
Redefining the Role of the CPU in
the Era of CPU-GPU Integration

Manish Arora, Siddhartha Nath, Subhra Mazumdar,
Scott Baden, and Dean Tullsen

Department of Computer Science & Engineering
University of California, San Diego

Abstract

GPU computing has emerged as a viable alternative to CPUs for
throughput oriented applications or regions of code. Speedups of
10× to 100× over CPU implementations have been reported. This
trend is expected to continue in the future with GPU architectural
advances, improved programming support, scaling, and tighter
CPU-GPU chip integration.

However, not all code will get mapped to the GPUs, even for
many of those applications which map well to the GPU – the CPU
still runs code that is not targeted to the GPU, and often that code
is still very much performance-critical. This paper demonstrates
that the code that the CPU will be expected to execute in an
integrated CPU-GPU environment is profoundly different than the
code it has been optimized for over the past many generations. The
characteristics of this new code should drive future CPU design
and architecture. Specifically, this work shows that post-GPU code
tends to have lower ILP, significantly more difficult to predict loads,
harder to predict stores, and more difficult branch prediction. Post-
GPU code exhibits smaller gains from the availability of multiple
cores because of reduced thread level parallelism.

1. Introduction

Fueled by high computational throughput and energy efficiency, we
have seen the quick adoption of GPUs as general purpose comput-
ing engines in recent years. We are seeing heavier integration of the
CPU and the GPU, including the GPU appearing on the same die,
further decreasing barriers to use of the GPU to offload the CPU.
Much effort has been made to adapt GPU designs to anticipate this
new partitioning of the computation space, including better pro-
gramming models, more general processing units with support for
control flow, etc. However, little attention has been placed on the
CPU and how it needs to adapt to this change.

This paper demonstrates that the coming era of CPU and GPU
integration requires us to rethink the design and architecture of the
CPU. We show that the code the CPU will run, once appropriate
computations are mapped to the GPU, has significantly different
characteristics than the original code (which previously would have
been mapped entirely to the CPU).

Modern GPUs contain hundreds of ALUs, hardware thread
management, and access to fast on-chip and high-bandwidth ex-
ternal memories. This translates to peak performance of teraFlops
per device [16]. There has also been an emergence of new applica-
tion domains [2] capable of utilizing this performance. These new
applications often distill large amounts of data. GPUs have been
architected to exploit application parallelism even in the face of
high memory latencies. Reported speedups of 10 - 100× are com-
mon, although another study shows speedups over an optimized
multicore CPU of 2.5× [15].

These speedups by no means imply that CPU performance is no
longer critical. Many applications do not map at all to GPUs; oth-
ers map only a portion of their code to the GPU. Examples of the
former include applications with irregular control flow and without

high data-level parallelism, as exemplified by many of the SPECint
applications. Even for applications with data-level parallelism,
there are often serial portions that are still more effectively exe-
cuted by the CPU. Further, GPU programming currently requires
considerable programmer effort, and that effort grows rapidly as
the code maps less cleanly to the GPU. As a result, it is most com-
mon to only map to the GPU those portions of the code which map
easily and cleanly.

Even when a significant portion of the code is mapped to the
GPU, the CPU portion will in many cases be performance critical.
Consider the case of Kmeans.We study an optimized GPU imple-
mentation from the Rodinia [3] benchmark suite. The GPU imple-
mentation achieves a speedup of 5× on kernel code. Initially, about
50% of execution time is non-kernel code, yet because of the GPU
acceleration, over 4/5 of execution time is spent in the CPU and
less than 1/5 is spent on the GPU.

Kumar, et al. [14] argue that the most efficient heteroge-
neous designs for general-purpose computation contain no general-
purpose cores (i.e., cores that run everything well), but rather cores
that each run a subset of codes well. The GPU already exemplifies
that, running some code lightning fast, other code very poorly. As
one of the first steps toward core heterogeneity will likely be CPU-
GPU integration, the general-purpose CPU need no longer be fully
general-purpose. It will be more effective if it becomes specialized
to the code that cannot run on the GPU. This research seeks to un-
derstand the nature of that code, and begin to identify the direction
in which that should push future CPU designs.

When we compare the code running on the CPU before and after
CPU integration, we find several profound changes. We see signif-
icant decreases in ILP, especially for large window sizes (10.9%
drop). We see significant increases in the percentage of “hard”
loads (17.2%) and “hard” stores (12.7%). We see a dramatic over-
all increase in the percentage of “hard” branches, which translates
into a large increase in the mispredict rate of a reasonable branch
predictor (55.6%). Average thread level parallelism (defined by 32-
core speedup), drops from 5.5 to 2.2.

