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Abstract

We study optimal redistribution and insurance in a lifecycle economy

with privately observed idiosyncratic shocks. We characterize Pareto op-

tima, show the forces that determine the optimal labor distortions, and

derive closed form expressions for their limiting behavior. The labor dis-

tortions for high-productivity shocks are determined by the labor elasticity

and the higher moments of the shock process; the labor distortions for low-

productivity shocks are determined by the autocorrelation of the shock pro-

cess, redistributive objectives, and past distortions. We calibrate our model

using newly available estimates of idiosyncratic shocks. The optimal labor

distortions are U-shaped and the optimal savings distortions are generally

increasing in current earnings. The constrained optimum has 2 to 4 percent

higher welfare than equilibria with a¢ne taxes.
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We study a lifecycle economy with individuals who are ex ante heterogen-

eous in their abilities and experience idiosyncratic shocks to their skills over

time. We derive a novel decomposition that allows us to isolate key economic

forces determining the optimal labor distortions in lifecycle economies with

unobservable idiosyncratic shocks and to provide their characterization. We

also compute the optimal labor and savings distortions in a model calibrated

to match moments of the labor earnings process from a newly available high-

quality U.S. administrative data. The data allow us to estimate the higher

moments of the stochastic process for skills, such as kurtosis, which emerge

from our analysis as key parameters determining the properties of the op-

timum.

Most of our analysis focuses on characterizing the properties of the optimal

labor distortions, or wedges, between marginal utilities of consumption and

leisure. We show that the labor distortion in a given period is driven by two

components: an intratemporal component that provides insurance against new

shocks in that period, and an intertemporal component that relaxes incentive

constraints and reduces the costs of insurance provision against shocks in the

previous periods. The intratemporal component depends on the elasticity

of labor supply, the hazard rate of the current period shock conditional on

past information, and the welfare gain from providing insurance against that

shock. The intertemporal component depends on past distortions, a speci�c

form of a likelihood ratio of the shock realization, and the marginal utility of

consumption.

We characterize the behavior of each component in the tails, for high and
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low realizations of idiosyncratic shocks in the current period. Our benchmark

speci�cation focuses on separable preferences and shocks drawn from a com-

monly used family of stochastic processes that include lognormal, mixtures

of lognormals, and Pareto-lognormal distributions. We show that for such

speci�cations the distortions in the right tail are determined by the intratem-

poral component and derive a simple formula for their asymptotic behavior.

This behavior depends on the elasticity of labor supply and the tail hazard

rate of shocks and is independent of age, past history, or Pareto weights of

the planner. The distortions in the left tail depend asymptotically only on

the intertemporal component and are given by a formula that consists of the

autocorrelation of the shock process, past labor distortions, and consumption

growth rates. They depend on past history and Pareto weights and generally

increase with age. We also explain how the degree of the progressivity of the

labor distortions depends on the higher moments of the shock distribution,

such as kurtosis, and extend our results to non-separable preferences.

We then use newly available high-quality administrative data on labor earn-

ings (see Guvenen, Ozkan and Song (2013) and Guvenen et al. (2013)) and

the U.S. tax code to estimate the stochastic process for skills and quantify the

implications for the optimal distortions. Similar to the earnings, the process

for the shocks is highly persistent and leptokurtic. The optimal labor distor-

tions are approximately U-shaped as a function of current labor earnings, with

the dip in the distortions around the level of earnings in the previous period.

The optimal savings distortions generally increase in labor earnings. The dis-

tortions are fairly large in magnitude, especially in the right tail: the labor
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distortions approach 75 percent, while savings distortions approach 2 percent

of gross (i.e., interest plus principal) return to savings. We provide a detailed

quantitative decomposition of the labor distortions into the intertemporal and

intratemporal components. Finally, we show that the welfare losses from us-

ing a¢ne policies instead of the optimal policy are around 2 to 4 percent of

consumption. Moreover, the optimal labor distortions di¤er signi�cantly from

those in a model with the lognormal shocks, both qualitatively and quant-

itatively, and imply higher welfare gains from non-linear, history-dependent

policies. The key feature of the data that drives these di¤erences is the high

kurtosis emphasized by Guvenen et al. (2013).

