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RECYCLING SUBSPACE INFORMATION FOR DIFFUSE OPTICAL
TOMOGRAPHY�

MISHA KILMERy AND ERIC DE STURLERz

Abstrat.

We disuss the eÆient solution of a large sequene of slowly varying linear systems arising
in omputations for di�use optial tomographi imaging. In partiular, we analyze a number of
strategies for reyling Krylov subspae information for the most eÆient solution.

We reonstrut three-dimensional absorption and sattering information by mathing omputed
solutions from a parameterized model to measured data. For this nonlinear least squares problem
we use the Gauss-Newton method with a line searh. This algorithm requires the solution of a large
sequene of linear systems. Eah hoie of parameters in the nonlinear least squares algorithm results
in a di�erent matrix desribing the optial properties of the medium. These matries hange slowly
from one step to the next, but may hange signi�antly over many steps. For eah matrix we must
solve a set of linear systems involving both multiple shifts and multiple right-hand sides. We disuss
strategies that minimize the overall solution time. In partiular, we show how we an tune the linear
solver for both the nonlinear optimization algorithm and the underlying appliation. Although we
fous on a partiular appliation and optimization algorithm, we feel that our approah is appliable
generally to problems where many linear systems must be solved.

We desribe extensions to the GCRO algorithm to deal eÆiently with symmetri problems and
to ombine subspae reyling with solving for multiple shifts using a single Krylov subspae. We
provide results for two sets of numerial experiments to demonstrate the e�etiveness of the resulting
method.

Key words. Krylov subspae, GCRO, reyle, MINRES, eigenvalue, invariant subspae

AMS subjet lassi�ations. 65F10, 65N22

1. Introdution. In di�use optial tomography (DOT), data is obtained by
transmitting near-infrared light into a highly absorbing and sattering medium and
then reording the photon ux. The goal is to use the di�use optial data measured on
the surfae to reonstrut three-dimensional images of the absorption and \redued
sattering" funtions in the medium. In the ase of breast tissue imaging, di�erenes in
the absorption and sattering may indiate the presene of a tumor or other anomaly.

The forward problem is the determination of syntheti data (photon ux) for
given absorption and sattering funtions from some mathematial model. A number
of mathematial models have been proposed in the literature [1℄. We fous on the
frequeny-domain di�usion model in whih the data is a non-linear funtion of the
absorption and sattering funtions. In order to solve the imaging problem { the
determination of the absorption and redued sattering funtions { one must solve
many instanes of the forward problem. This fat implies a huge omputational
bottlenek for the imaging problem. The goal of this paper is to disuss tehniques for
reduing the omputational omplexity of forward solves, thereby greatly improving
the exeution time of the nonlinear imaging problem.

Spei�ally, we onsider the solution of a sequene of linear systems of the form

(A(pj) + iI)x(j)s;! = bs (1.1)
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2 M. Kilmer and E. de Sturler

that arise in a 3D imaging algorithm for di�use optial tomography. Here, i =
p�1,

 is a positive onstant that depends on the frequeny, !, and the vetor pj denotes
the vetor of parameters that de�ne the di�usion and absorption in tissue at the jth
step of a damped Gauss-Newton iteration (GN) to solve the nonlinear least squares
problem for an optimal set of parameters. As suggested by the notation, the matrix
depends on the urrent values of the parameters. The matrix A(pj) is sparse and
symmetri, whih means that Krylov iterative solvers suh as MINRES [3℄ are good
andidates for solving these linear systems.

We observe that in our appliation the matries A(pj) vary slowly from one Gauss-
Newton step or line searh step to the next, and they hange signi�antly over multiple
Gauss-Newton steps. In addition, we need to solve for multiple (omplex) shifts and
multiple right-hand sides for eah matrix. In order to solve this problem in the most
eÆient way we must exploit all these features. For eah of these features, suggestions
have been made to redue the overall ost (for example, see [16, 15, 19℄ for solving for
a group of matries that di�er by a onstant times the identity and [14, 29, 7, 22, 18℄
for solving for multiple right-hand sides). However, the various methods have not
been ombined to address all these features at one, and we will see that this is not
a trivial issue.

The problem of solving a sequene of systems where the matrix hanges slowly
is the most ompliated feature to exploit. Some approahes have been proposed,
though most of them for systems that are speial in some sense.

In [22℄ we propose to reyle from one linear system to the next the Krylov
subspaes that solvers like GCRO [8℄, GCROT [9℄, and GMRESDR [21℄ retain to
improve the onvergene for a single linear system. GMRESDR annot reyle a
subspae for a subsequent linear system, as it requires a Krylov spae to work with;
therefore, we introdued the variant GCRODR [22℄. Reyling seleted subspaes
leads to signi�ant improvements in the onvergene of subsequent systems.

Other approahes have been proposed as well. If all matries in a set of symmetri
positive de�nite linear systems are pair-wise lose to eah other and all right-hand sides
are available simultaneously, the methods proposed by Chan and Ng [5℄ an be used.
However, this is not the ase for our appliation. For a sequene of real, symmetri
positive de�nite systems, Rey and Risler have proposed to retain all onverged Ritz
vetors from a previous CG iteration to redue the e�etive ondition number for a new
system [23, 24, 25℄. In general, this requires exessive storage. Moreover, they lose the
advantage of a short reurrene, as they keep the full reurrene during the solution
of a single system. Sine they fous on the �nite element tearing and interonneting
(FETI) method [12℄, this is less of a drawbak, beause the interfae problem is small
relative to the overall problem, and it is ommon to use a full reurrene in FETI.
However, for more general problems, suh as the present one, it is paramount to be
more seletive in deiding whih subspae should be reyled for subsequent linear
systems. Finally, Fisher proposed to projet right-hand sides from subsequent time
steps onto the spae of previous right-hand sides and to solve only for the remainder
[13℄. Note that his algorithm does not maintain orthogonality to the subspae of
previous right hand sides over the iteration.

As mentioned above, our problem inludes the solution of a small set of right-
hand sides for eah matrix (with �xed pj and ). As was shown in [7, 22℄, subspae
reyling is quite e�etive for this problem. However, other approahes or variations
have been suessful as well, in partiular blok methods [14, 29℄ and seed methods
[6, 18℄. As we will see, subspae reyling is the easiest to implement, as it an solve
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the right-hand sides one by one as individual linear systems, simply reyling the
seleted searh spae [22℄. This avoids the need to hange the program to deal with
varying blok sizes and deation if the vetors inside a blok beome dependent.

Finally, we also want to solve for multiple shifts without (re)generating additional
Krylov subspaes. This is not ompliated in itself, as the Krylov spae for a shifted
problem equals the Krylov spae for the original problem. However, it is not easily
ombined with reyling Krylov subspaes, beause the images of reyled spaes
under matries with di�erent shifts are not the same. We derive a simple extension
to the GCRO method in Setion 5 to deal with this problem.

In [22℄ we selet and use the subspaes for reyling in a fairly straightforward way
for eah partiular method. In the present paper we aim to derive spei� strategies
related to the appliation and the nonlinear optimization algorithm to improve on-
vergene even further. In partiular, we explore whih information to keep and whih
to save as the damped GN method progresses. Furthermore, we present a variant of
GCRO that exploits the symmetry of the matrix and the fat that we want to solve
shifted omplex systems simultaneously. The symmetry means that there is no need
to restart for a single linear system to save on storage.

The paper is organized as follows. Setion 2 gives some bakground on GCRO
and subspae reyling. In Setion 3 we give bakground information for the imaging
problem in di�use optial tomography. In addition, we derive the sequene of linear
systems of the form (1.1) that we wish to solve, and in Setion 4 we disuss some
harateristis of the system that allow us to use reyling. We desribe our algorithm
in Setion 5 and give numerial results in Setion 6. Conlusions and future work are
the subjet of Setion 7.

