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There is currently an unmet need for better biomarkers across the spectrum of renal 
diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in 
patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the 
numerous clinical studies in the area, we describe the basic biology of β2M, focusing in 
particular on its role in maintaining the serum albumin levels and reclaiming the albumin in 
tubular �uid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M 
function arise as a result of altered binding of β2M to its protein cofactors and the clinical 
manifestations are exempli�ed by rare human genetic conditions and mice knockouts. 
We highlight the utility of β2M as a predictor of renal function and clinical outcomes in 
recent large database studies against predictions made by recently developed whole 
body population kinetic models. Furthermore, we discuss recent animal data suggesting 
that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than 
tubular pathology. We review the existing literature about β2M as a biomarker in patients 
receiving renal replacement therapy, with particular emphasis on large outcome trials. 
We note emerging proteomic data suggesting that β2M is a promising marker of chronic 
allograft nephropathy. Finally, we present data about the role of β2M as a biomarker 
in a number of non-renal diseases. The goal of this comprehensive review is to direct 
attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order 
to propose the next steps required to bring this recently rediscovered biomarker into the 
twenty-�rst century.

Keywords: beta-2 microglobulin, chronic kidney disease, biomarkers, kidney transplantation, pediatric nephrology, 

acute kidney injury, multiple myeloma, glomerular �ltration rate

INTRODUCTION

Chronic kidney disease (CKD) is a common public health issue associated with astonishingly high 
cardiovascular (CV) morbidity and mortality and high costs, particularly for patients with diabetic 
nephropathy. Patients with renal failure on maintenance dialysis have excess mortality, that is, eight 
times higher than that of the general population (1). Most patients die due to CV events related to 
both traditional and non-traditional risk factors (2) and this is true for both predialysis and dialysis 
patients. Attempts to modify cardiorenal risk in CKD by intensive glycemic (3) or blood pressure (4, 
5) control, or combined RAAS inhibition (6–8) had modest e�cacy and serious adverse events. In 
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FIGURE 1 | Molecular structure of beta-2 microglobulin (β2M). Depiction of 
the secondary structure of β2M relative to the center of gravity of the molecule 
(red cross). X-ray diffraction at resolution of 1.13 Å (30). Image rendered from 
the Protein Data Bank entry 2YXF.
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light of these observations, it becomes imperative to acknowledge 
our lack of understanding of uremic toxicity and to reexamine 
assumptions about biological pathways that are potentially 
deranged in uremia. �is understanding may then satisfy a sig-
ni�cant unmet need for better biomarkers across the spectrum of 
CKD. Such markers may not only be used to risk stratify patients 
for future clinical studies, but may also suggest targets for future 
pharmacological interventions.

In this report, we aim to highlight the potential role of beta-2 
microglobulin (β2M) as a marker and possibly a mediator of some 
of the complications of the uremic syndrome. �e classical view 
of β2M has been that the molecule is relevant to the pathophysiol-
ogy of dialysis-related amyloidosis (DRA) (9–19), a truly multi-
factorial syndrome. �e molecule itself was considered to be a 
relatively non-toxic uremic retention solute, whose importance as 
a non-creatinine (Cr) renal �ltration marker was overshadowed 
by cystatin, when the latter was chosen for investigation in the 
mid-1980s and 1990s (20–22). Nevertheless, there are compelling 
reasons to challenge this narrow view of β2M.

In this paper, we will �rst review the basic biology and rare 
genetic disorders (immunode�ciency 43, OMIM #241600) 
associated with dysfunction of β2M. �is overview sets the stage 
for reconsidering the role of β2M by reviewing numerous stud-
ies published in the last 5 years. In particular, we will focus on 
recent reports examining the role of β2M as a marker of renal 
�ltration and outcomes in renal diseases across the spectrum of 
CKD to end-stage renal disease (ESRD) and kidney transplanta-
tion. We will also review data from non-renal diseases, a �eld 
that is usually ignored in articles focusing on nephrologists. 
However, this rapidly expanding literature sheds some light into 
the potential pathogenic role of β2M in human disease. Due 
to space limitations, we will not cover the topic of β2M-related 
amyloidosis disorders, which extend all the way from rare familial 
non-neuropathic amyloidosis syndromes to DRA. �is is a topic 
that has been recently reviewed both at the biochemical (23–26) 
and the clinical level (10, 11), with the early literature surveyed 
extensively more than 10 years ago (27).

In the concluding section of this review, we will attempt to 
synthetize the available data, informed by our analysis of the 
kinetics of β2M and the associations between concentrations of 
this biomarker with outcomes. We hope that our re�ections will 
provoke the readers to critically rethink their own assumptions 
about the utility of β2M, this easily measured, forgotten, and 
rediscovered protein that accumulates in renal insu�ciency.

β2M PHYSIOLOGY AND 

PATHOPHYSIOLOGY

Beta-2 microglobulin was �rst discovered in 1964 in the urine 
of subjects with Wilson’s disease or cadmium poisoning (28). It 
is a 100-amino acid protein of relatively small molecular weight 
(11,800 Da, size 11 Å) and it is encoded by a gene in chromosome 
15 in humans. �e secondary structure of the molecule consists of 
two large beta sheets that are linked together by a single disul�de 
bond (29, 30). �e tertiary structure of the molecule is thus simi-
lar to the constant domain of the immunoglobulins (Figure 1). 

In contrast to the immunoglobulins, β2M does not form dimers 
but rather associates with the major histocompatibility complex I  
(MHC-I)/human leukocyte antigen I (HLA-I) on the surface 
of all nucleated cells. �e interaction between β2M with the 
alpha chain of the HLA-I is essential for antigen presentation  
(31, 32). β2M also complexes with many non-classical MHC-I 
like molecules (MHC-Ib) such as CD1, MR1 (33), HLA-E, -F, -G 
(34, 35), neonatal Fc receptor (FcRn) (36–38), and HFE/HLA-H 
that are involved in mucosal immunity, tumor surveillance, 
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FIGURE 2 | Bicompartmental beta-2 microglobulin (β2M) kinetics. 
Bicompartmental system describing β2M kinetics consisting of a plasma/
perfusing (P) and non-perfusing/non-plasma (NP) with additional material 
�uxes for patients during hemodialysis sessions (stippled shapes). In each 
compartment, the symbols V, Φ, and C denote the absolute and fractional 
volume of each compartment and the concentration of β2M, respectively. 
Generation (G) takes place in both compartments, in direct proportion to their 
fractional volumes. KD, KER, and KR are the dialyzer clearance, extrarenal, and 
residual renal clearances. Adapted from Supplementary Figure S1 of Ref. 
(117), reused under the Creative Commons CC BY license terms.
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maternofetal immune tolerance, immunoglobulin and albumin 
homeostasis as well as iron metabolism. Disorders of β2M func-
tion thus arise from interruption of its interaction with classical 
and non-classical MHC-I molecules. �eir consequences can be 
anticipated from the normal function of the β2M complexes. A 
thorough consideration of the entire spectrum of such disorders 
would by necessity encompass the entire complement of classical 
and non-classical MHC-I molecules and it is beyond the scope 
of this review (see (34, 39) and (40) for a β2M focused survey in 
the �eld of oncology). Nevertheless, the function of FcRn merits 
special mention as it provides a mechanistic link between β2M 
and another biomarker of special importance to nephrology, i.e., 
albumin.

The FcRn—A β2M-Dependent  

Non-Classical MHC I Molecule That 

Rescues Serum Proteins from 

Degradation
�e discovery of the FcRn solved simultaneously two biologi-
cal puzzles: the maternal transfer of antibodies to the o�spring 
to protect from infections in early life and the persistence of 
serum albumin and immunoglobulins in the circulation (37, 
41, 42). Studies in the early 1950s and 1960s demonstrated that 
maternal–fetal transfer of protective antibodies was dependent 
on the constant (Fc) part of the antibody. Furthermore, the same 
investigations showed that the same region underlines the long 
half-life of immunoglobulins vs. other proteins (~20 vs. ~5 days). 
�e intestinal receptor responsible for transfer of antibodies from 
the mother’s milk to the placenta was cloned as the protein known 
today as FcRn (43, 44). It was subsequently shown that the same 
protein mediated the long half-life of immunoglobulin G (IgG) 
in the systemic circulation (45). Albumin also exhibits a long 
half-life similar to immunoglobulins, and the existence of a pro-
tection receptor had long been postulated. It was hypothesized 

that a similar mechanism to that of the IgG rescue underlined 
the protection of albumin; this hypothesis-driven research led to 
the identi�cation of the FcRn as the protein that also protects 
circulating albumin from degradation (38).

In contrast to the classical MHC-I molecules, the FcRn lacks 
sequence diversity and cannot present antigens. Nevertheless, it 
plays an important role in mucosal and systemic sites by rescuing 
immunoglobulins and albumin from degradation through the 
transepithelial pathway (transcytosis). β2M interacts with the 
heavy chain of the FcRn and is important for its proper function 
(44, 46), since mice de�cient in β2M demonstrate abnormally 
short half-lives of IgG (47) and sequestration of the FcRn in the 
endoplasmic reticulum (48). Structural and biochemical data 
[reviewed extensively here (37, 41, 42)] suggest that the FcRn will 
bind simultaneously to albumin and IgG, but at di�erent stoichio-
metries: a single albumin molecule per FcRn, whereas a single 
IgG will simultaneously bind to two FcRn molecules. �e whole 
body kinetics of albumin and IgG rescue by the FcRn have been 
studied and a simpli�ed model developed and �t to experimental 
data (49). �is model makes several predictions: (1) almost one 
third of FcRn are available for albumin recycling, (2) the maximal 
capacity of albumin rescue is double that of IgG, (3) the molar 
recycling rate of albumin is three times that of IgG, and (4) two 
thirds of the plasma concentration of albumin are maintained by 
production rather than recycling.

More recent �ndings [reviewed in Ref. (37, 41)] suggest a more 
expanded role of the FcRn as an integral part of immune defense, 
bidirectionally transporting immunoglobulins and antigens to 
the mucosal immune system. Professional antigen-presenting 
cells take up antigen–IgG complexes through the classical Fc 
receptor (FcγR) at neutral pH, thus initiating receptor-mediated 
endocytosis. Acidi�cation of phagolysosomes leads to “hand-o� ” 
between the FcγR and the FcRn and the delivery of the antigen 
to pathways that eventually load the antigen onto MHC-I and 
MHC-II molecules. �e end result is a potent elicitation of CD4+ 
and CD8+ responses against bacterial and viral antigens (37, 41).

