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Abstract

Aims/hypothesis Previous evidence linking red meat consumption with diabetes risk mainly came from western countries, with

little evidence from China, where patterns of meat consumption are different. Moreover, global evidence remains inconclusive

about the associations of poultry and fish consumption with diabetes. Therefore we investigated the associations of red meat,

poultry and fish intake with incidence of diabetes in a Chinese population.

Methods The prospective China Kadoorie Biobank recruited ~512,000 adults (59% women, mean age 51 years) from ten rural

and urban areas across China in 2004–2008. At the baseline survey, a validated interviewer-administered laptop-based question-

naire was used to collect information on the consumption frequency of major food groups including red meat, poultry, fish, fresh

fruit and several others. During ~9 years of follow-up, 14,931 incidences of new-onset diabetes were recorded among 461,036

participants who had no prior diabetes, cardiovascular diseases or cancer at baseline. Cox regression analyses were performed to

calculate adjusted HRs for incident diabetes associated with red meat, poultry and fish intake.

Results At baseline, 47.0%, 1.3% and 8.9% of participants reported a regular consumption (i.e. ≥4 days/week) of red meat,

poultry and fish, respectively. After adjusting for adiposity and other potential confounders, each 50 g/day increase in red meat

and fish intake was associated with 11% (HR 1.11 [95% CI 1.04, 1.20]) and 6% (HR 1.06 [95% CI 1.00, 1.13]) higher risk of

incident diabetes, respectively. For both, the associations were more pronounced among men and women from urban areas, with
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an HR (95% CI) of 1.42 (1.15, 1.74) and 1.18 (1.03, 1.36), respectively, per 50 g/day red meat intake and 1.15 (1.02, 1.30) and

1.11 (1.01, 1.23), respectively, per 50 g/day fish intake. There was no significant association between diabetes and poultry intake,

either overall (HR 0.96 [95% CI 0.83, 1.12] per 50 g/day intake) or in specific population subgroups.

Conclusions/interpretation In Chinese adults, both red meat and fish, but not poultry, intake were positively associated with diabetes

risk, particularly among urban participants.Our findings add new evidence linking redmeat and fish intakewith cardiometabolic diseases.

Data availability Details of how to access the China Kadoorie Biobank data and rules of China Kadoorie Biobank data release are

available from www.ckbiobank.org/site/Data+Access.
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Abbreviations

BF% Body fat percentage

CKB China Kadoorie Biobank

CVD Cardiovascular disease

DHA Docosahexaenoic acid

IHD Ischaemic heart disease

SES Socioeconomic status

Introduction

Diabetes is a major public health problem affecting almost

half a billion people worldwide [1]. In China, the incidence

of diabetes has increased rapidly since the early 1980s,

currently affecting ~10% of adults [2]. About half of this

increase can be attributed to increasing adiposity [3] and other

lifestyle factors (e.g. smoking [4], reduced physical activity

and certain dietary habits [5]), which may influence diabetes

risk either independently or through adiposity.

Several prospective studies, conducted chiefly in western

populations, have reported that higher consumption of red meat

is associated with a higher risk of diabetes [6, 7]. Potential

underlying mechanisms may include obesity and iron overload,

which may lead to pancreatic beta cell dysfunction and

impaired insulin sensitivity [8, 9]. In addition, other compo-

nents of red meat, such as cholesterol, saturated and trans fatty

acids, and amino acids, may also influence diabetes risk directly

or through impacts on gut microbiota [6, 10]. Thus far, the only

reported prospective study from China observed no such posi-

tive association [11]. People in China tend to have a lower mean

BMI and consume mainly plant-based diets with lower

amounts of redmeat comparedwith people in western countries

RResearch in context

What is already known about this subject?

� Evidence from high-income western countries supports a positive association between red meat consumption and 

risk of diabetes. Little such evidence, however, is available in low- and middle-income countries, such as China, 

where most people have a plant-based diet

� Overall available evidence to date does not support a definite relevance of poultry or fish consumption for 

diabetes incidence, despite a few Asian studies having previously reported an inverse association between fish 

intake and diabetes risk

What is the key question?

� Are red meat, poultry and fish consumption associated with diabetes risk in China and, if so, is this association 

independent of adiposity and consistent among various subgroups of individuals with potentially di�erent 

nutritional status?

What are the new findings?

� We observed a significant positive association between red meat consumption and diabetes risk. This association 

was independent of BMI and more pronounced among urban participants 

� Fish consumption was also positively associated with diabetes incidence, particularly among urban participants 

� Poultry consumption was not associated with diabetes risk

How might this impact on clinical practice in the foreseeable future?