2. Reyling Krylov subspaes.

The ideas we exploit here �nd their origin in attempts to improve the onvergene
of Krylov subspae methods for a single linear system, in partiular restarted and
trunated methods. We briey disuss these ideas �rst. Restarting GMRES [28℄ may
lead to poor onvergene and even stagnation. Therefore, reent researh has foused
on trunated methods that improve onvergene by retaining a seleted subspae when
they restart [2, 8, 9, 21, 22, 27℄. A taxonomy of popular hoies is given in [11℄ and
various approahes to onvergene theory for GMRES that are relevant here an be
found in [30, 32℄.

As disussed in [22℄, two aspets play a role here. The �rst aspet is whih
subspae to retain to maintain onvergene lose to that of full GMRES { we will
refer to this as the reyled subspae. The seond aspet is how to use that subspae.
In an augmentation approah, we append additional vetors at the end of the Arnoldi
reurrene, in the manner of FGMRES [26℄, suh that an Arnoldi-like relation is
formed [27℄. In an orthogonalization approah, we �rst minimize the residual over
the reyled subspae, and then maintain orthogonality with the image of this spae
in the Arnoldi reurrene, see, e.g., GCRO [8℄. As argued in [8, 20, 22℄ the the
orthogonalization approah generally leads to better onvergene.

Several hoies have been suggested regarding the subspae to reyle after a
restart for a single linear system. One important hoie is to reyle an approximate
invariant subspae, typially assoiated with the eigenvalues losest to the origin, but
other approximate invariant subspaes an be used as well [20, 21℄. An alternative
hoie is to retain the subspae that minimizes the loss of orthogonality with respet
to the disarded subspae [9℄. This tends to work well for nonsymmetri problems. In
[8℄ the updates to the solution (residual) are reyled. This is also proposed in [2℄ as
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an augmentation approah. Of ourse, we an use knowledge of the underlying physis
of our problem and the nonlinear optimization algorithm to deide on subspaes to
reyle. We will onsider ombinations of all these possible strategies.

The GCRO method provides a general mehanism to inlude arbitrary additional
subspaes in the searh spae. We are not limited to reyling subspaes of previously
generated Krylov spaes; in the ontext of the present appliation several hoies of
subspaes may be useful. We explain briey how GCRO ombines the seleted reyle
spae with a newly generated Krylov subspae to obtain an optimal approximation
over the sum of these spaes. We present the basi steps in a mathematially equiva-
lent but slightly di�erent way from the presentation in [8℄. This di�erent presentation
is more easily generalized to solving for a set of matries that di�er only by a onstant
times the identity without generating another Krylov subspae.

We onsider solving the linear system Ax = b, where A 2 R
n�n and b 2 R

n .
Assume we have the matries Uk 2 Rn�k and Ck 2 Rn�k , suh that AUk = Ck and
CT
k Ck = Ik. If we hoose an approximate solution to our system in Range(Uk) that

minimizes the 2-norm of the residual, then the orresponding residual, rk = b�CkC
T
k b,

will be orthogonal to Range(Ck). There are no restritions on the matrix Uk; learly,
the olumns of Uk should be hosen so that a reasonable approximate solution an be
found for small k. (For example, the olumns of Uk ould ontain a basis for the Krylov
subspae generated by A and b, but they might also ontain previous approximate
solutions or orretions to previous approximate solutions.) If the solution so obtained
is not adequate, we expand the subspae in whih we look for solutions aording to
the disussion in [8℄. Now let v1 = (I � CkC

T
k )b=k(I � CkC

T
k )bk. We use an Arnoldi

reurrene with (I � CkC
T
k )A and v1. This gives the following reurrene relation

(I � CkC
T
k )AVm = Vm+1Hm , (2.1)

AVm = CkC
T
k AVm + Vm+1Hm: (2.2)

Next, we want to �nd the approximation in Range([Vm Uk℄) that minimizes the two-
norm of the residual, kb�A(Vmy+Ukz)k2. This an be redued to a simpler problem
as follows.

min
y;z

b�A[Vm Uk℄

�
y
z

�
2

= (2.3)

min
y;z

b� [Vm+1;Ck℄

�
Hm 0

CT
k AVm I

��
y
z

�
2

= (2.4)

min
y;z


�

�e1
CT
k b

�
�
�

Hm 0
CT
k AVm I

��
y
z

�
2

; (2.5)

where e1 denotes the �rst Cartesian basis vetor in R
m+1 and � = k(I � CkC

T
k )bk.

The minimization in (2.5) orresponds to a small least squares problem that an be
solved by standard methods. An eÆient implementation would follow the approah
suggested in [28℄. Note that no assumptions have been made on the spae Range(Ck).
We will show below that this approah is also extended easily to a set of matries
A+ iI . In this ase, we need to deal with the problem that Range((A+ iI)Uk) 6�
Range(Ck) and of ourse Range((A+ iI)Uk) depends on .

If we have found a matrix Uk that speeds up the onvergene signi�antly, we an
also reuse this matrix for the next right-hand side (with the same A and ). This
does not require any hanges in the algorithm, and allows the algorithm to learn whih
spaes are best to remove over the solution of multiple right-hand sides. This approah
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to improve the onvergene for multiple right-hand sides and a onstant matrix does
not require any extra storage beyond what is needed for a single right-hand side.

This method an also be ombined with a blok method [34℄. Extending this in
turn to inorporate multiple shifts is possible too. However, the use of blok methods
inreases the required memory signi�antly, and ompliates the resulting program,
espeially when using deation [14℄. Sine we showed that subspae reyling is quite
e�etive for solving multiple right-hand sides, we will not inlude the use of blok
tehniques here. It may be a worthwhile strategy to pursue later.

Again if we have found a matrix Uk that speeds up onvergene signi�antly for
A(pj) and A(pj+1) � A(pj) is small it makes sense to try to reuse the same searh
spae Uk possibly extended with other searh diretions for the linear systems with
A(pj+1) as well. We need to update Ck in this ase to reet the new operator. In
many ases this an be done very heaply. This proess is not ompliated, and we
refer to [22℄ for details.

3. The DOT Imaging Appliation. In this setion, we introdue the image
reonstrution problem for di�use optial tomography. In the ourse of the disussion,
we derive the systems of the form (1.1) that must be solved at eah step of the
nonlinear reonstrution algorithm.

3.1. The Forward and Inverse Problems. We assume that the region to be
imaged is a box. A limited number of Ns soures will be present on the top, and a
limited number of Nd detetors will be loated on the either the top or bottom or
both. We use the di�usion model [1℄ for photon ux/uene �s;!(r) given input fs(r):

�rD(r)r�s;!(r) + �a(r)�s;!(r) + i
!

�
�s;!(r) = fs(r);

for r = (x; y; z) and � a < x < a; �b < y < b; 0 < z < ;

�s;!(r) = 0; if 0 � z �  and either x = �a; x = a; y = �b; or y = b;

:25�s;!(r) +
D(r)

2

��s;!(r)

��
= 0; for z = 0; or z = :

Here, D(r) denotes the di�usion, whih is related to the \redued sattering" funtion
�0
s(r), by D = 1=(3�0

s(r)) and �a(r) denotes absorption [1℄. We have used i =
p�1,

while ! represents the frequeny modulation of light, and � is the speed of light in
the medium. The subsript s is an integer index whih indiates that this is the
model orresponding to a single soure at a known position. The funtion fs(r) is the
soure and �s;!(r) is the photon ux/uene due to the soure at frequeny !, given
the funtions �a(r) and D(r). Knowing the soure and the funtions �a(r); D(r), we
ould ompute the orresponding �s(r) everywhere, in partiular, at the detetors
(i.e., at a subset of gridpoints where z = 0 or z = ).