2. Background

Initial attempts at using GPUs for general purpose computations
used corner cases of the graphics APIs [17]. Programmers mapped
data to the available shader buffer memory and used the graphics-
specific pipeline to process data. NVIDIA’s CUDA and AMD’s
Brook+ platform added hardware to support general computations
and exposed the multi-threaded hardware via a programming in-
terface. With GPU hardware becoming flexible, new programming
paradigms like OpenCL emerged. Typically, the programmer is
given an abstraction of a separate GPU memory address space
similar to CPU memory where data can be allocated and threads
launched. While this computing model is closer to traditional com-
puting models, it has several limitations. Programming GPUs still
requires architecture-specific optimizations, which impacts perfor-

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

Benchmark Suite Application GPU Normalized Kernel GPU Mapped Portions Implementation
Domain Kernels Speedup (×) Source

Kmeans Rodinia Data Mining 2 5.0 Find and update cluster center Che et al. [3]
H264 Spec2006 Multimedia 2 12.1 Motion estimation and intra coding Hwu et al. [11]
SRAD Rodinia Image Processing 2 15.0 Equation solver portions Che et al. [3]

Sphinx3 Spec2006 Speech Recognition 1 17.7 Gaussian mixture models Harish et al. [9]
Particlefilter Rodinia Image Processing 2 32.0 FindIndex computations Goomrum et al. [7]
Blackscholes Parsec Financial Modeling 1 13.7 BlkSchlsEqEuroNoDiv routine Kolb et al. [13]

Swim Spec2000 Water Modeling 3 25.3 Calc1, calc2 and calc3 kernels Wang et al. [26]
Milc Spec2006 Physics 18 6.0 SU(3) computations across FORALLSITES Shi et al. [20]

Hmmer Spec2006 Biology 1 19.0 Viterbi decoding portions Walters et al. [25]
LUD Rodinia Numerical Analysis 1 13.5 LU decomposition matrix operations Che et al. [3]

Streamcluster Parsec Physics 1 26.0 Membership calculation routines Che et al. [3]
Bwaves Spec2006 Fluid Dynamics 3 18.0 Bi-CGstab algorithmn Ruetsche et al. [18]
Equake Spec2000 Wave Propagation 2 5.3 Sparse matrix vector multiplication (smvp) Own implementation

Libquantum Spec2006 Physics 4 28.1 Simulation of quantum gates Gutierrez et al. [8]
Ammp Spec2000 Molecular dynamics 1 6.8 Mm fv update nonbon function Own implementation
CFD Rodinia Fluid Dynamics 5 5.5 Euler equlation solver Solano-Quinde et al. [22]

Mgrid Spec2000 Grid Solver 4 34.3 Resid, psinv, rprj3 and interp functions Wang et al. [26]
LBM Spec2006 Fluid Dynamics 1 31.0 Stream collision functions Stratton et al. [23]

Leukocyte Rodinia Medical Imaging 3 70.0 Vector flow computations Che et al. [3]
ART Spec2000 Image Processing 3 6.8 Compute train match and values match functions Own implementation

Heartwall Rodinia Medical Imaging 6 7.9 Search, convolution etc. in tracking algorithm Szafaryn et al. [24]
Fluidanimate Parsec Fluid Dynamics 6 3.9 Frame advancement portions Sinclair et al. [21]

Table 1. CPU-GPU Benchmark Description.

mance portability. There is also performance overhead resulting
from separate discrete memory used by GPUs.

Recently AMD (Fusion APUs), Intel (Sandy Bridge), and ARM
(MALI) have released solutions that integrate general purpose pro-
grammable GPUs together with CPUs on the same chip. In this
computing model, the CPU and GPU may share memory and a
common address space. Such sharing is enabled by the use of an
integrated memory controller and coherence network for both the
CPU and GPU. This promises to improve performance because no
explicit data transfers are required between the CPU and GPU, a
feature sometimes known as zero-copy [1]. Further, programming
becomes easier because explicit GPU memory management is not
required.

3. Benchmarks

Over the last few years a large number of CPU applications have
been ported to GPUs. Some implementations almost completely
map to the GPU while other applications only map certain kernel
codes to the GPU. For this study, we seek to examine a spectrum of
applications with varying levels of GPU offloading.

We rely as much as possible on published implementations. This
ensures that the mapping between GPU code and CPU code would
not be driven by our biases or abilities, but rather by the collective
wisdom of the community. We make three exceptions, for particu-
larly important applications (SPEC) where the mapping was clear
and straightforward. We perform our own CUDA implementations
and used those results for these benchmarks.