� The findings of this study provide important information for evidence-based dietary guidelines on diabetes 

prevention in China
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[12]. Moreover, Chinese people tend to consume pork, which

contains lower amounts of iron than beef and lamb, which are

more commonly consumed in western countries [13].

Therefore, reliable evidence about the association between red

meat intake and risk of diabetes is particularly needed in China

and other populations with relatively low body iron status [14].

The lower fat content of poultry and fish when compared

with red meat has led to them being considered relatively

healthier for cardiovascular disease [15, 16]. However,

existing evidence does not support a clear overall association

of either poultry or fish intake with diabetes risk [6, 17, 18].

We therefore investigated the associations of red meat, poultry

and fish consumption with incidence of diabetes in the

prospective China Kadoorie Biobank (CKB) study. In addi-

tion to the overall associations, we also examined the role of

adiposity and whether sociodemographic and lifestyle factors,

which are potentially related to nutritional status, might modi-

fy the associations [19].

Methods

Study population The CKB is a prospective cohort study of

over 0.5 million adults recruited from ten diverse areas (five

rural and five urban) in China, selected to cover a wide range

of risk exposures, disease patterns and stages of economic

development. Details of the study design, methods and popu-

lation have been previously reported [20]. In brief, between

June 2004 and July 2008, all permanent residents (aged 35–

74 years; not severely disabled) in pre-selected communities

or villages were invited to participate in the study. Among

them, about one in three (33% in rural and 27% in urban areas)

responded. A total of 512,713 participants (including a few

who were just outside the target age range) were included in

our baseline database. All participants provided written

informed consent. Regional, national and international ethics

approval was obtained prior to the start of recruitment.

For the current study, we excluded participants with base-

line prevalent diabetes (n = 30,299), ischaemic heart disease

(IHD; n = 15,472), stroke or transient ischaemic attack (n =

8884), or cancer (n = 2577) or those with missing values for

BMI (n = 2), leaving 461,036 participants in the analysis

(please note that some participants were excluded for meeting

more than one criteria).

Base l ine data col lect ion in CKB Information on

sociodemographic status, smoking [21], alcohol drinking, phys-

ical activity [22], medical history and diet [23, 24] were collect-

ed by trained health professionals using a laptop-based ques-

tionnaire. Each participant provided a 10 ml venous blood

sample (with time since last eating or drinking any energy-

containing food or beverage recorded). Anthropometry (e.g.

bodyweight, height, waist circumference) [3] and BP [25] were

measured following standard protocols. BMI was calculated as

weight (kg) divided by height squared (m2). In addition, body

fat percentage (BF%) was estimated using a TBF-300 monitor

(Tanita, Tokyo, Japan). Random blood glucose levels were

measured immediately following sample collection using the

SureStep Plus System (Johnson & Johnson, New Brunswick,

NJ, USA), which provided plasma-equivalent readings and was

regularly calibrated with manufacturer’s control solutions.

Individuals who did not report a history of diabetes but who

had random blood glucose ≥11.1 mmol/l or fasting blood

glucose ≥7.0 mmol/l were defined as having screen-detected

diabetes. Participants with either screen-detected diabetes or

self-reported prior history of physician-diagnosed diabetes were

classified as prevalent diabetes and excluded from the present

study.

Dietary assessment Information on consumption frequency

(daily, 4–6 days/week, 1–3 days/week, monthly or never/rare-

ly) of red meat (fresh and processed pork, beef and

lamb/mutton), poultry (chicken, duck and goose) and fish

(fish and shellfish) was collected using a validated

interviewer-administered laptop-based questionnaire asking

participants to report their eating habits during the past

12 months. The questionnaire has good reproducibility and

relative validity against multiple 24 h recalls (weighted κ

was 0.60, 0.61 and 0.75, respectively, for red meat, poultry

and fish intake) [26]. In addition, strong positive associations

were found between red meat consumption and blood levels

of creatinine, total choline and sphingomyelin, and between

fish consumption and blood levels of docosahexaenoic acid

(DHA), DHA/fatty acid ratio, and total n-3 fatty acids (see

electronic supplementary material [ESM] Fig. 1).

Following the completion of the baseline survey (2004–

2008), 5–6% of the surviving participants were randomly

selected to participate in re-surveys in order to understand

the long-term variations and measurement errors of various

baseline exposures. During the re-survey conducted in

2013–2014 (response rate 76%), the quantity of each food

group consumed in addition to the consumption frequency

was recorded, allowing us to estimate the usual mean amount

consumed (i.e. average intake level during follow-up period)

for each baseline exposure category.

