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Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of im-
munologically active substances with blood storage, and prestorage leukoreduction reduces many of these medi-
ators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear 
cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukore-
duced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction 
on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 
day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an 
additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. 
IL-1β, TNF-α, and IL-6 were signifi cantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant 
signifi cantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR signifi cantly 
attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinfl ammatory LPS-induced 
cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated 
with leukoreduction. These fi ndings may partially explain the immune activation seen clinically after blood 
transfusion.

Introduction

Allogeneic blood transfusion (ABT) is recognized 
to have immunomodulatory effects on its recipient. 

Clinicians initially had observed the immunologic effects of 
blood transfusion with respect to improved graft survival 
in transplant recipients who received pretransplant transfu-
sions, and with respect to the increased recurrence of can-
cer in patients receiving ABTs (Opelz and others 1973; Gantt 
1981; Amato and Pescatori 2006). In the setting of trauma, 
clinical studies have shown that blood transfusion is an 
independent risk factor for the development of postinjury 
multiple organ failure (MOF) and acute lung injury (Moore 
and others 1997; Silliman and McLaughlin 2006).

Both clinical studies and related in vitro studies of stored 
packed red blood cells (PRBCs) provide insights into the 
mechanistic links of transfusion-related immunomodula-
tion. Many immunologically active substances, including 
cytokines and infl ammatory lipids, have been identifi ed in 

PRBCs, and these potential mediators have been shown to 
accumulate with blood storage (Silliman and others 1994; 
Nielsen and others 1996). However, as many of these fac-
tors are leukocyte- or platelet-derived, prestorage leuko-
reduction reduces many of these immunologic mediators 
(Kristiansson and others 1996; Shanwell and others 1997; 
Wadhwa and others 2000). The importance of understand-
ing how these bioactive mediators affect the recipient’s 
immune system is apparent, particularly in surgical patients 
who may require large volumes of blood transfusions. A 
number of in vitro studies have examined the potential role 
of stored PRBCs to accentuate the innate immune response 
of neutrophils (Chin-Yee and others 1998; Zallen and oth-
ers 2000; Biffl  and others 2001; Silliman and others 2003), 
and neutrophil-mediated injury has been proposed to be 
central to the two-hit model of MOF. While these studies 
have emphasized the effect of PRBCs on neutrophil func-
tion, peripheral blood mononuclear cells (PBMCs) are also 
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After the 24 h LPS stimulation period, cell culture superna-
tants were collected. Measurements of the cytokines IL-1β, 
IL-6, IL-8, IL-10, and TNF-α in the supernatants were mea-
sured by using a Becton Dickinson Human Infl ammation 
cytometric bead quantitative array according to manufac-
turer’s instructions. Briefl y, the culture supernatants were 
incubated with a mixture of six distinct fl uorescent bead 
populations, each of which had been labeled with antibodies 
specifi c for one of the cytokines of interest. A second cocktail 
of labeled antibodies were then added to the bead–superna-
tant mixture to label the captured cytokines. Each sample 
was run on a BD FACSCaliber (Beckton Dickinson, Franklin 
Lakes, NJ, USA) and the individual cytokines identifi ed by 
the fl uorescence intensity of the bead. Cytokine levels were 
quantifi ed by the fl uorescence intensity of the associated la-
beled antibody as compared to a standard curve. The results 
were then analyzed using the BD CBA analysis software.

Statistical analysis

Analysis of variance using the Fisher’s exact test for post 
hoc comparisons was used to determine differences among 
the groups. Statistical signifi cance was considered at the 
P < 0.05 level. All data are reported as mean ± SEM.