We use 3 mechanisms to identify the partitioning of the applica-
tion between the CPU and GPU. First, if the GPU implementation
code was available in the public domain, we study it to identify
CPU mapped portions. If the code was not available, we obtain the
partitioning information from publications. Lastly we ported the
three mentioned benchmarks to the GPU ourselves. Table 1 sum-
marizes the characteristics of our benchmarks. The table lists the
GPU mapped portions, and provides statistics such as GPU ker-
nel speedup. The kernel speedups reported in the table are from
various public domain sources, or our own GPU implementations.
Since different publications tend to use different processor base-
lines and/or different GPUs, we normalized numbers to a single
core AMD Shanghai processor running at 2.5GHz and NVIDIA
GTX 280 GPU with 1.3GHz shader frequency. We used published
SPECrate numbers and linear scaling of GPU performance with
number of SMs/frequency to perform the normalization.

We also measure and collect statistics for pure CPU bench-
marks, benchmarks with no publicly known GPU implementation.
These, combined with the previously mentioned benchmarks, give
us a total of 11 CPU-Only benchmarks, 11 GPU-Heavy bench-
marks, and 11 Mixed applications where some, but not all, of the
application is mapped to the GPU. We do not show the CPU-Only
benchmarks in Table 1, because no CPU-GPU mapping was done.

4. Experimental Methodology

This section describes our infrastructure and simulation parame-
ters. Our goal is to identify fundamental characteristics of the code,
rather than the effects of particular architectures.This means, when
possible, measuring inherent ILP and characterizing loads, stores,
and branches into types, rather than always measuring particular hit
rates, etc. We do not account for code that might run on the CPU to
manage data movement, for example – this code is highly architec-
ture specific, and more importantly, expected to go away in coming
designs. We simulate complete programs whenever possible.

While all original application source code was available, we
were limited by the non-availability of parallel GPU implemen-
tation source code for several important benchmarks. Hence, we
use the published CPU-GPU partitioning information and kernel
speedup information to drive our analysis.

We develop a PIN based measurement infrastructure. Using
the CPU/GPU partitioning information from each benchmark, we
modify the original benchmark code without any modifications for
GPU implementation. We insert markers indicating the start and
end of GPU code, allowing our microarchitectural simulators built
on top of PIN to selectively measure CPU and GPU code character-
istics. All benchmarks are simulated for the largest available input
sizes. Programs were run to completion or for at least 1 trillion in-
structions.

CPU Time is calculated by using the following steps. First, the
proportion of application time that gets mapped to the GPU/CPU
is calculated. This is done by inserting time measurement routines
in marker functions and running the application on the CPU. Next,
we use the normalized speedups to estimate the CPU time with the
GPU. For example, consider an application with 80% of execution
time mapped to the GPU and a normalized kernel speedup of 40×.
Originally, just 20% of the execution time is spent on the CPU.
However, post-GPU, 20 / (20 + 80/40) × 100% or about 91%
of time is spent executing on the CPU. Time with conservative
speedups was obtained by capping the maximum possible GPU
speedup value to 10.0. A value of 10.0 was used as a conservative

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

C
P
U

-O
n
ly

 A
p
p
s

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s

sw
im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d

lb
m

le
u
k
o
cy

te a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A
v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

20

40

60

80

100

A
p
p
lic

a
ti

o
n
 T

im
e
 S

p
e
n
t

o
n
 t

h
e
 C

P
U

 (
%

)

CPU-Only Mixed GPU-Heavy

40.4

60.8

55.7

20.1

68.7

59.5

1.1

13.8

7.5

With 1x GPU speedup

With reported GPU speedups

With conservative GPU speedups

Figure 1. Time spent on the CPU. The 11 CPU-Only applications are summarized, since those results do not vary.

p
a
rs

e
r

b
zi

p

g
o
b
m

k

m
cf

sj
e
n
g

g
e
m

sF
D

T
D

p
o
v
ra

y

to
n
to

fa
ce

si
m

fr
e
q
m

in
e

ca
n
n
e
a
l

A
v
e
ra

g
e

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s

sw
im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d

lb
m

le
u
k
o
cy

te a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A
v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

5

10

15

20

25

30

P
a
ra

lle
l
In

st
ru

ct
io

n
s

w
it

h
in

 I
n
st

ru
ct

io
n
 W

in
d
o
w

CPU-Only Mixed GPU-Heavy

CPU
+GPU
CPU

+GPU

12.7

9.6

34.0

10.3

9.2

15.3

11.1

14.6

13.7

9.9
9.5

13.7

12.2

Window Size 128 CPU Only

Window Size 128 with GPU

Window Size 512 CPU Only

Window Size 512 with GPU

Figure 2. Instruction level parallelism with and without GPU. Not all bars appear in the CPU-Only applications, since they do not
vary post-GPU. This is repeated in future plots.

single-core speedup cap [15]. Hence, for the prior example, post-
GPU with conservative speedups 20 / (20 + 80/10) × 100% or
about 71% of time is spent executing on the CPU.