Follow-up for incident diabetes The vital status of each partic-

ipant was obtained periodically through China’s Disease

Surveillance Points (DSP) system [27] (death registry checked

annually against local residential and health insurance records,

and by street committees or village administrators). In addi-

tion, information on diabetes incidence was collected through

linkages with chronic disease registries (for IHD, stroke,

cancer and diabetes) and national health insurance claim data-

bases, which provided almost universal (~99%) coverage of

all hospitalisations for participants in the study. Both fatal and

Diabetologia (2020) 63:767–779 769



non-fatal events were coded using ICD-10 (https://icd.who.

int/browse10/2014/en) by staff who were blinded to baseline

information [20]. For the present study, incident diabetes

included all recorded cases (E10-E14) that occurred between

the ages of 35 and 79 years. A medical record review of

approximately 1000 incidences of diabetes confirmed the

validity of diabetes diagnosis (positive predictive value

97%). By 1 January 2017 (global censoring date), only 5276

(~1%) participants were lost to follow-up and they were

censored in the prospective analyses.

Statistical analysis To ensure an adequate number of diabetes

cases in each consumption category for the prospective anal-

yses, individuals were classified into four groups for red meat

(daily, 4–6 days/week, 1–3 days/week and <1 day/week) and

fish (≥4 days/week, 1–3 days/week monthly and never/rarely)

consumption, and three groups for poultry consumption

(weekly, monthly and never/rarely) by combining those orig-

inal categories with less than 5% participants into the adjacent

categories.

Means (SDs) or percentages of baseline characteristics

were calculated across categories of each dietary exposure,

adjusting for age, sex and region, where appropriate, using

either multiple linear regression for continuous outcomes or

logistic regression for binary outcomes. Cross-sectional asso-

ciations of each dietary exposure under study with adiposity

(BMI, waist circumference and BF%) were examined in men

and women separately using multiple linear regression analy-

ses. Adjustments were made for age (continuous variable),

region (ten regions), smoking (four categories), alcohol intake

(four categories), education (four categories), income (four

categories), physical activity (continuous variable) and fresh

fruit intake (five categories), and mutual adjustment for intake

of the other two exposure variables. Analyses for waist

circumference and BF% were additionally adjusted for BMI.

HRs and 95% CIs for diabetes incidence across exposure

categories were estimated using Cox proportional hazards

models, stratified by age-at-risk (groups of 5 years), sex and

region, and adjusted for potential confounders including the

above-mentioned covariates and family history of diabetes

(dichotomous). Except for fresh fruit [24] and the three dietary

exposures under study, no other dietary variables were includ-

ed in the main models because none were associated with

diabetes risk in the current analysis. In model 4, BMI

(continuous) was also added in as a covariate. The proportion

of diabetes risk explained by BMI was calculated as follows:

[(loge HRmodel3 − loge HRmodel4)/loge HRmodel3] × 100%. The

mean proportion and associated 95% CIs were obtained

through bootstrap techniques with 1000 replications. The

‘floating absolute risk’ method was used to calculate 95%

CIs of HRs in all exposure categories (including the reference

category), without altering the point estimates. This method

allows valid comparisons to be made between any two

exposure groups for polychotomous risk factors [28].We used

data from 20,084 participants who attended the re-survey in

2013–2014 to correct for regression dilution bias [29, 30] and

quantify the mean usual consumption quantities for each base-

line exposure category (ESM Methods). The HR for each

50 g/day of usual red meat, poultry and fish intake was calcu-

lated using Cox regression analyses.

Stratified analyses by potential effect modifiers (e.g. sex,

region, socioeconomic status [SES] and BMI) were performed

and χ
2 tests for trend and heterogeneity were applied to the

loge HR and its SE. Comparison of HRs for the first and

second halves of the follow-up period revealed no clear

evidence of departure from the proportional hazards assump-

tion. Sensitivity analyses were performed by excluding the

first 2 years of follow-up or participants with incident cardio-

vascular disease (CVD) and cancer during follow-up, and by

additional adjustment for other dietary factors and other

adiposity indices.

All analyses were conducted using SAS (version 9.3, SAS

Institute, Cary, NC, USA). Graphs were plotted using R 3.3.2

(https://www.R-project.org/).

Results

The mean (SD) baseline age of the study participants was 51.2

(10.5) years, 59%were women and 58% resided in rural areas.

At baseline, 28.7% of the participants consumed red meat on a

daily basis and 17.3% reported <1 day/week consumption

(Table 1). Those participants who consumed red meat more

frequently were younger, male, urban residents, and had

higher education and income levels. They were also more

likely to be regular smokers and regular alcohol drinkers.

Similar associations between age, sex, SES, and alcohol

intake and poultry and fish consumption were also found

(ESM Table 1). Except for whole grain and preserved vegeta-

bles, consumption of other dietary variables was positively

correlated with redmeat, poultry and fish consumption, partic-

ularly fresh fruit, dairy products and eggs.