Results

Effects of PRBC supernatants on LPS-induced 
cytokine production

To determine the cytokine response from PRBC expo-
sure, IL-1β, IL-6, IL-8, IL-10, and TNF-α levels were measured 
from LPS-stimulated PBMCs. Day 1 (D1) and Day 42 (D42) 
units were tested to evaluate the effect of storage on cytokine 
production. IL-1β increased 2.5-fold in the Day 1 NLR PRBC 
group versus control and the Day 42 NLR PRBC group in-
creased >7-fold over control, being signifi cantly higher than 
either the Day 1 NLR PRBC group or control (182 ± 50.4 and 
64.8 ± 10.1 vs. 25.4 ± 6.5 pg/mL IL-1β in D42 NLR PRBC, D1 
NLR PRBC, and control groups, respectively, P < 0.05 for 
D42 NLR PRBC group vs. D1 and control groups; Fig. 1A; 
n = 16 for D42, 15 for D1, and 4 for Ctl). Comparing levels 
of secreted TNF-α, PRBC supernatant also attenuated its re-
lease: TNF-α levels in the D1 NLR PRBC group increased 
nearly 3-fold over control (1155 ± 246 vs. 403 ± 118 pg/mL, 
respectively; n = 14 for D1 and 4 for Ctl); whereas more than 
a 3-fold increase was observed with D42 NLR PRBC group 
versus control (1365 ± 186 vs. 403 ± 118 pg/mL, respectively, 
P < 0.05 vs. control; Fig. 1B; n = 16 for D42). More modest yet 
signifi cant increases over control were noted with IL-6 pro-
duction: D1 NLR PRBC group with a 1.4-fold increase and 
D42 NLR PRBC with a 2.4-fold increase over control, respec-
tively (5231 ± 827 and 8931 ± 761 vs. 3720 ± 642 pg/mL for 
the D1, D42, and control groups, respectively, P < 0.05 for 
D42 vs. D1 and control; Fig. 1C; n = 16 for D42, 14 for D1 and 
4 for Ctl). Measurements of IL-10 production, however, were 
not signifi cantly different in either NLR PRBC groups com-
pared to control (Fig. 1D). In addition, IL-8 levels were also 
not signifi cantly different between groups (31 ± 4.2 vs. 41 
± 5.0 vs. 47 ± 3.1 pg/mL for Ctl, D1 and D42, respectively). 
Taken together, both D1 and D42 NLR PRBCs potentiated 
the production of the proinfl ammatory cytokines IL-1β, 
TNF-α, and IL-6 in response to subsequent LPS stimulation 

capable of secreting large amounts of circulating cytokines 
and have been shown to be the predominant source of cir-
culating cytokines among leukocytes (Xing and Remick 
2003). In addition, Hensler et al. found that postinjury cyto-
kine levels in severely injured patients who developed MOF 
correlated with the extent of blood transfusion (Hensler 
and others 2003). However, the effects of PRBC exposure to 
PBMCs have not been well-described. In this in vitro study, 
we investigate the effect PRBC exposure on cytokine pro-
duction by PBMCs and the effects of storage duration and 
prestorage leukoreduction.

Materials and Methods

Blood donation and leukoreduction

After informed consent according to guidelines set 
forth by the Colorado Multiple Institutional Review Board, 
healthy adult volunteers donated one unit of whole blood, 
which was separated into components and stored accord-
ing to the American Association of Blood Banks criteria. 
Fifty percent, by weight, of the PRBCs were leukoreduced 
(LR) on Day 0 using Pall BPF4 (Pall Corporate, East Hills, 
NY, USA) and Fenwall-Sepacell R500-ii (Baxter-Fenwall, 
Deerfi eld, IL, USA) third-generation fi lters before routine 
storage. Samples from the LR and non-leukoreduced (NLR) 
PRBCs were drawn via sterile couples on days 1 and 42 of 
routine storage. The supernatant was isolated from each of 
these PRBC samples by centrifugation at 5,000g for 7 min fol-
lowed by an additional spin of 12,500g for 5 min to remove 
acellular debris. Each supernatant was aliquoted and stored 
at –70°C until further use. PRBC supernatants from each in-
dividual donor were tested separately in each experiment 
and were not pooled. Up to 16 donors were used to control 
for interdonor variability, each isolated and processed with 
and without leukoreduction for 1 to 42 days.

Human PBMC isolation

Venous blood was collected from healthy volunteers in 
sterile pyrogen-free syringes containing heparin sodium 
as an anticoagulant. PBMCs were isolated using a 3% dex-
tran sedimentation followed by layering the leukocyte-rich 
upper layer over Ficoll-Hypaque (Amersham Biosciences, 
Uppsala, Sweden). The gradient was centrifuged at 400g for 
30 min and the PBMC layer was collected. The PBMCs were 
washed once and resuspended at 1 ×107/mL in RPMI 1640 
culture medium (Mediatech, Herndon, VA, USA) supple-
mented with 10% fetal calf serum, 1:100 glutamine, and 1:100 
penicillin/streptomycin. PBMCs from each individual vol-
unteer were tested separately in each experiment.

