
Redesigning Introductory Computer Programming
Using Multi-level Online Modules for a Mixed Audience

Nira Herrmann, Jeffrey L. Popyack, Bruce Char, Paul Zoski,

Chrisopher D. Cera, Robert N. Lass, Aparna Nanjappa
Departments of Mathematics and Computer Science

Drexel University
Philadelphia, PA 19104

Nira.Herrmann@drexel.edu, {jpopyack,bchar,pzoski,cera,urlass, uananjap}@mcs.drexel.edu

 Abstract
We report here on an extensive redesign and unification of
the Introductory Computer Programming sequences offered
to computer science, computer engineering, information
science and digital media majors. The redesign is intended
to improve student learning while reducing costs. The
approach makes use of substantial Web-based course
material and course management tools, including multi-
level online modules that individualize instruction and
enable students to self-schedule learning each week. Each
module covers a particular aspect of computer
programming at different levels of knowledge. Students
are assigned work and reading from the module at a level
appropriate to the objectives of the long-term goals of their
major. This allows students in different majors to acquire
the appropriate skill level for each technique and concept.
Peer mentors and teaching assistants provide assistance
online or in person. In the future, we plan to expand the
self-scheduling aspect of the course to allow students to
enter the course at different modules, depending on their
previous knowledge.

1 Background
The redesign was prompted by problems faced by the
department, including (1) a computer science faculty whose
modest growth—from 9.5 in 1996 to 13 in 2001—had not
kept pace with enrollment growth—from 304
undergraduate computer science majors and 282
undergraduate information systems majors in 1996 to 932
computer science majors and 843 information systems
majors in 2001; (2) incoming students whose widely
divergent computing experience and skills could not be
properly accommodated by the large-lecture format, and
(3) a rate of failures, withdrawals, and D grades (DWF)

from 25-50 percent, depending on the term and audience
for the course.

The goal of the redesign is to provide students with an
enhanced, individualized learning experience that reduces
the number of DWF grades without overburdening a
limited faculty. The solution involves a major change in
the method of course delivery, including increased use of
online materials, and extensive use of electronic course
management tools, facilitated by the availability of a
campus-wide wireless network and the requirement that all
undergraduates have their own computer.

2 Syllabus and Modules
2.1 Traditional versus Redesigned Courses
The traditional computer programming courses met 3 hours
per week, with 2 hours devoted to large (100-150 students)
lectures given by faculty and 1 hour to closed computer
laboratory sessions (25 students each) supervised by
graduate and undergraduate teaching assistants (Figure 1).

Traditional Course Redesigned Course
• 2 lecture hours + 1

lab hour per week
• Individual

assignments only
• Standard lab
• Some online

material (instructor
created)

• 1 lecture hour + 2 lab
hours per week

• Individual & group
projects

• Group-work lab
• Substantial online

support, plus
o Chat & discussion
o Online submission

of assignments
o Online return of

graded assignments
Figure 1: Traditional versus Redesigned Course Structure

The redesigned course consists of 1 hour of lecture per
week and 2 hours of laboratory activity (Figure 1). The
lecture hour is used primarily to make sure students
understand their assignment, know where to get the course
materials, and have the opportunity to ask questions about
the new topic. Some large group activities are also
undertaken (such as “pair and share” [5]) to increase

student understanding of the material. Pedagogical
“lecture” material is available online as a series of slides,
some with voice-overs, prepared by the instructors.

With the quarter system, classes meet for 10 weeks, and
typically one week’s worth of class time is devoted to
midterm and final examinations: reviewing course material
before the exam and going over the exam solutions after
the exam. We determined that there would be 9 modules
for the redesigned course, with 3 modules comprising 1
credit of instruction so we can more accurately place
entering students and offer “partial credit” in the future in
the form of one credit for completing three successive
modules. The syllabus, presented in Figure 2, covers the
CS 1 curriculum for C++:

Week Topics Covered
1 Course Introduction
2 Module 1 -- Introduction to C++

First Program, Style, Comments, Variables, Simple I/O
3 Module 2 -- Numeric Types

