by the sum (69) 
is not the stability in the Lyapunov sense (where one would average log 1f(")'(xi)/ over 
the natural measure, see (90)). The sum (69) tracks the motion of the perturbation's 
centre of mass and keeping the eigenvalue signs in (69) is crucial. The i function for 
this average follows by replacing the transfer matrix (13) by Tdm = f'(Xd); it is of the 
usual Euler product form, with the p-cycle weight given by 

t p  = z"pA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP' (70) 
For the complete binary symbol dynamics the cycle expansion (29) is given by 

(71) 
1 
- = 1 - (Ao + Al)z - (Aol - AoA1)z2 - . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

The fundamental cycles (here the two fixed points) estimate of the stability is 6 = 
l /z  x A. + A,, and the curvature corrections are expected to fall off exponentially, as 
usual. Note however that by (66) the first pole of the cycle expansion (71) is given 

by the leading zero of l / i l  = n(1 - tp /Ap)  = n(l - z "~ ) .  This, by (51), is simply 
l / i l  = 1 - 22, so the first pole of (71) is expected exactly at z = 1/2, and should be 
absent from the cycle expansion of 1/55, : 

(72) 

By removing the nearby pole at z = 1/2, we have 'smoothed out' the cycle expansion 
and the new fixed point estimate 6 = l / z  x Ao+Al + 2  should be an improvement over 
the old one; furthermore, the radius of convergence of the cycle expansion has been 
extended and we expect to be able to determine the next to the leading zero of l / i .  
The numerical work with the fractional map (11, section 5 )  and the period doubling 
repeller (11, section 4) supports the above claims. 

1 - 22 
5 

-- - 1 - (Ao + A, + 2)z - (Aol - AoAl - 2 4  - 2A1)z2 + . . . . 
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9. Thermodynamic formalism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we briefly describe the cycle expansion evaluation of some of the ther- 
modynamic averages current in the physics literature. The thermodynamic formalism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[4-61 is well known, and we do not intend to review it here: our purpose is to show that 
once the short cycles and their eigenvalues are known, such averages can be swiftly 
and elegantly evaluated. 

As mentioned in the introduction, the description of a chaotic dynamical system 
in terms of cycles can be visualised as a tessellation of the dynamical system, with a 
smooth flow approximated by its periodic orbit skeleton, each region V, centred on a 
periodic point xi, and the size of the region determined by the linearisation of the flow 
around the periodic point (see figure 1). p i  is the measure of the region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 associated 
with the ith periodic point, p i  = f,dp(x), so the measure normalisation fdp(x) = 1 
imp 1 i e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 

The average of a function @(x) over the strange set is given by 

(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0) = dp(x)O(x) = lim c p i @ ( x i ) .  

n-m 
i 

(74) 

Such averages will be recast here into the cycle expansion form. 
In the computation of the asymptotic escape rate (12) from a d-dimensional repeller, 

each region was given a weight t i  = z"lA;' 1, and the escape rate y = log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz determined 
by balancing the average 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 t i  in the n 00 limit. In a class of applications of the 
thermodynamic formalism one generalises such weights to 'moments' ti = z"lAil 'pp. By 
varying z = e" one can investigate the distribution of the cycle lengths; varying z probes 
the distribution of cycle stabilities, and varying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq explores the measure distribution. In 
the escape rate example (12), p i  is the 'natural' measure [40,41] 

p i  = IAilJeny (75) 

but for the time being we desist from explicitly fixing p i .  The transfer matrix (13) is 
now replaced by 

Tdm = ZlAd/Am17 ( P d l P m ) ' .  (76) 

With proviso that the measure p i  is also multiplicative along the flow, and that the 
closeby trajectories have closeby measures, so that the condition (15) is fulfilled, the 
derivation of section 3 can be repeated in toto. The result is a [ function of the same 
form (21) as usual, but with the weight t, replaced by 

(77) t i  = zn )A i ) ' p4  -+ tp = e "P"+PP'-vp'* 

Here n, is the topological length of p ;  = In z ;  p, = In /A,/ is the stability exponent of 
p ,  where A, is the product of expanding eigenvalues; and v, = -ln n pky where fl pk 
is evaluated along the cycle p .  The relations among thermodynamic functions, such as 
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q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(for constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa), are determined by solving 0 = n ( l  - t p ) .  For example, for 
the 2-scale Cantor set (30) with equipartition measure p i  = 2-", the cycle expansion is 

0 = 1 - eMT2-4 - eP172-4 

so q ( T )  = ln(eMT + ep17)/ In 2. Once q ( z )  is determined, its derivatives are available as 
well, as explicit cycle expansions. For example, a variation in q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT which respects the 

0 = n(l - tP)  condition 

O =  ( d q - + d z - ) n ( l - t p )  a a 
a4 az 

together with ( 3 9 ,  yields 

This is evaluated by substituting the available short cycles into the denominator and 
numerator cycle expansions (optionally with the convergence improved by the tail 
estimates (36)). Similarly, 

and so on. 
Some familiar examples of such averages are as follows. 