More broadly, we view the contribution of our paper as a step for the dy-

namic optimal taxation literature, using the mechanism-design approach, to

connect more closely to applied work that studies design of social insurance

programs. Eligibility rules for welfare programs, rates of phase out of trans-

fers, the degree of progressivity of the statutory tax rates all introduce e¤ect-

ive labor and savings distortions. The mechanism design approach provides

an upper bound on welfare that can be achieved with such programs. We

characterize labor and savings distortions in a model with rich and realistic

processes for idiosyncratic shocks that are emphasized in the empirical labor

literature. These insights can be used as guidance in designing speci�c insur-

ance programs in applied settings to maximize welfare gains.

A number of papers are related to our work. Our theoretical and quantitat-

ive analyses are built on the recursive approach developed in Kapiµcka (2013)

and Pavan, Segal and Toikka (2014). Golosov, Kocherlakota and Tsyvinski
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(2003), Kocherlakota (2005), Golosov and Tsyvinski (2006), Werning (2009)

are some of the examples of the theoretical work examining di¤erent proper-

ties of the optimal distortions and their relationships to taxes. Our quant-

itative analysis is also related to a number of studies. Albanesi and Sleet

(2006) provide a comprehensive numerical and theoretical study of optimal

capital and labor taxes in a dynamic economy with i.i.d. shocks. Golosov,

Tsyvinski and Werning (2006) is a two-period numerical study of the determ-

inants of the dynamic optimal taxation in the spirit of Tuomala (1990). Ales

and Maziero (2007) numerically solve a version of a lifecycle economy with

i.i.d. shocks drawn from a discrete, two-type distribution, and �nd that the

labor distortions are lower earlier in life. Weinzierl (2011) and Fukushima

(2010) numerically solve the optimal labor and savings distortions in dynamic

economies. Conesa, Kitao and Krueger (2009), Heathcote, Storesletten and

Violante (2014), and Kindermann and Krueger (2014) characterize optimal

policies using rich but restricted tax instruments.

An important contribution of Farhi and Werning (2013) characterizes the

dynamics of labor distortions in lifecycle settings similar to ours. Most of their

analysis focuses on time-series properties of labor distortions and shows that

the stochastic process for labor distortions has autocorrelation equal to that

of the shock process and a positive trend. In a numerical exercise they use

lognormal shocks and show that a¢ne taxes capture most of the welfare gains

from the optimal policies. In contrast, our analysis focuses on how the labor

distortions depend on earnings realization, determining the degree of optimal

progressivity of the distortions in di¤erent parts of the earnings distribution.
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Our decomposition shows the main economic trade-o¤s and highlights how the

hazard of the shock process plays important qualitative and quantitative roles

in the shape of the distortions. The main insights - the expressions for the

asymptotic behavior of distortions, the observation that redistributive object-

ives and past history a¤ect distortions only in the left tail, and the analysis

of the e¤ects of higher moments of shocks on the labor distortions - are all

new. Our analysis is also the �rst attempt, to the best of our knowledge,

to estimate the e¤ects of higher moments using available data on earnings

and the tax code. The main insights - the U-shaped labor distortions, their

magnitudes, and large welfare gains from the optimal non-linear, history de-

pendent policies - di¤er substantially from the results that can be obtained

with lognormal shocks.

The rest of the paper is organized as follows. Section 1 describes the envir-

onment. Section 2 provides the theoretical analysis. Section 3 quantitatively

analyzes the calibrated life-cycle model. Section 4 concludes.

1 Environment

We consider an economy that lasts T + 1 periods, denoted by t = 0; :::; T .

Each agent�s preferences are described by a time separable utility function

over consumption ct and labor lt,

E0

TX

t=0

�tU(ct; lt); (1)
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where � 2 (0; 1) is a discount factor, E0 is a period 0 expectation operator,

and U : R2+ ! R.

In period t = 0, agents draw their initial type (skill), �0, from a distribution

F0(�). For t � 1, skills follow aMarkov process Ft (�j�t�1), where �t�1 is agent�s

skill realization in period t� 1:We denote the probability density function by

ft(�j�t�1): For parts of the analysis it will be convenient to assume that people

retire at some period T̂ ; in which case Ft (0j�) = 1 for all � and all t � T̂ :

Skills are non-negative: �t 2 � = R+ for all t: The set of possible histories up

to period t is denoted by �t.

Assumption 1. For all t < T̂ , density ft is di¤erentiable in both arguments

with f 0t �
@ft
@�
and f2;t �

@ft
@�t�1

: For all �t�1; 't (�j�t�1) �
�t�1

R

1

�
f2;t(xj�t�1)dx

�ft(�j�t�1)
is

bounded for all � and lim�!1
1�Ft(�j�t�1)
�ft(�j�t�1)

is �nite.