The estimated usual mean daily consumption was 55.1 g

for red meat, 14.4 g for poultry and 23.1 g for fish, higher in

men and in urban areas (ESM Fig. 2). Fish intake showed the

largest urban vs rural difference among the three food groups

investigated, with Qingdao and Haikou (two coastal urban

areas) having the highest mean usual consumption and

Gansu and Henan (two inland rural areas) having the lowest

(data not shown).

Red meat consumption was positively associated with BMI

(ESM Fig. 3), with men and women who consumed red meat

daily having a 0.3 and 0.7 kg/m2 higher BMI, respectively,

compared with those consuming red meat less than once

weekly. After accounting for BMI, red meat consumption

was not clearly associated with waist circumference and
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BF%. Likewise, fish consumption was also positively associ-

ated with BMI in both men and women, while poultry

consumption was positively associated with BMI only inmen.

During a mean follow-up of 9 years (~4.5 million person-

years), 14,931 incident diabetes cases were recorded at age 35–

79 years (incidence rate ~3300 per 10,000). After adjustment

for all above-mentioned covariates (including the other two

food groups under investigation but not BMI), consumption

of red meat and fish was positively associated with risk of

diabetes with HR 1.19 (95% CI 1.15, 1.23) and 1.15 (95% CI

1.08, 1.23), respectively, for the highest vs lowest consumption

category (Table 2); no such association was noted for consump-

tion of poultry. After correcting for regression dilution bias,

each 50 g/day increase in consumption was associated with

HR of 1.19 (95% CI 1.11, 1.28) for red meat and an HR of

1.12 (95% CI 1.06, 1.19) for fish. Additional adjustment for

BMI attenuated the HR to 1.11 (95% CI 1.04, 1.20) for each

50 g/day increment in usual red meat intake and 1.06 (95% CI

1.00, 1.13) for each 50 g/day fish intake, respectively, corre-

sponding to 36.8% (26.1%, 55.8%) and 46.1% (28.4%, 78.4%)

attenuation. Poultry consumption was not associated with

diabetes risk before or after adjusting for BMI.

Table 1 Baseline characteristics of participants by frequency of red meat consumption

Characteristic Frequency of red meat consumption Overall (n = 461,036)

<1 day/week

(n = 79,615)

1–3 days/week

(n = 164,895)

4–6 days/week

(n = 84,223)

Daily

(n = 132,303)

Usual meat consumption, g/daya 23.3 52.0 61.7 71.5 55.1

Mean age (SD), years 54.4 (12.2) 52.2 (10.6) 50.1 (10.7) 48.8 (11.5) 51.2 (10.5)

Women, % 72.1 62.5 55.0 49.2 59.0

Urban, % 12.2 30.8 42.4 74.5 42.3

Education >6 years, % 40.0 47.5 51.4 56.1 49.4

Household income >20,000 yuan/year, % 26.8 37.8 49.1 54.2 42.6

Ever regular smoking, % in menb 70.0 73.7 75.0 77.3 74.6

Ever regular alcohol drinking, % in menb 21.8 36.5 38.9 44.0 37.2

Frequency of food consumptionc

Fish 9.7 7.1 8.7 10.9 8.9

Poultry 25.3 36.3 44.2 33.6 35.1

Fresh fruit 17.0 23.3 31.5 37.2 27.7

Fresh vegetables 91.7 93.7 94.3 97.9 94.6

Preserved vegetables 25.9 19.8 22.1 24.1 22.5

Eggs 14.6 20.8 28.8 29.8 23.8

Dairy products 8.0 9.4 10.8 13.8 10.7

Soybean 7.3 7.9 10.7 12.1 9.5

Whole grain 19.3 14.0 11.3 11.7 13.8

Mean physical activity (SD), MET-h/day 21.4 (14.4) 22.2 (12.4) 22.2 (12.6) 21.5 (13.6) 21.9 (13.9)

Mean BMI (SD), kg/m2 23.2 (3.8) 23.4 (3.3) 23.6 (3.3) 23.8 (3.6) 23.5 (3.3)

Mean waist circumference (SD), cm

Men 79.6 (10.7) 80.9 (9.3) 82.1 (9.4) 82.8 (10.1) 81.6 (9.6)

Women 78.1 (10.7) 78.3 (9.2) 78.6 (9.3) 78.8 (10.1) 78.5 (9.3)

Mean BF% (SD)d

Men 20.4 (6.8) 21.4 (6.0) 22.2 (6.0) 22.7 (6.5) 21.8 (6.2)

Women 31.3 (8.2) 31.7 (7.1) 32.1 (7.1) 32.2 (7.7) 31.8 (7.0)