The Role of the FcRn in the Kidney
�e FcRn is also expressed in the kidney, where it facilitates clear-
ance of both immunoglobulins (50, 51) and albumin (52). �ere 
is some evidence for di�erential handling of albumin (reclama-
tion back into the circulation) vs. immunoglobulins (elimination 
into the urine) (50, 53) by the intrarenal FcRn system. �e role 
of the FcRn in renal physiology (albumin handling) and renal 
disease has been explored in numerous publications involving 
genetic knockouts and pharmacological interventions. �is was 
shown in experiments in which wild type were transplanted to 
FcRn-knockout mice and vice  versa. Transplantation of wild-
type kidney to FcRn knockout mice resulted in amelioration of 
albuminuria and restoration of normal urinary IgG levels. �is 
di�erential handling not only prevents accumulation of protein 
complexes that could potentially interfere with glomerular �ltra-
tion, but also provides immune protection in the urinary tract. 
Importantly, impaired clearance of immunoglobulins by knock-
ing out the FcRn did not result in accumulation of IgG in the glo-
merular basement membrane, but rendered such animals more 
susceptible to nephrotoxic insults (50). �ere is some evidence 
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that the podocyte FcRn system functions as an immune sensor 
that triggers the in�ammatory response seen in certain glomeru-
lonephritides. In particular, antithymocyte globulin treatment of 
podocytes increases the expression of FcRn from its high baseline 
state, leading to phosphorylation of the p38 mitogen-activated 
protein kinase, p38MAPK (54). In the same study, the percent-
age of glomeruli with at least two podocytes staining positive for 
the FcRn was characterized in human biopsies. �e expression 
percentage was signi�cantly higher in immune-mediated disease, 
including membranous nephropathy (46.7%), IgA nephropathy 
(66.7%), lupus nephritis (87.5%), and acute proliferative glo-
merulonephritis (100%), than in normal kidney samples (16.7%) 
(P < 0.05), whereas there was no signi�cant di�erence between 
minimal-change disease and normal kidney. �e relation 
between FcRn and p38MAPK signaling may be of pathogenetic 
signi�cance since p38MAPK appears to be a major pro�brotic 
pathway in diabetic (55), experimental nephrotic syndrome (56), 
and hypertensive kidney disease (57), whose inhibition leads to 
reduced blood pressure, sclerosis, podocyte injury, and apoptosis 
(58). In particular, one may postulate that activation of the β2M 
containing FcRn (e.g., by proteinuria) may trigger pathways of 
�brosis inside the kidney through the p38MAPK pathway. �is 
hypothesis, which needs to be veri�ed experimentally, may 
underline the pathogenetic role of proteinuria in accelerating 
kidney disease progression to dialysis-dependent ESRD (59).

A major hypothesis in the nephrology literature is that protein-
uria (albuminuria) underlines the progression of diverse forms of 
kidney disease (59, 60) and that the renoprotective e�ects of inhibi-
tors of the renin–angiotensin system are partly mediated through 
their antiproteinuric e�ect (60–62). In this schema, increased oxi-
dative stress through the NADPH oxidase system has been seen 
as a major contributor in promoting the progression of kidney  
disease (63–65), while antioxidant therapies have been proposed 
as a therapeutic intervention in CKD (66, 67). Interestingly, 
albumin overload itself has been shown to activate the renin–
angiotensin system through oxidase stress and the NADPH 
pathway (68). �ese observations raise the possibility that FcRn-
mediated albumin absorption may be a novel mechanism linking 
oxidative stress, activation of the renin–angiotensin system, and 
progression of kidney disease. �is underexplored hypothesis has 
received some support in the literature. In particular, treatment 
with apocynin, an inhibitor of NADPH oxidase, reduced uptake 
of albumin by the FcRn and proteinuria in the puromycin model 
of nephrotic syndrome and proteinuric progressive kidney disease 
(69). Treatment with a monoclonal antibody against the FcRn 
reduced proteinuria in the same study. �e possibility that the 
bene�cial e�ects of renin–angiotensin inhibition are mediated to 
some degree through the FcRn has also been investigated in the 
literature. In particular, treatment of a mice anti-GBM model of 
glomerulonephritis with the direct renin inhibitor Aliskeren (70) 
reduced the glomerular deposition of IgG and reduced proteinu-
ria in parallel with elevations in circulating IgG levels. In fact, 
animals that do not harbor the FcRn do not develop proteinuria 
and have reduced deposition of IgG compared to wild-type 
animals when anti-GBM nephritis is induced. �e same data pro-
vided suggestive evidence that FcRn promotes the formation of 
subepithelial immune complex deposits (71). Finally, treatment 

of podocytes with IgG derived from patients with lupus, entered 
the cytoplasm through the FcRn to upregulate the calcium/
calmodulin-dependent protein kinase IV to activate genes linked 
to podocyte damage and T cell activation (72). Overall, these data 
suggest a role for the FcRn–β2M complex in both normal renal 
handling of albumin [along with the megalin/cubilin albumin 
receptor (73–75)] and IgG, as an initiating event in the podo-
cyte injury observed in many immunologically mediated renal 
diseases, but also the oxidative stress that appears to underlie the 
progression of proteinuric forms of CKD.

Genetic Disorders of β2M Function
Speci�c mutations that interfere with the binding of β2M to 
its targets have been described in a number of conditions 
ranging from the rare familial hypercatabolic hypoproteinemia 
(immunode�ciency 43) (76–79) to the common genetic hemo-
chromatosis (80, 81). �e �rst two patients (siblings from a �rst 
cousin marriage) known to su�er from immunode�ciency 
43 manifested a complex phenotype of hypoalbuminemia, 
hypogammaglobulinemia, skeletal abnormalities, and impaired 
delayed type hypersensitivity skin responses. �ese patients had 
circulating and total body pools of IgG less than 28% of the nor-
mal, despite having normal synthetic rates of immunoglobulins. 
�e serum concentration for soluble HLA was less than 0.2% 
of normal, and iron indices were all within normal limits (79). 
�e molecular defect was attributed to a single nucleotide trans 
version (G913C) in the �rst exon of β2M which impairs the 
function of FcRn, resulting in hypercatabolism of albumin and 
immunoglobulins. �e immunological phenotype of β2M was 
investigated in a di�erent consanguineous family, harboring 
a di�erent homozygous splice site mutation in the �rst intron 
of the β2M gene (78). �is mutation uncovered a cryptic splice 
site 4 nucleotides downstream of the canonical one, leading to 
a frameshi� and premature termination of the β2M mRNA. �e 
truncated protein had an extremely short half-life and patients 
had undetectable circulating and lymphocyte cell-surface β2M 
levels. HLA-I surface expression was undetectable, but there 
was intracellular accumulation of the HLA-A heavy chains. As 
anticipated, patients exhibited absence of all non-traditional 
MHC I molecules, i.e., CD1a, CD1b, CD1c, and FcRn from the 
surface of the monocytes. Similar to the �rst report, a�ected 
family members had severe hypoalbuminemia and hypogam-
maglobulinemia, with normal IgM and IgA levels. IgG responses 
to viral antigens were maintained, and the response to the anti-
pneumococcal polysaccharide was only slightly reduced. �e 
clinical phenotype was one of the recurrent respiratory tract 
infections with bronchiectasis, granulomatous dermatitis, and 
skin ulceration. None of the a�ected patients ever manifested 
proteinuria, possibly due to the extremely low levels of serum 
albumin. Circulating numbers of CD8+ cells were normal, but 
this T cell compartment consisted entirely of the γδ cells. Skin 
lesions were in�ltrated by these T cells, autoreactive NK cells, 
and perforin-producing CD27−CD28−CD4 cells similar to those 
seen in granulomatosis with polyangiitis. �e NK compartment 
was functionally inactivated and this prevented the development 
of severe autoimmune phenomena against MHC-I-de�cient 
“missing-self ” cells (78, 82).
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β2M knockout mice recapitulate many aspects of the human 
disease (83) and provide a model for the e�ects of a severe 
disruption in β2M binding. Such mice exhibit a wide variety of 
immunological aberrations including suboptimal IgG responses 
to antigenic stimulation (84), a higher catabolic rate of IgG (47) 
and albumin (85), hepatic and splenic iron overload (86–89), 
impaired interferon gamma (IFN-γ), and other cytokine responses 
(90–92), higher susceptibility to parasitic (93), mycobacterial  
(94, 95), certain viral (90, 96) and gram (−) infections (97, 98) as 
well as a higher susceptibility to virus induced tumors (99, 100).  
�is animal model has also provided controlled evidence about 
the rescue role of β2M upon serum albumin, an e�ect that is 
mediated through the FcRn (38, 85). Interestingly enough these 
animals do not manifest albuminuria (101, 102), a feature that 
is attributed to the low circulating levels of albumin in these 
animals or possibly the “leaky” phenotype of β2M knockout 
mice. Furthermore, β2M-de�cient mice are in general resistant 
to the development of proteinuria and renal disease (101, 102).  
When β2M is knocked out in the MRL-faslpr spontaneous lupus-
like model, renal (but not skin) disease is inhibited (103, 104). 
Nevertheless, renal disease with the massive deposition of intra-
renal immune complexes may be induced in such animals a�er 
speci�c and intense immunization protocols (105).

�e association between β2M de�ciency and iron overload is 
worthy of special mention, because it recapitulates some aspects 
of hereditary hemochromatosis. In the most common form of the 
latter disease, a C260Y mutation in the HFE molecule disrupts 
its association with β2M leading to systemic iron overload. �e 
genetics and the clinical manifestations of hemochromatosis 
are very complex (106), but iron overload is seen irrespective of 
whether the genetic lesion refers to HFE or β2M. Nevertheless, 
there are important biochemical di�erences, since β2M-de�cient 
mice have higher hepcidin levels which correlate inversely with 
the severity of hepatic iron overload (88). Furthermore, these 
animals fail to respond to iron overload by upregulating hepcidin 
levels. �is may be due to abnormal cellular localization of hepci-
din as seen in β2M silencing RNA knockdown experiments (107).

WHOLE BODY METABOLISM AND 

BIOMARKER KINETIC MODEL OF β2M

Beta-2 microglobulin is continuously generated by all nucleated 
cells of the body. �e plasma level of β2M is thought to re�ect 
release of molecules that are non-covalently bound to MHC-I 
into the circulation and once in the plasma β2M is freely �ltered 
by the glomerulus (108). β2M is easily and accurately measur-
able with most of the commercial laboratories using the highly 
sensitive nephelometry method (109, 110). Serum β2M levels are 
not necessarily independent of sex, race, and ethnicity (111–113). 
However, in all studies to date it was found that elderly have 
higher serum β2M levels. As we will see later on in this review 
serum β2M levels also increase in solid organ malignancies, lym-
phoproliferative disorders such as myeloma and chronic lympho-
blastic leukemia, and many autoimmune diseases such as Crohn’s 
disease, Sjögren’s syndrome, systemic lupus erythematosus, and 

rheumatoid arthritis. All these are conditions, under which one 
would expect a higher number of cells bearing MHC molecules 
to be generated, or conditions in which higher shedding of β2M 
is observed (114–116).

