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Redesign of UML Class Diagrams:

A Formal Approach1

Piotr Kosiuczenko

Department of Computer Science

University of Leicester, LE1 7RH, UK

Abstract: Contracts provide a precise way of specifying object-oriented systems. When a

class structure is modified, the corresponding contracts must be modified accordingly.

This paper presents a method of transforming contracts, which allows the extension of a

mapping defined on a few model elements, to - what we call - an interpretation function,

and to use this function to automatically translate OCL-constraints. Interestingly, such

functions preserve reasoning using prepositional calculi, resolution, equations, and induc-

tion. Interpretation functions can be used to trace model elements throughout multiple

redesigns of UML class diagrams in both the forward, and the backward direction. The

applicability of our approach is demonstrated in several examples, including some of

Fowler’s refactoring patterns. 

Keywords: UML, OCL, formal methods, refactoring, requirements tracing.

1 Introduction

Object-oriented modelling languages provide textual, and diagrammatic means for system

specification (cf. [UML05]). An object-oriented system and its real-world environment are

modelled using abstractions such as class, association, generalization, operation, and prop-

erty. Class diagrams specify a common structure, and relationships between objects; they

are often detailed by constraints. System specification, design, and implementation occur

in a series of steps. There exist different software engineering approaches which detail how

those steps can be performed. In the 80’s, and early 90’s, the waterfall model prevailed in

software engineering. In this process, one has to begin with fixed requirement specifica-

tion, design the system, and then implement the design specification. These steps can be

adequately described using the notion of refinement. In the area of formal methods, and

object-oriented software engineering several notions of refinement have been studied (cf.

e.g. [La95, PR94], see also [EK99]).

The waterfall model works correctly provided the requirements do not change, and the

software developers have a clear idea regarding how to proceed. In practice however, a

specification is not only extended, but constantly changes due to a number of factors such

as changed or new client requirements, new technology enablers, and so on. In such a case

extensive re-engineering of system specification and design is needed. The notion of re-

finement, with its monotonicity assumption, can barely model such changes.

1. This is the corrected version of the technical report.



Requirements management belongs to the crucial activities in the engineering of com-

plex software systems. Existing notions of refinement barely cope with the non-mono-

tonic change of requirements. Contemporary software engineering processes, such as

Unified Process, embrace change of the specification, design, and implementation as be-

ing a constant factor. In this case, requirements tracing is much harder to achieve. For

example, if an interface or signature changes, a formula or a constraint which described

a property concerning classes implementing this interface may no longer make sense. 

A number of approaches to redesign of UML class models exist already. The best known

is the so-called refactoring [Fo00]. This approach provides simple patterns for code, and

class structure redesign to extend, to improve, and to modify a system. No tool in the mar-

ket allows for an automatic transformation of constraints. Today, manual transformation

must be performed in order to modify constraints, but this is very time consuming, error

prone, and may result in different types of errors ranging from omission of constraints to

incorrect, or even inconsistent, transformation. Moreover, one has to manually redo the ac-

companying proofs to ensure that, for example, an invariant implies a precondition.

In this paper we study the redesign of UML class diagrams with OCL-constraints

[UML05, WK99], as well as the transformation, and tracing of constraints. We present a

new notion of interpretation function for redesign of class diagrams. An interpretation

function is generated by a mapping satisfying conditions analogous to orthogonality in

term rewriting systems. A similar concept was introduced in [Ko01], but it concerned the

compositionality property only. Our concept of redesign is more general than the concept

of refinement since we do not assume that properties are only added or refined, but they

can be changed in an arbitrary way - for example, a number of design level classes might

be restructured or a specification level class might be split into several design level classes.

Properties which have to be preserved, may concern dependencies between classes, asso-

ciations, operations, or generalization relationships. They are expressed in OCL, and trans-

formed.

We show how a mapping defined on atomic model elements can be extended to complex

model elements, and formalized as an interpretation function, if certain extendability con-

ditions are satisfied. This function allows us to transform OCL specifications. The idea is

that the designer or implementer who changes a class diagram maps the atomic elements

on the target model elements, with the transformation of OCL-constraints being accom-

plished automatically.

Interestingly, our approach allows for not only an automatic constraints transformation but

also for an automatic proof transformation. In the technical report [Ko05], we have shown

that basic kinds of reasoning are preserved by interpretation functions; in particular proofs

using propositional tautologies, resolution, and induction. This allows one to save on the

clerical work of redoing proofs after transformation of class diagrams.

Interpretation functions allow us to trace model elements such as OCL-constraints through

the software life cycle in both the forward, and the backward direction. In this paper, we



define a formal notion of forward, and backward trace, and show how to trace require-

ments throughout software development.

We illustrate our approach with a series of examples. In the first example, we transform a

navigation path. In the second example, we describe a simple flip-flop game using state

machines. In the second example, the states are implemented using enumeration types, and

then they are implemented using objects instead of enumeration types. We discuss also the

way one can abstract from irrelevant details. We discuss the applicability of our approach

to the refactoring patterns of Fowler [Fo00], and identify the patterns which cannot be for-

malized using compositional functions. 

The rest of the paper is structured as follows. Section 2 outlines our concept of redesign.

Section 3 contains basic definitions. In section 4, we define the notion of interpretation

function, and discuss its properties. Section 5 contains a series of examples which show

how interpretation functions can be used to redesign class diagrams. In section 6, we dis-

cuss applications to refactoring patterns. In section 7, we show how interpretation func-

tions can be used for tracing requirements. Section 8 is devoted to related work. Section 9

concludes the paper with remarks on the scope, and applicability of our approach. 

2 The concept of redesign 

Our approach is motivated by the concept of abstraction relationships as it is used in UML

[UML05]. This notion allows us to relate model elements in different specifications. We

are interested here in relationships modelling refinement, realization, or redesign of class

structures. Such relationships can then be formalized, and used to automatically transform

OCL-constraints.

 Fig. 1: Logical dependencies
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idea is to relate structures with the same behaviour but with possibly different signatures.
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Refinement functions usually concern all properties, but in a redesign some properties may

be intentionally neglected. Moreover one specification may contain requirements which

contradict requirements in another. This is well modelled by partiality. To compare differ-

ent specifications, selected model elements in the first specification are mapped to model

elements in the second one. Such a mapping can be formalized in the first-order logic, and

then extended to an interpretation function. We provide a sufficient condition to guarantee

the existence of such functions. The idea of this approach is that a mapping has to be de-

fined on simple model elements playing the role of ‘bricks’, i.e. regular elements which

can be composed into more complex elements. Such a mapping can be then extended to

the composed elements. The extension of such a mapping forms an interpretation function.

Interpretation functions can be used to transform OCL-constraints, and the accompanying

proofs. 

Fig. 1 shows the relation between introduced concepts. Model elements are implicitly

modelled by OCL terms. OCL-constraints are translated to first-order logic by the function

Trans. Redesign of selected model elements generates an interpretation function on the

level of OCL, and on the level of formal specifications, if extendability conditions are sat-

isfied. In such a case this diagram commutes.

We do not assume that properties are added or refined, but we allow them to be changed

in an arbitrary way as long as selected properties are kept unchanged. For example a num-

ber of design level classes might be restructured. With OCL we express system properties

such as dependencies between classes, associations, operations, or generalization relation-

ships. 

Usually when performing redesign of a specification one has an intuitive idea what the trace

of one specification in the other is. For example, if in consecutive specifications two equally

named classes exist, then the class of the latter specification is assumed to implement or re-

design the class of the former one; similarly for equally named operations. 

In UML, a constraint is always attached to a UML model element called context. In par-

ticular OCL-constraints can be attached to classes in a class diagram. The syntactic cor-

rectness, or more precisely the type correctness, of an OCL formula depends on the

context. Furthermore, changing the context may make a formula not only false but syntac-

tically incorrect. In particular, tautological OCL formulas may become invalid. In the for-

mal framework presented in this paper, the role of the context is played by the type system

generated from a class diagram, and consequently the type correctness of a formula de-

pends on the derived type system. Redesigning contexts requires rewriting corresponding

OCL formulas. As the compositional functions are partial, they can be seen as a partial

translation from one language to another. Those formulas which are not translated, should

be considered as having been discarded. Accordingly, it is unreasonable to expect conse-

quences of discarded formulas to be preserved, even if those consequences are translated.

Interpretation functions are by definition generated by orthogonal mappings. The funda-

mental property of such functions is that under certain conditions they preserve reasoning

using propositional tautologies, and resolution [Ko05]. On the other hand, the orthogonal-



ity guarantees that the translation of an OCL constraint is unique. Compositionality allows

scaling up of a mapping defined on few model elements. Another important property of

our approach is that it is constructive, in the sense that an interpretation function can be

automatically generated from a dependency relationship, and used to transform con-

straints. The transformation can be automatized using term rewriting tools such as TOM

[Ki+05]. There exist efficient unification algorithms (cf. [Te03]) that can be used for

checking the orthogonality property. 

We study the problem of requirements tracing in the case of complex UML class diagrams

with OCL constraints, and we show how to use UML dependency relationships to trace

constraints. We introduce UML stereotypes to mark appropriate dependency relationships.