Values are adjusted for age, sex and region, where appropriate
aCrude mean values from second re-survey of randomly selected 20,084 participants without CVD, cancer and diabetes at either baseline or second re-

survey
b In women, only 3.0% ever regularly smoked and 2.5% ever regularly drunk alcohol
cValues indicate the frequency as ‘daily’ for fresh vegetable consumption; ‘≥1 day/week’ for poultry consumption and ‘≥4 days/week (i.e. ‘regular’ for

all other food groups)
d 213 participants had missing values for BF%

MET-h, metabolic equivalent of task hours

Diabetologia (2020) 63:767–779 771



The association of red meat intake with diabetes was more

pronounced in men than in women (HR 1.23 [95% CI 1.09,

1.39] vs HR 1.06 [95% CI 0.97, 1.15] per 50 g/day usual

consumption) and was more pronounced in urban areas than

in rural areas (HR 1.25 [95% CI 1.11, 1.40] vs HR 1.03 [95%

CI 0.94, 1.13]) (pheterogeneity = 0.05 and 0.01, respectively; Fig.

1). In addition, the association was stronger in those with

higher education level (ptrend = 0.03), those who were current

alcohol drinkers and those with family history of diabetes,

although the heterogeneity test was not statistically significant

for the latter two. BMI significantly modified the association

between red meat consumption and diabetes risk; the associ-

ation was only significant in the overweight group (not the

other two groups). Similarly, the association between fish

consumption and risk of diabetes was stronger in residents

of urban vs rural areas, in those with higher education and in

those with a family history of diabetes (Fig. 2).

Stratified analyses by sex and area (urban vs rural) showed

that both red meat and fish were positively associated with

diabetes risk in urban men and women, but not in those from

rural areas (Figs 3, 4). Compared with participants who report-

ed consumption of red meat on <1 day/week (the lowest

Table 2 Risk of new-onset diabetes associated with consumption of red meat, poultry and fish

Consumption No. of cases Diabetes risk (95% CI)

Model 1a Model 2b Model 3c Model 4d

Red meat

<1 day/week 1612 1.00 (0.94, 1.06) 1.00 (0.94, 1.06) 1.00 (0.94, 1.06) 1.00 (0.94, 1.06)

1–3 days/week 5779 1.08 (1.05, 1.11) 1.09 (1.06, 1.12) 1.08 (1.06, 1.11) 1.06 (1.03, 1.09)

4–6 days/week 3106 1.09 (1.05, 1.13) 1.10 (1.06, 1.14) 1.09 (1.05, 1.13) 1.05 (1.02, 1.09)

Daily 4434 1.21 (1.17, 1.25) 1.20 (1.16, 1.24) 1.19 (1.15, 1.23) 1.12 (1.08, 1.16)

Likelihood ratio χ
2 39.8 32.8 28.1 11.6

ptrend <0.0001 <0.0001 <0.0001 0.004

Per 50 g/day at baselinee 14,931 1.09 (1.06, 1.12) 1.08 (1.05, 1.11) 1.08 (1.04, 1.11) 1.04 (1.01, 1.07)

Per 50 g/day usual consumptione 14,931 1.21 (1.14, 1.30) 1.20 (1.12, 1.29) 1.19 (1.11, 1.28) 1.11 (1.04, 1.20)

Poultry

Never/rarely 4121 1.00 (0.96, 1.04) 1.00 (0.96, 1.04) 1.00 (0.96, 1.05) 1.00 (0.96, 1.05)

Monthly 6118 1.06 (1.03, 1.08) 1.05 (1.02, 1.07) 1.03 (1.01, 1.05) 1.03 (1.00, 1.05)

Weekly 4692 1.09 (1.05, 1.13) 1.07 (1.03, 1.10) 1.02 (0.99, 1.06) 1.00 (0.97, 1.04)

Likelihood ratio χ
2 9.7 5.4 1.4 1.8

ptrend 0.002 0.03 0.48 0.93

Per 50 g/day at baselinee 14,931 1.08 (1.02, 1.16) 1.06 (0.99, 1.13) 1.01 (0.95, 1.08) 0.99 (0.92, 1.05)

Per 50 g/day usual consumptione 14,931 1.23 (1.06, 1.42) 1.16 (1.00, 1.35) 1.04 (0.89, 1.21) 0.96 (0.83, 1.12)

Fish

Never/rarely 3515 1.00 (0.94, 1.06) 1.00 (0.94, 1.06) 1.00 (0.94, 1.07) 1.00 (0.94, 1.07)

Monthly 3811 1.03 (0.99, 1.06) 1.02 (0.99, 1.06) 1.00 (0.96, 1.03) 0.97 (0.94, 1.01)

