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Abstract. Climate scientists routinely rely on averaging over time or space to simplify complex information and to
concisely communicate findings. Currently, no consistent definitions of ‘warm’ or ‘cool’ seasons for southern Australia
exist, making comparisons across studies difficult. Similarly, numerous climate studies in Australia use either arbitrarily
defined areas or the Natural Resource Management (NRM) clusters to perform spatial averaging. While the NRM regions
were informed by temperature and rainfall information, they remain somewhat arbitrary. Here we use weather type
influence on rainfall and clustering methods to quantitatively define climatic regions and seasons over southern Australia.
Three methods are explored: k-means clustering and two agglomerative clustering methods, Ward linkage and average
linkage. K-means was found to be preferred in temporal clustering, while the average linkage method was preferred for
spatial clustering. For southern Australia as a whole, we define the cool season as April–September and warm season as
October–March, though we note that a three-season split may provide more nuanced climate analysis. We also show that
different regions across southern Australia experience different seasons and demonstrate the changing spatial influence of
weather types with the seasons, which may aid regionally or seasonally specific climate analysis. Division of southern
Australia into 15 climatic regions shows localised agreement with the NRM clusters where distinct differences in rainfall
amounts exist. However, the climate regions defined here better represent the importance of topographical aspect on
weather type influence and the inland extent of particular weather types. We suggest that the use of these regions would
provide consistent climate analysis across studies if widely adopted. A key requirement for climate scientists is the
simplification of data sets into both seasonally or regionally averaged subsets. This simplification, by grouping like
regions or seasons, is done for a number of reasons both scientific and practical, including to help understand patterns of
variability, underlying drivers and trends in climate and weather, to communicate large amounts of data concisely, to
reduce the amount of data required for processing (which becomes increasingly important with higher resolution climate
model output), or to more simply draw a physical boundary between regions for other purposes, such as flora and fauna
habitat analysis, appropriate agricultural practices or water management.
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1 Introduction

The grouping of climate regions has been a problem long
considered by climate and weather scientists, with the physical-
ity of such groupings often limited by the type of data used to
develop the regionalisation (for example by relying on just
rainfall or temperature data at coarse resolutions or as station
data in earlier attempts). As a result, these subsets of regions or
seasons often included a level of subjectively defined groupings
of data or methods of grouping that cannot take into account
certain physical characteristics of the climate.We suggest that if
scientists are tying to understand the physical reason for trends

or variability in the weather or climate system (or systems
dependant on weather and climate), inappropriate or arbitrary
subsetting may dampen true signals or enhance false ones.

With increasing high-quality observational records and
modelling capacity, climate data are becoming ever more
comprehensive in time, space and information. Although the
statistical methods employed in this study are well established
within climate science, the application of such methods to these
new and comprehensive data sets is providing important
knowledge and new perspectives. For example, Drosdowsky
(1993) used clustering to define rainfall regions over Australia,

CSIRO PUBLISHING

Journal of Southern Hemisphere Earth Systems Science, 2021, 71, 92–109

https://doi.org/10.1071/ES20003

Journal compilation � BoM 2021 Open Access CC BY-NC-ND www.publish.csiro.au/journals/es

https://orcid.org/0000-0002-2752-0845
https://orcid.org/0000-0002-2752-0845
https://orcid.org/0000-0002-2752-0845
https://orcid.org/0000-0002-1478-2512
https://orcid.org/0000-0002-1478-2512
https://orcid.org/0000-0002-1478-2512
https://orcid.org/0000-0002-1436-7802
https://orcid.org/0000-0002-1436-7802
https://orcid.org/0000-0002-1436-7802
https://orcid.org/0000-0002-9631-8181
https://orcid.org/0000-0002-9631-8181
https://orcid.org/0000-0002-9631-8181
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en_US


but was significantly limited by the quality and spatial extent of
the data available at the time. Recent examples where clustering
has been used with high-quality data include for the develop-
ment of appropriate statistical modelling of rainfall extremes for
different regions across Australia (Saunders et al. 2020) or to
understand the synoptic effects of the El Niño Southern Oscilla-
tion (ENSO) over southeastern Australia (Hauser et al. 2020).
In this work, we evaluate three different clustering methods and
apply them in time and space using a newdata set of dailyweather
types across southern Australia (Pepler et al. 2020). While we
note that a subjective decision is still required for cluster analysis
(as discussed in themethods section), the actual allocation of data
points to a cluster is entirely quantitative. This quantitative
allocation is where cluster analysis provides more meaningful
results than the more subjectively chosen clusters, such as those
discussed below.

In past analysis, ‘warm’ and ‘cool’ or ‘wet’ and ‘dry’ seasons
(or clusters of time) have been used to provide information on the
characteristics and trends of two distinct times of year. These
half-year seasons are typically referred to as the ‘warm’ and ‘cool’
seasons inAustralian climate studies, rather than ‘wet’ or ‘dry’, as
the latter labels canmean quite different periods depending on the
location (e.g. the wet period in northern Australia coincides with
thewarm season, while in southernAustralia, it coincideswith the
cool season). The ‘warm’ and ‘cool’ season terminology is used in
this study, andwhile describing different seasons on a temperature
basis, is also applied to rainfall indices.

The South East Australia Climate Initiative (CSIRO 2012),
the Climate Change in Australia (CCIA) project (CSIRO and
Bureau of Meteorology 2015) and the Victorian Climate
Initiative (Hope et al. 2017) have used the months November–
March as the ‘warm’ season and April–October as the ‘cool’
season. However, other researchers have used a varying array of
seasonal breakdowns including (but not limited to) considering
the cool season as:May–October (Grose et al. 2015; Pepler et al.
2019b, 2020), May–September (Larsen and Nicholls 2009),
April–October (Pook et al. 2006; Risbey et al. 2009b; Rauniyar
and Power 2020), April–September (Freund et al. 2017), June–
October (Pepler et al. 2014), May–November (Fiddes and
Timbal 2017) or a more traditional autumn plus winter approach:
March–August (Nicholls 2009). In most of these studies, the
warm season was defined as the opposite months. The warm
seasonhas also been defined as the traditional spring plus summer
approach to best represent the period influenced by the ENSO
(for example in Lim et al. 2019).

