
Girgis BMC Bioinformatics (2015) 16:227
DOI 10.1186/s12859-015-0654-5

SOFTWARE Open Access

Red: an intelligent, rapid, accurate tool for
detecting repeats de-novo on the genomic
scale
Hani Z. Girgis1,2

Abstract

Background: With rapid advancements in technology, the sequences of thousands of species’ genomes are
becoming available. Within the sequences are repeats that comprise significant portions of genomes. Successful
annotations thus require accurate discovery of repeats. As species-specific elements, repeats in newly sequenced
genomes are likely to be unknown. Therefore, annotating newly sequenced genomes requires tools to discover
repeats de-novo. However, the currently available de-novo tools have limitations concerning the size of the input
sequence, ease of use, sensitivities to major types of repeats, consistency of performance, speed, and false positive rate.

Results: To address these limitations, I designed and developed Red, applying Machine Learning. Red is the first
repeat-detection tool capable of labeling its training data and training itself automatically on an entire genome. Red is easy
to install and use. It is sensitive to both transposons and simple repeats; in contrast, available tools such as
RepeatScout and ReCon are sensitive to transposons, and WindowMasker to simple repeats. Red performed
consistently well on seven genomes; the other tools performed well only on some genomes. Red is much faster than
RepeatScout and ReCon and has a much lower false positive rate than WindowMasker. On human genes with five or
more copies, Red was more specific than RepeatScout by a wide margin. When tested on genomes of unusual
nucleotide compositions, Red located repeats with high sensitivities and maintained moderate false positive rates.
Red outperformed the related tools on a bacterial genome. Red identified 46,405 novel repetitive segments in the
human genome. Finally, Red is capable of processing assembled and unassembled genomes.

Conclusions: Red’s innovative methodology and its excellent performance on seven different genomes represent a
valuable advancement in the field of repeats discovery.

Background
We live in exciting times. Soon, we will witness the
sequencing of genomes of thousands of species. Signif-
icantly, our knowledge of repetitive DNA, or repeats,
an important component of the genomes of almost all
species, will expand. Repeats may make up a large per-
centage of a genome. For example, it has been estimated
that the percentage of repeats in the human and the
maize genomes are 50% [1] and 85% [2]. Because repeats
are species specific, repeats of the majority of newly

Correspondence: girgishz@mail.nih.gov
1Computational Biology Branch, National Center for Biotechnology
Information, National Library of Medicine, National Institutes of Health, 8600
Rockville Pike, Bethesda, MD 20894, USA
2Tandy School of Computer Science, University of Tulsa, 800 South Tucker
Drive, Tulsa, OK 74104, USA

sequenced genomes are unknown. Therefore, methods
that can efficiently locate repeats de-novo without relying
on known repeats play a crucial role in annotating newly
sequenced genomes.
Repeats are very important clinically. Up until 2012,

insertions of non-LTR retrotransposons were known to be
responsible for 96 human diseases including colon can-
cer, breast cancer, leukemia, cystic fibrosis, hemophilia,
muscular dystrophy, and chronic granulomatous disease
[3–5]. Microsatellites (MS), one type of tandem repeats,
are also linked to several diseases such as fragile X syn-
drome, Huntington’s disease, Kennedy’s disease, myotonic
dystrophy, and triplet-repeat expansion diseases [6]. Fur-

© 2015 Girgis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0654-5-x&domain=pdf
mailto: girgishz@mail.nih.gov
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Girgis BMC Bioinformatics (2015) 16:227 Page 2 of 19

ther, MS have several biomedical applications in such
processes as DNA paternity testing and forensic DNA
finger printing [7].
Scientists have recognized the multiple molecular func-

tions of repeats since the fifties. Saha et al. highlight some
known functions of transposable elements (TE) including
their role in gene expression [8]. Interestingly, McClintock
observed that, when a genome is under stressed condi-
tions, transposons canmodify actions of regular genes and
“restructure the genome at various levels” [9]. Further-
more, “multiple transpositions” of transposons provide a
mechanism to generate new genes [10]. Tandem repeats
(TR), especially MS, have several functions involving gene
regulation and recombination [6].
It has been reported in the Bioinformatics field that

masking TR improves the quality of alignments produced
by alignment algorithms [11]. These algorithms repre-
sent essential tools for studying Molecular Biology. Addi-
tionally, the time required to search for a non-repetitive
sequence, e.g. a coding region, in a genome can be
reduced dramatically by excluding repeats from the search
database.
TR and TE comprise two main classes of repeats.

Regarding the first class, TR consist of a repeated short
motif(s) in tandem. Microsatellites, minisatellites, satel-
lites, and low complexity regions are the main classes of
TR. As for the second class, TE were first discovered in
the maize genome by McClintock, who described them
as “mutable genes” or “unstable genes” [12]. Autonomous
TE carry genes needed for their transposition. TE are
found in a large number of copies interspersed throughout
the genome. TE include DNA transposons and retro-
transposons. DNA transposons relocate via a “cut and
paste” mechanism, whereas retrotransposons relocate via
a “copy and paste” mechanism involving RNA as the
intermediate molecule. Lengths of TE range from tens
to thousands of nucleotides. Sequences of TE include
several features that are characteristic of each class of
transposons.
Many computational tools have been developed to

detect TE since 1994. Several of these tools are reviewed
in [13–17]. Here, I present a slightly modified version
of the classification by Lerat [16]. Computational meth-
ods for locating TE are classified into the following six
categories:

• Library-based methods: RepeatMasker (http://www.
repeatmasker.org) and Censor [18] are widely used
library-based tools. A library-based tool searches a
sequence for copies of known repeats collected in a
database such as RepBase [19]. RepBase comprises a
library of manually annotated repeats in eukaryota.

• Learning-based methods: A method developed by
Andrieu et al. [20] assumes that the nucleotide

composition of TE is different from that of the rest of
the genome. This assumption is supported by the fact
that the genes of TE are different from regular genes.
Developing methods within this category involves
applying Machine Learning algorithms to obtain
models that distinguish sequences of TE from
non-TE sequences.

• Signature-based methods: Each class of TE has a set
of unique features such as a target site duplication, a
poly-A tail, terminal inverted repeats, long terminal
repeats, and/or a hairpin loop. The signature of a
class of TE consists of a subset of these features. A
signature-based tool searches a sequence for features
comprising the signature of the class of interest
[21–24].

• Comparative-genomics-based methods: TE are
species specific. Therefore, when two genomes of
closely related species are compared, TE are expected
to be found in one genome and absent in the other.
Long gaps in the pair-wise alignment mark potential
TE [25]. Similarly, still-transposing TE can be
detected by comparing the genomes of different
individuals of the same species [3].

• De-novo methods: The repetitive nature of TE
inspired the emergence of de-novo methods.
De-novo methods depend on one of two processes:
“self-comparison” or counts of k-mers.
Self-comparison methods align a genome, or samples
of it, versus itself (e.g. ReCon [26] and PILER [27]).
Examples of tools that count exact or approximate
(known as “spaced”) k-mers are ReAS [28],
RepeatScout [29], WindowMasker [30], Repseek [31],
and Tallymer [32].

• Consensus methods: These methods combine TE
located by a group of different tools. For example, a
pipeline consisting of library-based methods,
learning-based methods, and de-novo methods has
been proposed [33]. The REPET pipeline [34] utilizes
de-novo and/or signature-based methods.
RepeatModeler (http://www.repeatmasker.org) is
based on ReCon and RepeatScout for the
identification of TE; additionally, it applies TRF [35],
which is a de-novo tool used for locating TR.

Detecting TR has received equal attention. Numerous
computational tools have been developed for this purpose,
in particular for detecting microsatellites, an important
class of TR. Several of these tools are reviewed in [36–
39]. Tools for detecting TR fall into three categories sim-
ilar to those of TE. The first category involves library-
based tools (e.g. RepeatMasker). The second includes
learning-based tools (e.g. MsDetector [40]). The third,
and final, category comprises de-novo tools (e.g. TRF
[35], mreps [6], STAR [41], and TANTAN [11]). A widely

http://www.repeatmasker.org
http://www.repeatmasker.org

Girgis BMC Bioinformatics (2015) 16:227 Page 3 of 19

used tool for masking low-complexity regions de-novo is
DUST [42].
Although repeats are abundant in the majority of

genomes, “the algorithms and computational tools for
identifying and studying repeat sequences are relatively
primitive compared to those being utilized to explore
genes,” as Saha et al. pointed out [14]. In another study,
Saha et al. [15] identified the following limitations of the
currently available tools: (i) the majority of these tools
cannot process a complete chromosome, let alone a whole
genome; (ii) the processing time may be long and unprac-
tical; and (iii) there are difficulties in installing and using
some tools.
The goal of my study is to design and develop a tool

that addresses the above mentioned limitations. Specifi-
cally, the new tool should be capable of processing a whole
genome in a reasonable amount of time without relying on
other tools. In addition, due to the important role of de-
novo methods in annotating new genomes, the new tool
must rely only on the repetitive nature of repeats. To this
end, I have designed and developed a computational tool
I call Red (REpeat Detector) that accomplishes the stated
goals.
The input to Red comprises the sequences of the

genome of interest. Red can process assembled as well
as unassembled genomes. To start, Red searches for
k-mers that are repeated at least three times in the
genome and their counts are greater than what could be
expected by chance in a genome of similar composition.
Then an analytical method is applied to locate candi-
date repetitive regions consisting mainly of the repeated
k-mers. These candidate repetitive regions and the poten-
tial non-repetitive regions are used for training a hidden
Markov model (HMM) that scans the whole genome
searching for repeats. The process of training the HMM
is an instance of supervised learning that traditionally
requires manually annotated data. Because Red has the
ability to label candidate repetitive regions and poten-
tial non-repetitive regions, it does not require manually
annotated data. Moreover, the labeling and the training
processes are carried out automatically on each genome.
To the best of my knowledge, Red is the first repeat-
detection tool that has the capability of labeling its own
training data and can train itself automatically on each
genome.
My assessment of Red and three related tools on seven

genomes demonstrate that Red has the following nine
advantages:

• Red is easy to install and use because it does not
depend on other tools;

• Red is sensitive to both TE and TR, while the related
tools are either primarily sensitive to TR or TE, but
not both;

• Red performs well on the seven tested genomes,
while the other tools perform well on some of the
genomes but not all of them;

• Red is much faster than some of the widely used
de-novo tools;

• Red has a low false positive rate;
• Red is capable of processing a genome that has an

unusual nucleotide composition while achieving a
high sensitivity and maintaining a moderate false
positive rate;

• Red can discover a large number of novel repetitive
segments;

• Red has the ability to discover repeats in bacterial
genomes; and

• Red is capable of detecting repeats in unassembled
genomes.