The function 't de�ned in this assumption is bounded for many commonly

used stochastic processes; for AR(1) lognormal shocks it is equal to the auto-

correlation of the shock process for all �:

An agent of type �t who supplies lt units of labor produces yt = �tlt units

of output. The skill shocks are privately observed by the agent. Output yt

and consumption ct are publicly observed. In period t, the agent knows his

skill realization only for the �rst t periods �t = (�0; :::; �t). Denote by ct
�
�t
�
:

�t ! R+ the agent�s allocation of consumption and by yt
�
�t
�
: �t ! R+

the agent�s allocation of output in period t. Denote by �t
�
�t
�
: �t ! �t the

agent�s report in period t. Let �t be the set of all such reporting strategies in

period t. Resources can be transferred between periods at a rate R > 0. The

observability of consumption implies that all savings are publicly observable.
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The social planner evaluates welfare using Pareto weights � : �! R+, where

� (�) is a weight assigned to an agent born in period 0 with type �:We assume

that � is non-negative and normalize
R1
0
� (�) dF0 (�) = 1: Social welfare is

given by
R1
0
� (�)

�
E0

PT
t=0 �

tU (ct; lt)
�
dF0(�).

We denote partial derivatives of U with respect to c and l as Uc and Ul

and de�ne all second derivatives and cross-partials accordingly. Similarly, Uy

and U� denote derivatives of U
�
c; y
�

�
with respect to y and �: We make the

following assumptions about U:

Assumption 2. U is twice continuously di¤erentiable in both arguments, sat-

is�es Uc > 0; Ul < 0; Ucc � 0; Ull � 0; and
@
@�

Uy(c;y=�)

Uc(c;y=�)
� 0:

The optimal allocations solve the following dynamic mechanism design

problem (see, e.g., Golosov, Kocherlakota and Tsyvinski (2003)):

max
fct(�t);yt(�t)g

�t2�t;t=0;::;T

Z 1

0

� (�)

 

E0

(
TX

t=0

�tU
�
ct
�
�t
�
; yt
�
�t
�
=�t
�
�����
�

)!

dF0(�)

(2)

subject to the incentive compatibility constraint:

E0

(
TX

t=0

�tU
�
ct
�
�t
�
; yt
�
�t
�
=�t
�
�����
�

)

� E0

(
TX

t=0

�tU
�
ct
�
�t
�
�t
��
; yt
�
�t
�
�t
��
=�t
�
�����
�

)

;8�T 2 �T ; �t 2 �T ; � 2 �

(3)
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and the feasibility constraint:

Z 1

0

E0

(
TX

t=0

R�tct
�
�t
�
�����
�

)

dF0(�) �

Z 1

0

E0

(
TX

t=0

R�tyt
�
�t
�
�����
�

)

dF0(�):

(4)

We follow Fernandes and Phelan (2000) and Kapiµcka (2013) to write the

problem recursively. Here we sketch the main steps and refer to the two papers

for technical details. Constraint (3) can be written recursively as

U
�
ct
�
�t
�
; yt
�
�t
�
=�t
�
+ �!t+1

�
�tj�t

�

� U
�
ct

�
�t�1; �̂

�
; yt

�
�t�1; �̂

�
=�t

�
+ �!t+1

�
�t�1; �̂j�t

�
; 8�̂; � 2 �;8t (5)

and

!t+1

�
�t�1; �̂j�t

�
= Et

(
TX

s=t+1

�s�t�1U
�
cs

�
�̂
s
�
; ys

�
�̂
s
�
=�s

�
�����
�t

)

;

where �̂
s
=
�
�0:::; �t�1; �̂; �t+1; :::; �s

�
are all the histories in which the agent

misreports his type once in the history �s: It is possible to write the problem

recursively using !
�
�̂j�
�
as a state variable following the methods developed

by Fernandes and Phelan (2000). The problem, however, is intractable since

!
�
�̂j�
�
is a function of

�
�̂; �
�
and thus the state space becomes in�nite di-

mensional. Kapiµcka (2013) and Pavan, Segal and Toikka (2014) further sim-

plify the problem by replacing global incentive constraints (5) with their local

analogue, the �rst-order conditions, to obtain a more manageable recursive

formulation. When non-local constraints do not bind one needs to keep track

of only on-the-path promised utility w (�) = ! (�j�) and the utility from a local
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deviation w2 (�) = !2 (�j�), where !2 (�j�) is the derivative of ! with respect

to its second argument evaluated at (�j�) : The maximization problem (2) can

then be written recursively for t � 1 as

Vt(ŵ; ŵ2; ��) = min
c;y;u;w;w2

Z 1

0

�
c (�)� y (�) +R�1Vt+1 (w (�) ; w2(�); �)