Basic Arithmetic, Integer Division, cmath library
4 Module 3 -- C++ Strings

string library, char indexing, string methods
5 Module 4 -- Using Objects

Introduction to OOP, Classes, File I/O
6 Module 5 -- Conditionals

if, if ... else, if ... else if conditionals
7 Module 6 -- Advanced Conditionals

and, or, not, nested conditionals
8 Module 7 -- Introduction to Functions

Prototypes, functions, scope, definition, pass by value
9 Module 8 -- Advanced Functions

Pass by reference, const parameters, side effects, simple
recursion

10 Module 9 -- Loops
while, do ... while, for loops, nested loops, sentinel
controlled loops, EOF controlled loops,
Comparing Floating Point Numbers

11 Final Examination
Figure 2: Syllabus for CS 1

2.2 Levels of Mastery
The redesigned course modules will cover the material at
different depths of technical content, determined by the
needs of the students’ majors with respect to levels of
subject mastery delineated in Bloom’s Taxonomy. [2]

Bloom’s Taxonomy is organized in the following way:

● First level: students know the terminology of a
subject and specific facts about it.

● Second level: students gain increased
comprehension of the material and are able to
explain the material and interpret what they
have learned.

● Third level: students can apply their knowledge
in new situations to solve relatively simple
problems.

● Fourth level: students can perform deeper
analyses of problems to discover component
parts and interactions.

● Fifth level: students have the ability to apply
prior knowledge in original ways to produce

things that are new and different, and evaluate
the methods used.

Level three is the minimum level of mastery all students in
this introductory programming sequence should attain,
regardless of major. In a professional setting, students at
this level will be able to discuss programming with more
technical personnel, understand how programming is used
to solve problems, understand the solutions that are found,
and relate these to similar problems in other circumstances.
This level will be suitable for students who plan to work in
technical areas, but not necessarily produce highly
technical work themselves.

Computer science and computer engineering students need
to reach the fifth level of mastery since they will face
highly technical problems that will need to be solved in
original ways. Computer science students must develop a
deeper knowledge of computing, particularly the top level
of Bloom’s Taxonomy–the ability to judge the methods
used–since many will face complex problems that may not
have a single well-defined solution.

Lecture
Slide 1

CS
Track

IS
Track

CE
Track

Lecture
Slide 2

Lecture
Slide 3

Lecture
Slide 4

Lecture
Slide 5

Lecture
Slide 6

Lecture
Slide 7

Lecture
Slide 8

Figure 3: Schematic for Multi-Level Modules

The modules are being designed with material at each of
the five levels of mastery and with pathways through the
material suitable for each major (Figure 3). Students who
have difficulty with the higher levels will be able to change
majors and still get course credit without having to drop the
course and repeat modules already mastered. This
methodology is designed to address a significant resource
problem: many students enroll in computer science without
understanding the nature of the work. Once in the course,
they may find other computing majors more appealing.
The redesigned multi-level course will enable them to
change majors without losing the work they had invested in
a programming course for their previous major.

3 Dedicated Laboratory for Small Group Work
A dedicated computer laboratory has been constructed for
the lab sections of the redesigned course, with five clusters
where students can work in groups of five. Each cluster
has five wireless-networked laptop computers and a
projector that can be switched from one computer to
another (Figure 4).

Each group can project its shared work onto the white

board “wallpaper” that covers all of the walls. The white
board wallpaper allows students to annotate the projected
screen image or write notes to the side as they work
through the assignment.

Group assignments are downloaded from a central server
using the wireless network. Assignments include a series
of questions for students to answer that require coding as
well as a deeper understanding of the language.
Figure 4: Group-work Cluster in Computer Laboratory

 Intermediate checkpoints require students to get an
instructor or teaching assistant to examine and grade the
work completed so far before students continue to the next
stage of the assignment.