Methods
I designed and developed Red (REpeat Detector), a de-
novo tool for discovering repetitive elements in DNA
sequences comprising a genome. Red utilizes a hidden
Markov model (HMM) dependent on labeled training
data, i.e. it is an instance of supervised learning. Tradi-
tionally, the training data are based on manually anno-
tated sequences. However, this is not the case with
Red. Red identifies candidate repetitive regions using (i)
adjusted counts of k-mers, (ii) a signal processing tech-
nique, and (iii) the second derivative test. These candidate
regions are used for training the HMM. To the best of
my knowledge, Red is the first repeat-discovery system
that has the ability to generate its own labeled train-
ing data and to train itself automatically on an input
genome.
The input to the system is sequences, in FASTA format,

comprising an assembled or an unassembled genome. Red
outputs the genomic locations of the candidate regions
and the final repeats found in the genome as well as
the masked sequences. Red consists of the following
four modules: (i) the scoring module, (ii) the labeling
module, (iii) the training module, and (iv) the scanning
module.

The scoring module
The input to this module is a set of sequences of
nucleotides A, C, G, and T. The module outputs the cor-
responding sequences of scores. The score of a nucleotide
is the adjusted count of a word of length k (also known as
a k-mer) starting at this nucleotide. Next, I discuss an effi-
cient hash table used for counting k-mers and adjusting
their counts.

Efficient hash table
I utilized a hash table, that is a data structure, and a time-
efficient hash algorithm to store the adjusted counts of

Girgis BMC Bioinformatics (2015) 16:227 Page 4 of 19

all DNA words of length k. In theory, a hash table has
two columns. Each row in the table represents a key-value
pair. In practice, a hash table is implemented as an array,
i.e. a single-column table. Values are stored in the cells
of the array. To access the value associated with a key, a
hash function calculates a unique number that is the index
of the value in the array. There are many hash functions
available; however, these functions are not designed to
handle long sequences of DNA. Standard hash functions
calculate the index of one key at a time. In contrast,
the hash function, which I designed for Red, efficiently
calculates the indices of thousands, even millions, of con-
secutive words, i.e. keys, in a DNA sequence. Specifically,
the index of a k-mer is the quaternary number obtained by
converting the nucleotides A, C, G, and T to the digits 0,
1, 2, and 3, respectively. The quaternary numbers can be
computed efficiently for a sequence of adjacent words in a
chromosome using Horner’s rule [43]. This data structure
takes advantage of the large memory capacity that is avail-
able nowadays in personal computers. As for run time,
updating the table and retrieving values from it are very
time-efficientoperations.

Completing the table
The scoring module scans the set of sequences compris-
ing the genome, sequence by sequence. As the module
scans a sequence nucleotide by nucleotide, it updates the
count of the word starting at a nucleotide in the table.
Once the scanning of the genome is complete, entries in
the table represent the observed counts for all the words
in the genome. Then, the observed counts are adjusted.
To avoid coding regions and duplicated segments, the
adjusted count of a k-mer that occurs once or twice is zero.
Similarly, the adjusted count is zero if the observed count
is less than or equal to the expected count that is calcu-
lated using a Markov chain trained on the same genome.
Finally, if the observed count of a k-mer is greater than
the expected count and it occurred at least three times,
the adjusted count is the count of the k-mer observed in
the input genome minus the expected count. The ratio-
nal for adjusting the counts was inspired by the idea of
“correct[ing] for biases in sequence composition” [31]. At
this point, the table is ready to be used for scoring input
sequences.

Scoring a sequence
The scoring module scans the input sequence, nucleotide
by nucleotide. For each word starting at a nucleotide,
the module finds the adjusted count of the word in
the table. Subsequently, the adjusted count of this word
is appended to the end of the output sequence as the
score representing this nucleotide. Figure 1(a) provides
an example sequence of scores calculated by the scoring
module.

Next, I explain how scores are used for labeling can-
didate repetitive regions and non-repetitive regions. In
this article, I refer to potential repetitive regions as
“candidates.” The training module uses the candidates
and the potential non-repetitive regions for training
the HMM.

The labeling module
The labelingmodule searches the score sequences for can-
didate repetitive regions. Once the search is complete,
candidate repetitive regions and non-repetitive regions
are listed. To this end, the following three steps are exe-
cuted in order.

Step 1 - Smooth the score sequence using a Gaussianmask
Repetitive regions are likely to consist mainly of high
scores; in contrast, non-repetitive regions are likely to
consist mainly of low scores. In the current study, it has
been observed that high scores in the score sequence
appear close to each other and low scores occur close to
each other. However, low scores may be found in regions
consisting mainly of high scores and vice versa. Therefore,
it is more informative to represent a score as the weighted
average of the flanking scores. The weights are assigned
according to a Gaussian distribution (Equation 1), in
which the closer the neighboring score to the score of
interest is, the higher its weight is.

g(x) = 1√
2πσ 2

exp
{
− (x − μ)2

2σ 2

}
(1)

In this equation, μ and σ are the mean and the stan-
dard deviation of the Gaussian distribution. Precomputed
weights calculated according to a Gaussian distribution
with a specific mean and a specific standard deviation
are called a mask. The width of a mask is 7 × σ because
almost all samples fall within 3.5 standard deviations on
each side of the mean. Figure 2 demonstrates an exam-
ple mask. To smooth a score, the mask is centered on this
score; then the weighted mean is calculated according to
Equation 2.

si =
i+h,2h+1∑
j=i−h,p=1

sjmp ÷
2h+1∑
p=1

mp (2)

The symbolm is the sequence of the weights of the mask,
si is the smoothed score, and si is the original score.
Figure 1(b) displays the result of smoothing the scores
shown in Fig. 1(a).

Girgis BMC Bioinformatics (2015) 16:227 Page 5 of 19

0 500 1000 1500

0
10

00
20

00
30

00
40

00
50

00

Sequence

S
co

re
s

(a) Scores

0 500 1000 1500

0
20

0
40

0
60

0
80

0
10

00

Sequence
S

m
oo

th
ed

 S
co

re
s

(b) Smoothed scores & local maxima

0 500 1000 1500

0
10

00
20

00
30

00
40

00
50

00

Sequence

S
co

re
s

(c) Candidate regions

0 500 1000 1500

0
10

00
20

00
30

00
40

00
50

00

Sequence

S
co

re
s

(d) Final regions

Fig. 1Method overview. a A sequence of scores: The score of each nucleotide is the adjusted count of the k-mer starting at this nucleotide. b
Smoothed scores: The smoothed score is the weighted average of the flanking scores. The weights are assigned according to a Gaussian
distribution. The local maxima, marked by ‘+’, are located using the second derivative test. c Candidate regions: The labeling module locates
candidates (thin and colored in red) and potential non-repetitive regions (thick and colored in black). Regions found in the whole genome are used
for training the hidden Markov model (HMM). d Final regions: The scanning module applies the trained HMM to locate the final repetitive regions
(thin and colored in red). Notice that the final repetitive regions are less fragmented than the candidates. Additionally, they include all local maxima
even the ones that were missed by the labeling module

Step 2 - Determine local maxima analytically
Local maxima are likely to occur within repetitive regions
because mainly high scores comprise these regions. The

second derivative test is used for determining local max-
ima in a sequence of smoothed scores. Approximations of
the first and the second derivatives are used in the calcu-

Girgis BMC Bioinformatics (2015) 16:227 Page 6 of 19

20 16 12 9 6 3 0 3 6 9 12 16 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Distance From The Center (in nucleotides)

W
ei

gh
t

Fig. 2 Gaussian mask. This example mask represents the weights
used by the labeling module for smoothing a sequence of scores. The
width of this example mask is 40. Therefore, the smoothed score is
the weighted average of the scores of the 40-bp-long region
centered on the score of interest

lation of this test. These approximations are calculated by
implementing Equations 3 and 4 [44].

f ′(si) =
i−1∑

j=i−w
sj −

i+w∑
j=i+1

sj (3)

f ′′(si) =
i−1∑

j=i−w
sj +

i+w∑
j=i+1

sj − 2wsi (4)

Here, w is a small window (10 is currently used). The
approximation of the first derivative is the difference
between the summation of the smoothed scores of the
window, which consists of w nucleotides, preceding the
nucleotide of interest and that of the window follow-
ing the nucleotide. The approximation of the second
derivative is the difference between the summation of the
smoothed scores of the preceding and the following win-
dows and 2w times the smoothed score of the nucleotide
of interest. The second derivative test states that a local
maximum occurs at a point if two conditions are met:
(i) the value of its first derivative is zero, and (ii) the
value of its second derivative is negative. In practice, the
value of the first derivative is considered zero if the sign
(+/−) of the first derivative changes between two con-
secutive points because the zero is crossed between these
two points. Figure 1(b) shows the local maxima marked

by the ‘+’ sign, identified in the sequence of smoothed
scores.

Step 3 - Delineate candidates and potential non-repetitive
regions
A sequence consists of repetitive regions separated by
non-repetitive regions. The presence of local maxima and
of high scores is characteristic of repeats, whereas non-
repetitive regions consist mainly of low scores that do not
include a local maximum. The core of a candidate repet-
itive region, a sequence of high scores with at least one
maximum, is expanded step-wise until a non-repetitive
region is encountered. The details of executing this step
are given in the Additional file 1. Figure 1(c) provides an
example of the labeled regions.
Next, the training module trains the HMM on the

labeled regions. Once the HMM is trained, the scanning
module searches for repeats in the genome.