Example 1. The generalised dimensions [42] 

~ ( q )  is determined from the cycle expansion as explained in section 4. A plot of a 

Legendre transform, either [42-44] 

(82) 
dz 

a(q) = - 
dq 

fb) = -7 (4) + 4a(q) 

or (21,241 

is usually more informative than a plot of z ( q )  or D,. Such functions are plotted by 
evaluating q(r ) ,  q'(7) from the cycle expansions (29), (79) for a range of T ,  and the 
T + kcc ends are fixed by investigating the maximal and minimal scales of the strange 
set (examples are given in paper 11). 

By the normalisation (73), q(0) = 1. For ID maps, Do = -T(O) determined by 
so 1 vi n g 

0 = JJ(1 - IApl-Do) 
P 
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is the Hausdorff-Besicovitch dimension DH (irrespective of the choice of measure; 
provided that the covering intervals l i  are optimal). For example, for piecewise linear sets 
with subshift of finite type symbol dynamics of section 5 with alphabet {al, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , af }, 
DH is determined by [45] 

The information dimension D, is given by the cycle expansion (79): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As pp is here defined as the sum of the expanding stability exponents, the above 

definition of the generalised dimensions is the standard one only for the case of a 
single expanding eigenvalue, in which case D, is the partial dimension [31,46-48]. In 
11, section 5 we apply the above formulae to the evaluation of partial dimensions for 
the H6non type attractors, with 

(86) 

where p y  = In is the stability exponent in the expanding (contracting) direction. 

References [l 1,121 test the corresponding expression for a 2D Hamiltonian pinball 
model; the convergence of the cycle expansions is as good as expected. However, as 
shown in [lo], even for a repeller as simple as a 2D disconnected fractal generated 
by a pair of linear maps [49] with only expanding eigenvalues, the cycle expansion 
for the Hausdorff dimension converges poorly. The reason is that the d-dimensional 
cover used in the standard definition 171 of the Hausdorff dimension is a ball of radius 
proportional to the inverse of the least expanding eigenvalue A- ; while the Jacobians 
(11) are multiplicative along the flow, their eigenvalues are not, and the curvature 
corrections A 2  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t = efiyz-vpq. 
P 

need not be small. 

Example 2. The generalised Kolmogorov entropies [50] 

By the normalisation (73), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(0) = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKO = -o(O) = h is the topological entropy, already 
discussed in section 6. K, is constructed in such a way that the K ,  is the metric entropy 

[51] K, = limn+m E'"' p i  log pi/n, where p i  = e-'' is the probability of finding a symbol 
string i. The K ,  cycle expansion is similar to (79): 

Example 3.  The generalised Lyapunov exponent [40,52] 
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By the normalisation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(73), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(0) = 0. The weight is constructed in such a way that the 
Lyapunov exponent (in d dimensions, the sum of the positive Lyapunov exponents) 

(see (74)) is given by 

The above three quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD , ,  K ,  and & satisfy the identity [46] 

K ,  = AoDl (92) 

irrespective of the choice of measure. 
The most common choices of measure are the equipartition measure (all symbol 

sequences of length n weighted equally), and the natural measure (regions of a strange 
set are weighted according to their visitation frequency). 

The equipartition (or cyclinder) measure presents no problem. The growth of the 
number of allowed symbol sequences N ,  with the sequence length n is characterised by 
the topological entropy h = limn+w ln(N,)/n (see section 6) and for the equipartition 
measure 

pi  = 1/N, --+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvp = nph. (93) 

The natural measure is defined by the long term average 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANi is the number of times a 'typical' trajectory of length N visits the ith region of 
the strange set. This average is problematic and often hard to control in the physically 
interesting situations, as the generic dynamical systems are neither uniformly hyperbolic 
nor structurally stable: it is not known whether even the simplest realistic model of 
a strange attractor, the Hknon attractor [53], is a strange attractor or merely a long 
stable cycle. One way to circumvent such subtleties is to use the repeller measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(75), 
computed on the union of unstable orbits, as the working definition of the 'natural' 
measure. 

While the relation (92) holds irrespective of the choice of measure, customarily 
all of the above generalised thermodynamic exponents are defined with respect to the 
natural measure. This choice leads to additional relations. For example, for a repeller 
the natural measure (75) substituted in (88) leads to a relation [40] 

between the metric entropy, the sum of the expanding Lyapunov exponents, and the 
escape rate. This is the d-dimensional generalisation of the relation (33) discussed in 
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section 4. On a strange attractor the escape rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and the above relation reduces 
to the equality [54] K, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,. 

However, p i  = l / /Ai l  is the natural measure only for the strictly hyperbolic systems 
[MI. For non-hyperbolic systems, the measure develops folding cusps. For example, 
for Ulam-type maps (unimodal maps with quadratic critical point mapped onto the 
‘left’ unstable fixed point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, discussed in more detail in 11, section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2), the measure 
develops a square-root singularity on the b cycle : 

The thermodynamics averages are still expected to converge in the ‘hyperbolic’ phase 
[31,41] where the positive entropy of unstable orbits dominates over the marginal 
orbits, but they fail in the ‘non-hyperbolic’ phase [47,55]. 