We note that the definition of a season can depend on the
topic of interest and extends beyond the climate into areas such
as hydrology and water resource management. For example,
many water resource managers define a ‘water year’ instead of a
normal calendar year, where the ‘wet’ or ‘filling’ season
encompasses the months that climatologically have the greatest
streamflow. Similarly, seasonal definitions can also extend to
the biosphere (e.g. breading or flowering seasons), including
agricultural growth seasons and how people interact with their
environment – for example: Indigenous seasonal calendars.
While we note that such definitions may help simplify the
process of evaluating resources and aid decision making, we
suggest that such seasonal definitionsmay not be appropriate for

understanding the physical weather and climate trends and
variability behind the changes in the field of interest, if that
field is intrinsically dependant on weather and climate. A clear
and physically-based definition of seasons for southern Aus-
tralia as a whole and for the regions within will enable more
meaningful analysis of such physical mechanisms and easier
comparison across studies leading to greater transferability of
knowledge.

In a similar vein, analysis or averaging of climate data over
broad regions is an important aspect of providing useable
information to stakeholders or the scientific community.
Australia experiences a variety of climatic zones which are
heavily influenced by regional topography and nearby oceans.
For example, we can see that the topography shown in Fig. 1a is
clearly influencing total annual rainfall along the east coast shown
in Fig. 1b, with large differences depending on the aspect relative
to the mountains. However, analysis of rainfall and temperature
alone cannot distinguish between regions that experience or are
influenced by fundamentally different weather. Several current
methods that are used to divide Australia based on climate
information are discussed below. We also note that a number of
studies in the literature use arbitrarily defined regions of southern
Australia for their climate analysis, for exampleDey et al. (2019).

For biodiversity, land and water management, Australia is
divided into Natural Resource Management (NRM) regions,
shown by white contours in Fig. 1c. The boundaries of these
regions are somewhat arbitrary, being defined according to land
management authorities on a state by state basis, rather than by
climate information.

In the CCIA project undertaken by CSIRO and BoM,
Australia was divided into eight clusters, in part based on these
NRM regions, known as the ‘NRM clusters’ and shown in
colours in Fig. 1c. The method used to identify these eight
regions considered climatic and biophysical information from
Stern et al. (2000), who provided a modified version of the
Koeppen climate regions for Australia. Where possible the
clusters were aligned with the NRM regions (of 2013)
(CSIRO andBureau ofMeteorology 2019). TheseNRMclusters
are now regularly used in climate science to provide regional
information to stakeholders and authorities (Freund et al. 2017;
Di Virgilio et al. 2019; Grose et al. 2020).

Koeppen climate classifications are determined based on
seasonal rainfall and temperatures, but do not take into account
broader scale climatic or weather type influences. An updated
Koeppen climate classification scheme is shown in Fig. 1d (Peel
et al. 2007). By comparing Fig. 1b with Fig. 1d, we can see that
the influence of rainfall is clearly evident. One significant
limitation of Koeppen climate regions is its inability to differen-
tiate between topographical aspects. It is well understood that
the east/west or north/south aspects of the Great Dividing Range
(GDR) experience significantly different rainfall regimes (e.g.
Timbal 2010; Fiddes et al. 2015). Systems such as cold fronts
and cyclones embedded in the westerly storm track or cut-off
lows, also propagating from the west, play an important role to
the west of the GDR (Risbey et al. 2009a, 2013). On the other
hand, cyclones that propagate towards Australia from the east,
such as East Coast Lows or moist onshore flow, have a much
greater influence on the east coast (Pepler et al. 2014).
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In this work, a new weather types dataset (Pepler et al. 2020)
allows us to quantitatively determine for the first time the
seasonal periods and spatial regions of southern Australia in
which rainfall is brought by similar weather types. Using this
information we can evaluate commonly used regionalisation
methods and assess whether they are appropriate for continued
use in climate science.

2 Data and methods

2.1 Weather type and rainfall data

A new dataset of weather types that influence rainfall in
southern Australia (south of 258S), presented in Pepler et al.
(2020), is used for this study. The Pepler et al. (2020) dataset
uses multiple automated methods of front and low pressure
(cyclonic) system detection, combined with environmental
conditions relevant to thunderstorms (Dowdy 2020) as well as
detection of warm fronts and a dataset of anticyclones (Pepler
et al. 2019a, 2019b) to provide a comprehensive summary of the
daily weather types important for rainfall for southern Australia.
While each of these weather types are represented, fronts,
cyclones and thunderstorms are also considered when they

occur concurrently, resulting in compounding events with large
impacts on rainfall (e.g. front-thunderstorm events). Pepler et al.
(2020) use the ERA-Interim (Dee et al. 2011) product at a
resolution of 0.758 to produce a gridded, daily dataset of weather
types for the period of 1979–2015. Rainfall has been associated
with theseweather types using theAustralianWater Availability
Project (AWAP) gridded (0.058), daily rainfall data set (Jones
et al. 2009), shown in Fig. 1b. Maximum temperatures have also
been taken from the AWAP dataset.

By using a comprehensive dataset of weather types for every

day over 1979–2015 for southern Australia, we have been able

to identify unique regions of Australia in the most robust way

currently available. However, it is important to note that there

are a large number of ways to potentially classify rain-bearing

systems in Australia, including the role of upper-level systems

such as cut-off lows (Risbey et al. 2013), distinguishing between

lows with a tropical or extratropical nature (Cavicchia et al.

2019), or other rain-bearing systems such as atmospheric rivers

and northwest cloudbands (Reid et al. 2019), so the choices used

for defining weather systems will likely influence the results of

the clustering.

(a) (b)

(c) (d)

Topography (m) Annual total rain (mm)

NRM regions Koeppen climate regions

0 200 400 600 800 1000 1200 1400 1600

EC SS SSWF R CS MB

1800 5 10 25 50 100 200 300 400 600 800 1000 1400 1800 2200

Temperate Grassland Desert Subtropical

Fig. 1. (a) Topography (m); (b) median (1979–2015) annual total rain (mm); (c) the Natural Resource Management (NRM) regions as of 2020

shown in white boundaries and the NRM clusters used for the Climate Change in Australia report shown in colours: East Coast (EC) in purple;

Southern Slopes (SS) in blue; Southern and South-Western Flatlands (SSWF) in green; Rangelands (R) in brown; Central Slopes (CS) in yellow and

Murray–Darling Basin (MB) in orange; (d) the Koeppen climate regions where blue colours indicate temperate regions; greens indicate grasslands;

browns indicate deserts and purples indicate subtropical regions.
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Theweather types data in this study have been organised into
the proportion of rain each weather type delivered to each grid
point per month (Fig. 2). The major rain-bearing weather types
(fronts, cyclones and thunderstorms), and the combinations
thereof (e.g. cyclone-fronts or cyclone-fronts-thunderstorms),
each provide a point to cluster on. Little change in results are
found when non-major rain-bearing weather types (highs and
warm fronts) are considered their own data point compared to if
they are included into the ‘other’ category. Hence, non-major
rain-bearing weather types, undefined types and unconfirmed
cyclones or fronts are grouped into an ‘other’ category. Subse-
quently, at each grid cell we have eight fractions of the total
rainfall.