�e multiple in�uences a�ecting both generation and elimina-
tion of β2M raise the need for a quantitative understanding of 
the factors of generation, elimination, and body compartment 
distribution a�ecting the biomarker’s concentrations. Our group 
produced such a population-level model by performing a kinetic-
based meta-analysis of the existing studies in the �eld over the 
last 40 years (117). According to this model (Figure 2), β2M obeys 
bicompartmental kinetics and thus its behavior is a highly non-
linear function of the relevant kinetic parameters. �is is especially 
true in patients receiving hemodialysis (HD), who experience 
interdialytic (�uid ingestion) and intradialytic (ultra�ltration) 
compartment volume changes. �e model may also be applied 
to study the kinetics of β2M in non-dialysis patients. In this case, 
considerable simpli�cation is a�orded by the lack of inter- and 
intradialytic volume changes and the discontinuous nature of dia-
lytic clearance. A steady-state solution may in fact be recovered 
by solving the relevant bicompartmental system. However, this 
formula is too complex for practical use. �is model, which is 
largely based on investigations in mostly Caucasian, young–
middle-aged adult patients receiving HD, recapitulates many 
important clinical observations in both CKD and ESRD. �e 
average serum β2M concentration in the “simulated” population 
was 1.59 ± 0.64 mg/l, while only 3.5% of simulated values were 
outside the upper reference range of 3 mg/l quoted in laboratory 
medicine references (118). �is average compares favorably with 
the values previously reported to be: 1.53 mg/l (113), 1.62–1.86 
(range of individuals with age compatible with the range in our 
kinetic meta-analysis) mg/l (112), and 1.9 ± 0.4 mg/l (119). Due 
to its derivation from �rst principles, this population kinetic 
biomarker model may also allow a more rigorous, quantitative 
evaluation of other factors (e.g., generation) a�ecting serum β2M 
concentration. �is is a perspective that we explore in the conclu-
sion of this review.

USING β2M TO ASSESS GLOMERULAR 

FUNCTION

�ere are various ways to assess renal function with changes 
in glomerular �ltration rate (GFR) being the most widely used 
method. �is is achieved by assessing the plasma or the urinary 
clearance of �ltration markers with an ideal endogenous marker 
being the one that appears at a constant rate in plasma, is freely 
�ltered by the glomerulus, is neither absorbed into the circulation 
nor secreted by the tubules, and it is not removed from extrarenal 
sites. Estimation of GFR by Cr-based equations lacks precision 
and accuracy due to non-renal determinants—such as non-renal 
removal, renal secretion, and variations in muscle mass—a�ecting  
serum Cr level. Researchers have been in constant search of an 
ideal �ltration marker. In this section, we will review the evidence 
arguing for the adoption of β2M as an additional marker of glo-
merular �ltration in CKD.
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TABLE 2 | Performance of beta-2 microglobulin (β2M), creatinine (Cr), and/or cystatin C-derived equations.

Equation Interquartile range (95% CI) 1 − P30 (%) (95% CI) 1 − P20 (%) (95% CI) Root mean square error (95% CI)

Chronic kidney disease (CKD)-EPI β2M 12.9 (12.2–13.8) 18.4 (16.2–20.8) 37.2 (34.6–40.1) 0.24 (0.231–0.257)
CKD-EPI Cr 11.6 (10.9–12.4) 16.4 (14.2–18.6) 34.5 (31.7–37.3) 0.224 (0.213–0.236)
CKD-EPI Cys 11.4 (10.6–12.4) 16.9 (14.9–18.6) 34.8 (32.1–37.6) 0.228 (0.217–0.239)
CKD-EPI Cr-Cys 9.3 (8.7–10.1) 11.3 (9.5–13.2) 25.5 (23.1–28.0) 0.189 (0.180–0.199)

TABLE 1 | Relationship between beta-2 microglobulin (β2M) and glomerular �ltration rate (GFR) in adults.

Study GFR measure Correlation (1/β2M) Correlation (β2M) Slope linear regression

Vincent et al. (120) Inulin clearance – – −0.87
Wibell et al. (121) Inulin clearance – −0.94 −0.89
Swanson et al. (113) Iothalamate clearance – – −0.82
Shea et al. (122) Iothalamate clearance 0.90 – –
Inker et al. (123) Iothalamate clearance – – −0.85
Aparicio et al. (124)b 51Cr-EDTA 0.79 – −0.75
Grubb et al. (20) 51Cr-EDTA 0.59 – –
Yun et al. (125)c 24-h creatinine clearance – – −0.79
Jovanović et al. (126) 24-h creatinine clearance 0.80 – –
Shea et al. (122) 24-h creatinine clearance 0.87 – –
Aksun et al. (127)a 99mTc-DTPA GFR – −0.48 –
Bianchi et al. (128) 99mTc-DTPA GFR 0.76 – −0.81
Donadio et al. (129) 99mTc-DTPA GFR 0.73 – –
Donadio et al. (130) 99mTc-DTPA GFR – – −0.81
Fry et al. (131)d Timed urea collections – −0.63 –
Vilar et al. (132)d Average of urea and creatinine collections 0.82 −0.72 –

The table reports the slope of the linear regression between log concentration and log clearance.

– Not reported.
aStudied patients with type 2 diabetes.
bStudied patients with sickle cell disease.
cStudied patients with multiple myeloma.
dStudied patients on maintenance dialysis.
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Role of β2M for the Assessment of GFR  

in Adults
Numerous studies to date have demonstrated large correlations 
between measures of renal function and suitably transformed 
serum levels of β2M (Table 1). �ese studies provide compelling 
reasons to suspect that one can estimate renal �ltration with 
a β2M estimating equation. Recent research has explored the 
advance, if any, of such equations over the Cr-based estimated 
GFR (eGFR).

�e Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) group developed a β2M-based GFR estimating 
equation in a cohort of 2,380 patients primarily comprised 
of Caucasians and African Americans with a mean measured 
GFR (mGFR), serum Cr, and serum β2M levels of 47.5 (±21.7)  
ml/min/1.73 m2, 1.9 (±0.9) mg/dl, and 4.3 (±2.4) mg/l, respec-
tively (39). β2M was strongly positively correlated with serum 
cystatin C and Cr with Pearson coe�cients of 0.9 and 0.78, 
respectively. Serum β2M was negatively correlated with GFR with 
a Pearson coe�cient of −0.85. �e authors included the vari-
ables of age, sex, and race in the least error regression model for 
equation development—the coe�cients for β2M were signi�cant 
albeit small, similar to those of cystatin C, and smaller than those 
for Cr. Addition of these variables did not substantially improve 
equation performance in the whole cohort as well as various 

subgroups, therefore, the �nal equation did not include these 
variables. �is report also compared the precision and accuracy 
of equations using the metrics of interquartile range of error  
(di�erence between mGFR and eGFR of each subject), propor-
tion of the patients in whom the eGFR was not within 30% 
(1 − P30) and 20% (1 − P20) of mGFR and root mean square error, 
respectively (Table 2). In that cohort, the CKD-EPI β2M equation 
achieved comparable accuracy to the CKD-EPI Cr, cystatin C, 
and the Cr–cystatin C equation. Nevertheless, the CKD-EPI β2M 
has an advantage over the other CKD-EPI equations in that it is 
independent of race, age, and sex.

Since the β2M estimating equation was not strongly correlated 
with age, sex, and race, the authors concluded that there are 
some other non-renal determinants of serum β2M and addition 
of those factors—if readily measurable—will lead to improve-
ment in equation performance. One should note the apparent 
discrepancy between the lack of correction factors for age, gen-
der, and race in the estimating equation for β2M and previously 
reported associations between these factors and the serum level 
of β2M (111, 112, 133). In multivariate adjusted models (133), 
only race (lower in blacks), smoking (higher in smokers), and 
proteinuria (higher in patients with proteinuria) retained inter-
mediated associations with a higher serum β2M concentration. 
�is discrepancy should be taken as evidence of the β2M to be a 
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FIGURE 3 | Simulated serum beta-2 microglobulin (β2M) as a function of the 
glomerular �ltration rate. To generate the �gure we simulated 10,000 
individuals from the population model for β2M kinetics (117) at different levels 
of renal function. At each level of renal function, we computed the mean (red 
line), the median (blue line), and the associated population 95% range (gray 
band). Finally, we superimposed the Chronic Kidney Disease Epidemiology 
Collaboration β2M estimating equation (black line).
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somewhat superior marker of renal �ltration that has higher cor-
relations to the measured GFR and smaller correlations to these 
non-renal determinants than Cr per se (123, 133). Nevertheless, 
the in�uences of non-renal determinants on other factors a�ect-
ing β2M kinetics (e.g., generation) nullify this putative advantage, 
so that the overall performance of CKD-EPI β2M equation is not 
di�erent from that of other estimating equations.

To gain a better understanding of the performance of the 
CKD-EPI equation (134):

 eGFR 133 M
2
M 2

0.854

β

−β= ×  

we compared it to simulations based on our meta-analysis of the 
kinetic studies (117). �ese simulations, which were repeated 
for various levels of renal function, were then summarized with 
descriptive statistics (Figure  3), e.g., the mean (red), median 
(blue), and 95% quantile range (gray band). �e relationship 
predicted by the CKD-EPI β2M equation (Figure  3, black) is 
essentially identical to the one predicted by the kinetic model, 
until about 40 ml/min. Below this level of GFR, the estimating 
equation predicts lower clearances for the same serum level of 
β2M. We can explain this divergence by considering that (a) a 
major underlying assumption of the kinetic model is that genera-
tion of β2M is not a�ected by renal impairment and (b) the non-
renal determinants (e.g., variable generation) of serum β2M have 
been embedded into the coe�cients of the estimating equation. It 
is worth remembering that the latter equation predicts an average 
relation that was estimated in cohorts with renal impairment and 

an average mGFR of 47.7 ml/min/1.73m2. If the generation rate 
of β2M varies at di�erent levels of glomerular �ltration, we would 
expect the statistical procedure used by the CKD-EPI investiga-
tors to balance out the in�uences of generation and elimination 
during model �tting. Furthermore, if generation is higher at 
lower levels of mGFR, then one would expect the CKD-EPI to 
provide a steeper curve between β2M and renal clearance than 
the true relation (as provided by the kinetic model) at both lower 
(Figure 3) and higher serum β2M levels. With respect to the latter 
point, the CKD-EPI investigators also reported that this equation 
underestimates mGFR at higher levels of renal function. Taken 
together, these observations reinforce the argument of the CKD-
EPI group that poorly understood factors other than the age, sex, 
and race a�ect serum β2M levels. Even though the kinetic model 
does not allow us to pinpoint the nature of these factors, it can 
at least proportionate the in�uences of the generation and elimi-
nation processes. �is feature may allow one to explore various 
“what-if-else” scenarios when designing clinical studies to further 
develop β2M as a biomarker.

Role of β2M for the Assessment of GFR  

in Pediatric Populations
Creatinine clearance is known to be an unreliable marker for the 
measurement of GFR in children due to the changing muscle 
mass with age. Hence other markers, including serum β2M, 
which is not in�uenced by muscle mass, have been investigated as 
potential markers that may more accurately estimate GFR. Studies 
published have shown mixed results. Some studies concluded that 
serum β2M may be a reliable marker to predict GFR (135–137), 
while others have not (138, 139). Furthermore, the recently devel-
oped CKD-Epi-Beta Trace-β2M formula (123) cannot be applied 
in children (140). In summary, the use of serum β2M as a measure 
of glomerular �ltration function does not appear to be as useful 
in children relative to adults. However, the urinary β2M excretion 
has been used in the diagnosis of a wide variety of renal diseases 
in children as we discuss in the subsequent section.