One is by no means forced to use either the natural or the equipartition measure; 
there is a variety of other choices [24], depending on the problem and one’s taste. 
Also the stability A, need not refer to motion in the dynamical space; in more general 
settings it can be a renormalisation scaling function [56] (11, section 4), or even a 
scaling function describing a strange set in the parameter space (IT, section 6) .  

To summarise, the cycle expansions generalise smoothly to ‘thermodynamic’ aver- 
ages, except for generalisations of dimensions to higher-dimensional flows and delicacies 
of defining the ‘natural’ measure for non-hyperbolic flows. These are not problems of 
cycle expansions, but much deeper problems of the theory of dynamical systems: what 
is a good characterisation of non-uniform, anisotropic strange sets? In addition, it is not 
clear whether the problems of the version of the thermodynamic formalism presented 
above are of physical import. In contrast to somewhat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad hoc thermodynamic moments 
(77) (which have no good generalisation to higher dimensional, non-isotropic flows, and 
which can be evaluated only by computer manipulation of microscopic measurements 
of the strange set), our experience is that for the physically motivated averages, such 
as the escape rates and quantum resonances [ll-131, the cycle expansions work well. 

10. Summary and conclusions 

A motion on a strange attractor can be approximated by shadowing long orbits by 
sequences of nearby shorter periodic orbits. This notion has here been made precise 
by approximating orbits by primitive cycles, and evaluating associated curvatures. A 
curvature measures the deviation of a long cycle from its approximation by shorter 
cycles; the smoothness of the dynamical system implies exponential fall-off for (almost) 
all curvatures. We propose that the theoretical and experimental strange sets be pre- 
sented in terms of the symbol sequences of short cycles (a topological characterisation 
of the spatial layout of the strange set) and their eigenvalues (metric structure); for 
example, plotted as figure 3 or listed as in 11, table 1. The cycle expansions then offer an 
efficient method for evaluating periodic orbit averages; accurate estimates can already 
be obtained from a few fundamental cycles. 

For reasons of clarity we have here motivated the cycle expansions by a simple 
ID repeller of figure 2; detailed investigations of a series of low-dimensional chaotic 
systems undertaken in the sequel paper 11, as well as the classical and quantum pinball 
studies of [ll-131, give us some confidence in the general feasibility of the cycle analysis 
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advocated here. The cycle expansions such as (28) outperform the pedestrian methods 
such as extrapolations from the finite cover sums (2) for a number of reasons. The 
cycle expansion is a better averaging procedure than the naive box counting algorithms 
because the strange attractor is here pieced together in a topologically invariant way 
from neighbourhoods (‘space average’) rather than explored by a long ergodic trajectory 
(‘time average’). The cycle expansion is co-ordinate and reparametrisation invariant-a 
finite nth-level sum (2) is not. Cycles are of finite period but infinite duration, so 
the cycle eigenvalues are already evaluated in the n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ CO limit, but for the sum (2) 
the limit has to be estimated by numerical extrapolations. And, crucially, the higher 
terms in the cycle expansion (28) are deviations of longer primitive cycles from their 
approximations by shorter cycles. Such combinations vanish exactly in piecewise linear 
approximations and fall off exponentially for smooth dynamical flows. 

However, the cycle expansions are not magic, and they will not converge any better 
than the more traditional thermodynamic sums unless the following prerequisites are 
met. 

(1) The essential prerequisite for implementing the above ‘shadowing’ is a good 
understanding of the symbolic dynamics of the dynamical system; the present formu- 
lation requires that the symbolic dynamics be of a finite subshift type (see section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  
A generic dynamical system is not of that type: our strategy is to approach it by a 
sequence of finite subshift approximants, just as a generic number can be bracketed by 
a sequence of rational approximants. 

(2) The weight used in averaging must be multiplicative along the flow, and the 
flow should be smooth, so that nearby trajectories have nearby weights. 

(3) Cycle expansions converge only in the hyperbolic phase, i.e. only for averages 
dominated by the positive entropy of unstable cycles. Marginal fixed points show 
up indirectly, as power-law corrections and non-analyticities of the ( functions. If 

a sequence of fundamental cycles tf is infinite and accumulating toward marginal 
stability, the sequence must be summed up in order that the convergence of the cycle 
expansion be exponential (see 11, section 6). 

(4) As developed here, the cycle expansions are good only for extracting the leading 
eigenvalues of transfer operators. If more eigenvalues are needed, techniques for 
analytically continuing beyond the leading singularities must be developed. 

When and if the cycles suffice for the complete characterisation (and reconstruction) 
of a dynamical system is not known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[57], but they do go further toward detailed 
invariant characterisation of low-dimensional chaotic dynamical systems than other 
current methods, and we hope that in the future the data will be presented in terms of 
cycles rather than ‘thermodynamic’ averages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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