Measurement of PBMC cytokine production

The PBMCs were incubated for 24 h in cell culture media, 
which consisted of RPMI 1640 culture medium supplemented 
with fetal calf serum, glutamine, penicillin/streptomycin 
(control media), with or without 5% plasma supernatant by 
volume from Day 1 (D1) NLR PRBCs, Day 42 (D42) NLR 
PRBCs, or Day 42 (D42) LR PRBCs. Following this 24 h incu-
bation period, the PBMC cultures were stimulated 100 ng/
mL lipopolysaccharide (LPS; Escherichia coli serotype 055:B5, 
Sigma Aldrich, St. Louis, MO, USA) for an additional 24 h. 
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PRBC-exposed groups than control, while IL-8 and IL-10 
levels were not altered. Furthermore, prolonged storage of 
PRBCs signifi cantly increased this potentiation as IL-1β and 
IL-6 levels were signifi cantly higher from PBMCs exposed 
to Day 42 supernatants versus Day 1 supernatants. In addi-
tion, prestorage leukoredeuction attenuated this proinfl am-
matory cytokine release as IL-1β levels were signifi cantly 
lower in PBMCs exposed to leukoreduced (LR) supernatants 
compared to non-leukoreduced (NLR) supernatants. TNF-α 
and IL-6 levels were also lower after LR PRBC exposure 
versus NLR exposure, but they did not achieve statistical 
signifi cance.

Potentiation of proinfl ammatory cytokines may partially 
explain clinical immune up-regulation after ABT. IL-1 is a 
potent proinfl ammatory cytokine that results in increased 
expression of other proinfl ammatory cytokines including 
IL-6 and IL-8, and elevated levels of IL-1 have been identifi ed 
in arthritis, infl ammatory bowel disease, graft-versus-host 
disease, and other proinfl ammatory conditions (Arend 2002). 
TNF-α also has important immune activation roles, and anti-
TNF-α therapies have been developed for treatment of rheu-
matoid arthritis and infl ammatory bowel disease (Locksley 
and others 2001). IL-6 is a crucial mediator of the acute phase 
response and infl ammation, and elevated levels have been 
correlated with an increased risk of MOF (Dimopoulou and 
others 2008; Lausevic and others 2008). Collectively, IL-1, 
IL-6, and TNF-α act together to active immune up-regulation 
as they play a major role in initiating the infl ammatory re-
sponse in sepsis (Jean-Baptiste 2007). Thus, elevation of these 
cytokines may mediate transfusion-related infl ammation. 

compared to the control-LPS group, and prolonged storage 
to 42 days signifi cantly potentiated IL-β and IL-6 secretion 
even higher than fresh units.

Effects of leukoreduction of PRBCs on LPS-induced 
cytokine production

Given that D42 PRBC samples potentiated proinfl am-
matory cytokine production, we next sought to determine 
if prestorage leukoreduction of D42 units would attenuate 
the production of cytokines stimulated by LPS. Exposure 
to D42 LR PRBC supernatant did not signifi cantly alter 
secretion of TNF-α (1084 ± 147 pg/mL) and IL-6 (6739 ± 784 
pg/mL) versus the non-leukoreduced units (1365 ± 186 and 
8931 ± 761 pg/mL for TNF-α and IL-6, respectively; Fig. 2B 
and C; n = 12 for LR 16 and NLR). The D42 LR PRBC group 
signifi cantly decreased the amount of IL-1β produced, a 
>4-fold reduction versus the NLR group (42 ± 6.5 vs. 182 
± 50.4 pg/mL for LR vs. NLR groups, respectively, P < 0.05; 
Fig. 2A; n = 12 for LR 16 and NLR). IL-10 levels were not sig-
nifi cantly altered by leukoreduction (Fig. 2D) nor were IL-8 
levels (47 ± 5.0 vs. 53 ± 5.4 pg/mL for NLR and LR, respec-
tively). Thus, LR appears to attenuate the proinfl ammatory 
cytokine production of LPS-stimulated cells.