We disretize the PDE using �nite di�erenes [4℄ on a uniform grid in suh a
way as to ahieve seond-order auray away from the boundary. The meshwidth in
eah diretion is h entimeters. We use �rst order forward or bakward di�erenes, as
appropriate, on the boundary. The unknowns beome �s(xl; yj ; zk) for l = 1:Nx; j =
1:Ny; k = 1:Nz. We will order the unknowns so that �s values at points on the top
of the box ome �rst (i.e. let k = 1 and loop over all l; j), then the �s orresponding
to points on the bottom (i.e. let k = Nz and loop over all l; j), followed by the rest
of the values by ordering in inreasing l, then j, then k. The orresponding vetor
with entries �s(xl; yj ; zk) we will all �s;!. Likewise, we will all the vetor with
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entries �a(xl; yj ; zk) �a. The vetor D will have entries at half-integer grid points
(i.e. (xl�1=2; yj ; zk); (xl; yj�1=2; zk), et.) as well as whole integer grid points beause
of the partiular disretization we are using.

The orresponding matrix equation, after multipliation by h2, has the following
blok struture: �

B D1

D2 (C + i!h
2

� I)

��
w!;s

x!;s

�
=

"
fs

(1)

fs
(2)

#
: (3.1)

where ws;! and xs;! denote the disretization of �s;!(r) on the boundary and at
internal points, respetively. The measured data due to soure s that is predited
by this forward model is a subsampled version of the subvetor w!;s, whih we all
 s;!.

It is important to note that in our appliation fs
(2) = 0 and

fs
(1) = h2[0; 0; : : :0; 1; 0; : : :0℄T ;

where the position of the 1 orresponds to the loation of the soure.
Let ys;! denote the data subvetor measured at all the detetors for a �xed soure

s and frequeny !. Reall that p is a vetor of parameters that desribe the di�usion
and absorption at all points in the region of interest. We will briey disuss the
hoie of p below and refer the interested reader to [17℄ for more details. The 3D
imaging problem then beomes one of �nding the optimal parameters suh that the
data predited by the di�usion model is well mathed by the data. That is, we wish
to solve

min
p

X
s;!

kWs;!(ys;! � s;!(p))k22 � min
p
kW (y�  (p))k22;

where y denotes the vetor obtained by staking the subvetors ys;!. We use the
following damped Gauss-Newton iteration (GN) to solve this non-linear least squares
problem [10℄:

1. Compute  (pk), J(pk),
2. Solve J(pk)

TJ(pk)sk = �J(pk)T �(pk),
3. pk+1 = pk + �ksk,

where �k is hosen using a baktraking line searh [10℄ and �(pk) denotes the weighted
residual in the right side of the equation above evaluated at parameter vetor pk.

If the number of parameters used to de�ne di�usion and absorption is small, the
Jaobian will only have a small number of olumns, and therefore step 2, solving
for the searh diretion, is not very omputationally intensive. However, to ompute
 (pk), to ompute the entries in the Jaobian using an adjoint-type approah (alled
a \o-state" method in [33℄), and to �nd the best searh diretion requires solutions
of the matrix equation in (3.1) for every soure and every frequeny. Therefore, the
rest of this paper is devoted to analyzing the systems themselves and methods for
omputing their solutions eÆiently.

3.2. The Matrix Revisited. Here, we desribe properties of the matries and
submatries involved in solving for eah �s;!. The following are important fats about
the struture of the bloks in (3.1):

� B is an invertible diagonal matrix.
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Fig. 3.1. Sparsity plot of matrix G.

� D1 has at most one non-zero per row, and these our only in the �rst NxNy

and last NxNy olumns.
� D2, although it has di�erent entries, has the same sparsity pattern as DT

1 .
A Matlab sparsity plot of the matrix in (3.1) is given in Figure 3.1 to give the

reader a visual interpretation of the struture just mentioned.
To solve systems involving this matrix, we onsider G = LU where L is blok unit

lower triangular and U is blok upper triangular and G represents the blok matrix
in (3.1). It an readily be shown that

G =

�
I 0

D2B
�1 I

��
B D1

0 C �D2B
�1D1 + iI

�
;

where  = h2!=�. Thus, any system involving G, say G

�
w!;s

x!;s

�
=

�
fs

(1)

0

�
, an

be solved aording to the following steps:

1. Step 1: Solve the equation L

�
as
bs

�
=

�
fs

(1)

0

�
:

(a) as = fs
(1)

(b) bs = �D2(B
�1as)

2. Step 2: Solve the equation U

�
ws;!

xs;!

�
=

�
as
bs

�
:

(a) Solve (C �D2B
�1D1 + iI)xs;! = bs

(b) ws;! = B�1(as �D1xs;!)
Multiplying with B�1 an be done very heaply beause B is diagonal, and D1

and D2 only have (2NxNy) non-zero entries eah. The omputationally intensive part
of this proedure is Step 2a. Note that the system in Step 2a is exatly the system in
(1.1), exept that we have ignored the supersript on xs;! for simpliity.

We onlude this setion with the proof that C � D2B
�1D1 is symmetri and

positive de�nite. Note that C orresponds to the �nite di�erene disretization of
the operator �rD(r)rI + �a(r)I at the internal points on the box assuming zero
boundary onditions. It follows that the matrix C is symmetri and positive de�nite.

Reall that B is a diagonal, 2NxNy�2NxNy matrix with entries :25h2+ h
2Dl;j;m

with m = 1 or m = Nz. Due to the lexiographial ordering of the internal nodes, D1

is 2NxNy � (NxNy(Nz � 2)) with only one non-zero per row and D2 is (NxNy(Nz �
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2)) � 2NxNy with only one non-zero per olumn. The non-zero entries in D1 are of
the form �h

2Dl;j;m with m = 1 or m = Nz. The non-zero entries in D2 are �Dl;j; 32

or �Dl;j;Nz� 1
2
. From this we dedue that the matrix D2B

�1D1 is a diagonal matrix
with positive, non-zero entries only in the �rst and last NxNy positions.

We now use the previous two fats to prove the following theorem.
Theorem 3.1. The matrix C �D2B

�1D1 is symmetri and positive de�nite.
Proof. Symmetry follows from the symmetry of C and D2B

�1D1. Matries
C�D2B

�1D1 and C only di�er in the �rst and lastNxNy omponents on the diagonal.
Sine the non-zeros in the seond matrix are stritly positive, the �rst and last NxNy

diagonal entries of C�D2B
�1D1 are smaller than the orresponding diagonal entries

of C. Therefore, it is suÆient to onsider the Gershgorin disks orresponding to these
rows. Consider the �rst NxNy rows (the argument for the last NxNy is analogous).
From Gershgorin's theorem we observe�

�Di;j;1:5Di;j;1

0:5h+Di;j;1
+Di;j;1:5

�
+ h2�ai;j;1 � �;

where � is an eigenvalue. Sine the �rst term on the left in parentheses is posi-
tive, together with lower bounds from all other Gershgorin disks it follows that the
eigenvalues are greater than zero.

4. Summary of System Properties. In the previous setion, we observed that
solving the forward problem eÆiently boils down to solving the systems in Step (2a)
eÆiently. The remainder of this paper is therefore devoted to this ause.

In this setion, we disuss those system properties that an be exploited to develop
eÆient reyling Krylov methods for solving the systems in the previous setion. We
repeat the form of these systems here for onveniene:

(C �D2B
�1D1| {z }

A(j)

+iI)x(j)s;! = bs: (4.1)

The supersript is used to denote dependene on the parameter vetor, pj . To simplify

notation, we use x
(j)
s for the ase when ! = 0.