We formally define the notion of trace, which allows us to navigate through different vari-

ants of specification in the direction the software is developed (forward trace), in the back-

ward direction (backward trace), and in both directions (full trace). 

Our approach applies to specification on the level of class diagrams with constraints. We

do not consider dynamic binding, but we do follow design by contract approach (see

[Me98]), and we assume that subclasses inherit the constraints of their super-classes. 

3 Basic definitions

In this section we show how to formalize some basic OCL expressions [UML05]. This se-

mantics is a slight modification of the semantics defined in [BH+99]. The latter semantics

is consistent with the semantics defined in [BF98] which is well integrated with the UML

metamodel (see the related work section). More explanations, and in particular the under-

lying algebraic notions, can be found in the appendix. 

The OCL types are modelled by sorts. In particular, types such as Boolean, String,

Integer, and Real are modelled by sorts Boolean, String, Integer, Real, respectively2.

OCL operations defined on such types are modelled by functions. For a sort A, the sorts

Set(A), OrderedSet(A), Bag(A), and Sequence(A) are subsorts of the sort Collection(A).

We define also a sort for class names ClN, and for each class name C ∈ ClN we add equal-

ly named sort C of object identifiers. Id denotes the set of all object identifiers. 

The sort Env models the environment. The elements of the sort Env correspond to the

states of the heap. An environment can be also seen as a global state or a snapshot. An op-

eration execution may involve the object possessing the operation as well as other objects.

Therefore algebraic terms formalizing those operations have at least two arguments: an en-

vironment and an object name corresponding to the hidden parameter. OCL uses ‘.’ to sep-

arate the implicit parameter self from an object’s property or a method name. We use a

similar notation in that the environment, and the implicit parameter are written on the left

hand side of ‘.’, whereas other arguments are written on the right hand side of the function

symbol. 

2. We use Courier font for OCL terms, and Times for algebraic terms as defined in the appendix.



The OCL expression o.oclIsTypeOf(C) means that object o is of class C, but not of

any of its proper subclasses. It is formalized by the function 

_ _ .oclIsTypeOf(_) : Env × Id × ClN → Boolean

We assume that (e, o).oclIsTypeOf(C) evaluates to true, if the object named o in the cur-

rent environment e is of sort C, but not of any of its subclasses. Similarly, the OCL Bool-

ean expression o.oclIsKindOf(C) states that o is of class C or of any of its

subclasses; this operation is modelled by the function 

_ _ .oclIsKindOf(_) : Env × Id × ClN → Boolean 

An operation op(x1 : T1,…, xn : Tn)[: T] may return a value of a type T and/or change

the environment. If the operation is a query, then the environment component is kept un-

changed. A query operation returning a value of type T is modelled by the function

_ _ .op _..._ : Env × C × T1 ×…× Tn →  T 

We need the Env parameter since op may depend on the current state of the environment.

An operation op, which changes the environment only is modelled by the function

_ _ .opEnv_..._ : Env × C × T1 ×…× Tn → Env

If an operation op returns a value, and changes the environment, then it is modelled by a

pair of functions op, and opEnv. Attributes and associations are treated as query operations.

If a is an object attribute, then the function _ _.a returns the corresponding value (i.e.

(e, o).a). Similarly, we formalize associations between classes. If lnkB is a directed asso-

ciation from class A to class B, then we formalize lnkB by the function

_ _.lnkB : Env × A → B, 

if the association is single valued, or as 

_ _.lnkB : Env × A → Set(B), 

if the association has multiplicity larger than 1. 

To formalize OCL constraints, we define the partial function Trans by structural induc-

tion. This function is defined on OCL terms containing variables, queries, attributes, and

association-ends as well as on OCL predefined properties. The codomain of this function

are algebraic terms as defined above. We do not treat OCL definitions, constraint names

nor let-expressions here. The variable env of sort Env corresponds to the current environ-

ment where an OCL expression is evaluated. To translate invariants, and pre-conditions

it is enough to translate OCL-terms which do not include @pre (in the case of formulas

containing @pre we need a slightly more sophisticated definition, see subsection 5.1).

The function is defined as follows:

Trans(self) =def self 

Trans(u.a) =def (env, Trans(u)).a, for an OCL term u, and an OCL property a

We assume that Trans preserves the basic OCL operations such as addition, equality, and

conjunction. An OCL term of the form self.a1 … an-1.an is translated to the term of

the form an(env, an-1(env,...a1(env, self)...)) written in the standard prefix notation. On the



other hand, Trans has an inverse function Trans-1 defined on formalizations of OCL terms,

i.e. the codomain of Trans. Consequently, Trans-1(Trans(u)) = u, for all OCL terms u such

that Trans(u) is defined. The inverse function allows us to translate algebraic terms into

OCL terms. For an OCL invariant of the form: 

context C inv: Ψ

we obtain its formalization, if Trans(Ψ) is defined3:

∀ env : Env, selfC : C Trans(Ψ)

3.1 Example

The idea of our approach is to relate different class diagrams by an appropriate dependency

relationship. In this subsection, we show how to translate OCL formulas to first-order log-

ic. We consider a contraction of a navigation path as it is defined by the Remove Middle-

man refactoring pattern (cf. [Fo00]). The path lnkI.lnkB shown on the left hand side

of Fig. 2 is reduced to lnkB by deleting the intermediate class I. 

 Fig. 2: Remove Middleman 

Let us consider also the following two invariants:

context B inv bInv: 

self.b <= 1

context A inv derInv: 

self.lnkI.lnkB.b->sum() <= self.lnkI.lnkB->size()

The second invariant derInv can be derived from the invariant bInv by induction on the

number of objects contained in self.lnkI.lnkB. If self.lnkI.lnkB is empty

(contains no objects), then the formula 

self.lnkI.lnkB.b->sum() <= self.lnkI.lnkB->size() 

clearly holds. If this formula holds in the case when self.lnkI.lnkB contains n ele-

ments, then it holds when it contains n+1 elements. This is due to the fact that adding a

new element increases the number of elements by 1, but the sum is increased by 0 or 1,

depending on the value of the attribute b of the new element (see the appendix). 

3. To avoid numeric indexes, we often extend the variable self by the first letter of the name
of the corresponding class.
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We formalize the class diagram on the left hand side, and the corresponding OCL con-

straints. We introduce sorts A, I, B for classes A, I, B, respectively. Associations lnkI,

lnkB, and the attribute b are formalized by functions of the form:

_ _.lnkI : Env × A → Set(I)

_ _.lnkB : Env × I → Set(B) 

_ _.b : Env × B → Integer

The first invariant is formalized as follows:

∀env : Env, selfB : B(env, selfB).b ≤ 1

The second invariant is formalized as follows (see the appendix):

∀env : Env, selfA : A (env, (env, selfA).lnkI).lnkB.b->sum() ≤ |(env, (env, selfA).lnkI).lnkB|

4 Interpretation function

In this section we introduce the notion of interpretation function to formally relate class

diagrams, and to transform the corresponding OCL-constraints. Moreover, we demon-

strate how to derive interpretation functions from dependency relations. In subsection 4.1,

we define the notions of orthogonal mappings, and compositional functions. A manual

specification of a dependency relation can be very laborious - therefore, in subsection 4.2,

we provide a method for extending relationships defined on a few model elements to com-

plex dependency relations. In subsection 4.3, we define the notion of interpretation func-

tions, and present two fundamental properties of those functions. We carry the Remove

Middleman example through this section. 

4.1 Formal definition

Dependency relationships are used to compare different specifications [UML05]; selected

model elements in one specification are mapped to the related model elements in another

one. In this subsection, we define a formal counterpart of this relationship. Model elements

are formalized by terms, thus we obtain a mapping on terms. We consider here a simple

version of the order-sorted algebra introduced by Goguen, and Meseguer (see [GM92]). 

Term rewriting is a general model of computation. It has been successfully applied in

many areas of computer science such as implementation of abstract data types, the foun-

dations of functional programming, automated theorem proving, as well as code optimiza-

tion, to name just a few (cf. [Te03]). One can see terms as building blocks that can be

composed to form more complex structures. Term rewriting can be seen as a method al-

lowing one to replace those blocks. Orthogonal term rewriting systems are the most regu-

lar ones. Roughly speaking, a set of term rewriting rules is orthogonal, if the rules do not

overlap. In such a case, an application of one rule does not exclude an application of an-

other. As a result, the rules can be applied in an arbitrary order. The applicability of a term

rewriting rule does not depend on variable names, therefore here we do not treat variable



renaming explicitly (see [Ko05] for details). In this section we use the notion of algebraic

terms, and signatures introduced in the appendix. 

We say that two algebraic terms u, and v overlap, if at least one of the following conditions

is satisfied:

� u and v are different and u can be unified with v after suitable variable renaming.

� u can be unified with a non-variable, proper subterm of v, or vice versa.

We say that a set of terms is overlapping free, if it does not contain terms which overlap.

We say that a term t is linear, if for every variable x, t contains x at most once. We say that

a set of terms is orthogonal, if it does not contain variables, it is overlapping free, and only

contains linear terms. Orthogonality means that terms are like bricks, which can be fitted

together and replaced independently. Note that the set {(env1, (env2, selfA).lnkI).lnkB,

(env, selfB).b} is orthogonal (see subsection 3.1). 