URINARY β2M FOR THE ASSESSMENT  

OF TUBULAR FUNCTION

�e removal of β2M from the serum is primarily by glomerular 
�ltration but more than 99.9% of the �ltered protein is reabsorbed 
and catabolized in the proximal convoluted tubule resulting in 
minimal urine concentration of β2M (usually less than 360 µg/l) 
(141, 142). �e removal of β2M from the tubular �uid is pos-
tulated to be mediated through the megalin–cubilin complex  
(143, 144), on the basis of ligand blotting assays (145), megalin 
animal knockouts (146), and the human disease Donnai-Barrow/
Facio-Ocular-Acoustico-Renal Syndrome (OMIM #222448) 
(147). �is syndrome is associated with multisystemic abnor-
malities, developmental delay, and tubular proteinuria as a result 
of mutations in the LRP2 megalin gene (148). �is interaction 
may be mediated by the megalin component of the megalin–
cubilin complex, since human cubilin mutations (megaloblastic 
anemia 1, OMIM #261100) manifest tubular proteinuria but with 
normal urinary β2M levels (149).
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Proteins endocytosed through the megalin/cubilin complex 
are targeted to the endosomes, where ligands are released from 
their receptors through acidi�cation (143, 150). It is not known 
how much of β2M is degraded within the lysosomes, recycled 
with other MHC to the membrane surface, or transported to 
the basolateral surface (such as thyroglobulin or retinol bind-
ing protein). Data from experiments in rats provide evidence 
that β2M is targeted to the lysosomes (151), so that degradation 
appears to be the most likely fate for β2M. However, there is 
also con�icting evidence for convergent apical and basolateral 
endocytic systems in the proximal tubule (151, 152). As human 
proximal epithelial cells are capable of transcytosis of the 
FcRn-β2M-IgG (153), it is possible that some of the reabsorbed 
urinary β2M is transcytosed. However, to our knowledge no 
study has speci�cally looked for transcytosis of β2M absorbed 
through the megalin pathway. Experiments reported four 
decades ago provide some evidence for competitive inhibition 
for the absorptive tubular mechanism between β2M and other 
proteins in the tubular �uid (154–157). More recent experi-
ments suggest similar transport kinetics arguing for a single 
mechanism mediating this process (158). Hence, one could 
anticipate variable urinary excretion levels of β2M in the pres-
ence of glomerular proteinuria. �e tubular handling of β2M 
exhibits maturation during the neonatal period. �e urinary 
β2M excretion peaks by the ��h day of life and gradually 
declines to adult level by 3 months of age (159). �is feature 
suggests that urinary β2M not only may be a reliable biomarker 
of tubular toxicity but also it may even have an age dependent 
performance.

Role of β2M for the Assessment of Tubular 

Function in Adults
Since its initial discovery from the urine of humans with cad-
mium toxicity, β2M has been used to assess tubular function. 
More recently, the Nephrotoxicity Working Group of the Critical 
Path Institute Predictive Safety Testing Consortium assessed 
urinary β2M, along with other three biomarkers of nephrotoxicity 
(urinary clusterin, urinary cystatin C, and urinary total protein) 
in 10 mechanistic time-course studies involving 739 rats treated 
with eight nephrotoxins known to induce di�erent types of renal 
lesions and two hepatotoxins as a means to assess speci�city for 
kidney vs. other organ toxicity (160). Of note, β2M and cystatin 
C were speci�c for glomerular alternations, and with the excep-
tion of the gentamicin model, no systematic increase of either 
protein in urine or kidney tissue could be demonstrated when 
rats were exposed to other tubular toxins. Another recent animal 
toxicology study evaluated the performance of neutrophil gelati-
nase-associated lipocalin (NGAL) and four urinary biomarkers 
deemed acceptable by the regulatory authorities to detect acute 
drug-induced renal toxicity (161): β2M, cystatin C, kidney injury 
molecule-1 (KIM-1), and clusterin. In this particular study, uri-
nary β2M and cystatin C increased early (prior to the detection 
of histological changes) and returned to the control range in the 
recovery phase. Furthermore, plasma β2M changes paralleled 
changes in urinary β2M, but correlations between the biomarker 
values varied according to the nephrotoxin. Nevertheless, a more 

extensive evaluation of 12 markers for sensitivity (renal toxic-
ity) and speci�city (non-renal organ toxicity) in 22 rat studies, 
reveal that β2M (and cystatin C) had relatively poor area under 
the curve (AUC) for both tubular (AUC = 0.72) and glomerular 
(AUC = 0.85) toxicities (162). In the same study, urinary albumin 
had one of the best performance for both tubular (AUC = 0.90 vs.  
AUC  =  0.96 of the best performing KIM-1) and glomerular 
(AUC = 0.99, best performing) toxicity. Collectively, the recent 
animal toxicology data raise important questions about both the 
speci�city of urinary β2M for tubular lesions, i.e., this compound 
appears to detect glomerular injury better than tubular damage, 
and its overall utility relative to the more easily obtained assay for 
albuminuria. Interestingly, signi�cant correlations between uri-
nary β2M and other indices of renal damage (e.g., protein/Cr ratio) 
have been reported in IgA nephropathy (163) and systemic lupus 
erythematosus (164). Both these conditions are characterized 
by predominantly glomerular lesions. Consequently, controlled 
toxicological data and observational reports suggest some caution 
when interpreting urinary β2M elevations as indicative of a bona 
�de tubular process. In particular, one should always entertain 
the hypothesis of a glomerular process leading to proteinuria 
and competition of the �ltered protein load for the reabsorption 
process in the proximal tubule (156) when interpreting a high 
urinary β2M level. Needless to say, there are virtually no human 
data about speci�c diagnostic cuto�s of the urinary β2M; even the 
three aforementioned toxicological rat studies provide di�erent 
cuto� values.

A meta-analysis of various urinary biomarkers has con�rmed 
that the value of urinary β2M may be limited in clinical acute 
kidney injury (AKI) due to sepsis (165). In this meta-analysis 
urinary β2M was found to be associated with changes in serum Cr 
and could di�erentiate between prerenal azotemia and tubular 
necrosis, but could not predict the clinically important outcome 
of need for renal replacement therapy. More recently, Zeng et al. 
conducted a study of diagnostic accuracy in 47 patients (166). 
�e reference test was urinary β2M (normal urinary β2M range: 
230–300  µg/l). �e sensitivity and speci�city of urinary β2M 
in detecting tubular injury (assessed through KIM-1 staining 
in renal biopsies) was 86.6% and 64.7%, respectively. In sum-
mary, there is currently very limited evidence about the utility 
of urinary β2M in the diagnosis of AKI; most of the data come 
from the era of high-dose aminoglycoside therapy. Under these 
conditions, release of β2M in the urine may not even re�ect 
actual toxicity (167). Important limitations of the literature 
to date are poor standardization of urine collection protocols 
for β2M and the poor stability of the analyte in acidic urine 
(168–171).

Various population-based studies have shown that urinary 
β2M levels can be used to detect tubular injury due to various 
toxins. β2M has been used as a marker of tubular dysfunction 
in subjects exposed to heavy metals such as cadmium with 
urinary β2M levels strongly correlating with serum cadmium 
levels (172–175). Rybakowski et al. showed that lithium-treated 
patients were more likely to have higher urinary β2M and lower 
eGFR than patients not treated with lithium (176). Beta-2 
microglobinuria was also seen in HIV patients on tenofovir 
(177–179).
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Role of β2M for the Assessment of Tubular 

Function in Pediatric Populations
Tubulo-Interstitial Diseases
Urinary excretion of β2M either in the form of fractional excre-
tion of β2M (FE-β2M) or 24-h urine β2M excretion has been 
used in the diagnosis of tubulo-interstitial diseases (180). �is 
study examined children with glomerular (N  =  114), tubular 
(N  =  50), or other (N  =  18) renal diseases and showed that 
children with tubulo-interstitial disease had signi�cantly higher 
FE-β2M (mean 4.27%) compared to children with glomerular 
disease alone (0.104%). �is di�erence seen was not due to 
impairment in GFR alone as at any given eGFR, patients with 
tubulo-interstitial disease had higher FE-β2M compared to 
patients with glomerular disease alone (142). Children with 
glomerular disease and a high FE-β2M who underwent a renal 
biopsy (N = 13), were found to have focal areas of �brosis, plasma 
cell or lymphocyte in�ltration, or tubular atrophy. �ese patients 
were found to have poorer prognosis compared to patients who 
had pure glomerular disease. �is �nding was later refuted by a 
subsequent study (181), which showed that the urinary excre-
tion of low-molecular weight protein (LMWP) in children with 
glomerular disease did not necessarily portend a poor prognosis. 
Urinary β2M excretion has also been used in the diagnosis of a 
variety of renal diseases that a�ect tubulo-interstitial function 
including tubule-interstitial nephritis with uveitis (182), hemo-
globinopathies such as sickle cell disease (183, 184), as well as 
children who have received chemotherapy as part of their cancer 
treatment (185).

Localization of Urinary Tract Infection (UTI) and 

Detection of Urinary Obstruction
As urinary β2M level is an important re�ection of tubular func-
tion of the kidneys, measuring the urine level has been used in 
the localization of UTI in children. Studies have shown that chil-
dren with upper UTI tend to have higher urinary β2M excretion 
compared to children with lower UTI (186, 187) hence allowing 
for more accurate localization of infection and treatment strate-
gies. Serum and urinary β2M have also been shown to be elevated 
in children with re�ux nephropathy (188).

Urinary NGAL and β2M have been proposed as useful tests 
for the diagnosis of obstructive uropathy due to ureteropelvic 
junction obstruction as the levels were elevated in the pre- and 
peri-operative period and improved with the relief of obstruction 
(189). However, the control group in this study was comprised of 
healthy children with no renal impairment, hence it is unclear 
whether the elevated urinary NGAL and β2M level was a re�ec-
tion of the impaired renal function or the obstruction itself.

Acute Kidney Injury (AKI)
Creatinine is a poor marker for AKI due to various factors includ-
ing the in�uence of muscle mass, �uid status, and/or delayed 
increase in level a�er the occurrence of kidney injury making 
early intervention impossible. β2M has been investigated as a 
candidate biomarker for AKI as it is muscle mass-independent 
and the rise in serum β2M levels occurs earlier compared to the 
rise in serum Cr levels (190). A recent study (191) showed that 

both serum cystatin C and β2M were better biomarkers compared 
to Cr in the detection of AKI in critically ill children. In a pro-
spective study of 252 children who presented to the emergency 
department, urinary β2M, NGAL, and KIM-1 demonstrated good 
accuracy (AUC > 0.7–0.8) in predicting AKI (192). �e caveat 
with using β2M as a biomarker for AKI is that the level varies with 
gestational age, hence caution will need to be exercised in using 
this serum marker in premature infants (193, 194).

In summary, measuring serum and urine β2M has been used 
in both predicting GFR and diagnosing renal diseases in children 
with variable success. Urinary β2M level has been helpful in the 
diagnosis and the monitoring of children a�icted by diseases that 
a�ect tubular function or in those who have or will be receiving 
medications that could a�ect the tubular function. Furthermore, 
urinary β2M may also be a useful marker for the early detection 
of AKI. Nevertheless, provocative animal and human data suggest 
that it may a better marker of glomerular, rather than tubular 
injury.

β2M AS A BIOMARKER OF ADVERSE 

CLINICAL OUTCOMES AND MORTALITY 

IN CKD

�ere is limited research and evidence examining the role of 
serum β2M as a biomarker being able to predict adverse outcomes 
and mortality across the spectrum of predialysis CKD. We identi-
�ed �ve recent studies examining the prognostic role of β2M in 
patients with CKD.