The Parametri Model: As in [17℄, we use a pieewise ontinuous model for
both the di�usion and absorption. In partiular, we have

D = �1�1 + (1� �1)B1�1 and �a = �2�2 + (1� �2)B2�2:

The vetors �i are disrete harateristi funtions - they have a `1' in a position
orresponding to an anomaly and a 0 otherwise. The matries B1; B2 are known and
ontain \basis" vetors while �1 and �2 are the unknown expansion oeÆients. For
example, an entry in D has a value of �1 if that entry orresponds to a voxel inside
the di�usion anomaly, otherwise, its value is determined by the orresponding om-
ponent of the vetor B1�1. In a pieewise onstant model, for instane, B1 and B2

would be vetors of all ones and the �i would give the bakground value of di�usion
and absorption, respetively. A more realisti model, however, aounts for the fat
that tissue is not homogeneous, and in this ase, B1, B2 would orrespond to vetor-
ized \images" of a lumpy bakground. The vetors �i are unknown, but we assume
that anomalies are modeled by ellipsoids. In this ase, the entries in the vetors are
determined by the parameters speifying enter loation, rotation, and axis lengths.
Therefore, the list of unknown parameters inlude �i; �i; i = 1; 2, and up to 6 length-3
vetors speifying the loations of the 2 ellipsoids. For more details, see [17℄.
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Di�usion, Absorption and Matrix Updates: Typial values for �a in our
appliation range from :005 to :3 m�1 whereas typial values for D range from 1=6 to
1=45 m�1. It is usually the ase that we have or an obtain good approximations to
the average bakground values of di�usion and absorption and use these for starting
guesses for the GN iteration [17℄. As the GN iterations progress, we begin to loalize
and haraterize anomalous regions of absorption and di�usion whereas the bak-
ground values beome well-resolved early on. This is due to the fat that the anoma-
lies are so small relative to the size of the bakground that the data ontains primarily
information about the average bakground values. This means that during a single
line searh or when moving from one GN step to the next, A(j+1) = A(j) +E1 +E2,
where kE1k is small (orresponding to a slight hange in the bakground parameters)
and E2 has small relative rank (orresponding to a hange in the shape of the objet
and values inside the objet).

Eigenvalues and Invariant Subspaes: We are interested most in the small-
est eigenvalues of the A(j). It appears that, for our examples, the matries A(j) have
a number of small eigenvalues ourring in lusters that remain disjunt from one
system to the next, even if the eigenvalues themselves di�er from one matrix to the
next (see Figure 6.2, for example). This suggests that the orresponding invariant
subspaes for subsequent matries remain lose. We disuss this further in the next
subsetion.

Similarity among Right-Hand Sides: Realling that fs has only one non-

zero oeÆient in, say, position ms, it follows that b
(j)
s = � (D2)ms;msh

2

Bms;ms
ems

. Sine

bloks D1; D2; B and vetor fs
(1) do not depend on frequeny, b

(j)
s is independent

of frequeny. As long as the GN iteration is onverging, the values of (D2)k;ms
and

Bms;ms
do not hange muh in the ourse of the inversion beause these indies refer to

positions near the boundary where the values of absorption and di�usion are already
aurately aptured early in the GN proess. Therefore, in the remaining disussion,
we onsider iterative methods applied to the approximate systems

(A(j) + iI)x(j)s;! = ems
(4.2)

in order to study onvergene.
Similarity among Solutions: From (4.2), it is easy to see that the solutions to

any pair of systems, say systems k and j, during the damped Gauss-Newton iteration
are related by

x(k)s = (A(k))�1A(j)x(j)s :

So, the solutions do not hange muh as long as the matries A(j) and A(k) remain
lose.

Smooth Solutions: The vetor ems
is omprised mostly of high-frequeny

Fourier omponents. It is well known that the eigenvetors orresponding to the
smallest eigenvalues of A(j) are smooth (or low frequeny) while the eigenvetors
orresponding to the largest eigenvalues represent high frequeny. We an think of
(A(j))�1 as a disretization of an integration operator that when applied to ems

ats

as a blurring operator. For this reason, we expet the solutions x
(j)
s to be smooth:

that is, we expet x
(j)
s to be well represented in terms of the eigenvetors of A(j) that

orrespond to the smallest eigenvalues.
Multiple Frequenies: It is well known (see, for example, [19℄ and the referenes

therein) that the Krylov vetors that are generated when solving A(j)x
(j)
s = ems
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also span the Krylov subpae generated by the shifted matrix (A(j) + iI) and ems
.

Therefore, without storing or generating extra Krylov vetors, there exist short term
reurrenes for solving the systems of non-zero  with little extra work. In our ase,
sine  > 0 is not too large relative to the eigenvalues of A(j), the onvergene rate
should also be about the same.

When subspae reyling is used, however, it is not straightforward to produe
solutions to the omplex shifted systems. We disuss this further in Setion 5.4.

4.1. Invariant Subspaes. In deiding whether or not it is worthwhile to re-
yle an approximate invariant subspae orresponding to small eigenvalues obtained
from previous runs, we must explore the relationships of the orresponding invariant
subspaes from one matrix to the next. In the previous disussion, we noted that
from experiments it appears that the smallest eigenvalues of the A(j) do not hange
muh and remain in more or less disjunt lusters. For a small enough perturbation
E = A(k)�A(j), this shows that the orresponding invariant subspaes from these ma-
tries must remain lose. Unfortunately, kEk is muh too large to assume this without
onsidering further details. However, reall the observation above that E = E1 +E2,
where E1 orresponds to very small hanges in the bakground parameters, and E2

orresponds to a small rank update desribing the shape of the objet. From this we
onjeture that most of the hanges in the matrix orrespond to the high frequeny
omponents and larger eigenvalues. Next, we show under whih onditions the in-
variant subspaes orresponding to the smallest eigenvalues remain about the same
even if the orresponding eigenvalues are not very well separated from the remaining
eigenvalues.

To simplify notation, we remove all subsript and supersript notation and deal
spei�ally with a symmetri and positive de�nite matrix A and a orresponding
symmetri perturbation E. Although we used V previously to denote Krylov vetors,
in this disussion, the matrix V is used to denote the eigenvetor matrix orresponding
to A.

Let A be a symmetri positive de�nite matrix, and let A have the eigendeompo-
sition,

A = [V1 V2 V3℄diag(�1;�2;�3)[V1 V2 V3℄
T ; (4.3)

where V = [V1 V2 V3℄ is an orthogonal matrix, �1 = diag(�
(1)
1 ; : : : ; �

(1)
k1 ), and �2 and

�3 are de�ned analogously. Furthermore,

�
(1)
1 � : : : � �

(1)
k1 < �

(2)
1 � : : : � �

(2)
k2 < �

(3)
1 � : : : � �

(3)
k3 :

Now we onsider the hanges in the invariant subspae range(V1) and the eigenvalues

�
(1)
i under a symmetri perturbation E of A, where E is not small, but the projetion

of E onto the subspae range([V1 V2℄) is small, say kE[V1 V2℄kF � ", and kEV3kF =

� � kEkF . We also assume that kEkF is small relative to sep(�1;�3) = �
(3)
1 � �

(1)
k1

and that " is small relative to sep(�1;�2) = �
(2)
1 � �

(1)
k1 . However, we do not need

to assume that sep(�1;�2) is large. We now prove that the matrix A + E has an
invariant subspae range(V̂1) suh that the anonial angles between range(V1) and
range(V̂1) are small. This result shows that an invariant subspae whose assoiated
eigenvalues are not well-separated from the remaining eigenvalues is still insensitive
to perturbations that are onentrated in an invariant subspae whose eigenvalues are
suÆiently far removed.
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We de�ne the following notation. For two matries Y; Z 2 Rn�m , where n � m,
�(range(Y ); range(Z)) denotes the diagonal matrix with the anonial angles between
range(Z) and range(Y ) as oeÆients, and �1(range(Y ); range(Z)) denotes the largest
anonial angle between range(Z) and range(Y ). We use L(A) to denote the set
of eigenvalues of A, and �max(A) and �min(A) to denote maxL(A) and minL(A)
respetively.