The training module
Candidate regions located by the labeling module may
have inaccurate boundaries. If the width of the mask is
small, some regions may be fragmented (see Fig. 1(c)
for an example). In contrast, if the width of the mask
is large, some regions may represent two or more sep-
arate repetitive regions merged together including inter-
leaving non-repetitive regions. Therefore, an additional
correction step is needed. Such a correction step can be
carried out using a probabilistic model. Although candi-
date regions may include noisy regions, a large percentage
of these candidates are repeats or fragments of repeats.
Accordingly, these regions can be used for training a
probabilistic model that is tolerant of noise in training
data. A probabilistic model such as an HMM trained on
the labeled repetitive and non-repetitive regions should
delineate repeats more accurately (compare Fig. 1(c) to
Fig. 1(d)).

Scores as time-series data
In a time series, an observed event depends on the pre-
ceding events in the series. Repetitive regions consist
mainly of high scores as well as a small percentage of low
scores. In contrast, non-repetitive regions consist mainly
of low scores in addition to a small percentage of high
scores. These properties suggest that a score depends on
the preceding scores. Therefore, a series of scores can
be considered a time series. Consequently, one can guess
whether a score of a nucleotide is high or low by exam-
ining the preceding scores. In the majority of cases, the
guess is correct. In other cases, when the guessed value
does not agree with the actual score, the incorrect guess
is regarded as a bridge over a gap in the actual scores (if
the region is repetitive) or as a noise filter (if the region is
non-repetitive).

Girgis BMC Bioinformatics (2015) 16:227 Page 7 of 19

HiddenMarkovmodels
HMMs [45] are well suited for time-series data. An HMM
consists of a set of states and three types of probabili-
ties. A state generates a set of observations. An HMM is
based on prior probabilities, transition probabilities, and
output probabilities. The prior probability of a state is the
probability that it is the first one in a series. The transi-
tion probability between two states – Sa and Sb – is the
probability that the next state is Sb when the previous
state is Sa. The probability that a state generates a specific
observation is known as the output probability.

Model design
Half of the HMM states are designed to generate scores,
high and low, of repetitive regions, whereas the other half
of the states are designed to generate scores, high and low,
of non-repetitive regions. Figure 3 shows the structure of

Fig. 3 Example of the HMM structure. In this simplified example, the
HMM consists of four states: two states representing repeats (Rl and
Rh) and two states representing non-repeats (Nl and Nh). The model
has transitions from each state to the other three states. Additionally,
there is a transition from each state to itself to allow the model to stay
in the same state that generates multiple subsequent scores. The
assumption underlying this structure is that repetitive regions consist
mainly of high scores interleaved with a small number of low ones; in
contrast, non-repetitive regions consist mainly of low scores
interleaved with a small number of high ones. States Rh and Rl
generate high and low scores in repetitive regions. States Nh and Nl

generate high and low scores in non-repetitive regions

a simple HMM with four states. Two of the states gen-
erate low and high scores in repetitive regions, and the
other two generate low and high scores in non-repetitive
regions. The model has transitions from each state to the
other three states. In addition, there is a transition from
a state to itself, i.e. the model may stay in the same state
to generate multiple subsequent scores. The actual HMM
has a similar structure; however, it has a larger number of
states. A state in the HMM is designed to generate a spe-
cific range of scores that have the same logarithmic value
(Equation 5).

output(s) =
{ �logt(s)� if s > 0
0 if s ≤ 0 (5)

The base of the logarithmic function, t, is the threshold
of the low scores used for defining non-repetitive regions;
see the Additional file 1. Each observed score can be
generated by one of two states: a repetitive state or a non-
repetitive state. Accordingly, the total number of states is
twice the logarithmic value of the maximum score found
in the genome of interest.

Learning probabilities
Training the HMM requires determining the prior, the
transition, and the output probabilities. These probabil-
ities can be calculated from the labeled candidate and
non-repetitive regions. The prior probabilities are calcu-
lated by counting the first state of a candidate or of a
non-repetitive region and dividing the count of each state
by the total number of regions. The output probabilities
are always 1 because a state is designed to generate scores
that have the same logarithmic value. Calculating the tran-
sition probabilities involves building a matrix that has the
same number of rows and columns. Each entry in the
matrix represents the probability of moving from a state
represented by the row name to a state represented by
the column name. To calculate the transition probability
from a state a (Sa) to a state b (Sb), this module counts
the times Sb occurred after Sa, and then divides the count
by the total number of transitions out of Sa. Again, a and
b are the logarithmic values of the scores according to
Equation 5. Each logarithmic value can represent one of
two states according to its location in a candidate region
or a potential non-repetitive region. Note that the matrix
is not symmetric, i.e. the transition probability from Sa to
Sb is not the same as the transition probability from Sb
to Sa.

The scanningmodule
The scoring module generates the sequence of scores of
the input nucleotide sequence. The series of states that are
likely to generate the sequence of scores are determined
by Viterbi’s algorithm using the trained HMM. The loca-
tions of adjacent scores that have repetitive states are then

Girgis BMC Bioinformatics (2015) 16:227 Page 8 of 19

determined. The corresponding sequences of nucleotides
represent the final repetitive elements. The end of a repet-
itive region is adjusted to include the adjacent k − 1
nucleotides. Recall that k is the size of the k-mer, and the
right k−1 nucleotides are part of the final k-mer of a repet-
itive region. Examples of regions located by the scanning
module are shown in Fig. 1(d).

Supplementary information
Up to this point, I illustrated the scoring module, the
labeling module, the training module, and the scanning
module. More information about the methodology of Red
is available in the Additional file 1. In that section, I pro-
vide the details of how the labeling module delineates
candidate repetitive regions and potential non-repetitive
regions. Then I show that the run time of Red is linear
with respect to the genome size. Additionally, I discuss the
default values of Red’s parameters. Then, I give the details
of the related tools. Finally, I list the sources of the data
used in this study.

Availability
The C++ source code and Red binaries for Unix 64-bit and
Mac 64-bit are available as Additional files 2, 3 and 4.

Results
In this section, first, I define the criteria to evaluate Red
and the three related tools. Then I discuss the contribu-
tions of this study and the advantages of Red over the
currently available tools.

Evaluation measures
The following criteria were used in this study to evaluate
Red, RepeatScout, ReCon, and WindowMasker: Sensitiv-
ity (SN), Specificity (SP), Percentage Predicted (PP), False
Positive Length (FPL), Potential Repeats (PR), Time, and
Memory. The majority of these measures, or their deriva-
tives, provide standard evaluation criteria and have been
used in previous studies [15, 16, 40].
The sensitivity (SN) of a tool is evaluated on the basis

of the repeats located by RepeatMasker. RepeatMasker is
considered the standard tool for detecting repeats because
it depends on a manually annotated library of repeats
called RepBase. Although repeats found by RepeatMasker
are not perfect, they are the best available comprehen-
sive set of repeats. Recall that Red, RepeatScout, ReCon,
and WindowMasker are de-novo tools, whereas Repeat-
Masker is a knowledge-based tool. Accordingly, the sen-
sitivity of a tool to the repeats detected by RepeatMasker
is a predictor of the ability of that tool to discover repeats
de-novo. Equation 6 defines the sensitivity.

SNclass = 100 × O
R

(6)

In this equation, O is the overlap between the repeats
predicted by a tool and the repeats detected by Repeat-
Masker; R is the length of the repeats detected by Repeat-
Masker. The length is measured in base pair (bp). Repeats
detected by RepeatMasker belong to a specific class. SNte
is the sensitivity to all types of transposons. SNtr is the
sensitivity to tandem repeats including microsatellites
and satellites. SNlow is the sensitivity to low complexity
regions. SNother is the sensitivity to other kinds of repeats
not mentioned previously. SNall is the sensitivity to all
classes of repeats.
Coding regions, exons, may contain repeats known as

integrated repeats. Thus, repeat-detection tools, includ-
ing knowledge-based tools such as RepeatMasker, cannot
avoid coding regions completely. Yet, successful repeat-
detection tools should be able to exclude the majority of
coding regions. Equation 7 defines the specificity, SPexon,
which is the percentage of the coding nucleotides a tool is
able to avoid.

SPexon = 100 − 100 × O
E

(7)

O is the overlap between potential repeats detected by a
tool and known exons (in bp), and E is the length of the
known exons (in bp).
The percentage predicted (PP) is the percentage of

nucleotides of a chromosome predicted to be repeats. The
false positive length (FPL) is the total length of detections
found in a random genome. The random genome is gen-
erated by a group of 6th order Markov chains, each of
which is trained on one chromosome. The correspond-
ing random chromosome with the same length as the real
chromosome is generated by the corresponding Markov
chain. Because the random genome is similar in compo-
sition to the real genome, it may include valid repeats.
Therefore, repeats located by RepeatMasker in the ran-
dom genome are removed. The FPL is measured in bp.
The ability of a tool to predict potential repeats has been
used in previous studies [15, 16]. The potential repeats
measure (PR) is the number of nucleotides that were pre-
dicted by a tool as repeats but were not detected by
RepeatMasker. The PR content is measured in bp. Tomea-
sure the time and thememory, all programs were executed
on a supercomputer (a cluster). Each node of the cluster
has two eight-core Intel Xeon E5-2680 processors at 2.7
GHz and 128 GB of RAM.
At this point, the evaluation measures have been

defined. Next, I apply these measures to evaluate Red,
RepeatScout, ReCon, and WindowMasker.

Evaluations of the four tools
This study makes the following four main contribu-
tions: (i) the Red software; (ii) a rigorous evaluation of

Girgis BMC Bioinformatics (2015) 16:227 Page 9 of 19

the current state of the art on the genomes of the fol-
lowing species: Homo sapiens, Zea mays, Glycine Max,
Drosophila melanogaster,Dictyostelium discoideum, Plas-
modium falciparum, andMycobacterium tuberculosis; (iii)
repeats found by Red in the genomes of the seven species
(Additional files 5, 6, 7, 8, 9, 10, 11 and 12); and (iv) nearly
46,500 novel repetitive segments identified by Red in the
human genome (Additional file 13). Table 1 displays com-
parisons of the performances of Red, RepeatScout, ReCon,
and WindowMasker. Next, I elaborate on the advantages
of Red over the other tools.

