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Supplementary Materials: 

Supplementary Text 

R code used to generate Figures 1 and 2 

 

Supplementary Materials: 

Supplementary Text 

Figure 1  

All four curves in Figure 1 describe the relationship between (i) a P-value based on a 

two-sided normal test and (ii) a Bayes factor or a bound on a Bayes factor.  The P-values are 

based on a two-sided test that the mean 𝜇 of an independent and identically distributed sample of 

normally distributed random variables is 0.  The variance of the observations is known.  Without 

loss of generality, we assume that the variance is 1 and the sample size is also 1.  The curves in 

the figure differ according to the alternative hypotheses that they assume for calculating (ii). 

Because these curves involve two-sided tests, all alternative hypotheses are restricted to be 

symmetric around 0.   That is, the density assumed for the value of 𝜇 under the alternative 

hypothesis is always assumed to satisfy 𝑓(𝜇) = 𝑓(−𝜇). 

The curve labeled “Power” corresponds to defining the alternative hypothesis so that power is 

75% in a two-sided 5% test.  This is achieved by assuming that 𝜇 under the alternative 

hypothesis is equal to ±(𝑧0.025 + 𝑧0.75) = ±2.63.  That is, the alternative hypothesis places ½ its 

prior mass on 2.63 and ½ its mass on -2.63.   

The curve labeled UMPBT corresponds to the uniformly most powerful Bayesian test (2) that 

corresponds to a classical, two-sided test of size 𝛼 = 0.005.  The alternative hypothesis for this 

Bayesian test places ½ mass at 2.81 and ½ mass at -2.81.   The null hypothesis for this test is 

rejected if the Bayes factor exceeds 25.7.  Note that this curve is nearly identical to the “Power” 

curve if that curve had been defined using 80% power, rather than 75% power.  The Power curve 

for 80% power would place ½ its mass at ±2.80. 

The Likelihood Ratio Bound curve represents an approximate upper bound on the Bayes factor 

obtained by defining the alternative hypothesis as putting ½ its mass on ±𝑥̅, where 𝑥̅ is the 

observed sample mean.  Over the range of P-values displayed in the figure, this alternative 

hypothesis very closely approximates the maximum Bayes factor that can be attained from 

among the set of alternative hypotheses constrained to be of the form 0.5 × [𝑓(𝜇) + 𝑓(−𝜇)] for 

some density function f. 

The Local-H1 curve is described fully in the figure caption. A fuller explanation and discussion of 
this bound can be found in ref. 15. 

 

Equation 2 and Figure 2   

This equation defines the large-sample relationship between the false positive rate, power 

1 − 𝛽, type I error rate 𝛼, and the probability that the null hypothesis is true when a large number 

of independent experiments have been conducted.  More specifically, suppose that n independent 

hypothesis tests are conducted, and suppose that in each test the probability that the null 
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hypothesis is true is 𝜙.   If the null hypothesis is true, assume that the probability that it is falsely 

rejected (i.e., a false positive occurs) is 𝛼.  For the test 𝑗 = 1,… , 𝑛, define the random variable 

𝑋𝑗 = 1 if the null hypothesis is true and the null hypothesis is rejected, and 𝑋𝑗 = 0 if either the 

alternative hypothesis is true or the null hypothesis is not rejected.  Note that the 𝑋𝑗 are 

independent Bernoulli random variables with Pr(𝑋𝑗 = 1) = 𝛼𝜙.  Also for test j, define another 

random variable 𝑌𝑗 = 1 if the alternative hypothesis is true and the null hypothesis is rejected, 

and 0 otherwise.   It follows that the 𝑌𝑗 are independent Bernoulli random variables with 

Pr(𝑌𝑗 = 1) = (1 − 𝜙)(1 − 𝛽).  Note that 𝑌𝑗 is independent of 𝑌𝑘 for 𝑗 ≠ 𝑘, but 𝑌𝑗 is not 

independent of 𝑋𝑗.  For the n experiments, the false positive rate can then be written as: 

 

𝐹𝑃𝑅 = 
∑ 𝑋𝑗
𝑛
𝑗=1

∑ 𝑋𝑗 +∑ 𝑌𝑗
𝑛
𝑗=1

𝑛
𝑗=1

=
∑ 𝑋𝑗/𝑛
𝑛
𝑗=1

∑ 𝑋𝑗/𝑛 + ∑ 𝑌𝑗/𝑛
𝑛
𝑗=1

𝑛
𝑗=1

. 