Let ψ : T(Σ, X, τ) → T(Σ´, X´, τ´) be a partial function. ψ is compositional iff for all terms

t the following conditions hold:

i) ψ(x) is defined for every variable x ∈ X ∩ X´. 

ii) If ψ(t) is defined, σ is a variable renaming, then ψ(tσ) = ψ(t)σ.

iii) var(ψ(t)) ⊆ var(t), if ψ(t) is defined.

iv) If ψ maps term ti to the term ti´, for i = 0,..., n, x1,..., xn ∈ X ∩ X´ and term t has the

form t0[t1/x1,..., tn/xn], then the substitution t0´[t1´/x1,..., tn´/xn] is well defined and

ψ(t) has the form t0´[t1´/x1,..., tn´/xn]. 

Conditions (i) and (ii) imply that compositional functions are defined on common vari-

ables and that they do not depend on variable’s name. Condition (iii) is the standard re-

quirement in the case of term rewriting systems (cf. e.g. [Te03]). (iv) is a compositionality

condition; it allows us to scale up a mapping to complex terms. This condition can be

equivalently expressed by a monotonicity condition of the form: τ(ti) ≤ τ(xi) implies that

τ´(ti´) ≤´ τ´(xi), for xi ∈ X ∩ X´. It is worth noting that the composition of compositional

functions is a compositional function, provided that there is no conflict between variable

names (see [Ko05]). 

Let A ⊆ T(S, F, ≤, X, τ) be a set of terms. A mapping ϕ : Α → T(S´, F´, ≤´, X´, τ´) is or-

thogonal, if there exists a partial function on sorts ρ : S → S´ such that the following con-

ditions are satisfied: 

a) For every variable x, ρ(τ(x)) is defined iff x ∈ X ∩ X´. 

b) If x ∈ X ∩ X´, then ρ(τ(x)) = τ´(x). 

c) var(ϕ(v)) ⊆ var(v), for v ∈ A. 

d) If v ∈ A, then ρ(τ(v)) is defined and ρ(τ(v)) = τ´(ϕ(v)).

e) If ρ(s1), ρ(s2) are defined and s1 ≤ s2, then ρ(s1) ≤´ ρ(s2).



f) A (i.e. Dom(ϕ)) is orthogonal.

Conditions (a) and (b) say that the sort mapping ρ is determined by types of common vari-

ables; they are analogous to conditions (i) and (ii). Condition (c) is analogous to (iii). Con-

dition (d) says that ρ commutes with ϕ with respect to types. Condition (e) says that ρ is

monotone. Let us notice that in the case of a single-sorted algebra, any orthogonal term

rewriting system determines an orthogonal mapping, and vice versa any orthogonal map-

ping determines an orthogonal term rewriting system. 

To exemplify this definition, we define a sort mapping ρ1 and a term mapping ϕ1. Let ρ1

map sorts A, B to A, B, respectively, and let ϕ1 map the term (env1, (env2, selfA).ln-

kI).lnkB4 to the term (env1, selfA).lnkB. Since ρ1 and ϕ1 satisfy conditions (a),..., (f), in

particular ρ1 is monotone and the domain of ϕ1 is orthogonal, the mapping ϕ1 is orthogo-

nal as well. Let us observe that in order to obtain orthogonal mappings, we need to deal

with linear terms, i.e. terms which do not contain multiple occurrences of the same vari-

able. In general, linearity does not allow one to map a term in different ways depending on

whether some of its variables are different or not: it requires more general definitions of

the mapping. On the other hand, queries do not change the state of the system, and env1 is

equal to env2. In our case, the mapping of the linear term (env2, (env1, selfA).lnkI).lnkB to

the term (env1, selfA).lnkB implies that the non-linear term (env1, (env1, selfA).lnkI).lnkB,

is mapped to the term (env1, selfA).lnkB by the generated interpretation function. Indeed

due to compositionality and the fact that compositional functions preserve variables,

(env1/env2, (env1, selfA).lnkI).lnkB is mapped on (env1, selfA).lnkB. 

In this paper we consider only compositional functions preserving predefined OCL types

such as booleans or reals. A compositional function can be extended to boolean valued

terms in the following way: 

If ϕ(Φ) = Φ´ and ϕ(Ψ) = Ψ´, then ϕ(Φ ∧ Ψ) =def Φ´ ∧ Ψ´.

If ϕ(Φ) = Φ´ and x ∈ X ∩ X´, then ϕ(∀x Φ) =def ∀x Φ´.

Similarly we can define the extension for other boolean connectors. 

A compositional function can be applied to OCL terms. Given a compositional function ϕ,

we can define the adjacent function φ(u) =def Trans-1(ϕ(Trans(u)), for an OCL term u (cf.

section 3). Let ρ map the sort C corresponding to class C to the sort C´ corresponding to

class C´. An OCL constraint of the form 

context C inv: Ψ
can be transformed to a new OCL constraint of the following form if and only if

ϕ(Trans(Ψ)) is defined:

context C´ inv: φ(Ψ)

4. Note that the variables env1 and env2 occur at different positions in this term. Therefore to

make the term linear we have to use different variables (see below). 



4.2 Defining orthogonal mappings

Fully manual specification of a dependency relationship may be very laborious, in partic-

ular when the redesigned specification is very large. Fortunately, this process may be par-

tially automatized. In this subsection we present a method for an automatic extension of

dependency relationships, and a method for a systematic extraction of orthogonal map-

pings from dependency relationships [UML05]. A dependency relationship relates model

elements such as packages, classes, attributes and operations. Abstraction is a kind of de-

pendency which relates two elements, or sets of elements that represent the same concept

at different levels of abstraction or from different viewpoints. Abstraction has three pre-

defined stereotypes: «derive», «refine» and «trace». The derived abstraction

specifies that the client may be computed from the supplier. The refine abstraction speci-

fies refinement relationship between model elements at different levels, such as analysis

and design. And finally, the trace abstraction specifies a trace relationship between model

elements that represent the same concept in different models. Traces are used for tracking

requirements and changes across models. The last two of these stereotypes are relevant to

the redesign of class diagrams since, during redesign, a specification can be refined or

traced. We use those stereotypes as additional benchmarking of dependency relationships

without giving them any formal meaning.

To compare different specifications, selected model elements in the model being rede-

signed are related by a dependency relationship to the corresponding model elements in

the target model.

An orthogonal mapping can be derived from a dependency relationship in three steps:

1) The dependency relationship is extended to packages, classifiers and properties.

2) The specification is formalized.

3) An orthogonal mapping is generated from the dependency relationship.

The usual way of redesigning a specification is to copy the specification to be modified

and then to modify the copy. When a model element is not created, but copied, it is auto-

matically linked to its ancestor. It is necessary to decide whether a model element must be

coupled with an ancestor or not only when the model element is created or modified. 

To facilitate mapping of model elements (see. step (1)), we use the rule that the dependen-

cy relationship is inherited by components of related model elements if they are of the

same type and have the same names. More precisely, let a1 and a2 be model elements and

let r be a dependency relationship. If the following conditions are satisfied:

� there exist model elements m1, m2 such that m1 is mapped to m2 by r

� for i = 1, 2, mi is a package and mi contains/imports model element ai, or mi is a clas-

sifier and mi contains property ai or mi is a feature and ai is its parameter

� a1 and a2 are equally named (i.e. a1.name = a2.name)



then r maps a1 on a2, unless a1 is mapped to another element.

We propagate the linking from composed model elements to their parts starting with pack-

ages, through classifiers and constraints, to features and parameters. We relate packages

with packages, classifiers with classifiers, properties with properties and operations with

operations.

Using this procedure, we can extend the relation r defined in subsection 3.1 to classes A and

B, since those classes are equally named in both packages. The extension maps class A in

package p1 to class A in package p2, and class B in package p1 to class B in package p2.

Furthermore we can extend it to the attribute b of class B, since this attribute occurs in both

copies of class A, and since both copies are related. Note that the orthogonal mapping ϕ1

defined in subsection 4.1 is a formalization of this extension. 

To facilitate mapping of OCL terms (i.e. step (3)), we use the following rules:

� For every term t of a basic OCL type s (cf. [UML05]), the term ρ(s) = s, if ϕ(t) is

defined.

� If t has the form f(x1,..., xn), f is a predefined OCL operation and the variables are of

the basic OCL types, then ϕ(t) = t.

Since we want to obtain an orthogonal mapping, the completion procedure may add a new

element to the domain of a constructed function only if it does not violate conditions (a),...,

(f). In particular the added term must be linear and must not overlap with the formalization

of the other model elements in the domain. Note that this can be checked automatically. In

general the extension procedure can be fully automatized.

Let us consider the mapping ϕ1 again. The second part of the extension procedure allows

us to map the term |x| to the term |x| and the term y->sum() to the term y->sum(). Note that

the set {(env1, (env2, selfA).lnkI).lnkB, (env, selfB).b, |x|, x->sum()} is orthogonal. Con-

sequently we can extend the orthogonal mapping ϕ1 to an orthogonal mapping ϕ2, which

maps |x| to |x| and y->sum() to y->sum(). 