Furthermore, we assume that

Æ � min(�
(2)
1 � "; �

(3)
1 � �)� 2"� (�

(1)
k1 + ")� "; (4.4)

Æ̂ = Æ

�
1� 2"2

Æ2

�
; (4.5)

and as a onsequene of (4.4) that Æ > 2".
Theorem 4.1. Let A be SPD and have the eigendeomposition given in (4.3), and

let E, ", �, Æ, and Æ̂ be de�ned as above. Then, there exists a matrix V̂1 onforming
to V1 suh that range(V̂1) is a simple invariant subspae of A+E, and

tan �1

�
range(V1); range(V̂1)

�
� "

Æ̂
:

Furthermore, the eigenvalues �̂
(1)
j of A + E orresponding to the invariant subspae

range(V̂1) satisfy

8 �̂(1)j : 9�(1)i suh that j�̂(1)j � �
(1)
i j � "+

2"2

Æ
; (4.6)

and in partiular,

�max( V̂
T
1 (A+E)V̂1 ) � �

(1)
k1 + "+

2"2

Æ
: (4.7)

Proof. We onsider the perturbation E, suh that

V T (A+E)V =

0
��1 + E11 0 0

0 �2 + E22 ET32
0 E32 �3 + E33

1
A+

0
� 0 ET21 ET31
E21 0 0
E31 0 0

1
A : (4.8)

By the assumptions above we also have
� E21
E31

�
F

� "; (4.9)

kE11kF � ", kE22kF � " and kE33kF � �. From (4.8) we see that

L1 � V T
1 (A+E)V1 = �1 + E11; (4.10)

L23 � [V2 V3℄
T (A+E)[V2 V3℄ =

�
�2 + E22 ET32
E32 �3 + E33

�
: (4.11)

From [31, Corollary IV.3.4℄ it follows that

�max(�1 + E11) � �
(1)
k1 + kE11k � �

(1)
k1 + "; (4.12)

�min(�2 + E22) � �
(2)
1 � kE22k � �

(2)
1 � "; (4.13)

�min(�3 + E33) � �
(3)
1 � kE33k � �

(3)
1 � �: (4.14)
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Now we an apply [31, Corollary IV.3.4℄ one more to obtain

�min(L23) � min(�
(2)
1 � "; �

(3)
1 � �)� 2": (4.15)

From (4.12){(4.15) we have sep(L1; L23) > Æ. Furthermore, let R � (A + E)V1 �
V1L1 = V2E21+V3E31. Then, from symmetry it follows that V T

1 (A+E)�L1V
T
1 = RT ,

and we have kRkF = kRTkF � ". Finally, we have

kRkFkRTkF
sep(L1; L23)2

� "2

Æ2
<

1

4
;

and by [31, Corollary V.2.2℄ we know there exists a matrix V̂1 onforming to V1 suh
that range(V̂1) is a simple invariant subspae of A+E, and

tan �1

�
range(V1); range(V̂1)

�
� k tan�

�
range(V1); range(V̂1)

�
kF � 2

"

Æ
:(4.16)

Sine A and A+E are symmetri and we have established the existene of V̂1, we an
obtain an better bound using [31, Theorem V.3.10℄. This theorem onforms niely
to our speial ase. However, we need to establish the minimal distane between
eigenvalues of L1 and the eigenvalues of L̂23 � V̂ T

23(A + E)V̂23, where range(V̂23) =
range(V̂1)

? and V̂23 has orthonormal olumns. From [31, Theorem V.2.1℄ speialized
to the symmetri ase, we know there exists a matrix P , suh that kPkF � 2"=Æ and
L( L̂23 ) = L(L23�P [ET21 ET31℄). From kP [ET21 ET31℄k � 2"2=Æ and [31, Corollary IV.3.4℄,
we have the following bound

�min(L̂23) � min(�
(2)
1 � "; �

(3)
1 � �)� 2"� 2"2

Æ
= Æ̂: (4.17)

Finally, we obtain from [31, Theorem V.3.10℄

tan �1(range(V1); range(V̂1)) � k tan�(range(V1); range(V̂1))kF � "

Æ̂
; (4.18)

whih is about a fator 2 better than (4.16). Analogously to (4.17) we have from [31,

Theorem V.3.10℄ for eah eigenvalue �̂
(1)
j of V̂ T

1 (A+E)V̂1 that

9�(1)i suh that j�̂(1)j � �
(1)
i j � "+

2"2

Æ
: (4.19)

In partiular, this gives

�max( V̂
T
1 (A+E)V̂1 ) � �

(1)
k1 + "+

2"2

Æ
: (4.20)

Our numerial experiments on�rm our onjeture exept for a few Gauss-Newton
steps, when the new matrix is quite far from previous ones. In those ases, the proje-
tion of E on the (smooth) invariant subspae orresponding to the smallest eigenvalues
is still small, though not always small enough to guarantee that the individual lusters
of those eigenvalues do not merge. However, more importantly, the kEk is suÆiently
large that we annot prelude the invariant subspaes orresponding to large eigenval-
ues from perturbing those orresponding to the smallest ones. Note that the problem
is too large to atually hek the projetion of E on invariant subspaes orresponding
to medium or larger eigenvalues. However, Figures 6.2 and 6.7 inlude examples with
relatively large anonial angles orresponding to systems at the start of a line searh.
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Fig. 5.1. Several steps of the Gauss-Newton with Line Searh algorithm.
The blak irles denote the end of a line searh (and one the start of the overall
proedure); the blak stars denote the �rst and intermediate steps from the line
searh.

5. Algorithm. Let us outline some aspets related to the optimization algo-
rithm. We ombine the GN algorithm with a line searh. As we will see in the
numerial results setion, the �nal steps in eah line searh tend to be small. There-
fore, the solutions obtained toward the end of eah line searh are not too di�erent for
a few GN iterations. However, over many GN steps they tend to di�er more signi�-
antly. See Figure 5.1. An obvious way to exploit this is by using the solution of the
previous step as a starting guess. However, this will work better or worse depending
on whether the previous step was the �rst step of a line searh, to-wards the start or
the end of a line searh, and so on. In pratie, it is not easy to hoose the best among
several previous solutions as the best hoie is governed by the progression of the al-
gorithm (it is not neessarily the latest one). However, reyling a small subspae
of previous solutions for the searh spae relieves this problem. In fat, we an vary
this additional subspae depending on whether we are at the start of a line searh or
near the end and how large the line searh parameter is. We an also update this
additional searh spae as we go. In future work, we will explore the use of GCROT-
like tehniques to better measure the e�etiveness of subspaes. Strategies based on
this approah turn out to be very e�etive; we will give more details in this setion
where we disuss the appliation and the optimization algorithm. The idea to use
previous solutions to aelerate onvergene of a Krylov method was also proposed in
[13℄, although in [13℄ they were only used to provide a better initial guess.

The reyling algorithm that we propose is based on the observations in the
previous setion. In partiular, we use the proximity of ertain invariant subspaes
and tune whih old solutions to reyle to the phase of the GN algorithm with line
searh. To keep the notation as simple as possible, we begin by reviewing the basi
GCRO algorithm, then we disuss modi�ations that allow us to solve for multiple
right-hand sides and multiple frequenies.

5.1. Reyled-GCRO for DOT. Consider the sequene of systems

A(j)x
(j)
1 = em1 ;

for the soure s = 1. We will always reyle, in a matrix U , the most reent solution
that ourred at the end of a line searh. We may reyle previous solutions from
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within a partiular line searh. We do not know whether a line searh is omplete until
after the orresponding system has been solved. However, before we solve a system,
we an test whether we are \lose" to the end of a line searh. We assume this is
the ase if the relative residual norm of the urrent system for the solution at the
end of the previous line searh is below a ertain threshold. This information helps
to keep the smallest possible reyling spae. It may not be neessary to keep a large
approximate invariant subspae to redue the initial residual over that part of the
spetrum when we keep solutions in the reyle spae that have the e�et of reduing
the residual over the same part of spetrum anyway (.f. disussion in Setion 5.2).
The reyled-GCRO method proeeds as follows.