In the �rst study, the authors examined the relationship of 
plasma β2M levels to clinical and CV outcomes in 142 patients 
(mean age 67  years) at di�erent stages of CKD. Plasma β2M 
levels increased with CKD stage and thus were highest in HD 
patients (195). Baseline plasma β2M levels were associated with 
vascular calci�cation but not with arterial sti�ness or bone 
density. During a mean follow-up of 969 days, 44 patients died 
and 49 su�ered a CV event. Higher plasma β2M levels were 
independently associated with overall and CV mortality and CV 
events in the whole cohort and with CV events in the predialysis 
cohort. Moreover, plasma β2M appeared to be a better predictor 
than well-established factors associated with outcomes in this 
population, such as eGFR (only for predialysis patients), in�am-
mation biomarkers, and other factors included in a propensity 
score. �us, they con�rmed a strong relationship between plasma 
β2M levels and eGFR and the power of plasma β2M to predict 
overall and CV mortality and CV events in patients at di�erent 
stages of CKD.

�e association of serum β2M with hard clinical outcomes and 
its predictive ability was also examined in a prospective cohort 
study on behalf of the CKD Biomarker Consortium and the 
Chronic Renal Insu�ciency Cohort (CRIC) Study Investigators 
(196). �ey examined the potential role of serum β2M as predic-
tor of ESRD, mortality, and new-onset CV disease in 3,613 adults 
with CKD from the CRIC Study. During a 6-year median follow-
up, 755 (21%) participants developed ESRD, 653 died, and 292 
developed new-onset CV disease. A�er multivariable adjustment 
serum β2M was an independent predictor of ESRD, all-cause 
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mortality, and CV events. �ese associations were stronger than 
those observed for the Cr-based eGFR (P ≤ 0.02).

Furthermore, in 2015 an interesting longitudinal cohort study 
came out by the same group on behalf of the CKD Biomarkers 
Consortium (197). �ey examined incident ESRD and mortality 
in 250 Pima Indians with type 2 diabetes (DM II) and whether 
serum β2M was associated with these outcomes. During a median 
follow-up of 14  years, 69 participants developed ESRD and 95 
died. Serum β2M was associated with ESRD a�er adjustment for 
traditional risk factors and established �ltration markers.

Another study examined the associations among serum β2M, 
malnutrition, in�ammation, and atherosclerosis (MIA) in 312 
patients with CKD between 2009 and 2015 (198). �ey found that 
serum β2M was more sensitive than serum Cr in predicting CV 
events and MIA syndrome. �is study supports the hypothesis 
that CV events in patients with CKD should be understood as 
part of the MIA complex and that non-renal determinants of 
serum biomarkers provide prognostic information beyond that 
a�orded by �ltration biomarkers or their estimating equations.

Finally, an individual participant data meta-analysis was 
recently published by the CKD Biomarkers Consortium wherein 
they examined �ltration markers, such as β2M, as predictors of 
ESRD and mortality (199). �ey included three general popula-
tion/hazard ratio (GP/HR) studies (n = 17,903 participants) and 
three CKD studies (n = 5,415). �ey compared associations, risk 
prediction, and improvement in reclassi�cation of eGFR using 
β-trace protein (BTP) (eGFRBTP) and β2M (eGFR Mβ

2
) alone and 

the average (eGFRavg) of eGFRBTP, (eGFR Mβ
2

), Cr (eGFRCr), and 
cystatin C (eGFRcys), to eGFRCr, eGFRcys, and their combination 
(eGFRCr-cys) for ESRD (2,075 events) and death (7,275 events).

Mean (SD) follow-up times for ESRD and mortality for GP/HR  
and CKD studies were 13 (4), 6.2 (3.2), 14 (5), and 7.5 (3.9) years, 
respectively. Compared with eGFRCr, eGFRBTP and (eGFR Mβ

2
) 

improved risk associations and modestly improved prediction 
for ESRD and death even a�er adjustment for established risk 
factors. �e authors concluded that these markers do not provide 
substantial additional prognostic information to eGFRCr and 
albuminuria, but may be appropriate in circumstances where 
eGFRCr is not accurate or albuminuria is not available.

In 2012, the Atherosclerosis Risk in Communities (ARIC) 
project investigated novel markers of kidney function as predic-
tors of ESRD, CV disease, and mortality in the general population 
(200). �ey included 9,988 participants from population-based 
study in four US communities, followed for approximately 
10 years. �ey utilized serum Cr-based eGFR calculated using 
the CKD-EPI equation and serum cystatin C, BTP, and β2M 
levels. �e main outcomes were mortality, coronary heart dis-
ease, heart failure, and kidney failure. �ey found that higher 
serum cystatin C and β2M concentrations were associated more 
strongly with mortality (n = 1,425) than BTP level and all three 
biomarkers were associated more strongly with mortality than 
eGFRCr [adjusted HR for the upper 6, 7th percentile compared 
with the lowest quintile: 1.6 for eGFRCr, 2.9 (95% CI, 2.3–3.6) 
for serum cystatin C level, 1.9 (95% CI, 1.5–2.4) investigators 
for serum BTP level, and 3.0 (95% CI, 2.4–3.8) for serum β2M 
level]. Similar patterns were observed for coronary heart disease 
(n = 1,279), heart failure (n = 803), and kidney failure (n = 130). 

�e addition of serum cystatin C, BTP, and β2M levels to models 
including eGFRCr and all covariates, including urinary albumin-
Cr ratio, signi�cantly improved risk prediction for all outcomes 
(P < 0.001). �ey concluded that serum β2M and, to a lesser extent, 
serum BTP levels share cystatin C’s advantage over eGFRCr in 
predicting hard clinical outcomes, including heart failure. �ese 
additional markers may be helpful in improving estimation of 
risk associated with decreased kidney function beyond current 
estimates based on eGFRCr. Subsequent investigations by the same 
group using data from the ARIC study have reported signi�cant 
associations between serum β2M and sudden cardiac death (201) 
and fractures (119). Among the three biomarkers (Cr, BTP, and 
β2M)-based CKD-EPI estimating equations, β2M demonstrated 
the strongest association with sudden death [HR for fourth quar-
tile vs. �rst quartile 3.48 (2.03–5.96) vs. ≤2.7 for the other kidney 
markers]. Renal �ltration markers and albuminuria were shown 
to associate with fracture risk. Whereas the relationship between 
Cr-based CKD-EPI and risk of hospitalization for fracture was 
non-linear, there was a graded association between the inverse 
of serum β2M (HR per 1-SD decrease, 1.26, 95% CI, 1.15–1.37, 
P <  0.001). �is risk was not attenuated and in fact increased 
when the investigators adjusted for the Cr-based eGFRCr to 1.37 
(95% CI: 1.24–1.51, P < 0.001).

�erefore, when improved risk prediction (due to decreased 
GFR) is needed, serum β2M can be utilized as an alternative 
�ltration marker beyond Cr. �is �nding was also independently 
rea�rmed in a subsequent prospective cohort study (202). In 
this study, the investigators sought to determine whether serum 
β2M levels have a stronger association with all-cause and CV 
mortality-like cystatin C compared to eGFRCr and to evaluate 
whether β2M improved risk classi�cation beyond eGFRCr, in a 
nationally representative sample of adults (n = 6,445) in the US. 
Both studies mentioned above were performed on samples from 
the general population.

β2M IN ESRD

A non-traditional risk factor for CV mortality is the accumula-
tion and high serum levels of β2M (195). �e interpretation of the 
serum β2M in patients with ESRD is complicated by the non-linear, 
bicompartmental kinetics, and large interindividual variability in 
kinetic parameters. �is variability was recently quanti�ed by our 
group in a patient-level meta-analysis of all studies reporting on 
kinetic parameters across the spectrum of CKD and ESRD (117). 
Using large-scale clinical trial simulations we showed that residual 
renal function is the major determinant of serum β2M concen-
trations even in patients receiving maintenance dialysis (195). 
Furthermore, enhanced dialytic removal of β2M will materially 
a�ect the biomarker’s levels only when the residual renal clearance 
is less than 2 ml/min. �ese model-derived predictions are in sub-
stantial agreement with a large body of clinical data. �ey also sup-
port the further development of serum β2M as a measure of residual 
renal function in patients receiving renal replacement therapy. �is 
topic has received some attention in the recent literature with some 
encouraging preliminary results (132, 203). In the following sec-
tions, we undertake an extensive review of the available literature 
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regarding serum β2M levels, delivered dialysis dose, method of 
clearance, and outcome measures. �e key concepts behind the 
relevance of β2M in this �eld are the (a) middle molecule hypoth-
esis [which in turn has directed the development of many of these 
dialysis techniques using β2M (204–209) as a proxy of other uremic 
toxins], (b) the lack of appreciation of the considerable e�ects of 
residual renal function in determining serum β2M levels even in 
patients receiving the most advanced forms of these therapies, 
and (c) the strong associations between β2M and outcomes (which 
rivals the magnitude of similar associations observed for other 
biomarkers, e.g., albumin) reported in these studies.

Conventional Hemodialysis
Observational studies originate strong message about the predic-
tive power of serum β2M (210). �e prognostic implication of 
serum β2M levels for the survival of HD patients was examined 
in 490 prevalent HD patients divided into two groups according 
to their serum β2M levels (lower and higher β2M group). During 
the follow-up period of 40 ± 15 months, there were 91 all-cause 
deaths (36 from CV causes). �e results demonstrated that the 
serum β2M level is a signi�cant predictor of mortality in HD 
patients, independent of HD duration, diabetes, malnutrition, and 
chronic in�ammation. �is observational study provides a modest 
argument about the clinical importance of lowering serum β2M in 
patients receiving maintenance HD. Counter to this argument is 
a report on the relationship between serum β2M and survival of 
chronic HD patients and of the association of serum β2M levels 
with mortality (211). Surprisingly, this study showed that higher 
serum β2M levels are associated with better survival in these 
patients. �is paradoxical association may be a manifestation of 
“reverse epidemiology”, since nutritional status was an independ-
ent predictor of serum β2M concentration in the aforementioned 
study.

�e association of in�ammatory biomarkers and β2M has been 
the focus of many studies during the 1990s before the develop-
ment of modern synthetic dialyzers (17, 212–215). �is partially 
contradictory literature suggests an association between in�am-
mation, triggered by membrane material, and serum β2M con-
centrations. To the extent that in�ammation is a non-traditional 
factor for CV and overall mortality, as recently reviewed by Ref. 
(216), one would expect the association between serum β2M and 
mortality to be partly attributed to the confounding role of in�am-
mation. Nevertheless, there is a paucity of more modern studies 
examining the association between serum β2M and risk factors 
for mortality in dialysis. A small study of 40 patients in high-�ux 
(HF) HD for more than 6 months examined the association of 
serum β2M with in�ammation and dyslipidemia as CV risk fac-
tors (217). �ere was no correlation of serum β2M with C-reactive 
protein (CRP) and IL-6 when HF membranes were used. During 
the follow-up period of 3 years, 6 out of 40 patients died from CV 
events. A signi�cant relationship of β2M with dyslipidemia and 
mineral bone disorders, but not with in�ammation was observed. 
Along the same lines, other groups have reported associations of 
serum β2M with suppressed interferon-gamma production, but 
not the traditional in�ammatory marker of CRP when patients 
are switched from low �ux (LF) to HF dialyzers (218, 219). �ese 
observations mirror similar �ndings in non-dialysis-dependent 

CKD (198). �erefore, β2M might have an important role in the 
development of CV diseases, independent of other traditional 
and non-traditional risk factors even when patients are dialyzed 
with highly permeable HF membranes. �ere is a need for large, 
modern studies in this era of HF dialyzers and ultrapure dialyzate 
to better understand the magnitude and signi�cance of β2M in 
patients receiving maintenance HD.