We categorize loads and stores into four categories, based on
measurements on each of the address streams. Those categories are
static (address is a constant), strided (predicted with 95% accuracy
by a stride predictor that is able to track up to 16 strides per
PC), patterned (predicted with 95% accuracy by a large Markov
predictor with 8192 entries, 256 previous addresses, and 8 next
addresses), and hard (all other loads or stores).

Similarly, we categorize branches as biased (95% taken or not
taken), patterned (95% predicted by a large local predictor, using
14 bits of branch history), correlated (95% predicted by a large
gshare predictor, using 17 bits of global history), and hard (all other
branches). To measure branch mispredict rates, we construct a
tournament predictor out of the mentioned gshare and local pre-
dictors, combined through a large chooser.

We use Microarchitecture Independent Workload Characteriza-
tion (MICA) [10] to obtain instruction level parallelism informa-
tion. MICA calculates the perfect ILP by assuming perfect branch
prediction and caches. Only true dependencies affect the ILP. We

modify the MICA code to support instruction windows up to 512
entries.

We use a simple definition of thread-level parallelism, based on
real machine measurements, and exploiting parallel implementa-
tions available for Rodinia, Parsec, and some Spec2000 (those in
SpecOMP 2001) benchmarks. Again restricting our measurements
to the CPU code marked out in our applications, we define thread
level parallelism as the speedup we get on an AMD Shanghai quad
core × 8 socket machine. The TLP results, then, cover a subset of
our applications for which we have credible parallel CPU imple-
mentations.

5. Results

In this section we examine the characteristics of code executed
by the CPU, both without and with GPU integration. For all of
our presented results, we partition applications into three groups
— those where no attempt has been made to map code to the
GPU (CPU-Only), those where the partitioning is a bit more evenly
divided (Mixed), and those where nearly all the code is mapped to
the GPU (GPU-Heavy). We first look at CPU time – what portion
of the original execution time still gets mapped to the CPU, and

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

p
a
rs

e
r

b
zi

p
g
o
b
m

k
m

cf

sj
e
n
g

g
e
m

sF
D

T
D

p
o
v
ra

y
to

n
to

fa

ce
si

m

fr
e
q
m

in
e

ca
n
n
e
a
l

A
v
e
ra

g
e

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s
sw

im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d
lb

m

le
u
k
o
cy

te

a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A

v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
B

ra
n
ch

 I
n
st

ru
ct

io
n
s

64.1%

64.7%

21.6%

11.8%

3.0%

5.0%

11.3%
18.6%

CPU

CPU

+GPU

CPU-Only Mixed GPU-Heavy

Hard

Correlated

Patterned

Biased

Figure 3. Distribution of branch types with and without GPU.

what is the expected CPU time spent running that code. We then go
on to examine other dimensions of that code that still runs on the
CPU.

5.1 CPU Execution Time

We start by measuring time spent on the CPU. To identify the uti-
lization and performance-criticality of the CPU after GPU offload-
ing, we calculate the percentage of time in CPU execution after the
GPU mapping takes place. We use, initially, the reported speedups
from the literature for each GPU mapping.

The first bar in Figure 1 is the percentage of the original code
that gets mapped to the CPU. The other two bars represent time ac-
tually spent on the CPU (as a fraction of total run time), assuming
that the CPU and GPU run separately (if they execute in paral-
lel, CPU time increases further). Thus, the second and third bars
account for the reported speedup expected on the GPU. The only
difference is the third bar assumes GPU speedup is capped at 10×.
For the mixed set of applications in the middle, even though 80%
of the code on average is mapped to the GPU, the CPU is still the
bottleneck. Even for the GPU-heavy set on the right, the CPU is ex-
ecuting 7-14% of the time. Overall, the CPU is still executing more
often than the GPU and remains highly performance-critical. The
benchmarks are sorted by CPU time – we’ll retain this ordering for
subsequent graphs.

In future graphs, we will use the conservative cpu time (third
bar) to weight our average (after GPU integration) results – e.g.,
if you were to run sphinx3 and hmmer in equal measure, the CPU
would be executing sphinx3 code about twice as often as hmmer
code after CPU-GPU integration.

5.2 ILP

ILP captures the inherent parallelism in the instruction stream –
it can be thought of as measuring (the inverse of) the dependence
critical path through the code. For out-of-order processors, ILP is
heavily dependent on window size – the number of instructions the
processor can examine at once looking for possible parallelism.