4.3 Properties of interpretation functions

Compositionality and orthogonality imply faithfulness of a translation. In this subsection

we list two essential properties of interpretation functions. The first one guarantees that or-

thogonal mappings can be extended to compositional functions. This property is proved in

the appendix. The second property states that interpretation functions preserve certain

kinds of proofs. We refer the interested reader to [Ko05] for the proof of the second prop-

erty.

Extendability Theorem

Let A ⊆ T(Σ, X, τ) be a set of terms and let ϕ : Α → T(Σ´, X´, τ´) be an orthogonal mapping.

Then the mapping ϕ can be uniquely extended to a compositional function 



ψ : T(Σ, X, τ) → T(Σ´, X´, τ´) 

such that Dom(ψ) is the smallest set containing A, X ∩ X´ and closed on term composition. 

A compositional function is an interpretation function, if it is generated by an orthogonal

mapping: ψ is interpretation function if, and only if, there exists an orthogonal mapping ϕ
such that ϕ(t) = ψ(t), for every term t ∈ Dom(ϕ), and Dom(ψ) is the smallest set containing

the domain of ϕ, X ∩ X´, and is closed on term composition. Below we will strictly dis-

tinguish between mappings, and functions generated by mappings.

Let us consider the mapping ϕ2 defined in subsection 4.2. We cannot apply this mapping

to terms such as (env, (env, selfA).lnkI).lnkB.b->sum() and |(env, (env, selfA).lnkI).lnkB|,

since those terms do not belong to the domain of this mapping. Therefore we need to ex-

tend this mapping to complex terms such as the two above. The domain of ϕ2 is orthogonal

and ρ is monotone. Therefore ϕ2 induces an interpretation function. This function applies

to both terms. Consequently, we can transform the formulas defined in subsection 3.1. The

formalization of the first invariant is transformed by the resulting interpretation function

into the following formula:

∀env : Env, selfB : B(env, selfB).b ≤ 1

The formalization of the second invariant is transformed as follows:

∀env : Env, selfA : A (env, selfA).lnkB.b->sum() ≤ |(env, selfA).lnkB|

The formulas above correspond to the following OCL-constraints (cf. subsection 4.1):

context B inv bInvT: 

self.b <= 1

context A inv derInvT: 

self.lnkB.b->sum() <= self.lnkB->size()

The results presented in [Ko05] show that interpretation functions preserve reasoning us-

ing resolution, modus ponens, propositional tautologies, and induction. A proof using res-

olution, modus ponens and propositional tautologies is called a PTR-proof. Let the sort s

be generated by a constant constructor c and a unary constructor f5. An inductive proof of

a formula of the form ∀x : s Φ(x : s) has two parts:

� A proof of Φ(c), for a constant constructor c.

� A proof of Φ(x) ⇒ Φ(f(x : s, y1 : s1,.., yn : sn)), for a constructor f. 

5. For simplicity we assume that c and f are the only constructors of sort s. We assume also that

the set As corresponding to the sort s is the smallest set such that cA ∈ As, and such that if a ∈ As,

a1 ∈ As1,..., an ∈ Asn, then fA(a, a1,..., an) ∈ As (see the appendix).



Proof Preservation Theorem

Let ψ : T(S, F, ≤, X, τ) → T(S´, F´, ≤´, X´, τ´) be an interpretation function. Let S have a

tree structure and let the underlying sort mapping ρ map the largest sort of S to the largest

sort of S´. If ψ is defined on a set of formulas Ax and on the formula Φ, then the following

holds:

� If there is a PTR-proof of the formula Φ using Ax, then there is a PTR-proof of ψ(Α)

using ψ(Ax).

� Let us assume that the formula Φ has one free variable x. If there is a PTR-proof of

Φ(c), and if there is a PTR-proof of Φ(x) ⇒ Φ(f(x, y1,..., yn)), then there is an induc-

tive proof of Φ preserved by ψ.

The assumption that ρ preserves the largest sort corresponds to the requirement that the

OCL type OclAny (see [UML05]) is preserved. In the paper [Ko05] we show that this the-

orem holds under a less strict condition. The assumption that the sorts form a tree structure

corresponds to the requirement that there is no multiple inheritance. It is worth mentioning

that resolution and propositional tautologies are the standard means of reasoning in first

order logic and that other reasoning rules are more difficult to use. The fact that interpre-

tation functions preserve PTR-proofs has several advantages. Interpretation functions can

save the often tedious work of redoing proofs after class structure redesign. In particular,

if there is a proof that an invariant implies a pre-condition and that the corresponding post-

condition implies the invariant, then the same relation holds for the transformed formulas,

provided that the proof uses the above-mentioned ways of reasoning. Similarly, if one in-

variant implies another invariant, then this relation is preserved by an interpretation func-

tion. For example in the case of the Remove Middlemen refactoring, the Proof

Preservation Theorem implies that bInvT implies derInvT. Consequently, it is not nec-

essary to redo the proof. 

The inverse mapping corresponds to the Introduce Middleman refactoring [Fo00]. This

mapping can be extended to an interpretation function as well. The Remove Middleman

example demonstrates that a partial function is really needed since we neither map lnkI

nor lnkB. Let us observe that the interpretation function as defined in [Ta73] does not suf-

fice, since we map complex terms such as (env1, (env2, selfA).lnkI).lnkB, not only single

function symbols. For the same reason, we cannot apply the forget functor to signatures in

order to remove lnkI and lnkB, since we would remove lnkI.lnkB as well. 

5 Examples

During the software engineering process a class structure can be amended several times

and a variety of design and refactoring patterns can be applied [GH+95, Fo00]. In this sec-

tion we show how to use our technique in the case of class structure redesign. Interestingly

enough, the mappings considered are orthogonal and generate interpretation functions.



5.1 Transforming state machines

This subsection addresses the problem of relating different implementations of state ma-

chines. State machines are one of the basic means to describe object behaviour in UML.

Object-oriented modelling allows for different implementations of state machines. For ex-

ample, states in a state machine can be implemented by enumeration types or by state

classes, as in the State Pattern [GH+95]. The problem arises as to how we compare such

seemingly different implementations.

First, we implement states using an enumeration type and then using classes. The opera-

tions triggering transitions are constrained by pre- and post- conditions. Pre- and post-con-

ditions can be formalized in a similar way to invariants, but one has to take care of different

system states before and after execution of the operation. Let us consider an OCL con-

straint of the form:

context C :: op(x1: T1,…, xn: Tn)[:T] 

[pre : Φ]

post : Ψ

[:T] means that the return type is optional. Similarly, the precondition is optional. 

To translate the pre-condition, we use the function Trans as it is defined in section 3. To

translate the post-condition we use the function Transpost [BH+99], which is defined like

Trans, but with two different variables, env and env´, in the formalization: 

� Transpost(t.a) = (env´, Transpost(t)).a

� Transpost(t.a@pre) = (env, Transpost(t)).a 

The variables env and env´ added by function Transpost are of sort Env and model the en-

vironment before and after the execution of the operation op, respectively. The translation

of the above OCL constraint has the form:

∀ self : C, env, env´ : Env, x1 : Τ1,…, xn : Tn env´ = (env, self).opEnv(x1,…, xn) ∧
  Trans(Φ)  ⇒  [∀ result : T result = (env, self).op(x1,…, xn) ⇒ ] Transpost(Ψ)

Square brackets indicate that the part corresponding to result is optional. It occurs if op

returns a value. 

 Fig. 3: FlipFlop game

Fig. 3 (a) shows class FlipFlop. The corresponding state machine is shown on Fig.

3 (b). An object of that class can be in the state flip or flop. There exists an operation

flip

flop

next() next()

FlipFlop

next()

state : enum{flip, flop}
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next() which transposes these states. The behaviour of this state machine can be speci-

fied in OCL as follows:

context FlipFlop :: next()

post enumConstraint: 

(state@pre.includes(#flip) implies state.includes(#flop))

and

(state@pre.includes(#flop) implies state.includes(#flip))

In OCL, the values of associations and properties in general can be treated as sets, there-

fore we can write state.includes(#flop) meaning that the value of state is

flop. Formally, the definition of translation function does not allow us to treat constraint

names explicitly, but the translation may be performed as if there were no names. The con-

straint above is formalized in the following way:

∀ self : FlipFlop, env, env´ : Env env´ = (env, self).nextEnv ⇒
 (flip ∈ (env, self).state ⇒ flop ∈ (env´, self).state)  ∧ 

(flop ∈ (env, self).state ⇒ flip ∈ (env´, self).state)

 Fig. 4: States as classes

We may redesign this state machine using the State Pattern [GH+95]. In the redesigned

version, the states are implemented by objects instantiating classes Flip and Flop,

which extend the class State (see Fig. 4).