Red is a totally independent system
ReCon depends on BLAST, Dialign, and RepeatMasker.
Similarly, RepeatScout depends on RepeatMasker. There-
fore, the users of ReCon and RepeatScout must install and
learn how to use additional tools. In contrast, Red does
not depend on other tools, simplifying its installation and
use. WindowMasker does not depend on other tools as
well; however, its users are required to write a script to
process a whole genome. This extra step is not the case
with Red.

Red has high sensitivities to both TE and TR
With regard to the sensitivity to TE, SNte, the perfor-
mance of Red was the best or the second best tool on
four genomes out of the five genomes that include TE
(the genomes of the Plasmodium falciparum and the
Mycobacterium tuberculosis do not include TE). ReCon
and RepeatScout achieved high SNte, whereas Window-
Masker had the lowest SNte. Regarding the sensitivity to
TR, SNtr , Red had the highest or the second highest sen-
sitivity on the seven genomes. WindowMasker achieved
high SNtr , whereas ReCon and RepeatScout had the low-
est SNtr . These results demonstrate Red’s capability of
locating the two major classes of repeats. Additionally,
these results show that the related tools perform well on
either TE or TR, but not on both types.

Red performs consistently well on the tested genomes
Red was the most or the second most sensitive tool to
all repeats including TE, TR, low complexity regions, and
other types of repeats (SNall) in six genomes. Although
the SNall of Red on the Glycine max genome was high,
it came third; however, it outperformed WindowMasker
with a large margin (83.0% vs. 68.9%). RepeatScout per-
formed well only on four genomes (Homo sapiens, Zea
mays, Glycine max, and Drosophila melanogaster). Sim-
ilarly, ReCon performed well only on three species (Zea
mays, Glycine max, and Drosophila melanogaster). Like-
wise,WindowMasker achieved the best or the second best
SNall only on three species (Dictyostelium discoideum,
Plasmodium falciparum, and Mycobacterium tuberculo-
sis). In sum, Red performed consistently well on the seven

genomes, while each of the other tools performed well on
some of the genomes but not on all of the seven genomes.

Red is much faster than RepeatScout and ReCon
The difference in speed between Red and RepeatScout
and ReCon is clear when it comes to large genomes. Red
is faster than RepeatScout and ReCon by many folds.
For example, RepeatScout processed the Homo sapiens
genome in approximately 11 days; in contrast, Red pro-
cessed the same genome in 87 minutes. Red analyzed the
Zea mays and the Glycine max genomes 127 times and 82
times faster than RepeatScout. ReCon took slightly more
than 10 days to process theHomo sapiens genome; in con-
trast, Red took 87 minutes. Red was 70 times and 184
times faster than ReCon on the genomes of the Zea mays
and the Glycine max. Red is faster than WindowMasker
by 3–14 times on the genomes of the Homo sapiens, the
Drosophila melanogaster, the Zea mays, and the Glycine
max. These results demonstrate that Red is the fastest tool
on medium and large genomes.

Red has amuch lower FPL thanWindowMasker
In this study, it has been observed that RepeatScout and
ReCon have low FPL and WindowMasker has high FPL.
The FPL of Red was consistently lower than that of Win-
dowMasker by many folds on the seven genomes. For
example, the FPL of Red was tens to hundreds of times
lower than the FPL of WindowMasker on the genomes
of the Homo sapiens, the Drosophila melanogaster, the
Zea mays, and the Glycine max. On the genomes of the
Dictyostelium discoideum, the Plasmodium falciparum,
and the Mycobacterium tuberculosis, which have unusual
nucleotide compositions, the FPLs of Red were 6–11
times lower than those of WindowMasker. These results
show that Red achieved high sensitivity, consistent perfor-
mance, and high speed while maintaining low tomoderate
false positive rates.

Red has the ability to discover repeats in genomes that have
unusual nucleotide compositions whilemaintaining
moderate FPLs
The genome of the Dictyostelium discoideum, the social
amoeba, is a unique genome. Repeats of this genome are
unusual. Its TE are clustered, and its TR are very abun-
dant and occur in stretches every 392 bp on average [46].
In addition, this genome has an unusual nucleotide com-
position; specifically its A-T content is 77.6%. Red and
ReCon achieved the highest SNte (94.7% and 95.0%). Red
and WindowMasker achieved the best SNtr (93.8% and
92.7%). Overall, ReCon and RepeatScout had the low-
est SNall of 31.9% and 30.4%. In contrast, Red achieved
the highest SNall (94.3%), followed by WindowMasker
(84.7%). Red’s FPL was 6 times less than that of Window-
Masker. I conducted an additional set of evaluations on

Girgis BMC Bioinformatics (2015) 16:227 Page 10 of 19

Table 1 Comparisons of the performances of RepeatScout, ReCon, WindowMasker, and Red. Repeats detected by RepeatMasker are
considered the ground truth in this study

SNte SNtr SNlow SNother SNall SPexon PP FPL PR Time Memory

Tool (%) (%) (%) (%) (%) (%) (%) (bp) (bp) (sec) (MB)

Homo sapiens – 3,099,750,718 bp

RS 62.5 79.6 13.6 29.2 63.5 90.5 33.7 239474 9355324a 948,350 4701

Red 61.0 86.2 68.9 33.9 62.8 89.3 35.5 2657024 16414125a 5184 6775

WM 55.2 74.9 81.9 25.7 56.7 87.2 36.1 423707488 3109241a 14866 615

RC 55.0 75.2 11.0 11.5 56.2 95.4 29.2 137633 3575640a 898,844 14666

Drosophila melanogaster – 143,726,002 bp

Red 90.0 59.4 43.3 83.0 84.1 94.0 23.2 312686 9401953 206 916

RS 86.3 24.3 1.9 71.8 74.4 98.0 18.4 0 4913141 79008 979

RC 86.7 18.2 1.8 80.0 74.0 99.0 17.6 0 4002422 13979 1513

WM 45.5 64.8 62.7 42.1 48.8 90.8 22.3 15150087 17118084 2869 325

Zeamays – 2,059,943,587 bp

RS 96.7 55.5 25.8 89.9 96.3 – 80.0 44447 66587503 347082 7344

Red 93.3 58.1 31.9 88.7 93.0 – 78.8 6257 94687287 2731 6741

RC 91.6 33.5 12.9 88.8 91.1 – 74.3 20864 32450624 192223 3419

WM 82.3 63.7 40.1 86.6 82.1 – 67.2 36189699 33998795 7589 639

Glycinemax – 973,344,380 bp

RC 96.3 42.5 22.6 99.9 92.7 95.1 46.4 2144642 123719267 304490 8609

RS 92.5 39.6 19.1 94.4 89.0 92.0 43.6 2690420 110068092 134936 1516

Red 86.9 42.5 28.9 96.1 83.9 94.5 41.6 1794609 107704170 1653 1770

WM 68.1 83.4 83.6 3.5 68.9 95.4 44.4 170352943 186081334 13319 356

Dictyostelium discoideum – 34,121,699 bp

Red 94.7 93.8 96.5 1.0 94.3 – 54.9 2378281 10582912 61 235

WM 35.1 92.7 95.1 4.8 84.7 – 53.0 14238455 10769264 20 2

RC 95.0 25.0 7.6 0.0 31.9 – 13.6 0 1883829 18317 957

RS 79.4 27.0 4.6 0.0 30.4 – 13.5 0 1969788 17476 925

Plasmodium falciparum – 23,264,338 bp

WM – 91.2 90.6 28.5 89.2 – 61.4 10902380 10246592 23 7

Red – 87.6 84.2 90.7 87.2 – 51.8 972553 8129833 63 416

RS – 43.9 9.9 40.1 39.4 – 15.3 36882 1797419 36194 918

RC – 20.3 7.7 34.5 19.1 – 9.3 4827 1314829 7011 1052

Mycobacterium tuberculosis – 4,403,837 bp

Red – 88.7 81.0 – 88.5 – 44.0 160705 1914667 7 1

WM – 63.6 33.3 – 63.0 – 17.5 672523 755248 2 2

RS – 20.8 27.3 – 21.0 – 5.6 0 240852 331 640

RC – 0.0 0.0 – 0.0 – 0.0 0 2089 69 852

SNte is the sensitivity to all types of transposable elements. SNtr is the sensitivity to tandem repeats including microsatellites and satellites. SNlow is the sensitivity to low
complexity regions. SNother is the sensitivity to repeats that are not transposons, tandem repeats, or low complexity regions. SNall is the sensitivity to all types of repeats.
SPexon is the specificity to coding regions. PP stands for the percentage of the nucleotides of a chromosome predicted to be repeats. The False Positive Length (FPL) is the
total length of repeats found in a synthetic random genome with the same length as the original genome; the synthetic genome is generated by a group of Markov chains of
the 6th order. Each chain is trained on one real chromosome. Repeats found in the synthetic genome by RepeatMasker were removed. Potential Repeats (PR) is the number of
nucleotides that were found in the repeats predicted by a tool but not in the repeats located by RepeatMasker. The symbol “bp” stands for base pair. “MB” represents the unit
megabyte. The ‘a’ next to the PR indicates that these repeats are confirmed novel repeats

another unique species, Plasmodium falciparum (the par-
asite causing malaria in humans). This unique genome has
the highest known A-T content of 80.6% [47]. In addition,

it does not include TE.WindowMasker achieved the high-
est SNtr (91.2%) followed by Red (87.6%); however, Red’s
FPL was 11 times less than that of WindowMasker. The

Girgis BMC Bioinformatics (2015) 16:227 Page 11 of 19

overall sensitivities ofWindowMasker and Red were com-
parable (89.2% vs. 87.2%). The overall sensitivities of
RepeatScout and ReCon were 39.4% and 19.1%. These
results confirm the ability of Red to discover repeats in
genomes of unusual nucleotide compositions while main-
taining moderate FPLs.

Red has the ability to discover repeats in bacterial genomes
Mycobacterium tuberculosis is the bacteria causing tuber-
culosis. Its genome is C-G rich (65.6%). Repeats of the
Mycobacterium tuberculosis genome include TR and low
complexity regions mainly. Red outperformed all of the
related tools with a large margin. Specifically, its overall
sensitivity was 88.5%, whereas the sensitivities of Win-
dowMasker, RepeatScout, and ReCon were 63.0%, 21.0%,
and 0.0%. Further, the FPL of Red was 4 times lower than
that of WindowMasker, the second best tool sensitivity
wise. These figures demonstrate the successful application
of Red to bacterial genomes.