As seen in Figure 2, in 17 of the 22 applications, ILP drops
noticeably, particularly for large window sizes. For swim, milc,
cfd, mgrid and fluidanimate, it drops by almost half. Between the
outliers (ILP actually increases in 5 cases), and the damping impact
of the non-GPU applications, the overall effect is a 10.9% drop in
ILP for larger window sizes and a 4% drop for current generation
window sizes. For the mixed applications, the result is much more
striking, a 27.5% drop in ILP for the remaining CPU code. In

particular, we are seeing that potential performance gains from
large windows is significantly degraded in the absence of the GPU
code.

In the common case, independent loops are being mapped to the
GPU. Less regular code, and loops with loop-carried dependencies
restricting parallelism are left on the CPU. This is the case with
h264 and milc, for example; key, tight loops with no critical loop-
carried dependencies are mapped to the GPU, leaving less regular
and more dependence-heavy code on the CPU.

5.3 Branch Results

We classify static branches into four categories. The categories
are biased (nearly always taken or not taken), patterned (easily
captured by a local predictor), correlated (easily captured by a
correlated predictor), or hard (none of the above). Figure 3 plots
the distribution of branches found in our benchmarks.

Overall, we see a significant increase in hard branches. In fact,
the frequency of hard branches increases by 65% (from 11.3% to
18.6%). The increase in hard branches in the overall average is the
result of two factors – the high concentration of branches in the
CPU-only workloads (which more heavily influence the average)
and the marked increase in hard branches in the Mixed benchmarks.
The hard branches are primarily replacing the reduced patterned
branches, as the easy (biased) branches are only reduced by a small
amount.

Some of the same effects discussed in the previous section apply
here. Small loops with high iteration counts, dominated by looping
branch behavior, are easily moved to the GPU (e.g., h264 and
hmmer) leaving code with more irregular control flow behavior.

The outliers (contrary results) in this case are instructive, how-
ever. equake and cfd map data-intensive loops to the GPU. That
includes data-dependent branches, which in the worst case can be
completely unpredictable.

Even with individual branches getting hard to predict, it is not
clear prediction gets worse, as it is possible that with fewer static
branches being predicted, aliasing would be decreased. However,
experiments on a realistic branch predictor confirmed that the new
CPU code indeed stresses the predictor heavily. We found the
frequency of mispredicts, for the modeled predictor, to increases
dramatically, by 56% (from 2.7 to 4.2 misses per kilo instructions).
The graph is not shown here to conserve space. The increase in
misses per instruction is primarily a reflection of the increased
overall mispredict rate, as the frequency of branches per instruction

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

p
a
rs

e
r

b
zi

p
g
o
b
m

k
m

cf

sj
e
n
g

g
e
m

sF
D

T
D

p
o
v
ra

y
to

n
to

fa

ce
si

m

fr
e
q
m

in
e

ca
n
n
e
a
l

A
v
e
ra

g
e

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s
sw

im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d
lb

m

le
u
k
o
cy

te

a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A

v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
N

o
n
-T

ri
v
ia

l
Lo

a
d
 I
n
st

ru
ct

io
n
s(

%
)

47.3

27.0

8.3

11.4

44.4

61.6

CPU

CPU

+GPU

CPU-Only Mixed GPU-Heavy

Hard Patterned Strided

(a)

p
a
rs

e
r

b
zi

p
g
o
b
m

k
m

cf

sj
e
n
g

g
e
m

sF
D

T
D

p
o
v
ra

y
to

n
to

fa

ce
si

m

fr
e
q
m

in
e

ca
n
n
e
a
l

A
v
e
ra

g
e

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s
sw

im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d
lb

m

le
u
k
o
cy

te

a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A

v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
N

o
n
-T

ri
v
ia

l
S
to

re
 I
n
st

ru
ct

io
n
s(

%
)

48.6

34.9

12.8

13.8

38.6

51.3

CPU

CPU

+GPU

CPU-Only Mixed GPU-Heavy

Hard Patterned Strided

(b)

Figure 4. Distribution of (a) load types and (b) store types with and without GPU.

actually changes by less than 1% between the pre-GPU and post-
GPU code.

These results indicate that a branch predictor tuned for generic
CPU code may in fact not be sufficient for post-GPU execution.

5.4 Load and Store Results

Typically, code maps to the GPU most effectively when the mem-
ory access patterns are regular and ordered. This means we would
expect to see a significant drop in ordered (easy) accesses for the
CPU.