4 Automating Course Management
Managing the paperwork for these large classes was a
major problem as enrollments grew. Students would
submit assignments on paper and a diskette with their
programs. Grading required reorganizing assignments,
quizzes and examinations turned in during lectures so each
teaching assistant received the work for his/her roster of
students. When students claimed that their assignments or
quizzes were lost, there was no reliable mechanism for
ascertaining that the work had ever been turned in.

Adopting course management software (CMS), in our case,
WebCT, helped alleviate some of these problems.
Electronic submission of assignments and online quizzes
and examinations improved the flow of student work.
However, problems remained in processing the large
numbers of assignments and in sorting student work by
laboratory section or lecture group as needed for grading
purposes. CMS technology is new and evolving so some
necessary features are still not implemented elegantly [6].
The structure of student programming assignments, for
example, necessitates inspection of many files (possibly in
programming language specific file browsers), as well as
compilation and execution of programs. A typical CMS is
not designed to handle this level of specialization.

We have developed several software tools, described

below, to assist in further automating the processes of
handling student assignments and quizzes online.

4.1 Labrador
Labrador [3] is a client-side WebCT supplement for
retrieving submitted lab assignments, quizzes, and other
student work; unpacking it, when needed, from several
compression or archival formats; distributing it to the
appropriate grader; and submitting it for further processing.
Labrador is implemented in Perl and is compatible with
several platforms (Windows, Mac, Linux and other Unix
variants). The software interacts with WebCT to perform
functions available to users with either TA or Designer
access to WebCT.

$ perl labrador.perl
This program is in C++ mode.
The configuration file was not found. Would you like to create
one now?
(y/n) y
Your WebCT username: rnl22
WebCT name of the course (e.g.: CS172BB): CS172BB
File of list of usernames: list.txt
Would you like verbose printing (y/n)? y

----------Config File Written----------

Would you like to get (q)uizzes or (a)ssignments?a
Would you like post processing (y/n)?y
Would you like to generate source code PDFs (y/n)?y
Password:
[1] Asst. 1
[2] Asst. 2
[3] Asst. 3
[4] Asst. 4

--> 4

...

checking -->student1<--
 has submitted -->Assignment 4.zip<--
checking -->student2<--
checking -->student3<--
 has submitted -->writtenproblems.doc<--
 has submitted -->LargeInt.cpp<--
 has submitted -->LargeInt.h<--
 has submitted -->mainprog.cpp<--
 has submitted -->test.cpp<--
 has submitted -->External_documentation.doc<--
checking -->student4<--

Figure 5: Screenshot of Labrador in Interactive Mode

Users can specify Labrador commands using several modes
of interaction, individually or in combination (Figure 5):
1. Command-line mode allows the user to invoke Labrador
by a single DOS or shell command using command
options.
2. Interactive mode is invoked when information is not
supplied at the command-line, with Labrador prompting the
user for the needed information.
3. Configuration File mode allows the user to define
Labrador options in a configuration file which is read in
lieu of having the user supply each command individually.
4. GUI mode is currently under development.

Some of the original functionality of Labrador has been
subsumed by newer releases of WebCT, but Labrador is
evolving in parallel, acquiring useful new features as our
needs change. One of the most important features is the
ability of Labrador to configure student files for subsequent

processing, either by external software packages (e.g.,
computer language or plagiarism detection software) or by
the graders using pen-based mark-up.

4.2 Electronic Pen-based Mark-up
In the traditional course, students submitted assignments on
paper; graders would read through the code or homework
problems, marking errors as they found them, and inserting
comments, advice, and corrections by hand. One current
drawback to using CMS’s is the mechanism for providing
feedback to students on electronically submitted
assignments. WebCT provides a text box where the grader
can type in summary comments about the assignment along
with the grade. This is time-consuming and not as
communicative as freehand markup of papers to show
exactly where errors have occurred.

We have developed a technique for emulating "freehand"
feedback on electronically submitted work: Labrador
converts students’ program files into Portable Document
Format (PDF) and graders then use a pen tablet to mark
each assignment as if it were on paper (Figure 6, done on a
Sony Vaio LX - 920, a desktop system with a Pen Tablet).
The latest release of WebCT, version 3.8, allows return of
PDF files to each student, facilitating the routine use of this
type of feedback.