Red has the ability to discover a large number of novel
repetitive segments
Potential novel repeats are those located by a tool but
not by RepeatMasker. One way to confirm these poten-
tial repeats is to count the number of their copies in
the genome. Specifically, potential novel repeats are con-
firmed using the following procedure:

• Nucleotides of coding regions are removed.
• Nucleotides of known repeats are removed.
• Each of the remaining segments is aligned versus the

whole genome by BLAST. Stringent BLAST
parameters are used. These parameters ensure that
the identity between a segment and a BLAST match
is high (80% for long, ≥ 50 bp, segments; 90% for
short, < 50 bp, segments). Additionally, the chosen
parameters guarantee that matches located by
BLAST are true matches beyond any statistical doubt
(See the Additional file 1).

• If the length of the alignment differs from the length
of the query segment by more than 20%, the match is
removed.

• A segment is confirmed to be repetitive if 10 valid
matches are found.

• If RepeatMasker masks 50% or more of a segment,
the segment is removed.

Based on this validation procedure, Red found 9,499
short (20–49 bp) confirmed novel repeats (CNR) and
36,906 long (≥ 50 bp) CNR totaling 46,405 segments in
the human genome. Examples of Red’s CNR are shown in
Table 2.
Using the same validation procedure, the lengths of

the CNR located by RepeatScout, ReCon, and Window-
Masker are 9,355,324 bp; 3,575,640 bp; and 3,109,241

bp. In contrast, the length of the CNR identified by
Red (16,414,125 bp) is almost double the length of those
located by RepeatScout. These results demonstrate that
Red discovered more novel repeats than RepeatScout,
ReCon, and WindowMasker.
The CNR located by Red in the human genome include

the majority of the nucleotides comprising the CNR iden-
tified by the other three tools. Specifically, Red’s CNR
include 92.0%, 86.9%, and 77.3% of those located by
ReCon, RepeatScout, and WindowMasker. In contrast,
the CNR identified by RepeatScout, ReCon, and Win-
dowMasker include 49.7%, 20.4%, and 14.9% only of the
nucleotides comprising the CNR located by Red. These
figures show that the majority of the CNR detected by the
three tools were located by Red as well; however, it is not
the other way around.
It has been known that centromeres are rich with

TR [48]. Assuming that the CNR are distributed uni-
formly throughout the chromosomes, 3.0% of them are
expected to be centromeric. However, 8.3% of the CNR
are centromeric. These figures indicate that the CNR are
enriched in the centromeres (2.8 folds more than the
expected value under a uniform distribution, p-value = 0,
χ2-square test). This finding supports the validity of the
novel repeats detected by Red because centromeres are
repeat-rich regions. Figure 4 shows the distribution of the
CNR in four human chromosomes.
In addition, the CNR appear to be enriched at the

peripheries, the telomeres, of the human chromosomes
displayed in Fig. 4. To measure this enrichment at the
genome level, I calculated the expected and the observed
lengths of the CNR in the telomeres of each chromosome.
For this purpose, a telomere is defined as the 1-mbp-
long segments at the peripheries of a chromosome. Under
a uniform distribution, the telomeric CNR are expected
to make up about 1.6% of the total length of the CNR.
In contrast, the CNR detected by Red in the telomeres
represent 10.3% of the total length (6.6 folds more than
the expected length, p-value = 0, χ2-square test). Telom-
eres, similar to centromeres, are repeat-rich regions [48].
These results show that the CNR discovered by Red are
enriched in the telomeres of the human chromosomes,
supporting the validity of the novel repeats discovered
by Red.

Red is capable of detecting repeats in unassembled genomes
To evaluate the performance of Red on an unassem-
bled genome, I obtained the short reads of a Drosophila
melanogaster genome from the Drosophila 1000 genomes
project. To establish a baseline, I scanned the unassem-
bled genome using Red trained on the assembled genome,
Dm6. This model is referred to as Reddm6. The overall
sensitivity, SNall, of Reddm6 to repeats located by Repeat-
Masker in the unassembled genome was 76.6%. Repeats

Girgis BMC Bioinformatics (2015) 16:227 Page 12 of 19

0 50 100 150

0
20

00
0

40
00

0
60

00
0

80
00

0

Sequence (mbp)

N
ov

el
 R

ep
ea

ts
 (

bp
)

(a) Chromosome 7

0 20 40 60 80 100 120

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Sequence (mbp)
N

ov
el

 R
ep

ea
ts

 (
bp

)
(b) Chromosome 10

0 20 40 60 80

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Sequence (mbp)

N
ov

el
 R

ep
ea

ts
 (

bp
)

(c) Chromosome 17

0 10 20 30 40 50 60

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Sequence (mbp)

N
ov

el
 R

ep
ea

ts
 (

bp
)

(d) Chromosome 20

Fig. 4 Distribution of the confirmed novel repeats (CNR) found by Red in four human chromosomes. The unit mbp stands for mega base pair. Each
chromosome is divided into 1-mbp segments, which are plotted on the x-axis. The total size of the confirmed novel repeats detected by Red in
each of the 1-mbp segments is displayed on the y-axis. Segments spanning the centromere of the chromosome are colored in red. (a) The
distribution of the CNR in the human chromosome 7. (b) The distribution of the CNR in the human chromosome 10. (c) The distribution of the CNR
in the human chromosome 17. (d) The distribution of the CNR in the human chromosome 20

predicted by Reddm6 covered 32.3% of the unassem-
bled genome. Next, I trained Red on the short reads
using adjusted parameters (see the Additional file 1). I
call this model Redsr . In comparison to the baseline,
using the unassembled genome for training improved the
overall sensitivity considerably (92.2% vs. 76.7%) while

maintaining similar percentages of predicted repeats
(35.0% vs. 32.3%).
Because of the nature of the next generation sequencing

technology, a non-repetitive short sequencemay appear in
many short reads. A successful tool for detecting repeats
in unassembled genomes should be able to avoid such

Girgis BMC Bioinformatics (2015) 16:227 Page 13 of 19

Table 2 Examples of the confirmed novel repeats found by Red in the genome of the Homo sapiens (hg38)

Location Copy number Length Sequence

chr1:242110361–242110392 56058 31 ACATTCAAGTGATTCTCCTGCCTCAGCCTCA

chr2:119996761–119996800 51817 39 TCAATTGGCCGGGTGCGGTGGCTCACACCTGTAATCCCA

chr9:61982576–61982619 2292 43 TTGGGATTTCAGGCGTGAGCCACTGTGCCTGGCCAGCATTGCT

chrX:129964870–129964913 1344 43 TGTGTGTGGGTCTGTGTGTGAGAGAGAGAAAGAGAGAAACATG

chr16:55969556–55969604 1327 48 GTACATATATATACGTGTGTGTGTGTGTGTGTGTATATATATAAATTA

chr19:20397318–20397528 324 210 GCTTTGTTACAGTATTGGTTTCTGTCCACTATGAATTCTCTTATGTTTAT

TGAAGTCTGAGGACCAGTTAAAAGCTTTGCCACATTCTTCACATTTGCAA

GGTTTCTCTCCAGTATGAATTGTCTTATATTCACTTAGAGTTGAGGATGC

AGTAAAGGCTTTGCCACATTCTTCACATTTGTAAGGTTTCTCTCCAGTAT

GAGTTCTCCT

chr10:38932814–38933047 73 233 ACTAGGGTAGGTAATTTCATCTCAGTCTTATGCAGGTACCTTTTCTCAGG

ATCTCAGGAATGCAGACTTCTCACACTTCTGTTCTTTTCCTGGCTGTGTT

GGTGAGCTCAGTGATATTCCTCCATCACCTTCAAGAGCAGTTTTGTTTTG

TTTTTCCTGTTTTCATACTCCCAGCATCAGGAGTGTTCTAGGTGTGTCAG

TTTTTGTTACCTTCCCCTACATATTAAGTGGAA

chr18:79830653–79831758 15a 1105 TTCCCTGCGGACAGAGCCTTTGTCAGGAGGGTTCCCTGCAGACAGAGCCT

TCGTCAGGAGGGTTCCCTGCAGACAGAGCCTTCGTCAGGAGGGTTCCCTG

CGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAG

GAGGGTTCCCTGCATACAGAGCCTTCGTCAGGAGCGTTCTCTGCGGACAG

AGCCTTCGTCAGGAGGGTTCCCTGCATACAGAGCCTTCGTCAGGAGGGTT

CCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTC

GTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCG

GACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGA

GGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAG

CCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCC

CTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGT

CAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGA

CAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGG

GTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCC

TTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCT

GCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCA

GGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACA

GAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGGAGCGT

GCCCTGCGTACAGAGCCTTCGTCAGGAGCGTGCCCTGCGTACAGAGCCTT

CGTCAGGAGCGTGCCCTGCGTACAGAGCCTTCGTCAGGAGCGTGCCCTGC

GGACAGAGCCTTCGTCAGGAGGGTTCCCTGCGGACAGAGCCTTCGTCAGG

AGGGTTCCCTGCGGACAGAGCCTTCATCAGGAGGGTTCCCTGCGGACAGA

GCCTT

The sequence chr18:79830653–79831758 has 15 overlapping copies, marked by ‘a’

non-repetitive sequences. To ensure that Red is capa-
ble of avoiding these sequences, I scanned the assembled
genome using Redsr . Recall that Redsr was trained on the
unassembled genome. Then I compared its performance

to that of Reddm6 on the assembled genome. The per-
centages of repeats predicted by both models were com-
parable (21.4% vs. 23.2%). Further, the lengths of the
potential repeats were similar (9,448,873 vs. 9,401,953).