The Euclidean distance between the fractions of rainfall at
different cells is used for clustering. Using the proportion of rain
associated with each weather type enables us to understand
southern Australia’s seasons and climate zones with respect to
rainfall and to easily perform averaging statistics over regions.
The choice of distance is vitally important to the final assign-
ment of grid cells to clusters, and here we make a conscious
decision to use proportions of rainfall instead of totals to
calculate the distance. This ensures the final clustering is related
to all weather types, and avoids the situation where the rainfall
delivered by oneweather type dominates all others, dwarfing the
contribution of the other weather types in the Euclidean distance
calculation, and biasing the resulting regions. The tradeoff is that
in using proportions we do lose some sensitivity. For example, if
one point has a 10% contribution, we cannot distinguish whether
this is 1mm in 10mm, or 100mm in 1000mm. While normal-
isation or other statistical processing, such as principal component

analysis (PCA), can be used to ‘flatten’ the data, for rainfall at a
daily scale this is non-trivial. Hence proportionality was used.

Other distances were also considered, including using the the
frequency of weather types (without the relationship to rainfall).
However, a frequency based distance was unable to capture
important physical influences, such as from topography. Also
given neither totals or proportions reflect the dry climate, we
explored adding a ninth component to the vector of 8 weather
types. The ninth point represented the normalised total rainfall
of the period (annual or seasonal) in an attempt to reduce
sensitivity in low rainfall regions. The results were very similar
using this ninth component and hence are not shown.

For the seasonal analysis, we have calculated the monthly
spatial average rainfall proportion associated with each weather
pattern (resulting in a sample size of 12), upon which the
clustering was performed. For the spatial analysis, the average
annual or seasonal proportion of rainfall associated with each
weather type was calculated for each grid box over the specified
region.

2.2 Clustering methods

There are a number of different methods that can be used to
identify spatially coherent regions with similar climate char-
acteristics. One common approach is to identify areas that have
similar temporal variability, such that the rainfall within the
region is strongly correlated. This is frequently achieved
through PCA or empirical orthogonal functions (EOFs), and is
often applied to spatial data such as sea surface temperatures
(Saji et al. 1999; Yuan Zhang et al. 1997). This approach has
been also applied to identifying regions of Australia with
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other (Oth) that includes anticyclones, warm fronts, unconfirmed cyclone/front, and undefined systems.
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coherent rainfall patterns (e.g. Drosdowsky 1993). PCA can also
be used to ‘flatten’ a large array of data (especially when
considering multiple fields) into a subset that can be more easily
treated using Euclidean clustering analysis (Wilks 2011; Jiang
et al. 2012). Studies interested in individual extreme events also
frequently apply self-organising mapping (SOM) to large
gridded datasets such as mean sea level pressure in order to
divide the data into a small number of coherent spatial patterns
(e.g. Alexander et al. 2010; Gibson et al. 2017).

In this paper, rather than identifying regions with similar
temporal variability, we instead want to identify regions with
similar rainfall characteristics. This means that rather than areas
such as south west Western Australia and south east Australia
being separated due to their different relationships with drivers
such as ENSO (as in Drosdowsky 1993), we can identify areas
which are affected by fundamentally the same types of weather,
regardless of their spatial location. To achieve this we use two
distinct clustering methodologies: k-means clustering and hier-
archical clustering. These methods of clustering are a form of
unsupervised learning that is highly flexible and can be used
with minimal assumptions. This makes it well suited to simpli-
fying large datasets and uncovering hidden structure (Hastie
et al. 2001). We further note that k-means clustering can be
considered a special subset of SOM (Gibson et al. 2017).

2.3 K-means clustering

K-means clustering is one of the most popular and commonly
used methods for finding structure within a dataset (Hastie et al.
2001; Wilks 2011). The k-means method separates a set of N
points into k clusters byminimising the sumof squared distances
within each cluster. For Euclidean distances, this is the same as
minimising the within cluster variances or the inertia (sum of
squares).

2.4 Hierarchical clustering

Agglomerative-hierarchical clustering in contrast, takes a
bottom-up approach (Hastie et al. 2001). Each point initially
forms its own cluster, two clusters are merged together accord-
ing to a linkage criterion and this merging of cluster pairs is
repeated until all points are in the same cluster. This sequential
merging of clusters creates a hierarchical tree-like structure, also
known as a dendrogram (see Fig. 3). The final assignment of
points to clusters is determined by cutting across the dendro-
gram and grouping points in the same branch of the tree. At low
cut heights, the strength of association between points in a
cluster is strongest and lots of small clusters are produced. At
higher cut heights, the strength of association is weaker, and
fewer, larger clusters are created.

The linkage criterion determines which two branches
(clusters) are merged in the tree, with different linkage criterion
producing different dendrograms and different clusters. Two
common linkage criteria for merging branches areWard linkage
and average linkage. The Ward linkage is similar to k-means.
The two clusters with the smallest sum of squared distances
between points will be merged. For the average linkage, the two
clusters with the smallest average distance between the clusters
are merged.

2.5 Selecting the number of clusters

Deciding upon the number of clusters can be a somewhat
subjective process, and, strictly speaking, there is no ‘true’
structure to recover. Therefore, there may not be a definitive
answer to how many clusters to select. Different statistical
methods can be used to aid inmaking a decision about the number
of clusters. These methods are subject to interpretation and
different methods may infer different numbers of clusters. It is
therefore equally important to take into consideration the physical
meaning of the resultant clusters (e.g. do they make sense with
whatwe know about the region’s topography, dominant flow?) as
well as the practicality of the clusters (e.g. are the clusters defined
useful for end users, are they too large or too small?).

Several methods have been used to help identify an appropri-
ate number of clusters for this work in an effort to make a less
subjective decision. The elbow method plots the inertia over a
range of cluster numbers. The optimal number of clusters can be
found where an ‘elbow’ can be identified in a plot of the inertia,
i.e. the point after which the inertia start decreasing linearly.
This method is particularly useful for k-means clustering. Three
other metrics for cluster number evaluation were employed in
this work, including the Calinski–Harabasz score, the Silhouette
score and the Davies–Bouldin index (Calinski and Harabasz
1974; Rousseeuw 1987; Davies and Bouldin 1979). However,
these metrics provided little additional or useful guidance in the
applications of this work and subsequently are not shown or
discussed. For hierarchical clustering, multiple cut heights were
considered and user knowledge based on known topographic
and climate features was used to make a final decision of the
number of clusters. The Pedregosa et al. (2011) python package
was again used to perform each of these analysis.
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2.6 Method considerations

There are some implicit assumptions and statistical considera-
tions to be aware of when choosing between the different cluster
methods. For example, k-means is susceptible to outliers and has
underlying Gaussian assumptions that influence the resulting
clusters. This can create problems for irregularly shaped or high-
dimension data. In contrast, for flatter point geometries (lower
dimensional data), k-means often creates clusters of similar size.
This characteristic is undesirable for the application of spatial
clustering in this study, as coastal clusters are expected to be
smaller compared with large inland desert clusters.