Figure 6: Pen-based Mark-up of Student Code

The primary drawback to using pen-based mark-up of
assignments is the expense of obtaining a sufficient number
of pen-based tablets for large courses with multiple graders.
However, pen-based tablets are becoming more ubiquitous
and software to support their use is moving into the
mainstream (e.g., [4]) so this technology should be within
reach of academic budgets shortly.

4.3 Quiz Question Database
Over 300 students may take the introductory programming
courses in a single term, requiring several parallel lecture
sections and numerous laboratory sections. Providing
weekly quizzes for each laboratory section that differ
enough to prevent cheating yet provide a consistent level of

difficulty is a challenge.

Our approach has been to develop a database of questions
for each quiz, grouped by topic and level of difficulty.
Different quizzes are generated for each laboratory section
using random selection according to pre-specified decisions
by the faculty on the make-up of the quiz with respect to
topics covered and level of difficulty. Despite the limited
size of the database to date, students taking the quizzes
later in the week perform similarly to students taking the
quizzes early in the week, indicating that widespread
cheating is not an issue.

We are working on expanding the database to increase the
number of questions and plan to explore the use of digital
library techniques to tag each question with respect to its
difficulty and the level of knowledge required to answer it.
This is a more difficult problem than it seems on the
surface, particularly with respect to determining the level of
knowledge needed to solve each question, which requires a
learning theory analysis for computer programming.

4.4 Individualized Feedback to Students
We are developing an automated system to provide
individualized feedback to students, particularly those
whose submitted work indicates they are not mastering the
material. Early intervention gives students a chance to
improve their performance or decide to drop the course.
The automated system will use email to contact students
and inform them that there performance is substandard and
they are in danger of failing, provide information on what
they need to do to pass, and invite them to meet with the
instructors and teaching assistants to discuss their status.
This approach has worked well in other courses where it is
handled manually, and we would like to incorporate a
similar, automated approach.

5 Plagiarism Detection
Plagiarism has become a common problem. Plagiarism
detection systems (PDS) such as Moss [1] or JPlag [7]
have been developed that apply sophisticated techniques to
detect similarities in source code structure. Both systems
are designed to handle C++ programs, as well as other
languages. JPlag handles general English text as well. To
use such systems, one typically prepares a zip file of the
class’ source code files, and transmits it to the PDS Web
site where it is analyzed. Labrador automates the process
of extracting the student files from WebCT and placing
them in the form needed by the PDS.

6 Assessment
The redesign involved considerably more work for faculty
than the traditional course: learning the intricacies of the
CMS, developing supporting software, reworking course
materials into modules, and adapting to a different style of
course delivery. However, having all student work online
made it easier to look over, know what was turned in and

what was not, and assess students’ mastery of it. In
addition, the redesign has resulted in a shift in faculty
activity from delivering content in a lecture format to
interacting with students in both the lecture and lab. Since
content is handled online, we have been able to experiment
with large group activities even in the lecture sessions.
Faculty perceived that students were more engaged and
alert during the classes than in typical large-lecture
situations.

Discussion and chat groups within WebCT provided good
opportunities for mentoring. Students could take the time
to think about their questions before submitting them,
knowing that they could get an answer at any time.
However, the time spent answering email has grown
enormously: students did not come to faculty offices.
Instead they would find a nearby computer and send email,
most of which had to be answered individually. This is an
area that needs further work, possibly by automating
responses, automatically creating an FAQ page, or finding
other mechanisms for handling the volume.

 Lecture Section
Grade Trad 1 Trad 2 Redesign Total

A 12% 13% 24% 14%
B 23% 24% 26% 24%
C 14% 17% 12% 15%
D 17% 15% 12% 15%
F 23% 18% 24% 20%
W 11% 15% 3% 13%

Total 100% 100% 100% 100%
Students 65 131 34 232

Figure 7: Final Grades for Students in the Traditional and
the Redesigned Courses

The redesign was first tried on an experimental group
taught simultaneously with two traditional lecture sections.
Preliminary results show that the grades of the students in
the redesigned course (Redesign in Figure 7) were
generally higher than those in the two traditional lecture
sections (Trad 1, Trad 2 in Figure 7).