Girgis BMC Bioinformatics (2015) 16:227 Page 14 of 19

In addition, the SPexons of the two models were com-
parable (94.2% vs. 94.0%). If repeats detected by Redsr
included non-repetitive sequences, the percentage of pre-
dicted repeats and the total length of potential repeats
would be much higher and the the SPexons would be much
lower than those obtained by Reddm6. However, this was
not the case because both models performed compa-
rably when evaluated according to these three criteria.
These results show that Red is capable of avoiding non-
repetitive sequences when it is trained on unassembled
genomes.
Next, I compared the overall sensitivities and the false

positive lengths of the two models on the assembled
genome to study the effects of the quality of the assem-
bly on these two measures. As expected, the SNall of Redsr
was lower and its FPL was higher than those obtained
by Reddm6 (SNall: 68.8% vs. 84.1%, FPL: 3,599,391 vs.
312,686). However, Redsr outperformed WindowMasker,
which is the fourth performing tool that was trained and
evaluated on the assembled genome (SNall: 68.8% vs.
48.8%, FPL: 3,599,391 vs. 15,150,087).
In sum, Redsr has excellent performance on the

unassembled genome. Evaluating Redsr on the assem-
bled genome showed its ability to avoid non-repetitive
sequences that appear tens of times in the short reads. As
expected, Redsr under performed Reddm6 on the assem-
bled genome. However, Redsr outperformed Window-
Masker that was trained on the assembled genome. These
results demonstrate the successful application of Red to
unassembled genomes.

Discussion
In this section, I start with studying two confirmed novel
repeats. After that, I discuss the specificity to coding
regions. Next, the advantages of using Red as a repeat-
masking tool are listed. Afterward, I discuss the related
problem of classifying repeats. Then I highlight directions
for improving Red. Finally, I conclude.

Case study 1 - a centromeric confirmed novel repeat
I investigated one of the confirmed novel repeats located
in the centromere of the human chromosome 10. The
sequence of the novel repeat, chr10:38932814–38933047,
is shown in Table 2. This sequence is 233 bp long. BLAST
located 73 copies of this sequence. 61 copies are mapped
to several human chromosomes, whereas the remaining
12 copies are present in random fragments of the genome.
I studied the 61 copies to know whether or not they occur
in the centromeres of the other chromosomes. Interest-
ingly, I found 41 (67.0%) out of the 61 copies to be present
in the centromeres of 11 human chromosomes. Table 3
shows the locations of the 61 copies. These results suggest
that these sequences are associated with the centromeres
of the human chromosomes. In addition, 12 copies are

present in fragments without known locations in the
genome, suggesting that these fragments are likely to be
centromeric. Such information may improve the assembly
of the human genome.

Case study 2 - a telomeric confirmed novel repeat
Table 2 displays a 1105-bp long novel minisatellite
(chr18:79830653–79831758). This sequence is located at
the telomere of the human chromosome 18. The min-
isatellite consists of 35 almost-identical copies of the fol-
lowing motif: TTCCCTGCGGACAGAGCCTTTGTCA
GGAGGG.

The specificity to coding regions
It is important to evaluate the specificity, SPexon, of a
repeat-detection tool in particular for studies focusing on
coding regions. The SPexon was calculated on the genomes
of the Homo sapiens and the Drosophila melanogaster
because the coding regions of these genomes are well
annotated. Repeats located by RepeatMasker included
10.3% of the nucleotides comprising known exons in
the human genome, i.e. the SPexon of RepeatMasker was
89.7%. The SPexon of WindowMasker was lower than that
of RepeatMasker (87.2% vs. 89.7%), whereas the SPexon of
Red was comparable to that of RepeatMasker (89.3% vs.
89.7%). RepeatScout had a slightly higher SPexon than that
of RepeatMasker (90.5% vs. 89.7%). The SPexon of ReCon
was much higher than that of RepeatMasker (95.4% vs.
89.7%). On the genome of the Drosophila melanogaster,
the SPexon of ReCon and RepeatScout were higher than
that of RepeatMasker (99.0% and 98.0% vs. 96.5%). Red’s
SPexon was lower than that of RepeatMasker (94.0% vs.
96.5%), whereas the SPexon of WindowMasker was much
lower than the SPexon of RepeatMasker (90.8% vs. 96.5%).
These numbers can be utilized differently according to the
domain of the application. When repeats are the focus of
a study, the SPexon is of minor importance as long as it is
within a reasonable range. When coding regions are the
focus of a study, the higher the SPexon, the better. In prac-
tice, a performance similar to that of RepeatMasker is the
best performance that can be hoped for because Repeat-
Masker uses a library of manually annotated repeats. Red’s
SPexon on the human genome was comparable to that
of RepeatMasker. The SPexon of Red on the genome of
the Drosophila melanogaster was 2.5% lower than that of
RepeatMasker. These results show that Red has the ability
to avoid a large percentage of the nucleotides comprising
coding regions, making Red a well-suited tool for studies
focusing on repeats or on coding regions.

The specificity to coding regions of duplicated human
genes
Red, RepeatScout, ReCon and WindowMasker were eval-
uated on 3543 duplicated human genes obtained from

Girgis BMC Bioinformatics (2015) 16:227 Page 15 of 19

Table 3 Copies of the 233-bp-long centromeric novel repeat: chr10:38932814–38933047. There are 73 copies of this novel repeat found
throughout the human genome. The locations of 61 of these copies are known, whereas 12 of them are mapped to random segments
of the genome. Out of the 61, 41 (67.0%) copies are located in or within 1 mbp from the centromeres of several human chromosomes

BLAST Hist Identity (%) Centromeric? BLAST Hist Identity (%) Centromeric?

chr1:125097011–125096780 94.9 yes chr9:65753438–65753671 94.9 no

chr1:125143875–125144108 92.7 yes chr10:42109674–42109443 95.3 yesa

chr1:143279916–143279685 92.7 no chr10:42120842–42120611 94.9 yesa

chr1:143535471–143535704 93.6 no chr15:19934467–19934700 94.9 yes

chr2:90335400–90335172 94.4 yesa chr16:32106608–32106841 94.4 no

chr2:91468090–91468320 94.8 yes chr16:32821244–32821013 94.4 no

chr2:91800041–91800275 94.4 yes chr16:33049905–33050138 94.4 no

chr2:92052731–92052499 94.4 yes chr16:34041061–34041294 95.3 yesa

chr2:92076458–92076691 95.3 yes chr16:34460177–34459946 91.9 yesa

chr2:94282644–94282411 94.5 yes chr16:34497844–34497619 94.3 yesa

chr2:132008526–132008295 94.9 no chr16:34510019–34509788 94.0 yesa

chr2:132047806–132047581 92.7 no chr16:34653787–34654020 93.1 yesa

chr7:53130967–53130730 91.2 no chr16:34692352–34692578 93.4 yesa

chr7:57878379–57878148 94.4 yesa chr16:34792862–34793095 93.1 yesa

chr7:58101480–58101713 94.4 yes chr16:34838562–34838795 94.4 yesa

chr7:60906762–60906995 94.9 yes chr16:34850733–34850960 94.3 yesa

chr7:60982800–60983033 94.9 yes chr16:34888413–34888646 91.9 yesa

chr7:61076250–61076019 94.9 yes chr16:34943100–34943333 94.9 yesa

chr7:61583132–61582901 94.9 yes chr16:36163632–36163865 93.1 yes

chr7:62318164–62317933 94.4 yes chr16:36222879–36223112 91.9 yes

chr7:62398128–62398361 94.4 yes chr16:46425718–46425487 94.4 no

chr7:62434242–62434475 94.9 yes chr16:46436413–46436188 92.3 no

chr7:65114062–65114290 92.3 no chr17:26756876–26757109 95.7 yes

chr7:65519041–65518815 92.3 no chr17:26953504–26953737 97.4 yes

chr7:65581931–65581705 92.3 no chr18:15163745–15163514 95.7 yes

chr9:40660714–40660483 94.9 no chr18:15207260–15207029 94.4 yes

chr9:43290928–43290698 95.3 yes chr21:8585703 -8585935 94.0 no

chr9:43313883–43314115 95.3 yes chr21:10618400–10618633 94.4 yes

chr9:63460122–63459891 94.9 no chr22:10562609–10562841 94.0 no

chr9:64784259–64784028 94.9 no chr22:16255856–16256089 95.7 yes

chr9:65268071–65267840 94.9 no

Copies within 1 mbp from the centromeres are marked by ‘a’

the Duplicated Genes Database [49]. These genes were
divided into three groups according to their copy num-
ber. The groups are the 2–4 group, the 5–9 group, and
the 10-or-more group. The SPexon of each tool was calcu-
lated on each group. Additionally, the SPexon of Repeat-
Masker was evaluated on each group to establish a base-
line. Table 4 provides the results. The SPexon of ReCon
was consistently higher than that of RepeatMasker on
each of the three groups; however, ReCon had the low-
est overall sensitivity. The figures of WindowMasker on
the 2–4 group and the 10-or-more group were lower

than those of RepeatMasker. WindowMasker and Repeat-
Masker had comparable SPexon on the 4–9 group. Red and
RepeatScout, the twomost sensitive tools, had similar per-
formances to that of RepeatMasker (89.4% and 89.9% vs.
89.4%) on the 2–4 group. On the 5–9 group, Red achieved
a comparable SPexon to that of RepeatMasker (87.8% vs.
88.6%), whereas RepeatScout had a much lower SPexon
than that of RepeatMasker (75.2% vs. 88.6%). On the
10-or-more group, Red’s SPexon was lower than that of
RepeatMasker (68.5% vs. 84.3%). However, the SPexon
of RepeatScout was much lower than those of Red and

Girgis BMC Bioinformatics (2015) 16:227 Page 16 of 19

Table 4 The specificity to nucleotides comprising duplicated
human genes. Duplicated genes were divided into the following
three groups according to their copy numbers: the 2–4 group,
the 5–9 group, and the 10-or-more group. SPexon is the
percentage of the nucleotides of the genes in a group that are
excluded by a tool

Gene Copy Number 2–4 5–9 ≥10

Length (bp) 2,582,680 447,130 708,127

SPexon (%)

ReCon 95.4 95.1 90.4

RepeatScout 89.9 75.2a 53.1a

Red 89.4 87.8 68.5

WindowMasker 87.6a 88.4 80.6

RepeatMasker 89.4 88.6 84.3

The lowest SPexon on a gene group is marked by ‘a’

RepeatMasker (53.1% vs. 68.5% and 84.3%). These results
demonstrate that Red is capable of avoiding 88%–89%
of the coding nucleotides making up genes that have 2–
9 copies. Additionally, Red outperformed RepeatScout,
which achieved a comparable best performance on the
human genome, by a large margin when the number of
gene copies is 5 or more.