The Ward linkage is similar to k-means, in that it also
minimises the variancewhen using anEuclidean distance. Again,
as data underpinning thisworkdonot necessarily have aGaussian
distribution, the clustering may not reflect the application well.
This is why the average linkage is also considered. The average
linkage is well suited for both Euclidean and non-Euclidean
distances. It is also flexible in the sense that the clusters can occur
of uneven sizes.

In contrast to k-means, in hierarchical clustering once points
are assigned to a branch and grouped, the points cannot be
separated again later. In some instances this may be considered
a drawback. For this application, nearby points in space are
expected to experience similar weather. The imposed hierarchy
should therefore help ensure the spatial coherence of clusters.
Also the bottom-up approach should provide useful information
about how regions evolve and howdifferentweather type impacts
occur on different spatial scales.

3 Annual average clusters for southern Australia

To identify the regional clusters for southern Australia, we have
calculated the annual mean proportion of rainfall brought by
each weather type for each grid box. Clustering was performed
for the three methods discussed in Section 2. The k-means and
Ward methods produced a remarkably similar regional break-
down of southern Australia (not shown), irrespective of the
number of clusters. However, as suggested in Section 2, both
these methods are biased toward clusters of a similar size
and susceptible to spurious allocation of samples to clusters.
In particular, north–south banding of clusters in the dry regions
of southern Australia was found, in part demonstrating the
increasing dominance of thunderstorms heading northwards
and their localised nature. While the increasing northwards
dominance of thunderstorms is a physically robust result, we
do not believe that the regions produced by k-means and Ward
clustering over the desert regions (where less than 250mm
year�1 of rain falls) are as climatically different as these
methods suggest. By comparison, the average linkage method
showed a reduced tendency towards north–south banding in the
dry regions of Australia, while similarly capturing many of
the clusters found in wetter parts of Australia. For this reason,
the average linkage method will be used for spatial clustering
going forwards.

To investigate an appropriate number of clusters to choose
from, the dendrogram using the average linkage method is
shown in Fig. 3. Each vertical line, or branch, represents a
cluster at a certain step in the algorithm, where the bottom

represents individual grid points at the beginning through to the
point where just one cluster exists at the top. The horizontal lines
show where in this processes two branches have been merged to
form a larger cluster. We can use dendrograms to inform us of
what the best ‘cut height’ or number of clusters is, by looking at
how much distance (on the y-axis) exists between merges
(horizontal lines). A larger distance indicates a greater differ-
ence between the two clusters being merged. The dendrogram is
also able to provide information about when the clusters have
been merged, their size and their structure.

Seven branches have been identified in Fig. 3 (shown by the
colours) in which the distance from the most recent merge of
clusters is relatively large. From the structure of the dendrogram
we should expect three large clusters (dark blue, red and light
brown), two small clusters (light blue and dark brown) and two
very small clusters (note that the purple branch is actually two –
see the two grey lines above), highlighting the average linkage
method’s ability to form clusters of uneven size.

When the seven clusters are plotted spatially (Fig. 4 – note
the naming convention A–annual, cluster number and total
number of clusters), we can see the three large clusters make
up the interior of southern Australia, while the remaining four
smaller clusters are restricted to coastal regions.We note that the
smallest cluster (A5(7)) is located in the north-west corner of the
plot, over the peninsulas surrounding Shark Bay in Western
Australia. The Shark Bay cluster sees a large proportion of
rainfall from fronts (26%) with little thunderstorm activity. For
large-scale climate analysis, merging this region into the west
coast cluster (A7(7)), which also receives a large amount of
rainfall from frontal activity, is deemed practically appropriate
if using coarse resolution gridded products. However for
regional-scale analysis, we recommend that this region remains
as an individual cluster as it has been found by the clustering to
have an independent influence from rain-bearing weather
systems. This recommendation is also applied to the remaining
small clusters identified in this study unless otherwise stated.

Similar to the Shark Bay cluster, the west coast cluster is
dominated by frontal activity and appears to show the extent of
frontal dominance intoWestern Australia’s interior. This cluster
also aligns well with the region that experiences the most
rainfall, however, the boundaries of A7(7) and A2(7) do not
align well with NRM regions in south-western Australia.

On the east coast, cluster A3(7) is clearly constrained by the
GDR, aligning it well with the east coast NRM cluster.
Interestingly, however, the east coast cluster does not extend
into Victoria, likely highlighting the dominant nature of moist
onshore flow generating rainfall along the mid-east coast, and
less so along the south-east coast. Similarly, for theA4(7) cluster
on the Tasmanian east coast, the weather types of influence are
also clearly influenced by the topography, resulting in a clear
lack of rain on the leeward side of the mountains (see Fig. 1c,d).

The three interior clusters, A1(7) (north-east interior), A2(7)
(southern coast) and A6(7) (north-west interior) show a degree
of north–south banding, however in the two northern clusters an
east–west divide is also apparent. Comparing the north-west and
north-east interior clusters, we can see that they are both
dominated by thunderstorm only activity, bringing 28% of rain
to each region. However, the north-west interior cluster is also
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heavily influenced by cyclone-thunderstorm events making up
another 27% of rain, compared to 15% for the north-east interior
cluster, which appears to have more front-thunderstorm and
cyclone-front-thunderstorm events. While some arguments
could be made for the merging of these two regions given their
dependence on thunderstorms, similar to that of the NRM
clusters, we suggest that the differences between cyclone and
frontal activity warrants separate clusters.

The clusters presented inFig. 4 represent the structure shown in
thedendrograminFig. 3whenahigh cutheight is taken.However,
our knowledge of these areas suggests that different climate
regions exist within some of the larger clusters, in particular the
southern coast cluster, which may be of use for regional climate

studies. To overcome this issue, we take a lower cut height in the
dendrogrampresented in Fig. 3. Figure 5 presents clustering using
the average linkage method over 15 clusters. The number 15 was
selected after careful consideration as it provided the best
representation of physical climate regions to our knowledgewhile
also ensuring meaningful differences between the clusters.