Observational studies and randomized clinical trials (RCTs) 
suggest that HF HD e�ciently removes β2M from the blood 
and has positive e�ects on the survival and morbidity of uremic 
patients when compared with LF HD. �e bulk of information 
[96% of all patients and events in the most recent meta-analysis by 
the Cochrane group (220)] is provided by two large multicenter 
RCTs. �e hemodialysis (HEMO) study was a RCT designed to 
examine the impact of two treatment parameters (dialysis dosage 
based on urea Kt/V and membrane permeability) on clinical 
outcomes of maintenance HD patients (221). In the HEMO study, 
membrane �ux was de�ned by the clearance of β2M (surrogate for 
the clearance of middle molecules). �e primary analysis of the 
HEMO study did not show a statistically signi�cant reduction 
in the rate of the primary outcome and all-cause mortality. In 
secondary analyses, however, a 20% decrease in cardiac death 
was observed for the HF group compared with the LF group. In 
the subgroup of patients who had been on dialysis for >3.7 years 
before enrollment in HEMO, HF was associated with lower all-
cause mortality, cardiac deaths (221, 222), and cerebrovascular 
events (223). As expected, the cumulative mean predialysis 
serum β2M level during follow-up in the HF arm was statisti-
cally signi�cantly lower than that in the LF arms. Furthermore, 
predialysis serum β2M levels predicted all-cause mortality even 
a�er adjustment for years on dialysis and residual kidney func-
tion (224). A subsequent, secondary analysis of HEMO examined 
the association of serum β2M levels and dialyzer β2M kinetics 
with the two most common causes of deaths in the HEMO study: 
cardiac and infectious diseases (225). In this report, the cumula-
tive mean predialysis serum level of the middle molecule, β2M, 
correlated positively with the relative risk for infectious deaths in 
the HEMO study.

�e Membrane Permeability Outcome (MPO) study is the 
second largest RCT to investigate the impact of membrane per-
meability on survival in incident HD patients. �is study adopted 
a novel design, in that it speci�cally made a distinction between 
patients who had low albumin (≤ 4 g/dl) and normal albumin 
(>  4  g/dl) as separate randomization groups (226). �e target 
patient population in MPO was di�erent from the HEMO cohort, 
which only enrolled patients with no residual renal function who 
had been on dialysis for more than 3 months. In MPO, patients 
with serum albumin ≤ 4 g/dl had signi�cantly better survival in 
the HF group compared with the LF group (227, 228). A post hoc 
secondary analysis showed that HF membranes may signi�cantly 
improve survival in diabetic patients. No di�erence was found 
in patients with normal albumin levels. Our group reanalyzed 
the data from the HEMO and MPO studies to take into account 
dialyzer reuse in HEMO (reuse was not permitted in MPO). Our 
secondary analysis (229) rea�rmed the message from these two 
large, high-quality RCTs: HF dialysis with non-reused dialyzers 
was associated with an adjusted HR of 0.63 (95% CI: 0.51–0.78), 
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relative to their LF counterparts. Reductions of serum β2M 
explained only one-third of the mortality bene�t of the non-
reused dialyzers in this report, raising the possibility that there 
are other, non-β2M mediated, bene�cial e�ects of HF dialysis.

Other investigations have attempted to shed a light into the 
non-β2M-related e�ects of HF dialysis. One recent study explored 
the e�ect of membrane �ux on CV risk factors and on β2M plasma 
levels in patients treated with extended dialysis (between 5 and 
8 h for all patients). In this trial, patients were randomly assigned 
to the treatment sequences LF/HF dialysis vs. HF/LF dialysis in a 
crossover design a�er a 3-month run-in period, with each phase 
lasting 9 months (230). �is study did not �nd an in�uence of HF 
�lters on several traditional CV risk factors, despite the signi�cant 
reduction of plasma β2M levels at the end of the HF phase. At the 
time of this writing, the bene�cial e�ects of HF dialysis on CV 
outcomes can only partly be attributed or explained to reduc-
tions in plasma β2M levels, or even to improvements in immune 
function (218). Even though we do have �rm evidence from the 
HEMO and MPO that therapies associated with more e�cient 
dialytic removal of plasma β2M will improve CV outcomes, 
reduction in the plasma levels of this marker only partly explain 
this e�ect.

Collectively, the bulk of available evidence highlights the poten-
tial of plasma β2M and its higher removal to serve as biomarker of 
outcomes, particularly CV mortality, in patients receiving conven-
tional thrice weekly dialysis. Pitfalls of reverse epidemiology, the 
less than perfect association of reduced plasma β2M with survival, 
study limitations and �nally the disparate e�ects of plasma β2M in 
patients with hypoalbuminemia suggest that additional biomark-
ers are needed to both understand the e�ects of HF dialysis on 
clinical outcomes and provide a causal explanation about the role 
of β2M in mediating these outcomes.

Hemodia�ltration
Online hemodia�ltration (OL-HDF), the most e�cient renal 
replacement therapy, enables enhanced removal of small and 
large uremic toxins by combining di�usive and convective solute 
transport. Four meta-analyses of RCTs and narrative reviews in 
this area showed inconsistent results concerning the e�ect of 
convective treatments in improving general and CV survival. 
Nevertheless, these analyses suggest that OL-HDF may signi�-
cantly reduce intradialytic symptomatic hypotension (231–236). 
Simulation studies anticipate that there should be a steep e�ect of 
convection volume (dose of OL-HDF) and achieved plasma β2M 
levels in patients receiving HDF (117). �ese simulation results 
originate from measurements in actual patients receiving convec-
tive therapies (237). By inference, one would expect OL-HDF to 
be associated with improved survival in prevalent dialysis patients 
receiving higher convection volume. �is hypothesis is supported 
by observational studies and secondary analyses of RCTs. �is 
evidence, reviewed further below, indicates that the observed 
reduction in mortality associated with OL-HDF correlates with 
the convection volumes delivered. �e Dialysis Outcomes and 
Practice Patterns Study, an observational study involving 2,165 
patients, was the �rst to identify the role of convection volume 
in patient outcome (238). �is study showed that 15–25  l of 
substitution volume per  session (not including weight loss for 

extracellular �uid control) resulted in a 35% reduction in mortal-
ity with high-e�ciency OL-HDF relative to LF HD.

�e hypothesis of an e�ect of convective volume on outcomes 
was also explored in a post hoc fashion in the large HDF trials 
reported in the last 5 years. Although the CONTRAST Study, a 
RCT of OL-HDF vs. LF-HD involving 714 patients was not able 
to prove the superiority of OL-HDF over conventional LF HD 
in its primary end point of mortality, post hoc analysis identi�ed 
that larger volumes of convection �uid were associated with a 
signi�cant reduction in all-cause and CV mortality (239). �e 
Turkish HDF Study (240) was a RCT involving 782 patients which 
compared survival rates for OL-HDF versus HF HD; again, no 
signi�cant di�erences in primary end points were observed, but 
post hoc analysis indicated signi�cantly reduced mortality in the 
subgroup of patients receiving the largest substitution volumes 
(>17.4 l/session). Finally, the ESHOL Study, a prospective RCT 
comparing postdilution OL-HDF with HF-HD involving 906 
prevalent patients, reported a 30% reduction in all-cause mortal-
ity, 33% in CV mortality, and 61% risk reduction in mortality 
from stroke (241). Interestingly, in this study a mean delivered 
convection volume of 23.7 l/session was required to achieve this 
magnitude of reduction in mortality.

�e convection volume threshold and the range associated 
with survival advantage were assessed in a large cohort of incident 
adult patients (n = 2,293) treated by postdilution OL-HDF over 
a 101-month period (237). �e relative survival rate of OL-HDF 
patients, adjusted for age, gender, comorbidities, vascular access, 
albumin, CRP, and dialysis dose, was found to increase at about 
55 l/week and to plateau at 70–75 l/week. Similar analysis of pre-
dialysis plasma β2M concentrations found a nearly linear decrease 
as convection volume increased from 40 to 75  l/week. �us, a 
convection dose target based on convection volume should be 
considered and needs to be con�rmed by prospective trials as 
a new determinant of dialysis adequacy in patients receiving 
convective therapies.

An individual pooled participant analysis of the largest trials 
mentioned above is in line with these observations (242), sug-
gesting a better survival when a convection volume of at least  
23  l/session was delivered. Nevertheless, none of the large 
convective therapies trials has targeted these high volumes. 
Since patients were not randomized to these high targets, it is 
very likely that the results of these post hoc analyses are strongly 
confounded by other factors (234). In particular, high convection 
volumes can only be achieved if the dialysis access can support 
a high enough �ow rate to keep the dialysis �ltration fraction at 
a safe range (less than 30%). Participants with better functioning 
accesses and/or those receiving longer treatments, factors that are 
known to be linked to better patient outcomes, would thus have 
received higher convection volumes. Only well-designed RCTs 
with rigorous controlled convection volume targets can provide 
unambiguous evidence for the bene�cial e�ects of higher convec-
tion volumes on outcomes.

Hemo�ltration
Hemo�ltration is a pure convective form of renal replacement 
therapy, which does not utilize a dialysis component. �e e�ect 
of on-line high-�ux hemo�ltration (OL-HF hemo�ltration) vs. 
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LF HD on mortality in CKD was studied in a small RCT (243). 
�ey compared OL-HF hemo�ltration with ultrapure LF HD, 
assessing survival and morbidity in patients with ESRD. It was an 
investigator-driven, prospective, multicenter, 3-year-follow-up, 
centrally randomized study with no blinding and based on the 
intention-to-treat principle. Prevalent patients with ESRD (age, 
16–80  years; vintage  >  6  months) receiving renal replacement 
therapy at 20 Italian dialysis centers were included and centrally 
randomly assigned to HD (n = 32) or hemo�ltration (n = 32). 
All-cause mortality, hospitalization rate for any cause, prevalence 
of dialysis hypotension, standard biochemical indexes, and 
nutritional status were monitored. �ere was signi�cant 
improvement in survival with hemo�ltration compared with 
HD (78%, hemo�ltration vs. 57%, HD) at 3 years of follow-up 
a�er allowing for the e�ects of age (P = 0.05). β2M plasma levels 
remained constant in HD patients (33.90 ± 2.94 mg/dl at baseline 
and 36.90 ± 5.06 mg/dl at 3 years), but decreased signi�cantly 
in hemo�ltration patients (30.02  ±  3.54  mg/dl at baseline vs. 
23.9  ±  1.77  mg/dl; P  <  0.05). �is was a small preliminary 
intervention study with a high dropout rate and problematic 
generalizability. �ey concluded that OL-HF hemo�ltration may 
improve survival independent of Kt/V in patients with ESRD, 
with a signi�cant decrease in plasma β2M levels and increased 
BMI. A larger study is required to con�rm these results. Such a 
study could include an arm of higher volume OL-HDF in order 
to probe the di�erential e�ects (if any) of pure convection vs. 
mixed convection/di�usion in achieving lower plasma β2M levels 
and improving patient outcomes.