We map the elements of the enumeration type to the corresponding classes; i.e. #flip

and #flop are mapped to classes Flip and Flop, respectively. Moreover, the OCL term

state.includes is mapped to the term lnkState.oclIsKindOf. It is not diffi-

cult to observe that this mapping, defined on the level of model elements, induces an in-

terpretation function. The transformed formula has the form:

∀ self : FlipFlop, env, env´ : Env env´ = (env, self).nextEnv ⇒
((env, (env, self).lnkState).oclIsKindOf(Flip) ⇒ 

(env´, (env´, self).lnkState).oclIsKindOf(Flop)) 

((env, (env, self).lnkState).oclIsKindOf(Flop) ⇒ 

(env´, (env´, self).lnkState).oclIsKindOf(Flip))

Let us observe that the formalization of lnkState.oclIsKindOf is nonlinear. This

does not contradict orthogonality of the corresponding mapping, since the definition re-

<<abstract>>

Flip

FlipFlop

next()

lnkState

Flop

State



quires only the terms in its domain to be orthogonal and does not restrict the range of the

mapping. 

The formula above formalizes the following OCL constraint:

context FlipFlop :: next() post classConstraint:

(lnkState@pre.oclIsKindOf(Flip) implies

lnkState.oclIsKindOf(Flop))

and 

(lnkState@pre.oclIsKindOf(Flop) implies

lnkState.oclIsKindOf(Flip)) 

5.2 Abstraction

Class diagrams can be very complex and hard to read if they are very extensive and de-

tailed. Egyed proposed a powerful method of abstracting away class diagram details, if

they are irrelevant from a particular point of view [Eg03]. He proposed two basic types of

abstraction: Compositional abstraction allows one to group multiple classes and relational

abstraction allows one to contract paths in a similar way as it is done in the Remove Mid-

dleman and Inline Class refactoring patterns (see subsections 3.1). Egyed introduced 121

rules allowing one to deal with different kinds of relational abstractions. Those rules cor-

respond to composition of different kinds of association (i.e. aggregation and composition)

and inheritance. Interestingly in our formal framework, it is possible to deal with those

rules in a formal and uniform way.

 Fig. 5: Abstraction
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This example shows how to deal with abstraction within our framework. In this subsection

we consider a library which stores documents (see Fig. 5). There are three types of users:

student, assistant and professor. The view specified in SpecA abstracts away from several

details of the concrete view specified in SpecC. It groups classes Person, Student and

Assistant into one class NormalBorrower (compositional abstraction in the terms

of Egyed) and suppresses the classes Professor, AClass and BClass. We use the ab-

straction relationship ar to relate the abstract and the concrete view. We use the UML ste-

reotype <<refine>> which allows us to relate different abstraction levels such as

analysis and design (see [UML05]). Dependency relationships annotated with this stereo-

type indicate a transformation from the abstract to the concrete model, therefore the direc-

tion of arrows is opposite to the direction in the case of a trace relationship. 

The formalization of this example is straightforward. We define the sort function ρ by

mapping sorts corresponding to classes Person, Student and Assistant to the sort

corresponding to NormalBorrower. We also map the term corresponding to the path

loan.doc to the term corresponding to the association-end lend. This term mapping

can be extended to an interpretation function and used to transform constraints. We intro-

duce the stereotype <<inferred>> to indicate that a stereotyped constraint was inferred

from another constraint. 

As mentioned above, our formal framework allows us to study the rules introduced by

Egyed in formal terms. There is a rule allowing one to compose two associations (like in

the example above). There is a rule allowing one to compose an association and a compo-

sition, or a rule which allows one to restrict an association to a subclass (e.g. association

loan can be restricted to the class Student). Most of them are just special cases of the

interpretation function. Some of them, when formalized literally, violate the composition-

ality requirement. The author deals with this problem by putting reliability rating, but in

our opinion this problem requires a formal treatment. Interestingly for some of those rules

it is possible to formalize the associations using OCL terms in such a way that the compo-

sitionality is preserved. Our approach does not distinguish between formalization of an as-

sociation in general, an aggregation and a composition. But we may express the

corresponding semantics in OCL and deal with the resulting constraints.

 Fig. 6: Qualified association
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In our opinion, any finite number of such rules does not suffice. It is not difficult to show

that there are infinitely many ways in which OCL properties can be composed. For exam-

ple, one would need infinitely many rules for qualified associations. Fig. 6 shows an ex-

ample of class contraction.

This construction allows replacement of two qualified associations by one association with

two qualifiers. Of course in the same way one can abstract from any number of qualified

associations, but this requires an infinite number of rules. In general, there are infinitely

many patterns of composition and only term composition can describe all of them. 

6 Refactoring patterns

In this section we discuss the applicability of our method to the refactoring patterns of

Fowler [Fo00]. We group the refactoring patterns into three categories: refactorings which

introduce or remove model elements, refactorings which move or modify model elements,

and refactorings which generalize or narrow types. We explain how our approach applies

to each category. Let us point out that in this paper we consider only class structure refac-

toring, consequently we do not deal with the code refactoring.

Our approach allows us to formalize most refactoring patterns. We can use compositional

functions when the refactorings are considered in isolation. Nevertheless, we have to dis-

tinguish between modification of a class diagram and a modification of its clients. In the

case when a client relies on a particular signature of a class structure, changes of the class

structure may break the client in the sense that the client may rely on functionality which

is no longer available. In such a case the client has to be modified as well.

6.1 Introducing and removing model elements

We can deal easily with adding or removing model elements such as associations and op-

erations, since the compositional functions can be partial and do not have to be surjective.

Due to partiality we can formalize refactorings such as Changing Bidirectional Associa-

tion to Unidirectional. Vice versa, we can formalize Changing Unidirectional Association

to Bidirectional because of the fact that compositional functions do not have to be surjec-

tive.
.

 Fig. 7: Inline Class
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Fig. 7 shows the Inline Class refactoring (we omit the <<trace>> relationships). In sub-

section 3.1, we have already considered a special case of this pattern. We use the stereo-

type <<use>> to indicate that the class C uses properties of the class TelNumber. If

there are no clients using the removed class, then compositionality is preserved; in the oth-

er case a client can be broken. For example, let us suppose that the class Person is con-

strained by the following OCL-invariants (cf. Fig. 7 (a)):

context Person inv: 

self.getTelNumber() = self.tn.number

context C inv:

self.telNumber.number >= 100000

We map tn.number to number, areaCode to areaCode and getTelNumber()

to getTelNumber(). Formally, we define the function ρ by mapping sorts Person and

TelNumber to the sort Person. We map also: 

(env, selfT).areaCode to (env, selfP).areaCode

(env1, (env2, selfP).tn).number to (env1, selfP).number

(env, selfP).getTelNumber() to (env, selfP).getTelNumber()

(env, selfP).name to (env, selfP).name

Note that we did not map sort C, corresponding to the client. The term mapping defined

above (let us call it ϕ) can be extended to a compositional function ψ. Note that in the first

constraint, the query on the left side of the equation is preserved by the mapping and that

term on the right side is contracted. Consequently, this constrain is transformed to: 

context Person inv: 

self.getTelNumber() = self.number

ψ does not allow us to transform the second constraint, since it does not apply to class C.

Therefore, we extend ϕ to ϕ1 by mapping the term (env, selfC).telNumber to the term (env,

selfC).person. The interpretation function generated by ϕ1 allows us to transform the sec-

ond constraint. The transformed constraint has the form:

context C inv:

self.person.number >= 100000

 Fig. 8: Collapse Hierarchy

The Collapsing a Hierarchy refactoring merges a superclass with its subclass when they

are similar (see Fig. 8). We use the stereotype <<trace>> to describe evolution of model
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elements. In our case, the sort corresponding to the collapsed class is mapped to the sort

corresponding to the upper class; this sort mapping preserves monotonicity. We map types

Employee and Salesman to the type Employee. Those methods having an implicit

parameter of type Salesman can be transformed to methods having implicit parameter

of type Employee. Similarly, if a method returns objects of type Salesman, then it is

transformed to a method returning objects of type Employee. This broadens the type of

returned values, but it is in accordance with condition b), since both types are mapped to

the same type. Consequently, this refactoring does not break clients of class Employee.

The clients of Salesman have to use the Employee class henceforward. 

The Introduce Middleman refactoring reverses the Remove Middleman refactoring. It cre-

ates a new class, when one class is doing work that should be done by two, and moves the

relevant fields and methods to the new class. The clients using the functionality moved to

the new class can access it via the old class that forwards the calls to the extracted class.

This refactoring can be dealt with easily because of the fact that we allow mapping of a

single function symbol to a complex term. 

We can easily deal with removal of parameters. In Remove Parameter refactoring, a pa-

rameter is removed when it is no longer needed. This corresponds to skipping a variable

in a function, e.g. f(x, y) can be mapped to f(x); this is in accordance with the condition

that var(ϕ(t)) ⊆ var(t), for a compositional function ϕ. 

Introduce Parameter Object replaces a group of parameters that naturally go together by a

single object. It can hardly be dealt with in the current state of our approach.

The Add Parameter refactoring adds a new parameter that can pass on some additional in-

formation. Similarly the Parameterize Method refactoring introduces a new parameter to

a method. We cannot formalize these refactorings since by definition a compositional

function does not introduce new variables (this assumption is usually made in term rewrit-

ing systems to exclude some pathological cases). Similarly we can hardly deal with the En-

capsulate Collection refactoring, since it introduces new variables and the definition of the

new operations cannot be formulated using term composition only.

6.2 Moving and modifying model elements

 Fig. 9: Move Field
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class which the client uses most. The old attribute is removed altogether or turned into a

simple delegation. This refactoring changes the type of the implicit parameter of the

moved attribute which may result in a loss of compositionality. In this case we adjust the

client (see Fig. 9). 