Figure 4(a) shows the classification of CPU loads. What is
graphed in this figure is the breakdown of loads as a percentage of
all non-static loads. That is, we have already taken out those loads
that will be trivially handled by the cache. In this figure, we see
a sharp increase in hard loads, which is perhaps more accurately
characterized as a sharp decrease in strided loads.

Thus, of the non-trivial loads that remain, a much higher per-
centage of them are not easily handled by existing hardware
prefetchers or inline software prefetching. The percentage of
strided loads is almost halved, both overall and for the mixed
workloads. Patterned loads are largely unaffected, and hard loads
increase very significantly, to the point where they are the domi-

nant type. Some applications (e.g., lud and hmmer) go from being
almost completely strided, to the point where a strided prefetcher
is useless.

kmeans, srad and milc each show a sharp increase in the number
of hard loads. We find that the key kernel of kmeans generates
highly regular, strided loads. This kernel is offloaded to the GPU.
srad and milc are similar.

Though the general trend shows an increase in hard loads, we
see a notable exception in bwaves, in which an important kernel
with highly irregular loads is successfully mapped to the GPU.

Figure 4(b) shows that these same trends are also exhibited by
the store instructions, as again the strided stores are being reduced,
and hard stores increase markedly. Interestingly, the source of the
shift is different. In this case, we do not see a marked decrease in
the amount of easy stores in our CPU-GPU workloads. However,
the high occurrence of hard stores in our CPU-Only benchmarks
results in a large increase in hard stores overall.

Similar to the loads, we see that many benchmarks have kernels
with strided stores which go to the GPU. This is the case with swim
and hmmer. On the other hand, in bwaves and equake, the code that
gets mapped to the GPU does irregular writes to an unstructured
grid.

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

p
a
rs

e
r

b
zi

p

g
o
b
m

k

m
cf

sj
e
n
g

g
e
m

sF
D

T
D

p
o
v
ra

y

to
n
to

fa
ce

si
m

fr
e
q
m

in
e

ca
n
n
e
a
l

A
v
e
ra

g
e

k
m

e
a
n
s

h
2
6
4

sr
a
d

sp
h
in

x
3

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s

sw
im

m
ilc

h
m

m
e
r

lu
d

st
re

a
m

cl
u
st

e
r

A
v
e
ra

g
e

b
w

a
v
e
s

e
q
u
a
k
e

lib
q
u
a
n
tu

m

a
m

m
p

cf
d

m
g
ri

d

lb
m

le
u
k
o
cy

te a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

A
v
e
ra

g
e

A
v
e
ra

g
e
(A

LL
)0

5

10

15

20

25

30

35

D
y
n
a
m

ic
 I
n
st

ru
ct

io
n
s

(%
)

7.3

16.9

9.6

43.6

20.9

15.0 15.0

8.5

CPU

+GPU

CPU-Only Mixed GPU-Heavy

SSE Instructions

SSE Instructions with GPU

Figure 5. Frequency of vector instructions with and without GPU.

p
a
rs

e
r

b
zi

p

g
o
b
m

k

m
cf

sj
e
n
g

to
n
to

fa
ce

si
m

fr
e
q
m

in
e

ca
n
n
e
a
l

G
e
o
m

e
a
n

k
m

e
a
n
s

sr
a
d

p
a
rt

ic
le

fi
lt

e
r

b
la

ck
sc

h
o
le

s

sw
im lu

d

st
re

a
m

cl
u
st

e
r

G
e
o
m

e
a
n

e
q
u
a
k
e

a
m

m
p

cf
d

m
g
ri

d

le
u
k
o
cy

te a
rt

h
e
a
rt

w
a
ll

fl
u
id

a
n
im

a
te

G
e
o
m

e
a
n

G
e
o
m

e
a
n
(A

LL
)0

5

10

15

20

C
P
U

 T
h
re

a
d
 L

e
v
e
l
P
a
ra

lle
lis

m

CPU-Only Mixed GPU-Heavy

CPU
+GPU

CPU

+GPU

2.2
2.8

2.9

1.5 4.0

1.4

6.7

2.1

14.0

2.1

3.5

2.0
5.5

2.2

23.18 Cores

8 Cores with GPU

32 Cores

32 Cores with GPU

Figure 6. Thread level parallelism with and without GPU.

5.5 Vector Instructions

We were also interested in the distribution of instructions, and how
it changes post-GPU. Somewhat surprisingly, we find little change
in the mix of integer and floating point operations. However, we
find that the usage of SSE instructions drops significantly, as shown
in figure 5. We see an overall reduction of 44.3% in the usage
of SSE instructions (from 15.0% to 8.5%). This is an expected
result, as the SSE ISA enhancements target in many cases the exact
same code regions as the general-purpose GPU enhancements. For
example, in kmeans the find nearest point functions heavily utilizes
MMX instructions, but this function gets mapped to the GPU.