Algorithm 1

1. Solve A(1)x
(1)
1 = em1 with MINRES. Set x(urr) = x

(1)
1 ; x(beg) = [℄.

2. Form approximate eigenvetors for A(1) from information generated from the
MINRES run. Save these eigenvetors in the matrix W .

3. For j = 2; : : :
(a) If (kA(j)x(urr) � em1k=kem1k � tol) and not at beginning of LS

U = [Wind; x
(urr)℄,

Else
U = [W;x(urr); x(beg)℄.

(b) A(j)U = C, [C;R℄ = qr(C; 0), set1 U = UR�1.
() Compute x0 = U(CT em1). (Ensures x0 is optimal in the sense that the

residual is minimized over all solutions in Range(U).)
(d) Set P = (I � CCT ): Compute r0 = Pb.
(e) Solve PA(j)Pv = r0 by MINRES.
(f) update x; r

(g) If (at end of LS), x(urr) = x
(j)
1

(h) If (at beginning of LS), x(beg) = x
(j)
1

Here, Wind indiates that we may wish to keep fewer approximate eigenvetors
aording to the disussion preeding the algorithm (see disussion in Setion 5.2 and
numerial example 1) . The logi for tailoring the hoie of the olumns of U to the
GN proess omes from the disussion in the previous setion. First, based on our
observations for this appliation, we expet the approximate invariant subspae or-
responding to the smallest eigenvalues of the �rst matrix to be lose to an invariant
subspae of other matries in the GN sequene orresponding to the smallest eigen-
values. If the GN iteration is onverging, we expet that at the end of two onseutive
line searhes, the orresponding matries will be related sine the purpose of the line
searh is to produe the parameter update vetor that allows the GN proess to on-
verge. Likewise, if we are at the beginning of a line searh sequene, matries from
that sequene should be related, too. An analysis of the e�et of these hoies on the
onvergene of the MINRES steps is provided in the next subsetion.

5.2. Algorithm Analysis. Given that U always ontains the matrix W whih
we assume is a good approximation for the invariant subspae orresponding to the
smallest eigenvalues for all the systems, we expet the systems in (3e) to onverge as
if the smallest eigenvalues have been deated from A(j). In fat, Theorem 4.1 from

1From an implementation standpoint, we would not perform the matrix-matrix produt UR�1.
Rather, we would keep R around, and when we needed to perform UR�1 times a vetor, as in the
next step, we would do bakward substitution with R followed by multipliation with U . However,
this expliit notation simpli�es the introdution of the algorithm.
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[22℄ (whih losely follows Theorem 2.1 in [30℄) says that this should be the ase.

Next, we onsider the e�et of keeping a previous solution x(urr), in U . Assume
the number of olumns in the urrent U matrix is J . For ease of disussion, let us
permute the olumns of U so that the �rst olumn of U is x(urr) (notie the ordering
is unimportant, sine it does not hange the orthogonal projetor).

At the end of (3b), we observe that

1

�1
A(j)x(urr) = 1;

where 1 is the �rst olumn of C. However, x(urr) = (A(k))�1ems
for some previous

index k. Therefore,

1

�1
A(j)(A(k))�1ems

= 1:

We have A(j)(A(k))�1 = I + ~E for error matrix ~E = �E1(A
(k))�1 � E2(A

(k))�1,
with E1, E2 as the small norm and relatively small rank terms de�ned previously.
Therefore,

~v := (I � 1
T
1 )ems

= ems
� 1

T
1 (�11 � ~Eems

)

= ems
� �11 + 1(

T
1
~Eems

)

Then the initial residual is

r0 = (I � CJ�1C
T
J�1)~v

where CJ�1 represents all the remaining olumns in C. Thus we have

r0 = (I � CJ�1C
T
J�1)(ems

� �11) + (T1
~Eems

)1:

But it is readily shown that

ems
� �11 = (A(k) �A(j))x(urr):

The solution x(urr) is smooth and as seen earlier, A(k)�A(j) is small over the invariant
subspae of A(j) orresponding to the smallest eigenvalues. The vetor ems

� �11
should already be small in norm. Sine CJ�1 ontains approximate eigenvetors
orresponding to the smallest (and smoothest) eigenvetors, then learly r0 will be
even smaller in norm, partiularly if (ems

� �11) lies predominately in the diretion
of these eigenvetors anyway. Furthermore, the term T1

~Eems
= �T1 E1x

(urr) �
T1 E2x

(urr). The �rst term in this expression should be small in norm. Sine E2

lies predominantly in the diretion orresponding to larger magnitude eigenvalues but
x(urr) is smooth, the seond term must also be small. In summary, not only do
we observe that the norm of r0 is small, but the smoothness properties ensure it is
smallest in diretions orresponding to the larger magnitude eigenvalues and that it
has been redued in diretions orresponding to the smallest magnitude eigenvalues.
Hene, orretions to the residual our primarily over the remaining subspae, whih
aounts the onvergene behavior observed in our numerial examples.
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5.3. Multiple Right-Hand Sides. The next onsideration is the solution for
multiple right-hand sides. We need to solve

A(j)x(j)s = ems
; s > 1:

First, we replae Step (2) to aommodate the right-hand sides. One the �rst system
for the �rst soure has been solved, we have approximate eigenvetor information.
We an use this eigenvetor information when we solve for the remaining right-hand
sides, and we an also ollet additional eigenvetor information as we solve those
eigensystems. Thus, the new step beomes

� Form approximate eigenvetors for A(1) from information generated from the
MINRES run. Save these eigenvetors in the matrix W .

� For s = 2; : : : ; Ns

{ Set U =W .
{ Perform steps 3b-3e of Algorithm 1

{ Update x
(1)
s with this information

{ Add olumns to W if desired.
Then, to solve for x

(j)
s for the remaining soures, we insert a loop over the re-

maining soures after Step (3). In this way, all the right-hand sides use a di�erent
last olumn (or two) in the U matrix, depending on the soure. However, for every
right-hand side, the �rst several olumns of the U matrix are omprised of the (�nal)
approximate eigenvetor matrixW . Therefore, Step (3b) is heaper for soures s � 2,
sine all but the last olumn (or two) of C were determined during the run on the
�rst soure.

5.4. Multiple shifts . Finally, we disuss the solution for multiple frequenies
using a single Krylov subspae. During Step 3e, we have
v1 = (I � CC)T ems

=k(I � CCT )ems
k and the matrix reurrene (f. (2.1))

AVm = CBm + Vm+1Tm; (5.1)

where Bm = CTAVm and the leading m � m submatrix of Tm is symmetri and
positive de�nite. From this reurrene, we obtain

(A(j) + iI)[Vm jU ℄ = [Vm+1(Tm + iIm) + CBm jC + iU ℄ =

= [Vm+1 jC jU ℄
2
4 Tm + iIm 0

Bm I
0 iI

3
5

= [Vm+1 jC j Û ℄
2
4 I 0 V T

m+1Û
0 I CTU
0 0 N

3
5
2
4 Tm + iIm 0

Bm I
0 iI

3
5 ;

where the last step involves the redued QR deomposition of [Vm+1 jC jU ℄, so that
[Vm+1;s jC j Û ℄ is an orthogonal matrix. Notie that [Vm+1 jC℄ is already an orthog-
onal matrix.

If we restrit our approximate solutions to be in Range(U) � Range(Vm), then
we need to solve a least squares problem2

4 I 0 V T
m+1U

0 I CTU
0 0 N

3
5
2
4 Tm + Im 0

Bm I
0 I

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5
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for every hoie of  and put x
(j)
s;! = Vmy + Uz. This is equivalent to solving2

4 Tm + iIm iV T
m+1U

Bm I + iCTU
0 iN

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5 : (5.2)

This equation leads to an algorithm for updating the solutions to systems in whih
 6= 0. After Step (3e) in Algorithm 1, we insert the following piee of ode:
Algorithm 2a: based on solving (5.2)

For eah :

� Solve (5.2) for

�
y
z

�
.