The specificity to coding regions in polyploid genomes
The Glycine max, soybean, genome is tetraploid. It has
been estimated that 75% of its genes are “present in multi-
ple copies” [50]. Therefore, it is important to evaluate the
SPexon of the four tools on this genome. The best avail-
able performance is due to RepeatMasker using RepBase.
Repeats located by RepeatMasker included 4.0% of the
nucleotides comprising the coding regions of the Glycine
max genome, i.e. the SPexon of RepeatMasker was 96.0%.
The SPexon ofWindowMasker, ReCon, and Red were com-
parable to that of RepeatMasker (95.4%, 95.1%, 94.5%
vs. 96.0%), whereas the SPexon of RepeatScout was lower
than that of RepeatMasker (92.0% vs. 96.0%). Red’s high
specificity is due to the background model. The back-
ground model is a 6th order Markov chain trained on
the Glycine max genome. A 6th order Markov chain is
able to capture the polyploidy of this genome, estimat-
ing the expected count of a word accurately. Recall that
the observed count of a word is adjusted by extracting its
expected count. Therefore, the adjusted count of a word
occurring in a non-repetitive region or a coding region
is 0 on average. For example, consider a gene that has 4
copies in a tetraploid genome, i.e. 4 ohnologous genes. For
simplicity, assume that the gene consists of unique words,
and the four nucleotides – A, C, G, and T – are present
in the genome in equal percentages. The observed count
of a word present in this gene is 4. Similarly, the aver-
age expected count calculated by the background model

of this word is 4. Thus, the adjusted count is 0 = 4 (the
observed count) - 4 (the expected count). In the case of
polypoid genomes, the observed count is adjusted by sub-
tracting the polyploidy captured by the trained Markov
chain. To further avoid non-repetitive and coding regions,
a word is considered repetitive if its adjusted count is at
least three. In sum, the background model utilized in Red
is capable of capturing the polyploidy of the genome of
interest, enabling Red to exclude the majority of coding
nucleotides.

Red as a repeat-masking tool
At the current stage, Red can be utilized as a repeat-
masking tool. Given its consistent performance on seven
genomes including those with unusual nucleotide com-
positions, Red is expected to mask repeats in newly
sequenced genomes accurately. Precise exclusion of
repeats improves the annotation of genomes, leading
to better delineation of coding regions and regula-
tory modules. In addition, it has been reported that
masking TR improves the performance of alignment
tools [11]. Because Red is capable of locating TR de-
novo, using Red for masking genomes should improve
the quality of the alignments. Further, Red discov-
ered novel repeats totaling 16,574,339 bp in the Homo
sapiens genome. Excluding these confirmed novel repeats
from search databases should reduce the search time
dramatically.

Classifying repeats
The problem of classifying repeats into families is the
most challenging problem in the process of repeats anno-
tation. The user wishes to collect copies of the same
element in one group. This task is difficult because
repeats present in a genome can be approximate copies
of each other. Further, repeats can be present as solo
repeats, i.e. they have delineating features such as long
terminal repeats, without a sequence in between. More-
over, some of the copies may be partial copies. Finally,
repeats can be nested within each other at several lev-
els. Therefore, a simplistic approach is unlikely to pro-
duce good results. Given the difficulty of the problem
and the sophistication required for building a compu-
tational tool for this purpose, I did not attempt to
merge it with the problem at hand concerning repeats
detection.

Future improvements
Although Red is rapid and its memory requirements are
available on personal computers, further improvements
can be introduced. Specifically, I plan to explore means
to further reduce the processing time and the mem-
ory requirement in future releases. At another level, I
will focus on increasing the sensitivity of Red to the

Girgis BMC Bioinformatics (2015) 16:227 Page 17 of 19

known human repeats. Although Red’s overall sensi-
tivity ranges from 83.9% to 94.3% on six genomes,
its sensitivity to the human repeats is 62.8%. Because
Red is one of the most sensitive tools on the human
genome, I will investigate de-novo methods to improve
the sensitivity on complex genomes such as the human
genome.

Conclusion
The genomes of thousands of species will be sequenced
soon. Repeats are a major component of almost
all genomes. Consequently, repeat-detection tools are
needed to help annotate the newly sequenced genomes.
Because repeats are species specific, repeats of newly
sequenced genomes are unknown. Thus, de-novo repeat-
detection tools are essential in the annotation process.
However, many of the currently available de-novo tools
cannot process an entire genome. Furthermore, tools that
function on the genomic scale suffer from five limita-
tions. Available tools (i) can be very slow; (ii) may have
high false positive rates; (iii) are too difficult for aver-
age users, (iv) tend to be sensitive to either TR or TE,
but not to both types of repeats; or (v) perform well on
some genomes but not on others. The goal of my research
is to invent a tool that can overcome these limitations.
To this end, I designed and developed Red using Sig-
nal Processing and Machine Learning as well as a novel
data structure I designed to handle long DNA sequences
efficiently. To the best of my knowledge, Red is the first
repeat-detection tool that has the ability to label its own
training data and to train itself automatically on each
genome. My evaluation of Red and the three related tools
demonstrated that Red is a rapid, accurate, consistent
and easy to use tool for detecting repeats in assembled
and unassembled genomes. Additionally, Red is capable
of discovering novel repeats; for example, Red discovered
more than 46,000 novel repetitive segments in the human
genome. These results, in addition to the novel method-
ology implemented in Red, represent a true advance-
ment in the processes of repeat detection and genome
annotation.

Availability and requirements
The C++ source code and the binaries for Unix 64-bit
and Mac 64-bit are available as Additional files 2,3, and 4.
The most updated version is available at the project home
page.

Project name: Red
Project home page: http://toolsmith.ens.utulsa.edu
Operating systems: Unix, Linux, and Mac OS X
Programming language: C++
License: The code provided by the author, National
Center for Biotechnology Information (NCBI), National

Library ofMedicine, is a work of the U.S. Government and
is not subject to copyright protection in the United States.

Additional files

Additional file 1: Supplementary methods. This file includes more
information about the methodology of Red and the data used in this study.
Specifically, it comprises the following: (i) the run time analysis of Red
showing that the time required by Red is linear with respect to the
genome size; (ii) a discussion of the default values of Red’s parameters; (iii)
the details of executing the related tools; and (iv) the sources of the data
used in this study.

Additional file 2: Supplementary data set 1— Source code. The
command “tar -xzf file” results in a directory that contains the C++ source
code of Red and instructions on how to compile the source code.

Additional file 3: Supplementary data set 2— Binary for Unix 64-bit.
The command “tar -xzf file” results in a directory that contains Red’s binary
executable file compiled on a Unix 64-bit operating system and themanual.

Additional file 4: Supplementary data set 3— Binary for Mac 64-bit.
The command “tar -xzf file” results in a directory that contains Red’s binary
executable file compiled on a Mac 64-bit operating system and the manual.

Additional file 5: Supplementary data set 4— Red’s repeats of the
Homo sapiens genome. The command “tar -xzf file” results in a directory
that contains the locations of repeats found by Red in the genome of the
Homo sapiens.

Additional file 6: Supplementary data set 5— Red’s repeats of the
Drosophilamelanogaster genome. The command “tar -xzf file” results in
a directory that contains the locations of repeats found by Red in the
genome of the Drosophila melanogaster.

Additional file 7: Supplementary data set 6— Red’s repeats of the
Drosophilamelanogaster unassembled genome. The command “tar
-xzf file” results in a directory that contains the locations of repeats found
by Red in an unassembled genome of the Drosophila melanogaster. In
addition, the directory includes the short reads comprising the genome.
This file can be download using the following link: https://drive.google.
com/file/d/0B8O-qv7WO7L2LUViT1ZKWTNTUlE/edit?usp=drive_web

Additional file 8: Supplementary data set 7— Red’s repeats of the
Zeamays genome. The command “tar -xzf file” results in a directory that
contains the locations of repeats found by Red in the genome of the Zea
mays.

Additional file 9: Supplementary data set 8— Red’s repeats of the
Glycinemax genome. The command “tar -xzf file” results in a directory
that contains the locations of repeats found by Red in the genome of the
Glycinemax.

Additional file 10: Supplementary data set 9— Red’s repeats of the
Plasmodium falciparum genome. The command “tar -xzf file” results in a
directory that contains the locations of repeats found by Red in the
genome of the Plasmodium falciparum.

Additional file 11: Supplementary data set 10— Red’s repeats of the
Dictyostelium discoideum genome. The command “tar -xzf file” results in
a directory that contains the locations of repeats found by Red in the
genome of the Dictyostelium discoideum.

Additional file 12: Supplementary data set 11— Red’s repeats of the
Mycobacterium tuberculosis genome. The command “tar -xzf file” results
in a directory that contains the locations of repeats found by Red in the
genome of theMycobacterium tuberculosis.

Additional file 13: Supplementary data set 12— Red’s novel repeats
of the Homo sapiens genome. The command “tar -xzf file” results in a
directory that contains novel repeats found by Red in the Homo sapiens
genome. Files that have the extension “.short” contain the short (20–49 bp)
CNR. Files that have the extension “.long” contain the long (≥ 50 bp) CNR.
Each file lists the location, the number of copies in the genome, the length,
and the sequence of each novel segment. Files ending with the extension
“.blast” include the corresponding matches found by BLAST for the long

http://toolsmith.ens.utulsa.edu
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s1.pdf
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s2.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s3.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s4.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s5.tar
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s6.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s7.txt
https://drive.google.com/file/d/0B8O-qv7WO7L2LUViT1ZKWTNTUlE/edit?usp=drive_{w}eb
https://drive.google.com/file/d/0B8O-qv7WO7L2LUViT1ZKWTNTUlE/edit?usp=drive_{w}eb
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s8.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s9.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s10.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s11.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s12.gz
http://www.biomedcentral.com/content/supplementary/10.1186/s12859-015-0654-5-s13.txt

Girgis BMC Bioinformatics (2015) 16:227 Page 18 of 19

and the short CNR. This file can be download using the following link:
https://drive.google.com/file/d/0B8O-qv7WO7L2ZGpPRUhlRUNodlE/edit?
usp=drive_web.