1–3 days/week 6225 1.08 (1.05, 1.11) 1.07 (1.04, 1.10) 1.04 (1.01, 1.07) 1.00 (0.97, 1.03)

Regular 1380 1.22 (1.15, 1.30) 1.19 (1.12, 1.27) 1.15 (1.08, 1.23) 1.06 (1.00, 1.13)

Likelihood ratio χ
2 25.0 18.8 15.2 5.6

ptrend <0.0001 <0.0001 0.002 0.14

Per 50 g/day at baselinee 14,931 1.10 (1.06, 1.14) 1.09 (1.05, 1.13) 1.08 (1.04, 1.12) 1.04 (1.00, 1.08)

Per 50 g/day usual consumptione 14,931 1.15 (1.09, 1.22) 1.14 (1.07, 1.20) 1.12 (1.06, 1.19) 1.06 (1.00, 1.13)

The likelihood ratio χ
2 values indicate the strength of the associations of main exposure variable with diabetes risk. A larger χ2 indicates a stronger

association and a decrease in the χ2 indicates that the association is attenuated after additional adjustment for newly added variables
aModel 1: stratified by age-at-risk, sex and region
bModel 2: as for model 1, additionally adjusted for education, income, smoking, alcohol consumption, physical activity, family history of diabetes, and

fresh fruit consumption
cModel 3: as for model 2, additionally adjusted for the other two main dietary exposure variables listed in the table
dModel 4: as for model 3, additionally adjusted for BMI
eThe mean amount consumed at the second re-survey was used to estimate the usual consumption level for each group; baseline consumption level was

estimated using daily consumption portion at the second re-survey multiplied by the consumption frequency at baseline
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group) at baseline, daily consumption (the highest group) was

associated with an HR (95% CI) of 1.32 (1.25, 1.41) in men

from urban areas, 1.18 (1.12, 1.25) in women from urban

areas, 1.11 (1.02, 1.20) in men from rural areas and 0.96

(0.89, 1.04) in women from rural areas. For each 50 g/day

increment in usual red meat intake, the corresponding HR

(95% CI) was 1.42 (1.15, 1.74), 1.18 (1.03, 1.36), 1.11

(0.95, 1.30) and 0.98 (0.88, 1.10), respectively, in these four

subgroups (Fig. 3). For fish consumption, the HR (95% CI)

for diabetes risk in men and women from urban areas and men

and women from rural areas reporting the highest consump-

tion was 1.33 (1.19, 1.49), 1.10 (1.00, 1.21), 1.00 (0.85, 1.19)

and 0.91 (0.76, 1.08), respectively, compared with those who

never or rarely ate fish (Fig. 4). Each 50 g/day increase in

usual consumption of fish was associated with an HR (95%

CI) of 1.15 (1.02, 1.30), 1.11 (1.01, 1.23), 1.04 (0.91, 1.20)

and 0.92 (0.81, 1.05), respectively, (Fig. 4).

Across five urban and five rural areas, the association

between red meat intake and diabetes risk varied a little but

there was significant heterogeneity across five individual

urban areas for fish intake in relation to diabetes risk (ESM

Fig. 4).

Sensitivity analyses, including the exclusion of the first

2 years of follow-up, additional adjustment for other dietary

factors (i.e. egg, dairy products, soybean, fresh and preserved

vegetables, and whole grain staple foods) and other adiposity
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Fig. 1 Adjusted HRs (95% CIs)

for diabetes per 50 g/day of red

meat intake by subgroups.

Analyses were stratified by age-

at-risk, sex and region, and

adjusted for education, income,

smoking, alcohol intake, physical

activity, consumption of fresh

fruit, fish and poultry, family

history of diabetes, and BMI.

Black squares, HRs (size is

inversely proportional to the

variance of the loge HR);

horizontal lines, 95% CIs; white

diamonds, overall HRs. aOverall

HR per 50 g/day usual red meat

intake after correcting for

regression dilution bias. bOverall

HR per 50 g/day baseline red

meat intake before correcting for

regression dilution bias. ‘No. of

events’ refers to the number of

incident diabetes cases in each

group. The subscript numbers in

the χ2 values represent the

degrees of freedom
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indices (i.e. waist circumference and BF%), and exclusion of

participants who developed CVD and cancer during follow-

up, did not materially alter the main results described above

(ESM Table 2).

Discussion

In this large prospective study of Chinese adults, consumption

of both red meat and fish (but not poultry) was positively

associated with the risk of developing diabetes, with each

50 g/day increase in usual intake associated with 11% and

6% higher risk, respectively. These associations were

independent of other dietary factors and adiposity and were

more pronounced in urban areas than rural areas and in men

than in women.