Both faculty and students expressed concern that the one
hour large group/lecture session per week did not provide
enough time for faculty-student interactions. Students
requested that the number of in-class hours be increased to
provide more face-to-face time with the faculty. This is an
issue we need to address, possibly by changing the nature
of the lecture session or adding other activities.

7 Future Work
We plan to continue developing course materials and
software tools to improve course delivery and student
learning and to address student and faculty concerns about
the need for additional interactions with each other: we
need to explore whether faculty and students really need

more formal lecture time to interact or are simply used to
them and uncomfortable with change. We also plan to
extend this approach to other courses in the programming
sequence and in other areas, particularly in mathematics
where we have close links and where the demand for
courses is equally high.

Acknowledgements
This work is supported by the Pew Center for Academic
Transformation under The Pew Grant Program in Course
Redesign, by the National Science Foundation Division of
Undergraduate Education under award number DUE-
0089009, and by the Ramsey McCluskey Family
Foundation. We wish to acknowledge the assistance of Mr.
John Morris, Dr. Janice M. Biros, and their colleagues in
the Office of Information Resource and Technology at
Drexel University for their help and support with WebCT.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation, the Center for Academic
Transformation, or the other supporting organizations.

References
 [1] Aiken, Alex. Moss: A system for detecting software

plagiarism, Online, Internet. Available WWW:
http://www.cs.berkeley.edu/~aiken/moss.html.

[2] Bloom, B.S. (Ed.) Taxonomy of Educational
Objectives: The Classification of Educational Goals:
Handbook I, Cognitive Domain. (1956) New York;
Toronto: Longmans, Green.

[3] Cera C, Lass R, Char B, Popyack J, Herrmann N,
Zoski P. Labrador: A Tool for Automated Grading
Support in Multi-Section Courses. Proceedings,
WebCT 2002 IMPACT: 4th Annual WebCT Users
Conference, Boston, Massachusetts, July 24-26, 2002

[4] Microsoft Corporation. Microsoft Showcases Tablet
PC, First Wave of Products Targeted At Increasing
Information Worker Productivity at TECHXNY.
Online, Internet. [June 25, 2002]. Available WWW:
http://www.microsoft.com/presspass/press/2002/Jun02
/06-25TechXUmbrellaPR.asp

[5] McDowell C, Werner L, Bullock H, and Fernal J. The
effects of pair-programming on performance in an
introductory programming course. Proceedings of the
33rd SIGCSE technical symposium on Computer
science education . ACM Press, 2002, pp. 38 – 42.

[6] Popyack JL, Char B, Zoski P, Herrmann N, and Cera
C. Managing Course Management Systems, Birds-of-
a-Feather Session, The Thirty-Third SIGCSE Technical
Symposium on Computer Science Education, February
27-March 3, 2002, 423.

[7] Prechelt L, Malpohl G, and Philippsen M. JPlag:
Finding plagiarisms among a set of programs.
Technical Report 2000-1, Fakultat fur Informatik,
Universitat Karlsruhe,Germany, (March 2000).
Available WWW: http://www.ipd.uka.de:2222/

http://portal.acm.org/toc.cfm?id=563340&type=proceeding&coll=portal&dl=ACM&CFID=3976580&CFTOKEN=90067849
http://portal.acm.org/toc.cfm?id=563340&type=proceeding&coll=portal&dl=ACM&CFID=3976580&CFTOKEN=90067849
http://portal.acm.org/toc.cfm?id=563340&type=proceeding&coll=portal&dl=ACM&CFID=3976580&CFTOKEN=90067849

	Nira Herrmann, Jeffrey L. Popyack, Bruce Char, Paul Zoski,
	Chrisopher D. Cera, Robert N. Lass, Aparna Nanjappa
	Departments of Mathematics and Computer Science
	Drexel University
	Philadelphia, PA 19104