At first glance, the clusters presented in Fig. 5 agree
relatively well with the NRM clusters shown in black (and in
Fig. 1c). The NRM clusters were informed by a previous version
of the Koeppen climate regions and so by nature, the clusters
presented here also agree well with the broader Koeppen
climates. This result is encouraging, given that the dataset used
to perform clustering in this study, unlike the Koeppen climate
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zones, has no knowledge of either temperature or total rainfall.
With this in mind, we can be satisfied that the regions developed
in this study are a good reflection of different climate regions
with the additional benefit of weather type information.

More specifically, we can see that the southernmost cluster
found in Fig. 4 has now been separated into six separate clusters.
The two northern interior clusters presented in Fig. 4 have been
further split into twomain clusters each. Examination of clusters

A2(15) and A8(15) in Fig. 5 indicate that these two regions do
represent different climatic regimes, with increasing thunder-
storm activity northwards and increasing cyclone and front
activity southwards. Clusters A6(15) and A12(15) show an
equal proportion of rainfall from thunderstorms, while further
north a greater dependence on cyclone-thunderstorm activity
is the dominant source of rainfall. However, A12(15) is in a
region of Australia with very low observation density (and low
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rainfall), impacting the reliability of the gridded rainfall products
over the area (Jones et al. 2009; King et al. 2013). Hence lower
confidence is given to the results of cluster A12(15).

Over south-western Australia and south-eastern Australia,
clusters A3(15), A4(15) and A7(15) together align relatively
well with the NRM clusters over the respective regions. While
these three clusters discontinuously span the extent of southern
Australia, the individual regions shown are sensible given current
climate knowledge. Furthermore, the spanning of these clusters
over both south-western and south-eastern Australia supports the
zones identified in the Koeppen climate regions (Fig. 1d) as well
as current thought that the two regions have many climatic
similarities in terms of both trends and variability. However,
although from this analysis we have found that these split regions
are impacted by similar types of weather, we know that the
origins of theseweather types are different and that some climatic
or physical characteristics are also fundamentally different
(for example, the role of topography in the two regions of cluster
A3(15)). For this reason, we suggest that the physically separated
region of clusters A3(15), A4(15) and A7(15) may, when
appropriate, be considered as separate climate regions.

More specifically, over Victoria, clusters A3(15), A4(15)
and A7(15) reflect remarkably well the division of the state
presented in Hope et al. (2017) and Timbal et al. (2017),
primarily forced by theGDR. In addition, Cluster 4, over eastern
Australia, reflects well some of the most productive agriculture
regions, including much of the southern Murray–Darling Basin.
Over south-western Australia, cluster A15(15) is heavily influ-
enced by frontal activity where the majority of rainfall for the
region is received (Hope et al. 2015), while clusters A4(15) and
A7(15) show amoremixed contribution of rainfall fromweather
types, with thunderstorms more important in A4(15) and
cyclones and fronts in A7(15).

Two very small clusters are found over north-west Western
Australia, including the Shark Bay region (A10(15) in Fig. 5)
previously discussed as well as a region along the north-western
coastline, A14(15). Cluster A14(15) is somewhat comparable to
A15(15) and A10(15) with respect to front only activity, though
some differences remain when considering the combined
weather events. Again, given their very small areal representa-
tion, merging clusters A10(15) and A14(15) into A15(15) and
A9(15) respectively is deemed appropriate for instances where
coarse resolution gridded products are being used.

Along themid-east coast, twomain clusters have been found,
clusters A5(15) and A13(15). Both clusters receive a large
proportion of rain from the ‘other’ category. Easterly onshore
winds in this region produce a proportion of this ‘other’ rainfall
(Pepler et al. 2014), which, if they do not generate thunderstorm
activity, are unable to be classified with this data set. If we
analyse the breakdown of the ‘other’ rainfall in cluster A5(15),
we find that 11% of rainfall is associated with a nearby
anticyclone, 6% from a warm front, and 4% each for uncon-
firmed cyclones/fronts or undefined weather types. Cluster
A5(15) also sees a relatively large proportion of rainfall from
cyclone only and cyclone-thunderstorm events, likely to repre-
sent the influence of East Coast Lows, which produce a large
proportion of rainfall in the southern half of the eastern seaboard
(Pepler et al. 2014). In contrast, thunderstorm-related types

contribute a larger proportion of rainfall in cluster A13(15)
which is more subtropical in nature (Fig. 1). The ‘other’ weather
type category is approximately equally split between the four
subcategories, indicating that anticyclones are playing a less
important role in cluster A13(15).

Figure 5 shows that cluster A11(15) has been separated from
A13(15). Both clusters have an important source of rainfall from
thunderstorms, however A11(15) has more rainfall from the
‘other’ category, which also breaks down approximately equally
into the four subcategories. In additional, A11(15) receives
significantly more rainfall than A13(15) (median of 1460mm
year�1 compared to 1015mm year�1), and hence it is interesting
that this has been picked up by the clustering method. However,
given the limited areal coverage ofA11(15),we considermerging
this cluster with A13(15) appropriate for large-scale climate
analysis, although we note that for other purposes this may not
be desirable.

These results have found 15 distinct climatic regions of
varying sizes annually. However, we note that these regions
may not be stationary as different weather types affect different
regions throughout the year. For example as the westerly storm-
track moves equatorwards during winter, cyclones and fronts are
more likely to effect southern parts of Australia, while warmer
temperatures over the summer months provide better conditions
for thunderstorm development. Subsequently, in the next section,
we evaluate the southern Australian seasons, again using cluster-
ing, but in time instead of space. With quantitatively defined
seasons,we repeat the spatial clustering for each season in order to
detect how these climate regionsmay change throughout the year.

4 Defining southern Australia’s seasons by weather type

In order to identify the best definition of a season, we are using
the monthly mean proportion of rainfall attributed to each
weather type, resulting in a sample size of 12. The three methods
of clustering described in Section 2 were evaluated. Little
practical guidance was provided by the cluster number evaluation
metrics (theCalinski–Harabasz score, the Silhouette score and the
Davies–Bouldin index), each of which suggested that 12 clusters
(of 12 samples) was the most suitable. For this reason, we have
focused on the elbow plot for the k-means method and dendro-
grams for theWard and average linkagemethods, shown inFig. 6.