Discussion

In this study, we found PRBC supernatant potentiated 
LPS-induced proinfl ammatory cytokine secretion by PBMCs. 
IL-1β, TNF-α, and IL-6 levels were signifi cantly higher in 
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FIG. 1. PRBC supernatant potentiates LPS-induced proinfl ammatory cytokine release by PBMCs. (A) The amount of IL-1β 
secreted from PBMCs exposed to control media, Day 1 non-leukoreduced PRBC supernatant (D1 NLR), or Day 42 non-
 leukoreduced PRBC supernatant (D42 NLR) is shown as a scatter plot with the mean represented by a bar. D42 NLR PRBC 
supernatant signifi cantly increased IL-1β secretion versus control and D1 NLR supernatant (*P < 0.05 vs. Ctl and D1 NLR; n 
= 4 for control, n = 15 for D1 NLR and n = 16 for D42 NLR). (B) D42 NLR supernatant exposure resulted in increased TNF-α 
versus control and signifi cantly increased IL-6 (C) versus control and D1 NLR PRBC supernatant (*P < 0.05 vs. Ctl and D1 
NLR groups). (D) IL-10 levels were not different between groups.
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Other investigators have examined the cytokine response 
to in vitro blood product exposure. Biedler and others (2002) 
and Mynster and others (1998) have investigated the TNF-α 
response of recipient whole blood to allogeneic whole blood 
or allogeneic whole blood supernatant, respectively. In con-
trast to the present study, they found TNF-α levels decreased 
in cells exposed to stored whole blood, and this reduction in 
TNF-α secretion was partially ameliorated by leukoreduc-
tion. However, exposure of recipient cells to whole blood or 
whole blood supernatant may elicit a different cytokine re-
sponse than PRBC supernatant as whole blood contains dif-
ferent amounts and ratios of cells (particularly leukocytes) 
and plasma than PRBCs. In addition, investigation of whole 
blood is not as clinically relevant as PRBCs, and the current 
study investigated supernatant from PRBCs processed in 
the standard fashion according to the American Association 
of Blood Banks criteria. Supernatant was used to more pre-
cisely determine if the cell-free fraction of PRBCs modulate 
the immune response. PBMCs were investigated to model 

Indeed, elevated serum IL-6 and TNF-α levels have been 
identifi ed after blood transfusion (Hensler and others 2003; 
Milasiene and others 2007).

However, ABT can also result in immune suppression 
as is evident by improved graft tolerance, increased cancer 
recurrence, decreased severity of autoimmune disease, and 
increased infection risk in transfused patients (Peters and 
others 1989; Opelz and others 1997; Chang and others 2000; 
Amato and Pescatori 2006). It is likely that the disparate fi nd-
ings of pro- and anti-infl ammation after ABT result from the 
complex interactions between bioactive substances found 
in transfused blood and the recipient’s immune cells in the 
context of the underlying illness. In the current study, one 
arm of the immune response was evaluated as LPS was se-
lected as an investigational tool to induce PBMC-derived se-
cretion of cytokines. More specifi cally, LPS elicits monocyte 
and dendritic cell cytokine production as toll-like receptor 
4 (TLR4), the LPS receptor, is primarily expressed on these 
cells (Takeda and others 2003).
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FIG. 2. Leukoreduction attenuates proinfl ammatory cytokine secretion by LPS-stimulated PBMCs. (A) The amount of 
IL-1β secreted from PBMCs exposed to control Day 42 non-leukoreduced PRBC supernatant (D42 NLR) and Day 42 leukore-
duced PRBC supernatant (D42 LR) is shown as a scatter plot with the mean represented as a bar. D42 LR PRBC supernatant 
signifi cantly decreased IL-1β secretion versus D42 NLR supernatant (*P < 0.05 vs. D42 NLR group; n = 16 for D42 NLR, n = 
12 for D42 LR). D42 LR supernatant exposure resulted in nonsignifi cant reductions in (B) TNF-α and (C) IL-6 secretion. (D) 
IL-10 levels were not altered.
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as sIL-1RII, may alter the free cytokine levels in the cell 
supernatants. Additional experiments directly measuring 
the level of cytokine antagonists in the PRBC supernatant 
or measuring the total amount of secreted cytokine, bound 
or free, by the PBMCs would be necessary to determine the 
effect of soluble cytokine antagonists on the level of secreted 
free cytokines. Nevertheless, the cytokine antagonists in 
the PRBC supernatant would also be present clinically in a 
blood transfusion and thus the cytokine levels seen in vitro 
would likely be proportional to those seen in vivo.

In conclusion, allogeneic blood transfusion potentiates 
LPS-induced proinfl ammatory cytokine secretion from 
normal human PBMCs. This potentiation is enhanced by 
prolonged storage and partially attenuated by prestorage 
leukoreduction. These fi ndings may partially explain the 
immune activation seen clinically after blood transfusion. 
Further investigation of the in vivo cytokine and immune 
response in recipients of blood transfusion will advance the 
understanding of transfusion-related immune activation and 
may provide therapeutic strategies to abrogate this effect.
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