The Hide Delegate refactoring creates methods on the server to hide the delegate. It can be

dealt with by compositional functions, if the delegate class is not accessible to the clients.

If it is accessible, then its clients have to be adjusted as in the case of Move Method. 

The Pull up Method refactoring moves methods to the superclass, if they have identical

results on subclasses. This refactoring can be dealt by compositional functions, since it

broadens the types of the implicit parameter of the Moved Method.

 Fig. 10: Push Down Method

The Push Down Method refactoring is the opposite of the previous one. It may break com-

positionality and cannot be dealt with using compositional functions. After pushing down

the methods their clients have to be adjusted (see Fig. 10).

The Replace Type Code with Subclasses refactoring replaces numeric type code attributes

with a new class. In this case, the clients of the attributes must be transformed; for example

self.salesman > 0 may be replaced by self.oclIsKindOf(Salesman).

6.3 Type generalization and narrowing

The Form Template Method refactoring pushes common methods from subclasses to the

superclass. This refactoring can be treated by a compositional function since the generali-

zation of the implicit parameter type does not break compositionality. It can be dealt with

as Push up Method.

The Replace Delegation with Inheritance refactoring makes the delegating class a subclass

of the delegate. Since the delegating class inherits operations and attributes from the su-

perclass, this refactoring does not break clients, although the methods and constraints of

the delegating class have to be adjusted. This refactoring is in accordance with composi-

tionality conditions. 
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The Replace Inheritance with Delegation refactoring creates an association for the super-

class, adjusts methods to delegate to the superclass, and removes the subclassing. This re-

factoring may break compositionality, since it breaks the subtype relation. Nevertheless, it

can be dealt with by a sequence of compositional functions, adjusting the clients, so that

the composition of these functions forms a compositional function.

7 Tracing requirements 

Tracing requirements from the initial requirements specification to the final implementa-

tion is crucial for gaining control over the development process, it provides a level of

project control and quality that would be very hard to achieve by any other means: You

can’t manage what you can’t trace [WN94]. One of the greatest motivating factors for trac-

ing requirements is that contracts require companies to do so [DD01]. It is usually prac-

ticed by software providers of high-reliability products and systems. A requirement is a

software capability which, by definition, must be met by a system or component to satisfy

a contract, specification, standard or other formally imposed document. Requirement’s

traceability is the ability to describe and follow the life of a requirement, in both a forward

and backward direction, throughout the system life cycle [Ja98]. Since traceability has to

operate in both directions, for any requirement it should be possible to trace its initial

source as well as the corresponding test cases and the ultimate implementation. 

The problem of traceability has been widely studied and many approaches have been devel-

oped. The paper [KP01] presents a taxonomy of different approaches. Tracing can be done

at different levels of granularity and abstraction. Tracing from one document to another is

the most basic. The most refined level provides the possibility to trace every single statement

(cf. [KP01]). Interpretation functions provide refined traceability. The notion of tracing is

based on the notion of relationship between traced entities. The relationship can relate soft-

ware artifacts at the same and at different abstraction levels (see section 5). In UML, the cor-

responding notion is the notion of dependency relationship. The relation can be set in an

implicit and an explicit way. The subsection 4.2 describes a combination of both. 

7.1 Traces

During the software engineering process a class diagram may undergo several changes be-

cause of pattern applications, refactorings, refinements, etc. The model elements contained

in such a diagram evolve over time. A trace of a model element is an ordered set of model

elements which are antecedent or subsequent versions of the model element. Model ele-

ments are related by the dependency relationships. On the formal level, algebraic terms

formalizing those model elements are related by compositional functions.

For a relation R, R-1 denotes the inverse of R and R* denotes the reflexive and transitive

closure of R, i.e. R* = R0 ∪ R1 ∪ R2 ∪ ... 



Let F0 be a set of compositional functions, we define the relation 

F =def {(t, t´) | ∃ f∈ F0
 f(t) = t´}

Let U be a set of algebraic terms. 

� The forward trace of U equals F*(U)

� The backward trace of U equals (F*)-1(U)

� The full trace of U equals (F)*(U) ∪ (F-1)*(U)

The relation F* provides a quasi-ordering that corresponds to the evolution of model ele-

ments during the software development process. It allows for forward and backward nav-

igation through different versions of specification and for tracing constraints. The forward

trace of a set of model elements U is the image of U with respect to F*. It models the for-

ward evolution of terms (at the formal level) and the corresponding model elements (at the

UML level, see the next subsection). Similarly, the backward-trace models the history of

U. The full-trace models the full lifeline of U, i.e. the history of U and its latter forms. 

7.2 Example

In this subsection we reconsider the library example (see subsection 5.2). The library’s

borrowing and circulation policies depend on the type of the user. We show how an ab-

stract specification of the library can be refined and modified in a series of steps. This ap-

proach can be also seen as view integration (cf. [Fi+94]), in which a design is obtained by

combining different views. 

 Fig. 11: Abstract dependencies

Fig. 11 shows a brief structure of this specification. To avoid confusion, in the following

we name relationships, if there is more than one relationship of a given type. The packages

Spec1, Spec2, SpecA and Spec3 are related by stereotyped dependency relationships.

We use the stereotype <<conform>> to indicate that model elements in one specification

trace model elements in another specification and conform to their constraints. Let us re-

call that in UML the trace relationship is a particular kind of the abstraction relationship

(see [UML05]). 

raSA
raS2

raS1

raSB

<<conform>>

<<conform>>

<<conform>>

Spec1

Spec2

Spec3

SpecA



Fig. 12 shows the detailed structure of the specification. We use package names to resolve

name clashes when necessary. The trace relationships r1, r2, rA, rB are detailed version

of the dependency relationships raS1, raS2, raSA, raSB, respectively. We put an arrow

corresponding to a dependency relation in the background if it does not concern a sub-di-

agram. 

Spec1 is a rough specification. The class Borrower can indirectly reference objects of

the LoanableDocu class via the Junks class. Specification Spec1 is converted to

Spec2 by deleting the class Junks and introducing the association borrow for the path

junks.loan. Packages Spec1 and Spec2 are related by the dependency relationship

r1. Therefore, thanks to the extension procedure (see step (1) in subsection 4.2), the class

Spec1::LoanableDocu and the class Spec1::Borrower are related by r1 with

the class Spec2::LoanableDocu, and the class Spec2::Borrower, respectively.

The only thing that the user has to do in this case, is to relate the association junks.loan

and the association borrow.

The specification SpecA limits to 5 the number of borrowable documents a normal bor-

rower can borrow (this is expressed by the lendConstraint). Spec3 refines SpecA

and Spec2. The dependency r2 relates the associations named borrow, the class Loan-

ableDocu and the class Borrower from the package Spec2 with the composed asso-

ciation loan.doc, the class Docu and the class Person from Spec3, respectively. The

dependency relationship rA relates the class Student with the class NormalBorrow-

er and the path loan.doc with the association lend. Similarly for rB.



 Fig. 12: Dependences

7.3 Example continued: Transforming constraints

In this subsection we show how to transform those constraints according to the dependen-

cy relationships (see Fig. 12). We show also how to use those dependency relationships

and the corresponding interpretation functions to define traces. 

Four compositional functions exist; they are ϕ1, ϕ2, ϕA and ϕB, which correspond to the

dependency relationships r1, r2, rSA and rSB, respectively (in fact, these are interpretation

functions). The dependency relationships in this structured specification impose interest-

ing relations between different constraints. 

The constraint in the Spec1 package is expressed in OCL as follows

context Spec1::Borrower inv loanConstraint:

self.loan->size() <= 10

Spec2 conforms to Spec1, therefore loanConstraint has to be to transformed using

the generated compositional function ϕ1. The resulting constraint has the form:

Spec3

Figure 4: Role pattern
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Docu Loan
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1 *
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*
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borrowConstraint:
borrow->size() <= 10

personConstraint:
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<<inferred>>

<<inferred>>

lendConstraint:
lend->size() <= 5NormalBorrower

Student

Person

studentConstraint:
loan.doc->size() <= 5

<<inferred>>

ProfessorAssistant

assistantConstraint:
loan.doc->size() <= 5

<<inferred>>

SpecA



context Spec2::Borrower inv borrowConstraint:

self.borrow->size() <= 10

Consequently, an object of the class Spec2::Borrower can be related to at most 10 ob-

jects of the class LoanableDocu. We use the stereotype <<inferred>> to indicate

that a constraint was inferred. 

Since Spec3 conforms to Spec2 and the class Spec3::Person depends on the class

Spec2::Borrower, the borrowConstraint can be further transformed using ϕ2 to 

context Spec3::Person inv personConstraint:

self.loan.doc->size() <= 10

We define traces using the set F0 = {ϕ1, ϕ2, ϕA, ϕB}. To obtain the forward-trace of the

Spec1::junks.loan association, we apply ϕ1 and ϕ2, and so get {junks.loan,

borrow, loan.doc}. The forward-trace of the association Spec1::borrow equals

{borrow, loan.doc}, the backward trace equals {junks.loan, borrow}, and the

full trace equals {junks.loan, borrow, loan.doc}.