Figure 6a shows a weak elbow at around four clusters, after
which the distances more linearly decrease. The structure of the
Ward linkage dendrogram (Fig. 6b) suggests that there are two
seasonal clusters for southern Australia. The average and Ward
method dendrograms are similar in structure, however, the
timing of amalgamation varies. The average dendrogram shows
a cluster with just a single month, which also occurs for k-means
when four clusters are selected. For this work, we do not
consider a single month to be representative of a season. Hence,
we show below the seasonal clustering for three seasons (Fig. 7),
where the Ward and average linkage hierarchical methods and
the k-means non-hierarchical method provide the same results.

Figure 7a divides the year into an ‘early summer’ from
October–January (Cluster 3), a ‘late summer’ from February–
April (Cluster 1) and a ‘winter’ season from May–September
(Cluster 2). The early summer season receives the most rainfall
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of the three seasons (32.9mmmonth�1), which is largely a result
of the combination of cyclones, fronts and thunderstorms
(bringing 26% of rain, see Fig. 7d). Other weather types
that include thunderstorms (thunderstorm only, cyclone-
thunderstorm or front-thunderstorm combinations) make up
the majority of the remaining rainfall. The early summer season
is also the warmest compared to the late summer and winter,
with average maximum temperatures of 318C, 308C and 208C
respectively. Late summer rainfall is, on average, slightly lower
than the early summer rainfall (32.3mm month�1) and is
dominated by thunderstorm only events, making up 30% of
rainfall. The late summer season receives less rainfall from
combined events (cyclone-thunderstorm and cyclone-front-
thunderstorm) than the early summer, and a higher proportion
of rainfall on ‘other’ days. The winter season is the coolest and
driest (30.5mmmonth�1) cluster and receives less rainfall from
thunderstorms than the warm seasons. Instead, this season
receives an increased proportion of rainfall from front-only
(11%) and cyclone only (6%) events, as well as an increase in
unclassified (17%) rainfall, which is predominantly associated
with high pressure systems and warm fronts.

The division of the annual cycle into three seasons provides
some practical purpose for climate science. For example, in
southeastern Australia, autumn (March–May) rainfall has been
found to have the largest declines in rainfall in the region
(Nicholls 2009; Timbal 2009; Dey et al. 2019), a considerable
concern for the agricultural growing season (Pook et al. 2009).

Having more appropriately defined seasons may help under-
stand these trends in greater detail and without confounding
influences. The breakdown into three seasons here may also
reflect the diverse nature of climates found across southern
Australia.

While a three season breakdown can be useful, a two season
breakdown is commonly used in recent climate science (as
discussed in the introduction) and hence is also provided here.
The definition of the two seasons varies depending on clustering
technique. The k-means method suggests two evenly distributed
seasons: a ‘warm’ season of October–March and a ‘cool’ season
of April–September. Alternatively, both the hierarchical meth-
ods suggests a warm season of October–April, and a cool season
of May–September. One important difference between these
methods is in the ability for k-means to move samples into
different clusters throughout the iterative process in order to
minimise the inertia. For hierarchical methods, once a sample is
grouped it cannot change, even if it may fit better elsewhere, as
seen from the dendrograms. This strictness in the hierarchical
clustering is beneficial for spatial clusters, as discussed in
Section 2, though less so for temporal clusters. We suggest in
this instance that the k-means method may better reflect the true
seasonal distribution and these results are presented in Fig. 8.

Figure 8c shows that the warm season (October–March), is
dominated by thunderstorm activity both in isolation (22%) and
in combinations with cyclones and fronts (22%). The cool
season (April–September) shows reduced thunderstorm activity
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and a higher proportion of front only activity, cyclone only
events and ‘other’ weather events.

5 Seasonal non-stationarity of climate regions

The quantitative breakdown of seasons performed above now
allows us to examine the non-stationarity of the climate regions
for the first time. For this section, we employ the average linkage
method, as for the annual climate regions clustering in Section 3,
and we use the two season breakdown found in Section 4:
October–March (warm) and April–September (cool). Dendro-
grams of both seasons (not shown) indicate structures with six
separate groups. However, as for the annual region, we under-
stand that greater climate regionality exists than what the six
groups provide (not shown). For this reason, eight clusters have
been selected and are believed to appropriately represent the
climate regions of southern Australia, while reducing unphysi-
cal behaviour over desert regions.

For the warm season, Fig. 9 shows eight clusters of varying
size with some interesting differentiations. The two large north-
ern clusters, W1 and W2, are dominated by thunderstorms, with
the north-eastern clusters receiving 35% of rain from thunder-
stormonly events. The north-western cluster, similar to that of the
annual period, is dominated by combined cyclone-thunderstorm
events, bringing36%of rain. ClusterW3, on the north-west coast,
while similar to W2 further inland with respect to cyclone-
thunderstorm events, also sees 14% of rain from cyclone only
weather types. Cluster W8 has been split between the east coast
and parts of the south coast of Western Australia, with the
majority of rain arising from thunderstorm-related weather types
as well as other days. Cluster W4 has also been dispersed across
the southern coastline andTasmania,with a fairly highproportion
of rainfall from fronts and cyclones. Finally, cluster W5, in
southeast Australia has the largest proportion of rainfall from
cyclone-front-thunderstorm activity, with less cyclone and/or
front activity than the coastal clusters over southeast Australia.

Compared to the warm season and the annual clustering, the
cool season sees a more consistent north–south spread of
clusters, with two major regions in the north and south making
up the majority of southern Australia (Fig. 10). We note that
even with up to 15 clusters, these two large areas remain
consistent, indicating a strong association within each cluster.

The low east–west separation (bar the east and west coast)
reflects the dominance of westerly flow over southern parts of
Australia during the cool season.

Cluster C1, in the north, is dominated by thunderstorm only
events, making up 28% of rainfall, while cyclone and front only
or combined events contribute little rainfall. Cluster C5 on the
other hand has a larger proportion of cyclone and frontal activity
that when all combined (cyclone only, front only plus cyclone-
front) make up 29% of rainfall. Along the the east coast, clusters
C3 and C7 show clear influences of easterly propagating weather
systems, with 34% and 30% of rain from ‘other’ weather types,
likely to be from moist onshore flow. The influence of cyclone
only and cyclone-thunderstorm systems are clearly evident in
clusters C2 and C7, likely to be associated with East Coast Low
type events, making up 35% and 30% of rain.

On the west coast, cluster C4 is shown to have an important
source of rainfall from frontal and front-thunderstorm activity,
making up 46% of rainfall in the cool season. Similar to that
found for the annual clusters, a small region over Shark Bay,
Western Australia has been isolated (C8), where the influence of
frontal activity stands out (31%) and thunderstorm activity is at a
minimum. Finally, a very small region in central Australia (C6)
is found, where front-thunderstorm rainfall is very important
(33%). This region is an area of very low cool season rainfall and
low station density (King et al. 2013). The authors have less
confidence in the AWAP data over this region and believe that
this cluster may be identified due to artefacts in the data rather
than being a separate climate regime. For this reason we
recommend that this cluster should be merged with the larger
C1 region in all circumstances.