� Set x
(j)
s;! = Vmy + Uz.

Care must be taken in solving the least squares problem if range(U) is very lose
to an invariant subspae of A(j). In partiular, if range(C) does ontain eigenvetors
of A(j), then range(U) is an invariant subspae of A(j) and so U = C�, for some �.
In this ase, the least squares problems simpli�es onsiderably as V T

m+1U = 0. Thus,
we need to solve the least squares problem (ompare to (2.5))2

4 Tm + iIm 0
Bm I + i�
0 iN

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5 : (5.3)

Having only to solve (5.3) is the ideal situation beause then the problem an
separated into two minimization problems: one for whih y is solved, followed by one
for whih z is solved. But the solution for y requires Vmy, rather than y expliitly,
and the term Vmy an be obtained from short-term reurrenes without keeping the
vetors Vm around using a MINRES-type approah.
Algorithm 2b: based on solving (5.3) For eah :

� Determine Vmy using short-term reurrenes.
� Determine z.
� Set x

(j)
s;! = Vmy + Uz

On the other hand, if the olumns of C do not span an invariant subspae of A(j),
then we really should solve (5.2). Unfortunately, there exists no short-term reurrene

for Vmy in this ase, so we are fored to save the Vm in order to form x
(j)
s;!. However,

for a �xed soure, only one set of vetors Vm needs to be saved from whih solutions
at all other frequenies an be omputed.

We advoate Algorithm 2b when storage is at a premium and/or when we know
that U is a good approximate invariant subspae, and Algorithm 2a otherwise.

One other element in Algorithm 1 must be hanged to aommodate additional

. We must hange Step 3a to inlude one or two new olumns, imag(x
(urr)
s;! ) (and

imag(x
(beg)
s;! )), depending on whih part of the onditional statement is exeuted. The

justi�ation is as follows. Let E = A(j)�A(k) and note that we also have E = A
(j)
! �

A
(k)
! . One an show that A(j)(x

(j)
s � x

(k)
s ) = Ex

(k)
s while A

(j)
! (x

(j)
s;! � x

(k)
s;!) = Ex

(k)
s;! .

Assuming the real part of x
(k)
s;! is lose to x

(k)
s , the di�erene between these right-hand

sides is primarily due to the imaginary part of x
(k)
s;! . Sine we look for solutions to the

omplex system in Range(U)� Range(Vm), it makes sense to inlude imag(x
(k)
s;!) in

U .
We expet either algorithm to perform suÆiently well when  = h2!=� is not

too large in an absolute sense. In our appliation,  will typially be less than or



18 M. Kilmer and E. de Sturler

equal to O(10�4) and we will not be solving the system for very many values of .
However, if  is very large, neither algorithm will neessarily produe solutions with
a small relative residual norm. This stems from the fat that in solving the projeted
problem, we may leave out diretions from the Krylov subspae in whih the solutions
to the omplex systems have large omponents. Future researh inludes plans for
avoiding this dilemma.

6. Numerial Results. In this setion, we give the results of our proposed
algorithm on two sequenes of matries generated from two di�erent runs of the
parameteri nonlinear inversion sheme outlined previously. In the �rst experiment,
a pieewise onstant model for di�usion and absorption was used. In the seond, a
pieewise ontinuous model was used. There were 16 soures and 32 detetors. In
both experiments, the nonlinear inversion sheme was run using only data for the 0
frequeny ase; however, we apply our algorithm to both the 0 frequeny ase and
shifted systems at 5 MHz in order to test our algorithm. The region was disretized2

into 31x31x21 voxels of volume h3, with h = :2m. The sizes of the matries in both
experiments were 18,259 x 18,259. The soures and detetors were loated in a 3m x
3m plane over the enter of the grid. The starting guesses for the ellipsoids desribing
the anomaly were the largest possible ellipsoids �tting in the 3x3x4m region under
the soures. Starting guesses for the other parameters were then obtained by �xing
the shape parameters and using 1-5 GN steps to �nd the best values for those starting
ellipsoids.

All experiments were onduted in Matlab using IEEE double preision oating
point arithmeti.

6.1. Experiment 1. We ran our algorithm on the �rst 40 systems that were gen-
erated by a damped GN run trying to reonstrut pieewise onstant absorption and
di�usion images. Systems numbered 2, 5, 7, 10, 13-19 (odd), 22-40 (even) orrespond
to the beginning of a line searh, systems numbered 4, 6, 9, 12, 14-18 (even), 21-41
(odd) orrespond to the end of a line searh, and the remaining systems orrespond
to the middle of a line searh.

First, we test our hypothesis that the invariant subspaes orresponding to the
smallest eigenvalues of these matries do not hange muh, whether we ompare within
a line searh or aross line searhes. Reall that if the olumns of W (j) form an
orthonormal basis for the eigenspae assoiated with the smallest M eigenvalues for
matrix A(j), and the same holds for W (k) and A(k), then the osines of the anonial
angles between Range(W (k)) and Range(W (j)) are given by [31, Corollary I.5.4℄,

os�[Range(W (j)); Range(W (k))℄ = �[(W (j))TW (k)℄;

where �[V ℄ denotes the singular values of the argument V . The sines of the anon-
ial angles are therefore

p
1� �2i , where the �i denote the osines of the anonial

angles. In Figure 6.1, we display the sines of the anonial angles between pairs of
subspaes orresponding to the smallest eigenvalues of matries. We observe that the
invariant subspaes orresponding to the smallest eigenvalues are in fat relatively
lose as predited by Theorem 4.1. The plot for the sines with M = 3 and M = 12
illustrates the relative insensitivity of the eigenspae orresponding to the smallest 3
and smallest 12 eigenvalues, respetively. The indies have no orrespondene with

2These experiments represent small test ases designed to test the regularization sheme itself.
Ideal pratial implementations of the inversion routine, whih are not feasible without fast forward
solvers suh as those we present here, will require voxelations giving millions of unknowns.
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Fig. 6.1. Experiment 1. Plots of sin�[Range(W (j)); Range(W (k))℄ for various (j; k) for sub-
spaes of dimension M = 3 (left) and M = 12 (right).
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Fig. 6.2. Experiment 1. Smallest 12 eigenvalues of A(j), j = 1; 2; 3.

the eigenvetors themselves, nor do the anonial angles reet the angles between
orresponding eigenvetors. The values of j and k in the pitures were seleted to
illustrate the fat that the relevant invariant subspaes of matries orresponding to
updates in the GN proess remain fairly lose to eah other (e.g. 1 and 4, 4 and 6, 1
and 14), whereas those from matries from distint line searhes (e.g. 1 and 3, 1 and
5, 1 and 13) di�er more. Nevertheless, even these do not di�er that muh, partiularly
if a larger dimensional invariant subspae is used. The smallest 12 eigenvalues of A(j)

for j = 1; 2; 3 are given in Figure 6.2.