Red meat is a major source of valuable proteins, essential

amino acids, vitamins (e.g. vitamin B12) and minerals (e.g.

zinc and iron) [31]. Consumption of red meat, however, has

been associated with higher risks of several chronic diseases,

including diabetes, in western populations. In two large meta-

analyses of prospective cohort studies involving >442,000

adults and >17,000 individuals with diabetes, each 100 g/

day increase in red meat consumption was associated with

13% and 19% higher risk of diabetes, respectively [6, 7]. To

date, only one prospective study from China, involving

0.5 1.0 2.0

1.10 (1.01, 1.21)
1.03 (0.95, 1.11)

1.05 (0.94, 1.16)
1.10 (1.00, 1.21)
1.03 (0.93, 1.15)

1.12 (1.04, 1.21)
0.98 (0.89, 1.08)

0.94 (0.83, 1.07)
1.08 (0.98, 1.20)
1.11 (1.02, 1.22)

1.11 (0.94, 1.30)
1.17 (1.03, 1.32)
1.02 (0.95, 1.10)

1.05 (0.98, 1.13)
0.99 (0.79, 1.24)
1.09 (0.97, 1.22)

1.05 (0.98, 1.12)
1.17 (0.80, 1.73)
1.12 (0.97, 1.29)

1.05 (0.96, 1.16)
1.10 (1.00, 1.22)
1.05 (0.94, 1.18)

1.03 (0.97, 1.10)
1.31 (1.11, 1.55)

1.00 (0.89, 1.11)
1.06 (0.97, 1.15)
1.10 (0.98, 1.24)

1.06 (1.00, 1.13)

1.04 (1.00, 1.08)

5671
9260

4356
5662
4913

6002
8929

3851
5367
5713

3673
3805
7453

10,174
1053
3704

12,438
316

2177

5327
5011
4593

13,343
1588

5019
6461
3451

14,931

14,931

Men
Women

35−54
55−64
65−79

Urban
Rural

Low
Middle
High

Low
Middle
High

Never regular
Ex–regular
Current regular

Never regular 
Ex–regular
Current regular

1st tertile
2nd tertile
3rd tertile

No
Yes

<24
24−<28
≥28

Overalla

Overallb

Sex

Age at risk (years)

Area

Education

Income

Smoking

Alcohol intake

Total physical activity

Family history of diabetes

BMI (kg/m²)

Het. test: χ
2
1 = 1.3  (p=0.3)

Het. test: χ
2
1 = 4.6  (p=0.03)

Het. test: χ
2
2 = 0.6  (p=0.7)

Het. test: χ
2
2 = 0.9  (p=0.6)

Het. test: χ
2
1 = 6.9  (p=0.009)

Het. test: χ
2
2 = 1.6  (p=0.5)

Trend test: χ
2
1 = 0.0  (p=0.8)

Trend test: χ
2
1 = 4.1  (p=0.04)

Trend test: χ
2
1 = 2.2  (p=0.1)

Trend test: χ
2
1 = 0.0  (p=1)

HR (95% CI)

Subgroup
No. of
events HR (95% CI)

Fig. 2 Adjusted HRs (95% CIs)

for diabetes per 50 g/day of fish

intake by subgroups. Analyses

were stratified by age-at-risk, sex

and region, and adjusted for

education, income, smoking,

alcohol intake, physical activity,

consumption of fresh fruit, red

meat and poultry, family history

of diabetes, and BMI. Black

squares, HRs (size is inversely

proportional to the variance of the

loge HR); horizontal lines, 95%

CIs; white diamonds, overall

HRs. aOverall HR per 50 g/day

usual fish intake after correcting

for regression dilution bias.
bOverall HR per 50 g/day

baseline fish intake before

correcting for regression dilution

bias. ‘No. of events’ refers to the

number of incident diabetes cases

in each group. The subscript

numbers in the χ2 values

represent the degrees of freedom
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~75,000 middle-aged women and ~2000 individuals with

diabetes, has been published on this topic, reporting no clear

association between red meat consumption and risk of diabe-

tes (HR 0.94 [95% CI 0.80, 1.10] for top vs bottom quintile)

[11]. By contrast, in a similar-sized prospective study of

Chinese adults living in Singapore (57% women), the HR

(95% CI) for diabetes comparing highest vs lowest consump-

tion quartile was 1.23 (1.14, 1.33) [32]. The present study

included more incidences of diabetes than these two previous

Chinese studies combined and found a statistically significant

positive association between redmeat consumption and diabe-

tes, particularly in men and women living in urban areas.

Moreover, our study findings showed that over one-third of

the positive association could be explained by adiposity,

which is the most important risk factor for diabetes [3].