5.6 Thread Level Parallelism (TLP)

TLP captures parallelism that can be exploited by multiple cores
or thread contexts, enabling us to measure the utility of having an
increasing number of CPU cores. Figure 6 shows measured TLP
results for our benchmarks.

Let us first consider the GPU-heavy benchmarks. CPU imple-
mentations of the benchmarks show abundant TLP. We see an av-
erage speedup of 14.0× for 32 cores. However, post-GPU the TLP
drops considerably, yielding only a speedup of 2.1×. Five of the
benchmarks exhibit no TLP post-GPU, in contrast, five benchmarks

originally had speedups greater than 15×. Perhaps the most strik-
ing result (also true for the mixed benchmarks) – no benchmark’s
post-GPU code sees any significant gain going from 8 cores to 32.

Overall for the mixed benchmarks, we again see a considerable
reduction in post-GPU TLP; it drops by almost 50% for 8 cores
and about 65% for 32 cores. CPU-Only benchmarks exhibit lower
TLP than both the Mixed and GPU-Heavy sets, but do not lose
any of that TLP because no code runs on the GPU. Overall, we
see that applications with abundant TLP are good GPU targets. In
essence, both multicore CPUs and GPUs are targeting the same
parallelism. However, as we have seen, post-GPU parallelism drops
significantly.

On average, we see a striking reduction in exploitable TLP, 8-
core TLP dropped by 43% from 3.5 to 2.0 and 32-core TLP dropped
by 60% from 5.5 to 2.2. While going from 8 cores to 32 cores yields
a nearly two fold increases in TLP in the original code, post-GPU
the TLP grows by just 10% over that region – extra cores are nearly
useless.

6. Impact on CPU Design

Good architectural design is tuned for the instruction execution
stream that is expected to run on the processor. This work indicates

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

that, for those general purpose CPUs, the definition of “typical”
code is in the process of changing. This work is the first attempt
to isolate and characterize the code the CPU will now be execut-
ing. This section identifies some architectural implications of the
changing code base.

Sensitivity to Window Size. It has long been understood that out-
of-order processors benefit from large instruction windows. As a
result, much research has sought to increase window size, or create
the illusion of large windows [6]. While we do not see evidence that
large windows are not useful, the incremental gains may be more
modest.

Branch Predictors. We show that post-GPU code dramatically
increases pressure on the branch predictor. This is despite the fact
that the predictor is servicing significantly fewer static branches.
Recent trends targeting very difficult branches using complex hard-
ware and extremely long histories [19] seem to be a promising di-
rection because they better attack fewer, harder branches.

Load and Store Prefetching. Memory access will continue to be
perhaps the biggest performance challenge of future processors.
Our results touch particularly on the design of future prefetchers,
which currently have a heavy influence on CPU and memory per-
formance. Stride-based prefetchers are commonplace on modern
architectures, but are likely to become significantly less relevant on
the CPU. What is left for the CPU are very hard memory accesses.
Thus, we expect the existing hardware prefetchers to struggle.

We actually have fewer static loads and stores that the CPU
must deal with, but those addresses are now hard to predict. This
motivates an approach that devotes significant resources toward ac-
curate prediction of a few problematic loads/stores. Several past
approaches had exactly this flavor, but have not yet had a big im-
pact on commercial designs. These include Markov-based predic-
tors [12] which target patterned accesses but can capture very com-
plex patterns, and predictors targeted at pointer-chain computa-
tion [4, 5]. These types of solutions should be pursued with new
urgency. We have also seen significant research into helper-thread
prefetchers which have impacted some compilers and some hard-
ware, but their adoption is still not widespread.

Vector Instructions. SSE instructions have not been rendered
unnecessary, but certainly less important. Typical SSE code can
be executed faster and at lower power on GPUs. Elimination of
SSE support may be unjustified, but every core need not support
it. In a heterogeneous design, some cores could drop support for
SSE, or even in a homogeneous design, multiple cores could share
hardware.

Thread Level Parallelism. Heterogeneous architectures are most
effective when diversity is high [14]. Thus, recent trends in which
CPU and GPU designs are converging more than diverging are
suboptimal. One example is that both are headed to higher and
higher core and thread counts. Our results indicate that the CPU
will do better by addressing codes that have low parallelism and
irregular code, and seeking to maximize single-thread, or few-
thread, throughput.

7. Conclusion

As GPUs become more heavily integrated into the processor, they
will inherit computations that have been traditionally executed on
the CPU. As a result, the nature of the computation that remains on
the CPU will change. This research looks at the changing workload
of the CPU as we progress towards higher CPU-GPU integration.
This changing workload impacts the way that future CPUs should
be designed and architected.