 

By the strong law of large numbers, ∑ 𝑋𝑗/𝑛
𝑛
𝑗=1  converges almost surely to 𝛼𝜙, and ∑ 𝑌𝑗/𝑛

𝑛
𝑗=1  

converges almost surely to (1 − 𝜙)(1 − 𝛽).  Application of the continuous mapping theorem 

yields 

 

𝐹𝑃𝑅
a.s.
→  

𝛼𝜙

𝛼𝜙 + (1 − 𝜙)(1 − 𝛽)
. 

 

Figure 2 illustrates this relationship for various values of 𝛼 and prior odds for the alternative, 
1−𝜙

𝜙
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R code used to generate Figure 1: 

 
type1=.005 

type1Power=0.05 

type2=0.25 

p=1-c(9000:9990)/10000 

xbar = qnorm(1-p/2) 

 

# alternative based on 80% POWER IN 5% TEST 

muPower = qnorm(1-type2)+qnorm(1-type1Power/2) 

bfPow = 0.5*(dnorm(xbar,muPower,1)+dnorm(xbar,-muPower,1))/dnorm(xbar,0,1) 

 

muUMPBT = qnorm(0.9975) 

bfUMPBT = 0.5*(dnorm(xbar,muUMPBT,1)+dnorm(xbar,-

muUMPBT,1))/dnorm(xbar,0,1) 

 

# two-sided "LR" bound 

bfLR = 0.5/exp(-0.5*xbar^2) 

 

bfLocal = -1/(2.71*p*log(p)) 

 

#coordinates for dashed lines 

data = data.frame(p,bfLocal,bfLR,bfPow,bfUMPBT) 

U_005 = max(data$bfLR[data$p=="0.005"]) 

L_005 = min(data$bfLocal[data$p=="0.005"]) 

U_05 = max(data$bfLR[data$p=="0.05"]) 

L_05 = min(data$bfUMPBT[data$p=="0.05"]) 

 

# Local bound; no need for two-sided adjustment 

 

 

#plot margins 

par(mai=c(0.8,0.8,.1,0.4)) 

par(mgp=c(2,1,0)) 

 

matplot(p,cbind(bfLR,-1/(2.71*p*log(p))),type='n',log='xy', 

        xlab=expression(paste(italic(P) ,"-value")), 

        ylab="Bayes Factor", 

        ylim = c(0.3,100), 

        bty="n",xaxt="n",yaxt="n") 

lines(p,bfPow,col="red",lwd=2.5) 

lines(p,bfLR,col="black",lwd=2.5) 

lines(p,bfUMPBT,col="blue",lwd=2.5) 

lines(p,bfLocal,col="green",lwd=2.5) 

legend(0.015,100,c(expression(paste("Power")),"Likelihood Ratio 

Bound","UMPBT",expression(paste("Local-",italic(H)[1]," 

Bound"))),lty=c(1,1,1,1), 

       lwd=c(2.5,2.5,2.5,2.5),col=c("red","black","blue","green"), cex = 

0.8) 

#text(0.062,65, "\u03B1", font =3, cex = 0.9) 

 

#customizing axes 

#x axis 

axis(side=1,at=c(-2,0.001,0.0025,0.005,0.010,0.025,0.050,0.100,0.14), 
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     labels = 

c("","0.0010","0.0025","0.0050","0.0100","0.0250","0.0500","0.1000",""),lw

d=1, 

     tck = -0.01, padj = -1.1, cex.axis = .8) 

#y axis on the left - main 

axis(side=2,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 

c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd=1,las

= 1, 

     tck = -0.01, hadj = 0.6, cex.axis = .8) 

#y axis on the left - secondary (red labels) 

axis(side=2,at=c(L_005,U_005),labels = c(13.9,25.7),lwd=1,las= 1, 

     tck = -0.01, hadj = 0.6, cex.axis = .6,col.axis="red") 

#y axis on the right - main 

axis(side=4,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 

c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd=1,las

= 1, 

     tck = -0.01, hadj = 0.4, cex.axis = .8) 

#y axis on the right - secondary (red labels) 

axis(side=4,at=c(L_05,U_05),labels = c(2.4,3.4),lwd=1,las= 1, 

     tck = -0.01, hadj = 0.4, cex.axis = .6,col.axis="red") 