8 Related work

There exist a number of formal approaches to refactoring. Unfortunately, the research on

formal foundations of class structure redesign, in particular on constraints transformation,

is still underdeveloped. The interpretation function used in abstract algebra [Ta73] is de-

fined for single sorted algebras specified by equations. It transforms a single operation

into a complex term. Interpretation functions defined here can be seen as a generalization

of this idea. The approach of Taylor [Ta73] does not allow to handle patterns such as Re-

move Middleman. The Lano’s approach [La96] uses interpretation functions in the sense

of Taylor and equational specification to define the notion of refinement for the Real-

Time Action Logic; it is based on the Object Calculus [FiMa91]. This approach does not

allow for a constructive transformation of constraints because of undecidability of eqation-

al theories. Graph rewriting systems may be used to describe transformation of a specifi-

cation (cf. e.g. [Gr99]), though they cannot be directly applied to transform or compare

constraints. The approach of [Fra+02] uses the Role Pattern (cf. e.g. [Bä00]) to define re-

factorings of static structural UML models composed of classes and interfaces. A source

model is transformed to a target model using a set of informally specified transformations. 

In general, it is also possible to define compositional functions using equality and the for-

get, restrict and identify functors [Wi90], however this complicates the definition and

makes the approach undecidable. The use of signature morphisms is also not general

enough since it does not allow mapping complex terms on complex terms. In the example

of Remove Middleman, we show that the forget functor cannot be used and that an inter-

pretation function, in the sense of Taylor, does not suffice either. Our notion of interpreta-

tion function is very flexible; we show that it allows the treatment of non-incremental

changes of class diagrams. 



In the Catalysis book [DW98], the authors consider a redesign example which matches very

well with our ideas. In this example a manager tries to figure out the trace of certain model

elements. This example can be treated within our framework in a systematic way. The traced

model element can be seen as the domain of an orthogonal mapping. Our approach allows us

to generate an interpretation function from this mapping and to transform OCL-constraints

(though no constraints were considered in that example). It should be pointed out that, of

course, we are not the first to consider restructuring UML specifications with OCL-con-

straints, but to the best of our knowledge we are the first to do it in a systematic and formal

way.

The view points framework [Fin+94] provides a systematic, logic-based approach to incon-

sistency handling. This is done not by eradicating inconsistencies, but by supplying logical

rules specifying how to act on them. The rules are expressed on the meta-level using tempo-

ral logic. Strictly speaking, this approach is not aimed at redesign, but handling inconsisten-

cy. It uses also very powerful formal machinery, but is rather nonconstructive. 

The current approaches to inconsistency usually embed models into another model or lan-

guage (it is often first-order logic) and perform constraint-based reasoning in context of that

model (see [Hu+97] and the references there). These approaches have shown interesting re-

sults. But there are two major problems. On the one hand, they lack change propagation, i.e.

support for the subsequent, necessary adaptation of models once inconsistencies are found.

On the other hand, the use of equations results in undecidability. Those approaches are also

not meant for transforming constraints. 

In the paper [ZMK05], the notion of specification redesign is defined in the terms of arbitrary

institutions. Basic properties of redesign are investigated and the formalism is applied to pro-

vide a formal, institution-independent semantics for UML class diagram transformations.

Refactoring patterns are described in terms of class diagrams and interpreted as redesigns of

corresponding algebraic specifications. Interpretation functions can be seen as the construc-

tive counterpart of this approach. This approach can hardly deal with refactorings such as Re-

move Middleman [Fo00] and provides conditions for traceability and redesign which are in

general undecidable. 

We consider here order-sorted algebras as introduced by Goguen and Meseguer (see

[GM92]). The notion of order-sorted algebras have been extended to so-called member-

ship equational logic [Bo+00], which is more powerful and flexible. There is a number of

formal semantics of UML class diagrams. The paper [BF98] proposes such a semantics

which fits well the UML metamodel (see also [Eva+99]). In this semantics, classes are for-

malized by sets of object references. There exists a valuation, which maps each reference to

a set of attribute values. Generalization is modelled by the set inclusion relation. Set theoretic

formulas are used to formalize the meaning of direct and indirect instances as well as disjoint

and abstract classes. In our approach we use an algebraic semantics [BH+99], but it can be

easily shown that both semantics fit well together. In particular, sorts in order-sorted algebras

satisfy the requirements imposed on sets modelling classes [BF98]. In general, algebraic se-

mantics (see [Wi90]) is capable of specifying sets and, vice versa, algebraic models can be



expressed using set theory. The algebraic semantics requires an additional parameter env to

formalize properties and operations. This parameter corresponds to the environment and can

be interpreted as the above-mentioned valuation. A number of OCL semantics exist (cf. e.g.

[RG98, CK01, Ba02, HKB04]). The closest to our approach is [HKB04]. 

9 Concluding remarks

In this paper we have defined an approach to redesign of UML class diagrams. It allows one

to derive an interpretation function from a dependency relationship and to use such a func-

tion for an automatic transformation of OCL-constraints, provided that extendability condi-

tions are satisfied. The concept of redesign is more general than the concept of refinement.

We do not assume that system properties are merely added or refined, but we allow their

change in an arbitrary way. 

There are three crucial notions in our approach: compositionality, partiality and orthogonal-

ity. Compositionality concerns the formal model and assures that clients of a model element

are not broken after redesign, i.e. that they may rely on properties they have used prior to the

redesign. Partiality allows us to omit inessential parts of a model. In particular, we can ne-

glect some parts of a model and treat a composed model element as atomic. Orthogonality

and some monotonicity conditions allow us to extend a mapping to an interpretation func-

tion; such functions preserve different kinds of entailment relations. This is an important

fact, since one might be interested in the preservation of logical relations between con-

straints; for example that an invariant implies a pre-condition or that a post-condition im-

plies an invariant. Existence of an interpretation function saves the clerical work of redoing

proofs after a transformation is performed.

In this paper we use compositional functions to define the notion of trace. A trace is an or-

dered set of model elements which are the antecedent or subsequent versions of those model

elements. The ordering on model elements is defined by dependency relationships, or equiv-

alently, by the generated compositional functions on the formal level.

The concept of order-sorted algebra has been extended to membership equational logic.

We are going to investigate to which extent the results presented here can be extended to

this logic. We are going to further study properties of the interpretation function in logical

terms, in particular the relation to institutions. We plan also to implement a tool supporting

class redesign, constraint transformation and tracing of model elements. Such a tool will

be very helpful since a purely manual transformation of complex OCL-constraints is very

laborious and error prone. 

Graph rewriting proved to be a very powerful mean for studying different kinds of struc-

ture transformations. We are going to investigate how to generalize the results obtained in

the case of graph rewriting. 
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10 Appendix: formal background

In this section we define the basic algebraic notions used in our paper. We explain briefly

the concept of order-sorted algebras. We define the notion of signature, order-sorted sig-

nature, term and sort. In the second part of this section, we explain how order-sorted alge-

bras can be used to formalize inheritance. We explain also how to formalize OCL

quantifiers over finite domains. 

10.1 Algebraic background

An algebraic signature is a pair (S, F) where S is a set of sorts and F is a set of typed func-
tion symbols, e.g. f : s1,...,sn→s ∈ F, for some s1,...,sn, s ∈ S. An order-sorted signature Σ
is a triple (S, F, ≤), where (S, F) is an algebraic signature and ≤ is a partial order on S
[GM92]. We say that S has a tree structure, if one sort cannot be a subsort of two incom-
parable sorts; i.e. if s ≤ s1 and s ≤ s2, then s1 ≤ s2 or s2 ≤ s1, for every sorts s, s1, s2. This

corresponds to the assumption that there is no multiple inheritance. A sort sl ∈S is the larg-

est sort in S if, and only if, for every sort s ∈ S, s ≤ sl.

For a function f, Dom(f) is the domain of f. We call a total function mapping. Let X be a

set, let S be a set of sorts, and let τ : X → S be a mapping. We call the elements of X vari-

ables. We say that a variable x ∈ X is of type/sort s if, and only if, τ(x) = s. When the typing

function τ is clear, we write x : s instead of τ(x) = s. We always assume that there are infi-

nitely many variables of every sort. 

The notion of term and term type is defined inductively: if f : s1,...,sn→s, t1 : u1,..., tn : un

and ui ≤ si, then f(t1,..., tn) : s; we write also τ(f(t1,..., tn)) = s. The set of all terms with vari-

ables in X is denoted by T(Σ, X, τ). For a term t, var(t) is the set of variables contained in

t. The expression t(x1,..., xn) means that t contains at most the variables x1,..., xn ; i.e. var(t)

⊆ {x1,..., xn}. We call a mapping σ : X → T(Σ, X, τ) a substitution, if for every variable

x : s, the type of σ(x) is a subtype of s. We often write xσ instead of σ(x). The term t[t1/

x1,..., tn/xn] is obtained from t by applying the substitution [t1/x1,..., tn/xn], which maps

variable xi to ti, for i = 1,..., n, and leaves other variables of t unchanged. We call this op-

eration term composition. We say that a substitution σ preserves types, if for every variable

x, τ(x) = s implies that τ(σ(x)) = s. We call a substitution variable renaming, if it substi-

tutes variables for variables and preserves types. 