�
ft (�j��) d�

(6)

subject to

_u (�) = U�(c(�); y(�)=�) + �w2 (�) ; (7)

ŵ =

Z 1

0

u (�) ft (�j��) d�; (8)

ŵ2 =

Z 1

0

u (�) f2;t(�j��)d�; (9)

u(�) = U(c(�); y(�)=�) + �w(�): (10)

The value function VT+1 as well as w and w2 disappear from this formu-

lation in the last period.1 The value function V0 in period t = 0 takes the

form

V0(ŵ0) = min
c;y;u;w;w2

Z 1

0

�
c (�)� y (�) +R�1V1 (w (�) ; w2(�); �)

�
f0 (�) d� (11)

subject to (7), (10) and

ŵ0 =

Z 1

0

� (�) u (�) f0 (�) d�: (12)

1This discussion is given for the case without retirement. If there are retirement periods,
the value function V

T̂
(ŵ) is equal to the present value of resources needed to provide ŵ utils

to a retired agent between periods T̂ and T: In this case the choice variable w2 disappears
from the recursive formulation in period T̂ � 1: The rest of the formulation is unchanged.
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There are four state variables in this recursive formulation: ŵ is the prom-

ised utility associated with the promise-keeping constraint (8); ŵ2 is the state

variable associated with the threat-keeping constraint (9); �� is the reported

type in period t� 1; and age t: The initial value ŵ0 is the largest solution to

the equation V0(ŵ0) = 0.
2

The �rst-order approach is valid only if at the optimum the local con-

straints (7) are su¢cient to guarantee that global incentive constraints (5)

are satis�ed. It is well known that there are no general conditions either in

the static mechanism design problem with multiple goods (see, e.g., Mirrlees

(1976)) or in dynamic models (see, e.g., Kapiµcka (2013)) which guarantee that

only local incentive constraints bind. It is possible, however, to solve the re-

laxed problem (6) and (11) and verify whether the solution to that problem

satis�es global incentive constraints (5). If it does, it is also a solution to the

original problem (2).

Assumption 3. In the optimum c (�) and ! (�j�) are piecewise C1 and increas-

ing for all �; the derivative of !
�
�̂j�
�
with respect to �̂ (when exists), !1

�
�̂j�
�
;

is increasing in � for all �̂; Ucl � 0:

Lemma 1. If Assumptions 2 and 3 are satis�ed, then (7) implies (5).

The focus of our analysis is on the qualitative and quantitative character-

ization of the optimal labor and savings distortions, or wedges. For an agent

2If we add exogenous government expenditures to our model, then ŵ0 should satisfy
V0(ŵ0) = �G where G is the present value of such expenditures.
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with the history of shocks �t at time t, we de�ne a labor distortion, � yt
�
�t
�
, as

1� � yt
�
�t
�
�
�Ul

�
ct
�
�t
�
; yt
�
�t
�
=�t
�

�tUc
�
ct
�
�t
�
; yt
�
�t
�
=�t
� (13)

and a savings distortion, � st
�
�t
�
, as

1� � st
�
�t
�
�

�
1

�R

�
Uc
�
ct
�
�t
�
; yt
�
�t
�
=�t
�

Et

�
Uc
�
ct+1

�
�t+1

�
; yt+1

�
�t+1

�
=�t+1

�	 : (14)

2 Characterization of distortions

In this section, we characterize the properties of the optimal distortions in the

solution to the planning problems (6) and (11). These distortions are generally

history dependent. To describe the properties of the solution, we �x any

past history �t�1 and characterize the behavior of the optimal distortions as a

function of period-t shock �t: To simplify notation, we omit explicit dependence

on �t�1: Thus, whenever it does not cause confusion, a notation zt (�) denotes

the value of a random variable zt at a history
�
�t�1; �

�
in the solution of the

planning problem; zt�1 denotes zt�1
�
�t�1

�
:

2.1 Separable preferences

We start with the analysis of the optimal labor distortions when preferences

are separable between consumption and labor. Let

"t (�) �
Ull;t (�) lt (�)

Ul;t (�)
; �t (�) � �

Ucc;t (�) ct (�)

Uc;t (�)
: (15)
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"t (�) and �t (�) are the inverses of the Frisch elasticity of labor supply and

the elasticity of the intertemporal substitution (EIS) respectively. It is more

convenient to work with the inverses of the elasticities since it allows us to

easily incorporate the limiting cases of in�nite elasticities. These elasticities

are, in general, endogenous. Isoelastic preferences

U (c; l) =
c1�� � 1

1� �
�

l1+"

1 + "
(16)

provide one useful benchmark that keeps both elasticities constant.

The optimal labor distortions are determined by several economic forces

that have distinct behavior. To separate these forces, we de�ne

At (�) = 1 + "t (�) ;

Bt (�) =
1� Ft (�)

�ft (�)
;

Ct (�) =

Z 1

�

exp

�Z x

�

�t (~x)
_ct (~x)

ct (~x)
d~x

�
(1� �1;t��t (x)Uc;t (x))

ft (x) dx

1� Ft (�)
;

Dt (�) =
At (�)

At�1

Uc;t (�)

Uc;t�1
't (�) for t > 0; D0 (�) = 0;

where

�1;t =

Z 1

0

ft (x)

Uc;t (x)
dx; ��t (�) =

8
><

>:

� (�) if t = 0;

1 if t > 0:

Functions At, Bt, Ct, and Dt de�ne the four main forces characterizing

the optimal labor distortions. In the online appendix we show that applying
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optimal control techniques one can derive the following expression:

� yt (�)

1� � yt (�)
= At (�)Bt (�)Ct (�)| {z }

intratemporal component

+ �R
� yt�1

1� � yt�1
Dt (�)

| {z }
intertemporal component

: (17)

Equation (17) shows that the optimal labor distortion is a sum of two com-

ponents. The �rst component, AtBtCt; takes a form that can be obtained by

manipulating the optimality conditions in the static model of Mirrlees (1971).

We call it the intratemporal component. The second component, to which we

refer as the intertemporal component, is speci�c to dynamic models. Before

characterizing how functions At, Bt, Ct, and Dt depend on the realization of

the shock �t it is instructive to brie�y discuss the economic intuition behind

these forces.

The intratemporal component captures the costs and bene�ts of labor dis-

tortions in providing insurance against period-t shocks. These costs and bene-

�ts have analogues in static models, such as Diamond (1998) and Saez (2001),

although dynamics introduce additional considerations. To see the intuition

for these terms, observe that a labor distortion for type � discourages that

type�s labor supply. The behavioral response of labor supply is captured by

type ��s Frisch elasticity of labor supply, summarized by At (�) : A higher labor

distortion for type � lowers total output in proportion to �ft (�) but allows the

planner to relax the incentive constraints for all types above �: This trade-o¤

is summarized by the hazard ratio de�ned in Bt (�) : Since the intratemporal

term captures distortions arising from insurance against new shocks, the term

Bt is a hazard of period-t shocks conditional on a given history �
t�1: Finally,
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the relaxed incentive constraints allow the planner to extract more resources

from individuals with skills above � and transfer them to all agents. The social

value of that transfer depends on the ratio of the Pareto-weighted marginal

utility of consumptions of agents with skills above �;
R1
�
��t (x)Uc;t (x) ft (x) dx,

to the average marginal utility, summarized by �1;t: This trade-o¤ is captured

by the term Ct (�) :
3 The redistributive component Ct has Pareto weights only

in period 0 because e¢ciency requires that the planner maximizes Pareto-

weighted lifetime utilities of agents. This implies that all future idiosyncratic

shocks are weighted with agent�s marginal utility of consumption irrespective

of the lifetime Pareto weights.

The intertemporal component captures how the planner uses distortions in

the current period t to provide incentives for information revelation in earlier

periods. The likelihood 't (�j�t�1) that appears in Dt summarizes the inform-

ation that period t shock � carries about �t�1: To see this e¤ect, note that
R1
�
f2;t (xj�t�1) dx measures the di¤erence in the probability of receiving any

shock greater than � in period t between an agent with skill slightly above �t�1

and an agent with skill �t�1. When
R1
�
f2;t (xj�t�1) dx > 0; a labor distortion in

period t in a history
�
�t�1; �

�
is less likely to a¤ect type �t�1 than a type above.