Peritoneal Dialysis (PD)
�e association of β2M and patient survival in patients receiving 
PD is underexplored. In the largest observational study to date 
771 PD patients were selected from the Clinical Research Center 
registry for ESRD cohort in Korea in order to examine the asso-
ciation of serum β2M levels with all-cause mortality (244). �e 
patients were categorized into three groups by tertiles of serum 
β2M levels, and the median follow-up period was 39 months. �e 
all-cause mortality rate was signi�cantly di�erent according to 
tertiles of serum β2M in PD patients (P = 0.03). Multivariate Cox 
proportional analysis showed that the HR for all-cause mortality 
was 1.02 (95% CI 1.01–1.04, P = 0.006) per 1 mg/l increase in 
serum β2M a�er adjustment for multiple confounding factors that 
relate to malnutrition and for in�ammation markers. However, 
serum β2M was not associated with all-cause mortality a�er 
adjustment for residual renal clearance. Even though these results 
are supportive of the potential role of the serum β2M level as a 
predictor of mortality in PD, they suggest that this association is 
a re�ection of the residual renal function, a powerful predictor of 
mortality in patients receiving PD (245–247).

�e e�ects of higher peritoneal clearance of serum β2M on 
mortality in PD patients are much less certain. Relevant data 
come from a study which investigated whether baseline perito-
neal loss and clearance of albumin and other proteins is a risk 
factor of death (248). Mass-transfer area coe�cient of Cr and 
peritoneal clearances of albumin, β2M, α2-macroglobulin, and 
IgG were calculated during a standard peritoneal permeability 
analysis. �e total amount of albumin loss in the dialysate was 

also calculated. Overall mortality was studied with an intention-
to-treat analysis. High baseline albumin clearance was associated 
with fast transport status, the presence of peripheral arterial 
disease, and a high comorbidity index, whereas CRP did not 
di�er from the patients with low albumin clearance. Age, high 
comorbidity score, CRP  >  10  mg/l, and a low serum albumin 
were associated with mortality. Peritoneal albumin clearances 
and albumin loss were not associated with death in crude and 
adjusted analysis. Similarly, peritoneal clearances of IgG, α2-
macroglobulin, and β2M were not determinants of survival. �ey 
concluded that baseline peritoneal albumin and protein clearances 
are associated with signs of comorbidity, but this does not have 
a measurable e�ect on patient survival. However, these �ndings 
are tempered by the fact that higher clearances are associated with 
a fast-transport phenotype, which itself is a predictor of worse 
outcomes in PD (249, 250). Future studies should examine the 
e�ects of PD clearance irrespective of membrane transport status 
to better clarify the role of β2M and its clearance in PD.

β2M IN KIDNEY TRANSPLANTATION

Chronic allogra� damage is still a leading cause of gra� failure 
1-year posttransplantation (251). �e pathophysiology of this 
entity is still not clearly understood but both alloantigen-depend-
ent and alloantigen-independent factors act together to initiate 
in�ammatory reactions that eventually lead to loss of nephrons 
followed by interstitial �brosis and tubular atrophy (IF/TA) in the 
gra� (252). Alloantigen-dependent factors that can lead to chronic 
allogra� damage include recurrent T-cell-mediated rejection, 
antibody-mediated rejection, and the presence of donor-speci�c 
antibodies (253). Alloantigen-independent factors that can lead 
to chronic allogra� damage include ischemia/reperfusion injury, 
donor age, arterial hypertension of the donor, drug toxicity, infec-
tions, diabetes and hypertension in the recipient, recurrent and  
de novo glomerular disease, and the presence of proteinuria.

Non-invasive diagnostic studies that may help in determining 
whether chronic allogra� damage is present include monitoring 
for proteinuria, monitoring for donor speci�c antibodies, and 
monitoring for changes in the serum creatinine (254–257). But 
none of these tests are speci�c for making a diagnosis of chronic 
allogra� damage, and elevations in serum creatinine lag behind the 
histological changes observed in chronic allogra� damage. �us, 
identifying urinary biomarkers that can detect early tubular injury 
would be bene�cial in helping to identify those patients who need 
an allogra� biopsy earlier on so that further progression of chronic 
allogra� damage is prevented. Similar to the available evidence from 
patients with non-transplant CKD, serum β2M-based eGFR (<30 vs. 
>60 ml/min) has been found to predict CV events [HR: 2.56 (95% 
CI: 1.35–4.88; P = 0.004)], overall mortality [HR: 4.09 (95% CI: 
2.21–7.54; P < 0.001)], and dialysis dependent kidney failure [HR: 
15.53 (95% CI: 6.99–34.51; P < 0.001)] in allogra� recipients (258). 
�e predictive ability of elevations in serum β2M for subsequent 
allogra� loss has also been reported by other groups (259). Many de 
novo donor-speci�c antibodies recognize free serum β2M (260), but 
the signi�cance of this association, i.e., whether it simply re�ects 
false-positive reactions (more likely) or it is pathophysiologically 
signi�cant (less likely) remains to be established.
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Urinary β2M As a Biomarker in Chronic 

Allograft Damage
Proteomic analysis has been used in various studies in an attempt 
to identify a protein biomarker pattern that can help reveal 
chronic allogra� damage. A very promising approach (261) used 
surfaced-enhanced laser-desorption/ionization time-of-�ight 
mass spectrometry (SELDI-TOF-MS) to identify urinary proteins 
as biomarkers for chronic allogra� damage. In this retrospective 
study, there were 34 renal transplant patients (disease group) with 
histologically proven chronic allogra� damage, with an eGFR less 
than 45 ml/min who were more than 1-year posttransplantation. 
�ese patients were compared to a “control” group of 36 renal trans-
plant patients with normal renal function (eGFR > 50 ml/min).  
Signi�cantly higher concentrations of β2M were observed in the 
urine of the patients with chronic allogra� damage compared 
with the controls (261). In another study (262), using the same 
population as that in Ref. (261), OrbiTrap mass spectrometry was 
utilized to analyze the urine further for identi�cation of more 
biomarkers speci�c to chronic allogra� damage. Again β2M was 
shown to be signi�cantly increased in chronic allogra� damage, 
with an approximately 50-fold increase of β2M expression in 
this cohort compared to the control group (P < 0.0001). Other 
proteins that were signi�cantly increased in the chronic allogra� 
damage cohort were clusterin and NGAL. Apolipoprotein A1 
and uromodulin levels were signi�cantly decreased in the same 
cohort compared to the control group (262).

Despite these encouraging observations, we currently lack a 
�rm understanding of the pathophysiological processes underly-
ing chronic urinary β2M elevations in kidney transplant recipi-
ents. One possibility is that they re�ect chronic immunological 
injury. �is is certainly possible, since urinary β2M is increased 
in patients with acute rejection. A previous study using unbiased 
proteomic analysis (SELDI-TOF-MS) identi�ed many urinary 
fragments in the mass/charge (m/z) region 5,270–5,550 (region 
I; �ve peaks), 7,050–7,360 (region II; three peaks), and 10,530–
11,100 (region III; �ve peaks) that always occurred together; the 
normal urine pattern had no peak clusters in these m/z regions 
(263). Interestingly, about 18% of patients with stable allogra� 
function exhibited this pattern. A follow-up investigation by the 
same group used liquid chromatography–mass spectroscopy 
techniques to identify these peaks as cleaved β2M. �e authors 
concluded that fragmented urinary β2M can serve as a potential 
biomarker for acute tubular injury due to rejection in renal allo-
gra�s (264). �e association of urinary β2M with acute rejection 
has been noted in two other unbiased proteomic studies utilizing 
matrix-associated laser desorption ionization time-of-�ight mass 
spectroscopy (265, 266) by the same group. Whereas the �rst study 
suggested speci�city for acute rejection, the second one did not, 
as β2M elevations were also seen in patients with non-transplant 
forms of CKD. Interestingly, another group reported that urinary 
β2M is elevated in renal transplant recipients even in the setting 
of good allogra� function; this was di�erent from patients with 
non-transplant-associated CKD who had high urinary β2M lev-
els only when the Cr clearance was less than 30 ml/min/1.73 m2 
(267). One could postulate that elevations in urinary β2M in the 
absence of changes in serum Cr could be used to detect acute 

rejection early. Furthermore, chronic elevations in urinary β2M 
could re�ect ongoing low-grade immunological injury, leading to 
IF/TA and eventually to allogra� loss. Larger studies are needed 
to obtain a better understanding of the factors a�ecting urinary 
β2M and its determinants in renal transplant recipients.

In summary, urinary β2M may be sensitive for this entity, but 
further research in this area is needed to identify whether it can 
be used as a reliable biomarker for identifying patients with early 
chronic allogra� damage due to immunological factors who need 
an allogra� biopsy for the e�ective management of this complex 
disease process.

β2M IN NON-RENAL DISEASES

Not only the pathology related to renal disease but also non-renal 
etiologies have in�uence on serum β2M level. Higher serum β2M 
level can be seen in patients smoking, of non-black race, and with 
a higher amount of protein excretion in the urine (133). As β2M 
is a light chain subunit of MHC class I antigens, it is present in 
all nucleated cells, especially on immunocompetent cells such as 
macrophages, active T and B lymphocytes. During normal cell 
turn over, it is released into the body �uids. Pathologies with high 
cell turnover, such as hemato-oncological conditions, and rheu-
matologic diseases are associated with higher serum β2M levels 
(268, 269). As many of these conditions may be associated with 
the subsequent development of CKD (270–272), we will brie�y 
review some of these associations. Our aim is not to compile an 
exhaustive presentation of this large and rapidly expanding litera-
ture. Rather, we aim to draw attention to representative reports 
from other areas of Internal Medicine and highlight the relevant 
key messages for Nephrologists.

Hemato-Oncological Pathology
In hematological malignancies, such as leukemia, lymphoma, 
and multiple myeloma, serum β2M level is found to be elevated, 
despite preserved renal function. It has been reported that 60% 
of patients with mantle cell lymphoma have high pretreatment 
serum β2M level (273). �is elevated value is independently asso-
ciated with unfavorable prognosis of most of the hematological 
malignancies (269, 273–277). �ese associations persist despite 
adjustment for well-validated clinical prognostic scores and 
therapy indicators (274, 278, 279).