We ran Algorithm 1, adjusted as in Setion 5.3, for the multiple right-hand side
problem for zero frequeny and adjusted for an additional non-zero frequeny of !=5
MHz using Algorithms 2a and 2b. We saved 2 harmoni Ritz vetors from eah of the
�rst 6 right-hand sides in the initial phase of Algorithm 1 in order to try to apture
an invariant subspae of A(1) of dimension 12 orresponding to small eigenvalues. We
used a threshold value of 10�3, derived by trial-and-error, to distinguish between the
beginning of a line searh step and steps near the end. The left plot in Figure 6.3
shows the magnitudes of the spetral oeÆients of the initial residuals for systems 2
through 5 whih orrespond to the 50 smallest eigenvalues, while the right plot gives
the magnitudes orresponding to the 50 largest eigenvalues. Systems 2, 3 and 4 are
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Fig. 6.3. Experiment 1. Left: Plots of (W (j))T r0 for j = 2; 3; 4; 5 for soure 1 where W (j)

orresponds to the eigenvetor matrix assoiated with the 50 smallest eigenvalues of A(j). Right:
Same, exept for 50 largest eigenvalues of A(j).

all from the same line searh, and we observe that the spetral omponents derease
by roughly one order of magnitude with eah system. System 5 orresponds to the
beginning of a new line searh whose matrix and solution are not as lose to those
from the �rst line searh. We observe a orresponding inrease in the magnitudes of
the spetral oeÆients over the small eigenvalues whereas a omparison of the �gures
shows that the initial residual is typially smaller over the subspae orresponding to
the largest eigenvalues. This behavior is onsistent both with the analysis of the initial
residual in Setion 5.2 and with the observed onvergene behavior for system 5 in
the sense that the solver must work harder to redue the residual signi�antly over
these omponents.

Figure 6.4 gives the total number of matrix-vetor produts to solve eah sys-
tem using our reyling algorithm. This number inludes the matrix-vetor produts
required to ompute the olumns of C. The residuals for all the real systems were
required to have a relative norm of 10�6. Note the savings in matrix-vetor produts
for the right-hand sides other than the �rst of a single system, beause most of the
olumns of C are omputed only one for eah s. Moreover, the projetion has the
desired e�et of reduing the total number of iterations needed on the projeted sys-
tem. We think it is possible to design further tuning strategies to redue the peaks in
the urve for soure 1 while maintaining the redution in matrix-vetor produts for
the other systems; this is a subjet for future researh.

For omparison purposes, we note that if we used MINRES with a zero starting
guess for every system and right-hand side, the number of matrix-vetor produts
would be roughly onstant at about 81 iterations for eah system. Even MINRES
with the solution at the end of the most reent line searh as a starting guess ould
not ahieve the redution in the number of iterations we ahieve with our algorithm,
as demonstrated in Figure 6.4. Additionally, the level-3 BLAS matrix-matrix prod-
ut (A(j)U) performed prior to running MINRES on the projeted system is faster
than the equivalent number of matrix-vetor produts performed inside (unprojeted)
MINRES.

The relative residual norms for the �rst 20 systems, for soure 1, are given in
Figure 6.5. Note that the onvergene rate beomes higher and the initial relative
residual norm beomes smaller as we move through one sequene of systems in a line
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Fig. 6.4. Experiment 1. Number of matrix-vetor produts per system solve for systems 1:40
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are representative for all soures.
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Fig. 6.5. Experiment 1. Relative residual norms are displayed for the �rst 20 systems, soure 1.

searh.
The plot in Figure 6.6 illustrates the relative residual norms that are ahieved

when solving the omplex system with ! = 5MHz when Algorithm 2a and 2b are
used to update the omplex solution vetors. In neither ase do we exatly attain
a relative residual norm of 10�6, the stopping riterion for the orresponding real
system. However, for our appliation, we feel this is suÆient. In future work, we
onsider alternatives for the shifted frequeny ase. Sine previous solutions our in
the U matrix, this aounts for the slight upward reep of the graphs toward the end
of the sequene of systems.

6.2. Experiment 2. In this experiment, the bakground di�usion and absorp-
tion were generated to have a \lumpy" variation [17℄, so the matries that were gener-
ated orrespond to pieewise ontinuous, rather than pieewise onstant, absorption
and di�usion. The total number of GN steps was 24 and the total number of system
matries was 51. For the �rst 40 systems the indies orresponding to the beginning
of a line searh are 2,5,8,10,13-39 (odd) while indies orresponding to the end of a
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Fig. 6.6. Experiment 1. Left: Relative residual norm per system solve, systems 1:40, soures
1 and 4, for !=5 MHz, results omputed using Algorithm 2a. Right: Relative residual norm per
system solve, systems 1:40, soures 1 and 4, for != 5 MHz omputed using Algorithm 2b.

line searh are 4,7,9,12,14-40 (even).
The sines of the anonial angles between di�erent pairs of small-eigenvalue sub-

spaes and for di�erent subspae dimensions are given in Figures 6.7. In Figure 6.8
the smallest 12 eigenvalues are displayed. Consistent with Theorem 4.1 and our on-
jeture that the hanges in the matries are onentrated in the invariant subspaes
orresponding to higher frequenies (larger eigenvalues), the smallest eigenvalues re-
main in disjunt lusters.

Figures 6.7 and 6.8 seem to indiate that the smallest 8 or so eigenvalues or-
respond to an invariant subspae that remains well separated from its orthogonal
omplement. Therefore, in the initialization phase of Algorithm 1, we added two ve-
tors to W orresponding to the smallest harmoni Ritz values of ~Tm for eah of the
�rst 4 soures. In Figure 6.9, we see the e�et of keeping these 8 olumns plus the
other vetors proposed in Setion 5.3. In this experiment,Wind =W , and a threshold
value was used to distinguish system positioning within the line searh. Just as for
the �rst experiment, note the savings in matrix-vetor produts for the right-hand
sides after the �rst for a single system. Again, we ompare our results to MINRES
with x(urr) from Algorithm 1 as the starting guess.

Relative residual norms for Algorithm 1 for the �rst 20 systems for soure 1 are
given in Figure 6.10. We observe an inreased rate of onvergene and smaller initial
residuals in the ourse of a line searh.

Finally, the relative residual norms for the omplex systems at ! = 5MHz are
given in Figure 6.11 for Algorithm 2a and 2b. In general, the behavior is more uniform
for these systems as opposed to those in the �rst experiment due to the fat that the
invariant subspaes orresponding to the small eigenvalues among the matries are
more losely related.

7. Conlusions and Future Work. We have disussed various strategies for
Krylov subspae reyling to improve the onvergene of linear solvers for a sequene
of slowly hanging linear systems arising in omputations for optial tomography.
We have ombined strategies based on reyling approximate invariant subspaes and
strategies based on reyling subspaes from previous solutions. Furthermore, our
algorithms are based on a areful analysis whih strategy is most useful at eah stage
of the optimization algorithm. This analysis also takes the underlying appliation,
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Fig. 6.7. Experiment 2. Left: Plots of sin�[Range(W (j)); Range(W (k))℄ for various (j; k)
assuming a subspae dimension of 3. Right: Assuming a subspae dimension of 8.
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smallest magnitude eigenvalues remain in lusters and do not ross lusters.
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Fig. 6.10. Experiment 2. Relative residual norms for systems 1 to 20, soure 1.
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Fig. 6.11. Experiment 2. Left: Relative residual norms for systems 1 to 40, soures 1 and 4,
!=5 MHz using Algorithm 2a. Right: Relative residual norms for systems 1 to 40, soures 1 and
4, !=5 MHz using Algorithm 2b.

di�use optial tomography, and matrix symmetry into aount. Furthermore, we
have adapted the GCRO algorithm to ombine subspae reyling with solving for
multiple shifted systems using a single Krylov subspae. Our numerial results, based
on two model problems for di�use optial tomography, show that our strategies are
quite e�etive. Although we have foused on a partiular appliation and optimization
algorithm, we feel that this approah to tuning the linear solver is appliable generally
to problems where many linear systems must be solved.

Important future work in this area is to study how harateristis of the lin-
ear systems arising in di�use optial tomography, suh as invariant subspaes and
eigenvalues, hange for small hanges in model parameters. This may lead to further
improvements for linear solvers and also improved line searh strategies for the non-
linear solver. This issue is, of ourse, equally important for other appliations where
we must solve a large sequene of slowly hanging problems, suh as rak propaga-
tion [22℄. Future work will ombine modeling aspets from appliations with matrix
theory.
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