Therefore a positive labor distortion in period t allows to relax the incentive

constraint in history �t�1: The opposite argument holds for
R1
�
f2;t (x) dx < 0:

The term Dt also depends on
At(�)
At�1

and Uc;t(�)

Uc;t�1
; which capture the fact that it

is cheaper to provide incentives in those states in which the elasticity of labor

3The extraction of resources from types above � also has an income e¤ect on labor supply

of those types, which is captured by the expression exp
�R x

�
�t (~x)

_ct(~x)
ct(~x)

d~x
�
in the de�nition

of Ct.
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supply is low and the marginal utility of consumption is high.

The sharpest characterization of the optimal labor distortions can be ob-

tained in the tails as � goes to 0 or to in�nity. We focus on the situations in

which the solution is well-behaved, as summarized by the following assump-

tion.

Assumption 4. (a) limc!0;1
Uccc
Uc
, limc!0;1

Ulll
Ul
are �nite and non-zero; � (�)

is bounded with a �nite lim�!0;1 � (�).

(b) ct (�), lt (�),
_ct(�)=ct(�)
_yt(�)=yt(�)

have limits; ct(�)
yt(�)

has a �nite, non-zero limit;

�yt (�)

1��yt (�)
has a �nite limit as � !1; lt (�) has a limit; Uc;t (�) has a �nite limit

as � ! 0.

The main purpose of this assumption is to rule out two singular cases: that

distortions �uctuate periodically in the tails without settling to a limit and

that they diverge to +1 or �1: We are not aware of any examples in which

distortions do not settle to a limit. The optimal distortions may diverge to

1 in some cases4 and abstracting from them streamlines our discussion. We

discuss relaxing this assumption after presenting our main results. We call U

generic if it satis�es Assumption 4(a) and limc!1
�Uccc
Uc

6= 1.

Proposition 1. Suppose Assumptions 1 and 4 are satis�ed and preferences

are separable. Then there are k1; k2; k3; k4 2 R such that
5

At (�)Bt (�)Ct (�) � k3
1� Ft (�)

�ft (�)
; Dt (�) = o

�
1

�k4

�
(� !1) ;

4For example, Mirrlees (1971) shows that labor distortions can only converge to 1 for a
class of preferences that imply that " (�)!1:

5For any functions h; g and c 2 �R; h(x) � g(x) (x ! c) if limx!c h (x) =g(x) = 1;
h(x) = o (g(x)) (x! c) if limx!c h (x) =g(x) = 0; and h (x) = O (g (x)) (x! c) if there is a
constant K such that jh(x)j � Kjg(x)j for all x in a neighborhood of c:
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At (�)Bt (�)Ct (�) � k1
Ft (�)

�ft (�)
; Dt (�) � k2't (�) (� ! 0) :

k3 > 0 depends generically only on U and ft and k4 > 0 depends generically

only on U; k1 and k2 generally depend on the past history of shocks.

This proposition o¤ers two insights about the economic forces that de-

termine the labor distortions in the right and left tails. First, it shows the

asymptotic behavior of each component in the tails. As we shall see, these res-

ults are very informative about the behavior of the labor distortions and their

components. The second insight is that the labor distortions in the right tail

depend only on the functional form of U and the tail behavior of the hazard;

the history of past shocks, redistribution objectives or any other property of

the optimum do not a¤ect those parameters.

To illustrate the intuition for this result, assume that preferences are isoelastic

and �rst consider the distortions in the right tail, as � ! 1: We have

l (�)" = (1� � y (�)) �c (�)�� and by Assumption 4 c (�) / (1� � y (�)) �l (�) in

the limit. Since 1 � � y (�) converges to a non-zero limit, ct (�) / �
1+"
�+" ; which

implies that the marginal utility of consumption declines at a geometric rate,

Uc;t (�) / �
�(1+")�
�+" : This has two implications for the behavior of the labor

distortions in the right tail. The �rst implication is that Dt declines at a geo-

metric rate that does not depend on the past history as � ! 1: The second

implication is that ��t�tUc;t drops out of the expression for Ct; indicating that

asymptotically the planner maximizes the extraction of resources from the

right tail of the distribution. The expression for the peak of the La¤er curve

for the labor distortion can be obtained in a closed form and it depends only

on the hazard rate Bt and the income and substitution e¤ects summarized by
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� and ": This provides an explanation for the asymptotic equivalence result

for the intratemporal term in the right tail.