Abbreviations
LTR: Long terminal repeat; MS: Microsatellites; TE: Transposable elements; TR:
Tandem repeats; HMM: Hidden Markov model; SN: Sensitivity; SP: Specificity;
PP: Percentage predicted; FPL: False positive length; PR: Potential repeats; CNR:
Confirmed novel repeats.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
HZG designed and implemented the software, Red; conducted experiments
to evaluate Red; and wrote the manuscript.

Acknowledgements
This research was mainly supported by the Intramural Research Program of
the NIH, the National Library of Medicine. Many thanks to Virginia LoCastro for
her invaluable comments on my writing of this manuscript. The author wishes
to thank David Landsman, Alex Astashyn, and David Managadze for useful
discussions. Some of the computing for this project was performed at the
Tandy Supercomputing Center, using dedicated resources provided by the
University of Tulsa. Thanks to George Louthan and Brady Deetz at the Tandy
Supercomputing Center for their help. I would like to thank members of my
laboratory at the University of Tulsa, specially Kevin Wells for proofreading the
revised manuscript and Kristen Gabriel for her help with data processing. The
author is in debt to the anonymous reviewers whose comments have
improved the software and the manuscript.

Received: 20 January 2015 Accepted: 30 June 2015

References
1. International Human Genome Sequencing Consortium. Initial sequencing

and analysis of the human genome. Nature. 2001;409(6822):860–921.
2. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The

b73 maize genome: Complexity, diversity, and dynamics. Science.
2009;326(5956):1112–5. doi:10.1126/science.1178534.

3. Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE. Natural genetic
variation caused by transposable elements in humans. Genetics.
2004;168(2):933–51.

4. Kazazian. Mobile DNA: Finding Treasure in Junk, 1st edn. Upper Saddle
River, NJ: FT Press; 2011.

5. Hancks D, Kazazian H. Active human retrotransposons: variation and
disease. Curr Opin Genet Dev. 2012;22(3):191–203.

6. Kolpakov R, Bana G, Kucherov G. mreps: efficient and flexible detection
of tandem repeats in dna. Nucleic Acids Res. 2003;31(13):3672–678.

7. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat
Rev Genet. 2004;5(6):435–45.

8. Dorer DR, Henikoff S. Expansions of transgene repeats cause
heterochromatin formation and gene silencing in drosophila. Cell.
1994;77(7):993–1002.

9. McClintock B. The significance of responses of the genome to challenge.
Science. 1984;226(4676):792–801.

10. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene
duplication and exon shuffling by helitron-like transposons generate
intraspecies diversity in maize. Nat Genet. 2005;37(9):997–1002.

11. Frith MC. A new repeat-masking method enables specific detection of
homologous sequences. Nucleic Acids Res. 2011;39(4):23.

12. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl
Acad Sci USA. 1950;36(6):344–55.

13. Bergman CM, Quesneville H. Discovering and detecting transposable
elements in genome sequences. Brief Bioinform. 2007;8(6):382–92.

14. Saha S, Bridges S, Magbanua ZV, Peterson DG. Computational
approaches and tools used in identification of dispersed repetitive DNA
sequences. Trop Plant Biol. 2008;1(1):85–96.

15. Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison
of ab initio repeat finding programs. Nucleic Acids Res. 2008;
36(7):2284–94.

16. Lerat E. Identifying repeats and transposable elements in sequenced
genomes: how to find your way through the dense forest of programs.
Heredity. 2009;104(6):520–33.

17. Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of
transposable elements in eukaryotic genomes. Chromosome Res.
2011;19(6):787–808.

18. Jurka J, Klonowski P, Dagman V, Pelton P. Censor–a program for
identification and elimination of repetitive elements from DNA
sequences. Comput Chem. 1996;20(1):119–21.

19. Jurka J. Repbase Update: a database and an electronic journal of
repetitive elements. Trends Genet. 2000;16(9):418–20.

20. Andrieu O, Fiston AS, Anxolabehere D, Quesneville H. Detection of
transposable elements by their compositional bias. BMC Bioinformatics.
2004;5(1):94.

21. Tu Z. Eight novel families of miniature inverted repeat transposable
elements in the African malaria mosquito, Anopheles gambiae. Proc Natl
Acad Sci USA. 2001;98(4):1699–704.

22. Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD.
Molecular archeology of l1 insertions in the human genome. Genome
Biol. 2002;3:0052–005218.

23. McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification
program for LTR retrotransposons. Bioinformatics. 2003;19(3):362–7.

24. Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible
software for de novo detection of LTR retrotransposons. BMC
Bioinformatics. 2008;9(18).

25. Caspi A, Pachter L. Identification of transposable elements using multiple
alignments of related genomes. Genome Res. 2006;16(2):260–70.

26. Bao Z, Eddy SR. Automated de novo identification of repeat sequence
families in sequenced genomes. Genome Res. 2002;12(8):1269–76.

27. Edgar RC, Myers EW. PILER: identification and classification of genomic
repeats. Bioinformatics. 2005;21(suppl 1):152–8.

28. Li R, Ye J, Li S, Wang J, Han Y, Ye C, et al. ReAS: Recovery of ancestral
sequences for transposable elements from the unassembled reads of a
whole genome shotgun. PLoS Comput Biol. 2005;1(4):43.

29. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families
in large genomes. Bioinformatics. 2005;21(suppl 1):351–8.

30. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker:
window-based masker for sequenced genomes. Bioinformatics.
2006;22(2):134–41.

31. Achaz G, Boyer F, Rocha EPC, Viari A, Coissac E. Repseek, a tool to
retrieve approximate repeats from large DNA sequences. Bioinformatics.
2007;23(1):119–21.

32. Kurtz S, Narechania A, Stein J, Ware D. A new method to compute K-mer
frequencies and its application to annotate large repetitive plant
genomes. BMC Genomics. 2008;9(1):517.

33. Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D,
Ashburner M, et al. Combined evidence annotation of transposable
elements in genome sequences. PLoS Comput Biol. 2005;1(2):22.

34. Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable
element diversification in de novo annotation approaches. PLoS ONE.
2011;6(1):16526.

35. Benson G. Tandem repeats finder: a program to analyze dna sequences.
Nucleic Acids Res. 1999;27(2):573–80.

36. Leclercq S, Rivals E, Jarne P. Detecting microsatellites within genomes:
significant variation among algorithms. BMC Bioinformatics. 125;8:.

37. Sharma PC, Grover A, Kahl G. Mining microsatellites in eukaryotic
genomes. Trends Biotechnol. 2007;25(11):490–8.

38. Merkel A, Gemmell N. Detecting short tandem repeats from genome
data: opening the software black box. Brief Bioinform. 2008;
9(5):355–66.

39. Lim KG, Kwoh CK, Hsu LY, Wirawan A. Review of tandem repeat search
tools: a systematic approach to evaluating algorithmic performance. Brief
Bioinform. 2013;14(1):67–81.

40. Girgis HZ, Sheetlin SL. MsDetector: toward a standard computational
tool for DNA microsatellites detection. Nucleic Acids Res. 2013;
41(1):22.

41. Delgrange O, Rivals E. STAR: an algorithm to search for tandem
approximate repeats. Bioinformatics. 2004;20(16):2812–20.

https://drive.google.com/file/d/0B8O-qv7WO7L2ZGpPRUhlRUNodlE/edit?usp=drive_web
https://drive.google.com/file/d/0B8O-qv7WO7L2ZGpPRUhlRUNodlE/edit?usp=drive_web
http://dx.doi.org/10.1126/science.1178534

Girgis BMC Bioinformatics (2015) 16:227 Page 19 of 19

42. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric
DUST implementation to mask low-complexity DNA sequences. J
Comput Biol. 2006;13(5):1028–40.

43. Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to Algorithms,
2nd edn: McGraw-Hill Higher Education; 2001. ISBN:0070131511.

44. Gonzalez RC, Woods RE. Digital Image Processing, 2nd edn. Upper
Saddle River, N J: Prentice Hall; 2002.

45. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids: Cambridge University
Press; 1998.

46. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R,
Berriman M, et al. The genome of the social amoeba dictyostelium
discoideum. Nature. 2005;435(7038):43–57.

47. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al.
Genome sequence of the human malaria parasite plasmodium
falciparum. Nature. 2002;419(6906):498–511.

48. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular
Biology of the Cell, Fourth Edition, 4th edn: Garland Science; 2002.
ISBN:9780815341055.

49. Ouedraogo M, Bettembourg C, Bretaudeau A, Sallou O, Diot C,
Demeure O, et al. The Duplicated Genes Database: Identification and
Functional Annotation of Co-Localised Duplicated Genes across
Genomes. PLoS ONE. 2012;7(11):50653.

50. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, et al. The fate
of duplicated genes in a polyploid plant genome. Plant J. 2013;73(1):
143–53.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The scoring module
	Efficient hash table
	Completing the table
	Scoring a sequence

	The labeling module
	Step 1 - Smooth the score sequence using a Gaussian mask
	Step 2 - Determine local maxima analytically
	Step 3 - Delineate candidates and potential non-repetitive regions

	The training module
	Scores as time-series data
	Hidden Markov models
	Model design
	Learning probabilities

	The scanning module
	Supplementary information
	Availability

	Results
	Evaluation measures
	Evaluations of the four tools
	Red is a totally independent system
	Red has high sensitivities to both TE and TR
	Red performs consistently well on the tested genomes
	Red is much faster than RepeatScout and ReCon
	Red has a much lower FPL than WindowMasker
	Red has the ability to discover repeats in genomes that have unusual nucleotide compositions while maintaining moderate FPLs
	Red has the ability to discover repeats in bacterial genomes
	Red has the ability to discover a large number of novel repetitive segments
	Red is capable of detecting repeats in unassembled genomes

	Discussion
	Case study 1 - a centromeric confirmed novel repeat
	Case study 2 - a telomeric confirmed novel repeat
	The specificity to coding regions
	The specificity to coding regions of duplicated human genes
	The specificity to coding regions in polyploid genomes
	Red as a repeat-masking tool
	Classifying repeats
	Future improvements

	Conclusion
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11
	Additional file 12
	Additional file 13

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