 

###dashed lines 

segments(x0 = 0.000011, y0= U_005, x1 = 0.005, y1 = U_005, col = "gray40", 

lty = 2) 

segments(x0 = 0.000011, y0= L_005, x1 = 0.005, y1 = L_005, col = "gray40", 

lty = 2) 

segments(x0 = 0.005, y0= 0.00000001, x1 = 0.005, y1 = U_005, col = 

"gray40", lty = 2) 

 

segments(x0 = 0.05, y0= U_05, x1 = 0.14, y1 = U_05, col = "gray40", lty = 

2) 

segments(x0 = 0.05, y0= L_05, x1 = 0.14, y1 = L_05, col = "gray40", lty = 

2) 

segments(x0 = 0.05, y0= 0.00000001, x1 = 0.05, y1 = U_05, col = "gray40", 

lty = 2) 
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R code used to generate Figure 2: 

 
 

pow1=c(5:999)/1000   # power range for 0.005 tests 

pow2=c(50:999)/1000  # power range for 0.05 tests 

alpha=0.005 # test size 

pi0=5/6  # prior probability 

N=10^6  # doesn't matter 

 

 

#graph margins 

par(mai=c(0.8,0.8,0.1,0.1)) 

par(mgp=c(2,1,0))   

 

 

plot(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-pi0)*N),type='n',ylim = c(0,1), 

xlim = c(0,1.5), 

     xlab='Power                                      ', 

     ylab='False positive rate', bty="n", xaxt="n", yaxt="n") 

#grid lines 

segments(x0 = -0.058, y0 = 0, x1 = 1, y1 = 0,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.2, x1 = 1, y1 = 0.2,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.4, x1 = 1, y1 = 0.4,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.6, x1 = 1, y1 = 0.6,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.8, x1 = 1, y1 = 0.8,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 1, x1 = 1, y1 = 1,lty=1,col = "gray92") 

 

 

lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-

pi0)*N),lty=1,col="blue",lwd=2) 

odd_1_5_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

alpha=0.05 

pi0=5/6  

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-

pi0)*N),lty=2,col="blue",lwd=2) 

odd_1_5_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

 

 

alpha=0.05 

pi0=10/11 

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-pi0)*N),lty=2,col="red",lwd=2) 

odd_1_10_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

alpha=0.005 

pi0=10/11 

lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-pi0)*N),lty=1,col="red",lwd=2) 

odd_1_10_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

 

alpha=0.05 

pi0=40/41 

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-

pi0)*N),lty=2,col="green",lwd=2) 

odd_1_40_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

alpha=0.005 

pi0=40/41 
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lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-

pi0)*N),lty=1,col="green",lwd=2) 

odd_1_40_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

 

 

 

 

#customizing axes 

axis(side=2,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 

c("","0.0","0.2","0.4","0.6","0.8","1.0"), 

     lwd=1,las= 1,tck = -0.01, hadj = 0.4, cex.axis = .8) 

axis(side=1,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 

c("","0.0","0.2","0.4","0.6","0.8","1.0"), 

     lwd=1,las= 1, tck = -0.01, padj = -1.1, cex.axis = .8) 

 

 

 

legend(1.05,1,c("Prior odds = 1:40","Prior odds = 1:10","Prior odds = 

1:5"),pch=c(15,15,15), 

       col=c("green","red","blue"), cex = 1) 

 

 

###############  Use these commands to add brackets in Figure 2 

 

library(pBrackets) 

 

 

#add text and brackets 

text(1.11,(odd_1_5_2+odd_1_40_2)/2, expression(paste(italic(P)," < 0.05 

threshold")), cex = 0.9,adj=0) 

text(1.11,(odd_1_5_1+odd_1_40_1)/2, expression(paste(italic(P)," < 0.005 

threshold")), cex = 0.9,adj=0) 

brackets(1.03, odd_1_40_1, 1.03, odd_1_5_1, h = NULL, ticks = 0.5, 

curvature = 0.7, type = 1, 

        col = 1, lwd = 1, lty = 1, xpd = FALSE) 

brackets(1.03, odd_1_40_2, 1.03, odd_1_5_2, h = NULL, ticks = 0.5, 

curvature = 0.7, type = 1, 

         col = 1, lwd = 1, lty = 1, xpd = FALSE) 

 

 

 

 

 

 