The asymptotic behavior of the intratemporal component in the left tail

is shaped by the tension between the hazard Bt and the redistributive term

Ct: The two forces a¤ect the labor distortion in the opposite directions. The

hazard Bt favors high labor distortions because low � types are not very pro-

ductive and distorting their labor supply has little e¤ect on output. It is easy

to see from the de�nition of Bt that Bt �
1
�ft
(� ! 0) : The redistributive term

Ct favors low labor distortions in the left tail because the marginal utility of

consumption of those agents is low. We show in the online appendix that

Ct � k̂Ft (� ! 0) ; where k̂ = 1� ��t (0)�tUc;t (0). These two observations im-

ply the asymptotic equivalence result for the intratemporal component in the

left tail. The behavior of intertemporal component, particularly of the term

Dt; can be seen directly from its de�nition with k2 =
At(0)
At�1

Uc;t(0)

Uc;t�1
: The optimal

distortions in the left tail are typically history-dependent since Uc;t (0) ; �t, and

At (0) all generally depend on the past realizations of the shock.

Proposition 1 also shows a link between the optimal labor distortions in

dynamic lifecycle models and static environments built on Mirrlees (1971).

In particular, Diamond (1998) �rst used the decomposition similar to our in-

tratemporal component to analyze the behavior of optimal distortions in a

static model with quasi-linear preferences. Our analysis of the intratemporal

component is a generalization of his approach to more general preferences and

shock distributions, which also applies to static settings. Since Proposition 1

shows that the dynamic component disappears in the right tail of the distri-
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bution, the economic forces that determine the optimal labor distortions for

high shocks are similar in static and dynamic settings. We further discuss this

connection in speci�c examples below.

Proposition 1 shows that the hazard rate of productivity shocks plays an

important role in shaping the optimal labor distortion. To gain further insight

into that behavior we focus on a family of stochastic processes frequently used

in applied labor and public �nance literatures.6

Assumption 5. �t satis�es

ln �t = bt + � ln �t�1 + �t;

where �t is drawn from one of the three distributions:

(a) lognormal: �t � N (0; �) ;

(b) Pareto-lognormal: �t � NE (�; �; a), where NE is a normal-exponential

distribution;

(c) mixture of lognormals: �t � N (�i; �i) with probability pi for i = 1; :::; I;

let � = maxi �i:

The log-normal distribution (a) is a special case of the mixture of log-

normals (c). It is useful to keep in mind that if shocks are log-normal then �t

has skewness of 0 and kurtosis of 3 (or excess kurtosis of 0), while the mixture

distribution allows to construct �t with other values of these moments. We

can use the tail properties of these distributions (see the online appendix for

6For example, Storesletten, Telmer and Yaron (2004) and Farhi and Werning (2013) use
lognormal distributions, Badel and Huggett (2014) and Lockwood, Nathanson and Weyl
(2014) use Pareto-lognormal distributions, Geweke and Keane (2000) and Guvenen et al.
(2013) use mixtures of lognormals.
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details) to prove the following corollary to Proposition 1.

Corollary 1. Suppose that Assumptions 4 and 5 are satis�ed and preferences

are separable. Then there are constants �� > 0; �" > 0 such as

lim
�!1

Ct (�) = 1 +
��

�� + �"
lim
�!1

� yt (�)

1� � yt (�)
: (18)

Moreover, �� = limc!1
�Uccc
Uc

; �" = liml!1
Ulll
Ul
if �� < 1; �" = liml!0

Ulll
Ul
if �� > 1:

Asymptotically as � !1

� yt (�)

1� � yt (�)
� At (�)Bt (�)Ct (�)

�

8
><

>:

�
a 1
1+�"

� ��
��+�"

��1
if ft is Pareto-lognormal, a

1
1+�"

� ��
��+�"

> 0
�
ln �
�2

1
1+�"

��1
if ft is lognormal/mixture.