The observed clear patterns of effect modifications by sex,

area (urban vs rural), and education level suggest a plausible

mediating role of iron overload in the association between red

meat intake and diabetes [9]. That is because women, partic-

ipants living in rural areas and people with lower SES tend to

have relatively lower levels of body iron stores [33] and, as

such, eating red meat may not lead to iron overload and diabe-

tes. In addition, the much stronger associations seen in current

alcohol drinkers and participants with a family history of

diabetes might also relate to a higher level of iron storage

because drinking alcohol and carrying certain genetic variants
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for diabetes associated with red
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Analyses were stratified by age-

at-risk and region and adjusted for
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could lead to a higher rate of dietary iron absorption [34, 35].

However, directly measured iron status was not currently

available in our study and future studies with this information

are required to confirm or refute this hypothesis.

In the present study population, the mean level of

consumption was much lower for poultry than red meat and

its null association with diabetes is consistent with the overall

available evidence to date [6]. Although the consumption of

fish is generally recommended by most dietary guidelines for

prevention of CVD [36], existing evidence overall does not

support any clear beneficial association with diabetes. For

example, in a meta-analysis of 13 cohort studies involving

481,489 participants and 20,830 cases of incident diabetes,

fish intake was not in an overall significant association with

diabetes incidence (RR 1.12 [95% CI 0.94, 1.34] per 100 g/

day), with substantial heterogeneity across different cohorts

[17]. However, in separate analyses by geographic location

of study populations, fish intake was inversely associated with

risk of diabetes (HR 0.89 [95% CI 0.98, 0.81] per 100 g/day

intake) in five Asian cohorts (including two from China),
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for risk of diabetes associated

with fish intake, by sex and area.
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involving ~7100 diabetes cases, but positively associated with

diabetes risk (HR 1.38 [95% CI 1.13, 1.70]) in eight North

American/European cohorts (~13,700 cases). Though less

extreme, our findings, particularly among participants resid-

ing in urban areas, were broadly consistent with those from

previous western studies conducted in North America and

Europe [37, 38]. The potential mechanisms underlying this

positive association are unclear but both iron [39, 40] and

environmental contaminants (e.g. mercury) in fish might play

a role [41]. In addition, higher consumption of animal-sourced

foods (i.e. red meat and fish) is very likely associated with

affluence-related dietary patterns, which may increase the risk

of diabetes in China [42].

The present study has several major strengths. First, the

large sample size in the CKB allows us to exclude diag-

nosed and undiagnosed diabetes as well as major chronic

diseases (i.e. CVD and cancer) at baseline, thus limiting

the potential influence of reverse causality. Second, the

analyses controlled for a wide range of potential

confounding factors and regression dilution bias caused

by long-term variation and inevitable measurement errors

in self-reported dietary exposure variables [43]. More

importantly, the main exposure variables in the present

study had good reproducibility and validity.

The study also has several limitations. First, we collected

outcome information through linkage with hospitalisation

records, so some non-hospitalised incidences of diabetes

may have been missed. However, we have previously

observed that diabetes prevalence based on the CKB re-

survey population was reasonably consistent with nationally

representative surveys [3]. On the other hand, such under-

reporting in outcome measures would most likely be non-

differential and thus not overestimate risk estimates. Second,

our dietary questionnaire is relatively simple, collecting

consumption data for only some of the major food groups

instead of individual food items. Hence, it was not possible

to adjust for total energy intake and other specific dietary

factors (e.g. saturated fat, salt and dietary fibre). However,

total energy intake should not play a major role in the

observed associations because our main analyses were adjust-

ed for both BMI and physical activity, which together could be

considered as a good proxy for total energy intake. Third, we

were unable to distinguish between unprocessed and proc-

essed red meat or between different types of red meat (i.e.

pork, beef or lamb) and fish (e.g. fatty fish or lean fish).

However, the nationally representative nutrition survey

showed that unprocessed pork accounts for ~80% of total

red meat consumption in China [44]. Fourth, the observed

heterogeneities across BMI categories (for red meat) and

across regions could not be properly explained. Last, as in

all observational studies, the possibility of residual confound-

ing cannot be ruled out and causality cannot be automatically

assumed.

In summary, in this large study of a Chinese adult

population, higher consumption of red meat was associat-

ed with higher risk of new-onset diabetes and this associ-

ation was only partly explained by adiposity. The associ-

ation appeared to be stronger in men, participants residing

in urban areas and those with a higher education level.

Our data do not support the inverse association between

fish consumption and diabetes risk previously reported in

some Asian studies. Further studies are warranted to

understand the exact mechanisms linking red meat and

fish consumption with increased risk of diabetes.
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