In multiple myeloma, serum β2M level is the main determinant 
of the International Staging System (ISS, Stage I: β2M < 3.5 mg/
dl and albumin  >  3.5  g/dl, Stage II: β2M  >  3.5 but less than 
5.5 mg/dl or β2M < 3.5 mg/l and albumin < 3.5 g/dl, Stage III 
β2M > 5.5 mg/l). β2M predicts not only the prognosis but also the 
progression of asymptomatic disease (HR 3.30; P = 0.002) (280) 
and even outcomes a�er stem cell transplantation (281, 282).  
�e association between serum β2M and albumin upon patient 
prognosis in myeloma, not only is reminiscent of similar asso-
ciations noted in the dialysis literature but also is very robust 
statistically. Even recent proposals for a revised ISS (283) based 
on emerging biomarkers (e.g., chromosomal abnormalities) or 
the levels of soluble free light chains (284) have highlighted the 
prognostic signi�cance of high serum β2M levels. Although the 
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association between β2M and prognosis has been interpreted 
to re�ect a higher tumor burden in myeloma (285) or a more 
aggressive (286, 287) myeloma subtype, it is important to real-
ize that renal insu�ciency may underline at least in part the 
higher levels of serum β2M seen in this disease (288). Despite the 
di�erent cell origin, chronic leukocytic leukemia recapitulates 
the �ndings from multiple myeloma. β2M is a well-recognized 
adverse prognostic factor in this disease (289–291); even though 
one would expect the utility of this marker to be higher at the 
latter than the earlier stage of this disease, this hypothesis is not 
entirely borne out by observations (290). Even patients with 
early-stage disease have elevated serum level of β2M, which 
may re�ect more aggressive behavior of the malignant process. 
�is alternative hypothesis, i.e., that serum elevations of this 
biomarker may re�ect the combination of higher tumor burden 
and more aggressive biology, is supported by observations that 
higher serum levels of β2M are associated with shorter time to 
therapy (291). Furthermore, failure to normalize serum β2M a�er 
6 months of kinase inhibitor therapy (ibrutinib) was associated 
with inferior progression-free survival [HR 16.9 (95% CI: 1.3–
220.0), P = 0.031] for ibrutinib-treated patients. �is association 
persisted a�er multivariate adjustments (292).

Elevated serum β2M level can also be seen in patients with 
solid cancers, such as ovarian cancer (293), gall bladder cancer 
(294), prostate cancer (295), breast cancer (296), and renal cell 
carcinoma (297). Its higher value is closely related to the poor 
prognosis and aggressive characteristics of the tumor (293–297). 
Due to the high prevalence of high β2M in patients with ovar-
ian cancer, β2M has been incorporated into the FDA approved 
OVA1 multianalytes assay for risk strati�cation of adnexal masses  
(298, 299). OVA1 measures the serum levels of �ve analytes, 
CA125, transthyretin, apolipoprotein A1, transferrin, and β2M. 
Results are reported as high or low risk for ovarian cancer and 
are used to determine whether referral to gynecologic oncology 
is required prior to surgical treatment of an adnexal mass.

More recently, evidence has emerged that implicates serum 
β2M level as a global biomarker of occult malignancy [HR: 1.25 
(95% CI: 1.06–1.47; P = 0.002 for the trend of higher risk with 
increasing β2M quartile)], and more narrowly colorectal cancer 
risk [HR: 2.21 (95% CI: 1.32–3.70; P  =  0.001 for the trend of 
higher risk with increasing β2M quartile)]. �ese associations, 
which were not attenuated a�er adjustment for an in�amma-
tory biomarker, CRP, or even renal function (eGFR) of 12,300 
patients, were noted in the prospective ARIC study. Signi�cant 
associations were also observed for mortality from total, lung, 
and hematological cancers (300).

Autoimmune Disease
Serum β2M is elevated in autoimmune diseases as well. Higher 
serum levels are seen in patients with systemic lupus erythema-
tosus and adult-onset Still disease, especially in those with active 
diseases and hemophagocytic syndrome (268, 301). A�er therapy, 
the serum β2M level decreased signi�cantly (268). Urinary β2M 
has been shown to correlate with overall and renal disease activ-
ity scores and proteinuria (164). Patients with active primary 
Sjögren’s syndrome, notably those with increased systemic 

disease activity (302) and history of lymphoma (303, 304), and 
hemophagocytic lymphohistiocytosis (305) were also found to 
have elevated urinary β2M level. Interestingly, higher levels of 
urinary β2M are found in patients with active primary Sjögren’s 
syndrome and impaired eGFR (306).

β2M: SYNTHESIS AND THE WAY 

FORWARD

In this review, we examined the recent literature linking elevated 
serum circulating and urinary β2M levels to outcomes across the 
spectrum of renal impairment and also its role as biomarker in 
non-renal diseases. �is literature suggests that β2M may be a 
particularly strong (sensitive) biomarker for both morbidity and 
mortality across numerous clinical conditions. �is lack of speci-
�city for particular clinical states, necessitates the application of a 
suitable context that would allow the interpretation of alterations 
in serum and/or urinary β2M levels. Such a framework would by 
necessity be context speci�c given the ubiquity in expression of 
β2M. For future applications in non-dialysis-dependent CKD, 
such a model would most likely have to incorporate additional 
biomarkers to derive a complex, multivariate measurement of 
renal function. Existing approaches such as the combined β2M 
and BTP formula referenced previously (199) show one possible 
research thread that may yield fruitful results. Nevertheless, it is 
worth remembering that the concentrations of several LMWP’s 
retained in CKD are poorly predicted by di�erent eGFR formulas 
in a CKD population (stages 2–5 not on dialysis) (307). If this is 
indeed the case, then one may not improve much upon exist-
ing estimating equations through simple formulas based on 
biomarker level averaging, e.g., as was done when developing the 
cystatin-C/Cr eGFR (308) and β2M-BTP formulas (123). �is 
raises the question of alternative approaches for the full subse-
quent development of β2M as a biomarker in CKD.

We believe that the way forward for β2M should be based on 
quantitative models for generation (non-renal determinants) 
and elimination (renal determinants) of this biomarker. For 
example, the population kinetic model we put forward (117) 
for the exploration of the “middle molecule” hypothesis for 
uremic toxicity maintains the separation between the processes 
of generation and elimination, while generating predictions that 
verify clinical observations in the dialysis population. When 
applied outside its intended application domain, i.e. in the �eld of 
CKD, it generates predictions that should be contrasted against 
the relationship between plasma β2M and the measured GFR 
estimated from extensive database analyses. Hence this model, 
developed on fewer than 150 patients, who were nonetheless 
extensively phenotyped, draws attention for further research on 
the generation (non-renal determinant) mechanisms that a�ect 
the serum levels of β2M.

Future research should expand this model to account for 
changes in the concentration of β2M in the urine. Such stud-
ies are urgently needed, because the urinary β2M appears to 
have a much larger utility than previously recognized. Animal 
toxicology experiments conducted under rigorously controlled 
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conditions (160, 162) and provocative observations in glomerular 
diseases (163, 164) suggest that urinary β2M may in fact be a better 
marker of glomerular than tubular damage. �is �nding, backed 
by controlled experiments in hundreds of animals and observa-
tions in a much smaller number of humans, seems to go against 
textbook dogma. �e latter, however, is based on a handful of 
observations (20 normal, 15 with glomerular, and 15 with tubular 
pathology due to cadmium poisoning and hereditary syndromes) 
made 50 years ago at the dawn of the clinical chemistry and renal 
pathology and before the complex β2M-dependent mechanisms 
of protein transport in the kidney were deciphered (141). It is 
high time that studies acknowledging the biology of β2M and 
its complex compartmental kinetics in serum and urine are 
undertaken so that the role of β2M as a biomarker be clari�ed. 
�e outcomes of this exercise are not merely academic and are 
not limited to the �eld of Nephrology, considering the impor-
tance of β2M in other �elds (mainly hematological oncology).  
Furthermore, this re-examination has the potential to link β2M 
to another important biomarker, albumin whose kinetics and 
bio�uid levels are controlled by β2M through the FcRn.

At this point, we would like to put forward a hypothesis that we 
think ties together many observations in both CKD and ESRD: 
the emergence of non-renal processes as determinants of serum 
β2M levels as renal function declines and the bene�cial e�ects of 
HF-HD dialysis in patients with hypoalbuminemia as highlighted 
by reports from our group (229, 309). We hypothesize that this 
higher generation comes not from high cell turnover, e.g., as in 
oncological conditions, but from altered cell binding of β2M to 
the many proteins that it chaperones. According to the model, 
the level of renal function is the main determinant of plasma β2M 
concentrations by a�ecting both removal (glomerular �ltration) 
and generation of free β2M. Interference with the binding of 
β2M to MHC and non-classical MHC molecules [possibly in the 
endosomes where these interactions are initiated (310, 311)] by 
other uremic retention solutes constitutes a major source for the 
heightened generation of β2M in uremia. Clinical manifestations 
of these alterations result both from the higher concentrations of 
β2M (e.g., DRA) as well as the altered MHC/non-classical MHC 
function, i.e., the phenotype of β2M de�ciency highlighted in the 
β2M knockout mice. Observations in these animals parallel the 
clinical observations and laboratory associations in patients with 
renal dysfunction: dysregulated IFN-γ production (312, 313),  
tuberculosis (314–316), acute infections, and suboptimal anti body 
responses [all reviewed in Ref. (317)]. Patients with renal dys-
function or on dialysis have also a higher incidence of tumors that 
are considered to be of viral origin in registry studies (318–323). 
According to this model, the hypoalbuminemia seen in many 
dialysis patients is a re�ection of a widespread abnor mality in 
albumin rescue through the FcRn.

�is hypothesis could provide an explanation for the bene�cial 
e�ects of HF-HD in hypoalbuminemic patients. Although sug-
gested by some in vitro studies (324, 325), other ex vivo (326, 327) 
and in vivo (328) investigations did not demonstrate an e�ect of 
�ux on β2M gene transcription or protein expression. On the other 
hand, both in vitro (329) and in vivo (328) �ow cytometric studies 

have shown that dialysis with LF membranes is associated with a 
larger dissociation of β2M from the HLA-I complex compared to 
their HF-HD counterparts. To the extent that this model is true, 
it would provide a partial molecular explanation for the clinical 
associations between higher β2M concentrations (greater disrup-
tion of β2M binding) and infectious mortality (210, 224, 225).  
�is model yields hypotheses about the binding behavior of β2M 
to its targets, and the resultant regulation of biological processes, 
e.g., IFN-γ and immunoglobulin levels in relation to higher 
clearance (renal or dialytic), which can tested in small rand-
omized crossover studies and laboratory experiments (218, 313,  
329, 330). In that regard, a “candidate toxin” approach based on 
the EUToX Uremic Solutes Database (331) could provide a way 
to test a number of known toxins in vitro experiments for a dis-
ruptive e�ect on the protein complexes of β2M. Given the potent 
e�ect of in�ammatory stimuli on the function of the MHC/β2M 
system, future work in this area should attempt to control for the 
confounding e�ects of microin�ammation, which is prevalent in 
dialysis patients, as well as possible dialysis membrane–immune 
system interactions.

CONCLUSION

In conclusion, β2M is a promising marker to assess glomerular 
and tubular function in adults. It has similar performance to the 
Cr-based estimating equations as a measure of renal function, but 
may be more strongly associated with CV morbidity and mortal-
ity than Cr, or other small molecular renal �ltration markers. β2M 
is also an important, emerging biomarker in numerous non-renal 
diseases. Plasma and urinary β2M levels can be reliably and cost 
e�ectively measured, which makes it an ideal screening tool. 
Plasma and urinary β2M levels can increase in certain conditions, 
which might limit its e�cacy as a diagnostic marker in these 
populations. Future studies should be undertaken with the aim 
to link alterations in plasma and urinary β2M levels to its renal and 
non-renal determinants and also to the levels of albumin, which 
is regulated by the complex of the β2M–FcRn.
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