This research shows that even when significant portions of the
original code are offloaded to the GPU, the CPU is still frequently

performance critical. It further shows that the code the CPU is
running is different than before GPU offloading along several di-
mensions. ILP becomes harder to find. Loads become significantly
more difficult to prefetch. Store addresses become more difficult
as well. Post-GPU code places significantly higher pressure on the
branch predictor. We also see a decrease in the importance of vec-
tor instructions and the ability to exploit multiple cores. Hence the
coming era of CPU-GPU integration requires us to rethink CPU
design and architecture.

Acknowledgment

This work was funded in part by NSF grant CCF-1018356 and a
grant from AMD.

References
[1] AMD OpenCL Programming Guide. http://developer.amd.com/zones/

openclzone.
[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from berkeley. Technical report, UC Berkeley, 2006.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, L. Sangha,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[4] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted
prefetching. In Micro, 2002.

[5] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-
directed data prefetching mechanism. In ASPLOS, 2002.

[6] A. Cristal, O. Santana, J. Martinez, and M. Valero. Toward kilo-
instruction processors. ACM TACO, 2004.

[7] M. A. Goodrum, M. J. Trotter, A. Aksel, S. T. Acton, and K. Skadron.
Parallelization of particle filter algorithms. In Workshop on Emerging
Applications and Many-Core Architectures, 2010.

[8] E. Gutierrez, S. Romero, M. Trenas, and E. Zapata. Simulation
of quantum gates on a novel GPU architecture. In International
Conference on Systems Theory and Scientific Computation, 2007.

[9] S. C. Harish, D. Balaji, M. Vignesh, D. Kumar, and V. Adinarayanan.
Scope for performance enhancement of CMU Sphinx by parallelising
with OpenCL. Journal of Wisdom Based Computing, 2011.

[10] K. Hoste and L. Eeckhout. Microarchitecture-independent workload
characterization. IEEE Micro, 2007.

[11] W. M. Hwu, D. Kirk, S. Ryoo, C. Rodrigues, J. Stratton, and
K. Huang. Performance insights on executing non-graphics applica-
tions on CUDA on the NVIDIA GeForce 8800 GTX. Hotchips, 2007.

[12] D. Joseph and D. Grunwald. Prefetching using markov predictors. In
ISCA, 1997.

[13] C. Kolb and M. Pharr. Options pricing on the GPU. In GPU Gems 2.
[14] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture opti-

mization for heterogeneous chip multiprocessors. In PACT, 2006.
[15] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Sing-
hal, and P. Dubey. Debunking the 100x GPU vs. CPU myth: an evalu-
ation of throughput computing on CPU and GPU. In ISCA, 2010.

[16] NVIDIA. NVIDIA’s next generation cuda compute architecture:
Fermi, 2009. http://nvidia.com/content/pdf/fermi white papers/.

[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A. Lefohn, and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. In Computer Graphics Forum, 2007.

[18] G. Ruetsch and M. Fatica. A CUDA fortran implementation of
BWAVES. http://www.pgroup.com/lit/articles/.

[19] A. Seznec. The L-TAGE branch predictor. In Journal of Instruction-
Level Parallelism, 2007.

[20] G. Shi, S. Gottlieb, and V. Kindratenko. Milc on GPUs. Technical
report, NCSA, 2010.

[21] M. Sinclair, H. Duwe, and K. Sankaralingam. Porting CMP bench-
marks to GPUs. Technical report, UW Madison, 2011.

[22] L. Solano-Quinde, Z. J. Wang, B. Bode, and A. K. Somani. Unstruc-
tured grid applications on GPU: performance analysis and improve-
ment. GPGPU, 2011.

[23] J. Stratton. LBM on GPU. http://impact.crhc.illinois.edu/parboil.php.
[24] L. G. Szafaryn, K. Skadron, and J. J. Saucerman. Experiences ac-

celerating matlab systems biology applications. In Workshop on
Biomedicine in Computing: Systems, Architectures, and Circuits,
2009.

[25] J. Walters, V. Balu, S. Kompalli, and V. Chaudhary. Evaluating the use
of GPUs in liver image segmentation and HMMER database searches.
In International Symposium on Parallel and Distributed Processing,
2009.

[26] G. Wang, T. Tang, X. Fang, and X. Ren. Program optimization of
array-intensive SPEC2K benchmarks on multithreaded GPU using
CUDA and Brook+. In Parallel and Distributed Systems, 2009.

Digital Object Indentifier 10.1109/MM.2012.57 0272-1732/$26.00 2012 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