We note that the clusters shown in this section are for the
average linkage clustering method, which retains inherent
structural information, such as spatial awareness, and does not
require clusters to be of a similar size. The k-means and Ward
linkage methods show some similar features over regions such
as south-western Australia and the east coast, but have many
more inland clusters of similar sizes (as apposed to some very
small clusters found in the average method) that were not
thought to be appropriate climate regions.

The cool and warm seasonal clusters have shown how the
changing seasonality of weather types influences the distribution
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of rainfall over southern Australia. For studies examining
seasonally isolated trends historically or into the future these
climate regions may provide more nuanced results. At the same
time however, we note that the regions identified in Section 3
may experience a different seasonal cycle to that of the broad
southern Australian average, depending on their major influ-
ences. We address this in the next section.

6 Climate region seasonality

While a broad-scale, geographically averaged seasonal cycle
provides a useful point upon which to compare climate analysis
over different regions, localised studies may be better suited to

using a more targeted seasonal breakdown. In this section, we
use the k-means clustering method, as in Section 4 and the six
main annual average regional clusters found in Section 3 to
evaluate the different seasonal cycles across southern Australia.
For simplicity, we use the six seasonal clusters identified in
Fig. 4, where the Shark Bay cluster has been merged with the
West Coast cluster.

The elbow plots shown in Fig. 11 suggest between three and
eight clusters for the six regions shown, althoughmanywith low
confidence. The dendrograms for each region (not shown) for
both the Ward and average methods predominately recommend
two clusters. In addition, we require ‘seasons’ to be of at least
two months duration. The numbers of clusters presented here
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offer the best balance between physically different seasons,
according to the breakdown of weather types, and the recom-
mended number of clusters according to the metrics.

Figure 11 shows a varying definition of seasons depending
on the region. All regions display a relatively consistent ‘winter’
season, starting in April or May (June for the west coast)
and ending in August or September (November for eastern
Tasmania). However, the warmer month seasons tend to be
muchmore varied with respect to timing and number of seasons.

On the east coast, the winter season (Cluster 1) is defined as
May–August, with most rainfall generated from ‘other’
weather types (36%). Examining this more closely, we find
that 13% of rain is associated with a nearby high pressure

system causingmoist onshore winds, 8% fromwarm fronts, 6%
from unconfirmed cyclones or fronts and the remainder is
undefined. In addition, cyclone-related weather types are
collectively responsible for 38% of rainfall respectively
and are most likely associated with East Coast Lows.
Thunderstorm-only days generate 23% of rainfall in the early
summer season (September–December, Cluster 3), with a
further 47% of early summer rainfall generated by the combi-
nation of a thunderstorm and a cyclone or front, and a smaller
proportion of rainfall on other days. In the late summer
(January–April, Cluster 2), thunderstorm-only days are respon-
sible for 31% of rain, and ‘other’ weather types 23% (highs 5%,
warm fronts 7%, unconfirmed cyclones or fronts 7% and
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undefined 5%), with smaller contributions from combined
thunderstorms than in early summer.

Moving inland, three seasonal clusters have been selected for
the north-east interior region. The winter season (Cluster 1),
May–August, similar to the east coast, receives most rainfall
from thunderstorms (20%) and ‘other’ weather types (highs 7%,
warm fronts 6%, unconfirmed cyclones or fronts 4% and
undefined 4%). Front-only days also generate 9% of rainfall
during the winter season, but little rain at other times of the year.
An early summer season, September–January (Cluster 2),
receives most of its rainfall during cyclone-front-thunderstorm
events, with the combination of a thunderstormwith a cyclone or
front events collectively generating 64% of early summer
rainfall. Combined thunderstorms are less important during
the late summer season (Cluster 3), February–April, when
39% of rain is from thunderstorm only events.

Comparatively, in the north-west interior only two seasons
have been defined. When three seasons were defined, April was
singled out as a season, in which 45% of rainfall was generated

from thunderstorm activity. However, as mentioned previously,
we do not consider single months to be representative of a
‘season’ and hence two seasons are shown. The winter season,
Cluster 1, is defined as April–September and is dominated by
thunderstorm only rainfall (28%) as well as a large proportion of
rainfall from front-thunderstorm days (23%) and other days
(17%). The summer season, Cluster 2, October–March, receives
most of its rainfall from cyclone-thunderstorm events (35%) as
well as thunderstorm only events (26%), with reduced frontal
activity.

On the west coast, rainfall in the winter season (Cluster 1,
June–September) is clearly dominated by frontal activity. The
four front-related types collectively explain 79% of winter
rainfall, including 23% on front-only days and 32% when
combined with thunderstorms. Unlike the other regions, instead
of having an early and late summer season, the west coast has a
summer season (December–March, Cluster 2) and a ‘transition’
season that is split over April–May and October–November
(Cluster 3). The summer season is heavily influenced by cyclone
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Fig. 11. Top row: the elbow plots for k-means seasonal clustering over six regions of southern Australia. Second row: average total monthly rainfall

for southern Australia, coloured by cluster. Third–sixth rows: the average proportion of rainfall brought by each weather type for Clusters 1–4
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thunderstorm (CT), front-thunderstorm (FT), cyclone-front-thunderstorm (CFT), other (Oth) that includes anticyclones, warm fronts, unconfirmed

cyclone/front, and undefined systems.
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activity combinedwith thunderstorms (30%), while themajority
of rainfall generated in Cluster 3 is from cyclone-front-
thunderstorm activity (27%) reflecting the transitional nature
of this season.

The southern coast region is the only region to have four
separate seasons defined. The winter season, Cluster 2, is
defined as April–August and displays a relatively even spread
of rainfall attribution by weather type, with front-thunderstorm
activity or other weather types (7% highs, 3% warm fronts and
3% unconfirmed cyclones) the predominant source of rain. The
early summer season rainfall (Cluster 1, November–January) is
predominately brought by the combination of a thunderstorm
with a cyclone and/or front (67%). These combined events
continue to produce 54% of rainfall during the late summer
(February–March, Cluster 3) but there is an increase in rainfall
from thunderstorm-only days (21%). Lastly, Cluster 4 is consid-
ered a spring season, from September–October. This season still
receives 56% of rainfall from combined thunderstorms, particu-
larly cyclone-front-thunderstorm activity (27%), but has less
thunderstorm-only rainfall than any of the other seasons (6%).
Instead, 27% of rainfall is generated by a cyclone and/or front
without thunderstorms, only slightly below the contribution
during the winter season (30%).