An order-sorted algebra [GM92] over a signature Σ has the form A = ((As)s∈S, (fA)f∈F);

it consists of a family of non-empty carrier sets (As)s∈S such that Au ⊆ As, for u ≤ s, and a

family of functions (f
A

)f:s1,...,sn→s∈F such that f : s1,...,sn→sA: As
1
×...× As

n
 → As. 

A specification is a pair Spec(Σ, Ax) consisting of an order-sorted signature Σ and a set of

formulas Ax over the signature Σ. 

In UML class diagrams associations may have multiplicity larger than one, in this case a

function formalizing such association has values of the type Set(T). Every function of the



form f : A1 × ... × An → B can be applied on the level of sets, i.e. 

f : Set(A1) × ... × Set(An) → Set(B) and f is defined as follows:

f(X1,..., Xn) =def {f(x1, x2,..., xn) | x1 ∈ X1,..., xn ∈ Xn}.

Similarly we can treat bags and sequences. However, for the sake of simplicity we assume

that associations correspond to set valued functions and that a composition of two associ-

ations results in a set. We use boolean valued functions such as 

_->exists(x | ...), _->forAll(x | ...), _->isEmpty(),... 

for the equally named OCL operations on collections types (the definition is straightfor-

ward). It is worth noting that existential and general quantifiers over final domain can be

specified algebraically as boolean valued functions. For example, ->exists(x | F(x)) can be

specified by the following equations:

{}->exists(x | F(x)) = false, 

{a1} ∪ {a2,..., an}->exists(x | F(x)) = F(a1) or ({a2,..., an}->exists(x | F(x))). 

The OCL predefined operation size() corresponds to the set theoretic function |_|,

which counts elements contained in a set. For a set A, |A| is equal to the number of ele-

ments contained in A. This function can be defined by induction as follows: |{}| = 0, and

|{a1,..., an-1} ∪ {an}| = |{a1,..., an-1}| + 1, if an ∉ {a1,..., an-1}. Note that the empty set plays

the role of a constant constructor. Similarly, the operation X ∪ {x} plays the role of non-

constant constructor. All sets can be obtained by applying those operations, e.g. {a1,..., an}

= {} ∪ {a1} ∪ ... ∪ {an}. The size of a bag and a sequence can be defined in a similar way. 

10.2 Proof of the Extendability Theorem

In this subsection we prove the extendability theorem. Let the assumption of this theorem

be satisfied. First, we extend ϕ to a relation ψ defined on the set gen(A, X ∩ X´). Let ψ0

be the smallest relation6 such that for every variable renaming σ, if u ϕ v holds, then uσ ψ0

vσ holds as well. We define ψ to be the smallest relation satisfying the following condi-

tions:

� ψ contains ψ0. 

� ψ contains all pairs (x, x), such that x ∈ X ∩ X´.

� If ψ relates the term ti to the term ti´, for i = 1,..., n, x1,..., xn ∈ X ∩ X´, ψ0(t0) = t0´, the

substitutions [t1/x1,..., tn/xn] and [t1´/x1,..., tn´/xn] are well defined, then ψ relates the

term t0[t1/x1,..., tn/xn] to t0´[t1´/x1,..., tn´/xn]. 

One can easily prove by structural induction that if u ψ v, then var(u) ⊆ var(v) (see condi-

tion (c) of the definition of orthogonal mappings). First, we prove that ψ is a partial func-

tion which maps variables on variables. Let us assume that it is not the case; i.e. that ψ

6. In set theory, relations and in particular functions are sets. The smallest relation means a rela-
tion included in all other relations. 



relates a term t to two different terms: t ψ u and t ψ v. Let t be a term of minimal high,

which has this property. 

Composing any term with a nonvariable term results in a nonvariable term. Similarly, ap-

plication of variable renaming to a nonvariable term results in a nonvariable term, and ap-

plication of variable renaming to a variable results in a variable. Therefore a variable can

be related by ψ only to itself. Consequently, t cannot be a variable. 

From the definition of ψ and the fact that t cannot be a variable, it follows that there exist

terms u0, v0 ∈ A, such that t can be presented in the form u0[u1/x1,..., um/xm] and in the

form v0[v1/y1,..., vn/xn], and that u0[u1/x1,..., um/xm] ψ0 u and v0[v1/y1,..., vn/yn] ψ0 v. u

and v have the form ϕ(u0)[ψ(u1)/x1,..., ψ(um)/xm] and ϕ(v0)[ψ(v1)/y1,..., ψ(vn)/yn], re-

spectively. 

Since A is orthogonal and since u0 and v0 are unifiable, they must be identical. Conse-

quently, we can assume that after suitable index permutation ui is identical with vi. Since

u0 and v0 are mapped on the same term by ϕ and since t has two different images, there

exist a number i such that ui (or equivalently vi) has two different images in respect to ψ.

But this contradicts the assumption that t is a minimal term related to two different terms. 

To prove the compositionality property we have to show that if ψ maps ti to ti´ and xi ∈ X

∩ X´, for i = 1,..., n, the term t0[t1/x1,..., tn/xn] is well defined and t1,..., tn ∈ gen(A, X ∩
X´), then the substitution [t1´/x1,..., tn´/xn] is well defined also; i.e. τ´(ψ(ti)) ≤´ τ´(xi) for i

= 1,..., n. Note that in general it is enough to prove that if ψ is defined on the term t,

x ∈ X ∩ X´, and τ(t) ≤ τ(x), then τ´(ψ(t)) ≤´ τ´(x). Note that τ(t) ≤ τ(x). 

Let t be a variable y. Then τ(y) ≤ τ(x), ψ(y) = y (see above), and τ´(ψ(y)) = τ´(y) =

ρ(τ(y)) ≤´ ρ(τ(x)) = τ´(x) (because of the conditions (b) and (e)). 

Let us assume that the compositionality property is possessed by terms v1,..., vm. Let x1,...,

xm ∈ X ∩ X´ and let the term t have the form v0[v1/x1,..., vm/xm], for v0 ∈ A. The type of

a term is equal to the type of its top; i.e. τ(t) = τ(v0). Consequently τ(v0) ≤ τ(x).

Let {x1,..., xm} = var(v0). Either ϕ(v0) is a variable or not. If it is not a variable, then

τ´(ψ(t)) = τ´(ϕ(v0)) and 

τ´(ψ(t)) = τ´(ϕ(v0)[ψ(v1/x1),..., ψ(vm/xm)]) = τ´(ϕ(v0)) = ρ(τ(v0)) ≤´ ρ(τ(x)) = τ´(x). 

If ϕ(v0) is a variable then ϕ(v0) has the form xj, since t is well defined and var(ϕ(v0)) ⊆

var(v0) (see the condition (c)). Consequently τ(vj) ≤ τ(xj). Because of the inductive as-

sumption τ´(ψ(vj)) ≤ τ´(xj) holds. Consequently because of the inductive assumption and

conditions (b), (d) and (e) the following holds: 

τ´(ψ(t)) = τ´(ϕ(v0)[ψ(v1/x1),..., ψ(vm/xm)]) = τ´(ψ(vj)) ≤´ τ´(xj) = 

τ´(ϕ(v0)) = ρ(τ(v0)) ≤ ρ(τ(x)) = τ´(x)



The fact that the domain of ψ is equal to gen(A, X ∩ X´) follows from the fact that ψ is

compositional, since the domain of ψ is the smallest set containing A as well as X ∩ X´,

and closed on term composition. 

The proof of uniqueness follows by structural induction. Let θ be another compositional

function extending ϕ. θ and ψ must coincide on variables from X ∩ X´ and on terms from

A. Let us assume that those functions coincide on terms r, t1,..., tn. In turn, they must co-

incide on the term r[t1/x1,..., tn/xn] because of compositionality. ♦

10.3 OCL and inheritance

In this subsection we briefly explain, how order-sorted algebras can be used to formalize

inheritance in object-oriented systems. We also explain how to formalize sets and quanti-

fiers over finite domains.

The requirement that equal terms are of the same sort corresponds to the Java 1.4 assump-

tion, that if a method in a subclass overwrites a method in a super-class, then it cannot

change the return type of the overwritten method. In Java methods, with different explicit

parameters, are considered to be different, event if their implicit parameters have the same

type (it is the so-called method overloading). In this framework, method overloading can

be indirectly dealt with using methods with different names.

Order-sorted algebras do not allow us to reason about method overriding; they allow us

only to refine them. For example, let m be a method which has an implicit parameter of

type A, an explicit parameter of type C and which returns objects of class D. Let B be a

subclass of A, then m can be overwritten for this subclass. The method acting on class A

can be modelled by a function m : Env × A × C → Int. Its restriction to the subsort B of

sort A, i.e. m : Env × B × C → Int, can possess some additional properties. It can satisfy

constraints that are not satisfied by the general function. For example, let us consider the

following two formulas:

(e : Env, a : A).m(c : C) < 10, (e : Env, b : B).m(c : C) > 0

From these formulas, it follows that the value returned by m is smaller than 10. The re-

stricted function returns positive values, if the actual implicit parameter is of sort B, but

the general function may return negative values as well. 