Finally, two seasons have been found for eastern Tasmania:
a winter season (May–November) and summer season
(December–April). Three seasons were originally identified
(May–August, September–November, December–April) how-
ever the ‘winter’ and ‘spring’ seasons were found to have very
similar synoptic makeup. In total, 50% of rain during the winter
season (Cluster 1) is from a cyclone and/or front, including 18%
of rainfall fromcyclones alone and 17% fromcyclone-fronts. The
summer season (Cluster 2), sees the proportion of rainfall from
these systems decrease to 37%, with an increase in rainfall from
the combination of cyclones and/or fronts with thunderstorms
(47%). In contrast to elsewhere in Australia, thunderstorm-only
events generate little rainfall in either season for this region.

The results presented here highlight that while it is easy to
simply apply one seasonal definition to the whole country, the
seasonal breakdown of rainfall and weather patterns can vary
significantly across the country. While using a consistent
definition of cool and warm seasons for southern Australia is
useful in aiding comparisons between studies, for regional
analyses it is useful to consider local factors in determining
the seasons that best reflect the local climate.

7 Discussion and conclusions

A range of climate regions have been used in the past to perform
averaging. This work presents the first definitions of climate
regions based on clustering methods with high-quality weather
type and rainfall information. We have found that the NRM
clusters that follow topography or significant rainfall and
temperature boundaries (as suggested by the Koeppen climate
zones) satisfactorily capture climate regions in ‘coastal’ regions
of south-west Western Australia and along the southern eastern
seaboard. However, we note that inland, the NRM and Koeppen
climate zones tend to consider all desert regions as one. This
study has found some important differences between the eastern

and western desert areas related to the influence of cyclone
activity. In addition, we note that the Koeppen climate zones are
unable to take into account the effect of topographical aspects on
how different weather types influence rainfall, which is over-
come in this analysis. We suggest that the climate regions
produced in this study are more appropriate for climate analysis
than the NRM regions or Koeppen climate zones.

This study has provided the first quantitatively defined
definition of seasons for southern Australia as a whole and for
six significant climate regions (and a seventh smaller region).
On average, we find that the cool season should be defined as
April–September and the warm season from October–March. A
three season breakdown was also provided, where a winter
season fromMay–September was defined in addition to an early
and late summer season from October–January and February–
April respectively. For the regional definitions of seasons the
number of seasons found varies with the region. In general, the
cool season was found to begin in April or May and end in
August–September, with some outliers. However, much greater
variation exists over the warmer months, with between one and
three distinct seasons in different parts of Australia over a range
of timings.

This work has not only been able to identify distinct climatic
regions and season, but to also characterise them with respect to
themost important weather types for bringing rainfall. Using the
average two season split as defined above, we have also been
able to show that the regional breakdown of rainfall bearing
weather types over Australia varies in different seasons.We find
a strong north–south divide in the cool season over the entire
study area, with the exception of the east and west coasts. This
divide reflects the dominance of the westerly storm track, with
the largest impact on the west coast and the blocking nature of
the GDR along the east coast. In the warm season, the influence
of fronts and cyclones in the westerly flow is reduced in the
southern-most regions, while thunderstorms and their interac-
tion with fronts and cyclones cause a greater east–west divide
over the study area. Knowledge such as this is useful in
understanding not only the variability of a region, but can also
help give context to trends in weather patterns and how these
may disproportionately affect regions or times of year.

Although these climate regions were defined based on the
proportion of rainfall brought by selected weather types, their
alignment in some areas with the Koeppen or NRM regions or
alternately, with our knowledge of the regional climate, gives us
some expectation that the regions defined here will be useful
outside of rainfall or weather type studies. This will be the focus
of future work. A further useful application may be to advance
the connection between Indigenous understanding of weather
and climate and data driven understanding. An attempt was
made to compare our comparatively broad regional analysis
of seasons to local Indigenous seasonal calendars available
via the BoM Indigenous knowledge website without success.
We suspect that this misalignment of seasons is due to the length
of seasons identified in this work (although shorter seasons were
also compared) and the broad areas over which our seasonal
analysis was performed. However, using a similar method to
that presented here, with localised weather information in
combination with Indigenous climate knowledge, may improve

106 Journal of Southern Hemisphere Earth Systems Science S. Fiddes et al.



our understanding of how seasons and their respective weather
types influence the biosphere.

While the clustering methods used in this work are able to
quantitatively assign grid points or seasons to the respective
clusters, some subjectivity remains surrounding the choice of
the number of clusters. While this was thoroughly tested,
ranging up to 30 for the regional clustering and up to six for
the seasonal clustering, and statistical guidance was considered,
the number of clusters remains a choice with no ‘wrong’ or
‘right’ answer.We have provided the number of clusters that we
deemed the most appropriate give what we know about the
physical region and how such clusters are used.

We further acknowledge that different results can be gained
by using a different weather typing data set, although no other
dataset as comprehensive as the one presented in Pepler et al.
(2020) currently exists for Australia. Clustering upon absolute
rainfall or weather type frequency were also tested in this study.
While these tests provided different results, they were not
considered to be as meaningful for the regional analysis,
behaving more similarly to the Koeppen Climate Zones and
unable to capture important influence from topography. Fur-
thermore, with respect to the regional clustering, early merging
of clusters that corresponded to geographically separated
regions was found in the hierarchical clustering. This merging
was counter to our expectations of how rainfall behaves but in
keeping with expectations of the weather type behaviour.

The combination of theweather types data sets and clustering
methods demonstrates how, with improved observations,
modelling and computational methods, such techniques can be
applied to new, complex data sets, offering new insights into our
climate system. The regions and seasons defined here can
provide researchers with more tailored information about where
or when averaging should be performed in order to achieve
results that are themostmeaningful.With consistent definitions,
greater reproducability and transferability of knowledge can be
achieved. It is our hope that the regions and seasons defined in
the work can be broadly applied across climate science in
southern Australia.

Code and data availability

The Scikit learn clustering package was used to perform this
analysis and is available online (Pedregosa et al. 2011). The
weather type data is available by contacting Acacia Pepler and
will be shared for research purposes as an output of the Victorian
Water and Climate Initiative. TheAWAP rainfall data is available
from the Bureau of Meteorology website. Mask files (as netCDF)
of the regional clusters presented in this work are available online
DOI:10.5281/zenodo.4265471 (Fiddes et al. 2020).
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