(19)

Asymptotically as � ! 0; as long as �� yt�1 6= 0;

� yt (�)

1� � yt (�)
� �R

� yt�1
1� � yt�1

Dt (�) � �R
� yt�1

1� � yt�1
�
Uc;t (0)

Uc;t�1

At (0)

At�1
: (20)

Although the three classes of the distributions of shocks have substantial

di¤erences, they share some common implications. All of them imply that the

optimal labor distortions are determined by the intratemporal forces in the

right tail and by the intertemporal forces in the left tail. The optimal labor

distortions in the right tail do not depend on the history of the shocks and are

pinned down by the two elasticities de�ned in Corollary 1 and the tail behavior

of the hazard rate: Bt � a�1 in the Pareto-lognormal case, Bt �
�
ln �
�2

��1
in

the lognormal/mixture case as � ! 1. The labor distortions in the left tail
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depend on the autocorrelation of the shock process, past labor distortions, and

the ratios of the marginal utilities of consumption and the Frisch elasticities

of labor supply in periods t and t� 1:

We next discuss the intuition for Corollary 1 and make some additional

observations about its implications. The �rst result of the corollary, equation

(18), characterizes properties of the redistributive component Ct in the right

tail. It is a sum of two terms. The number 1 comes from the fact that the

marginal utility of the highly skilled converges to zero and the planner would

like to extract all the surplus from those agents. The second term on the

right-hand side of (18) captures the income e¤ect of the labor supply from the

marginal labor distortions on type � as � !1:7 The size of the income e¤ect

is proportional to the limiting tax rate.

The second part of Corollary 1 characterizes labor distortions in the right

tail. The fact that they are determined by the intratemporal forces follows

from Proposition 1 and Assumption 5. We know from our decomposition

(17) that the optimal distortions are the sum of the intertemporal and the

intratemporal components. The intertemporal component always converges

to 0 at a geometric rate by Proposition 1. The intratemporal component,

when ft satis�es Assumption 5, either does not converge to zero at all or

converges to zero at a slower rate of
�
ln �
�2

��1
: Hence, the intratemporal forces

eventually dominate the intertemporal forces.

Note that when shocks are drawn from a mixture distribution, � is the

highest standard deviation in the mixture. In many applications (see, e.g.

7In static models the income e¤ect emerges because a higher marginal labor tax on type
� increases average taxes on all types above � and induces them to increase labor supply.
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Guvenen et al. (2013)) this parameter is chosen to capture kurtosis of the shock

process. Hence, stochastic processes with higher kurtosis, holding variance

�xed, imply higher labor distortions in the right tail. The intuition is as

follows. If kurtosis of the shock process is high, the hazard ratio 1�Ft(�)
�ft(�)

is

large for high �. This implies that any given marginal labor distortion has a

smaller output loss than the same distortion with lognormal shocks. Also note

that even though �2

ln �
converges to zero, this rate of convergence is very slow.

As we noted in the discussion of Proposition 1, the intratemporal com-

ponent in the right tail depends only on the hazard Bt; the elasticity " and

the income e¤ect, which with separable preferences is summarized by ��
��+�"

in

the limit. The income e¤ect becomes second order if the labor distortions go

to zero, which explains why it disappears in the asymptotic formulas in the

lognormal/mixture case in (19); it a¤ects the limiting labor distortions if the

shocks are fat-tailed.

Expressions (19) generalize those derived by Mirrlees (1971), Diamond

(1998), and Saez (2001) for the optimal behavior of labor distortions in static

models. Corollary 1 thus shows that their insights continue to hold in dy-

namic environments in the right tail of the distribution. The restriction

a 1
1+�"
� ��

��+�"
> 0 is needed in (19) to make sure that the limiting value of

�yt
1��yt

is

�nite. When this restriction is not satis�ed, � yt may converge to 1. Note that

even in this case the general conclusion of Corollary 1 remains unchanged � the

optimal labor distortions are still determined by the intratemporal component

as � !1 even if this component diverges to in�nity.

The last part of Corollary 1 characterizes the behavior of labor distortions
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in the left tail. This result also follows from Proposition 1 and Assumption

5. Under Assumption 5 the intratemporal component converges to zero, while

the intertemporal component is non-zero as long as the shocks are not i.i.d.

Expression (20) further simpli�es if preferences are isoelastic. In this case

�yt (�)

1��yt (�)
� �R

�yt�1
1��yt�1

�
�
ct(0)
ct�1

���
as � ! 0: Thus, the marginal distortions depend

on the autocorrelation of the shocks, past labor distortions, and consumption

growth rate. The latter two forces generally depend on the agent�s age t; the

past history of shocks, and Pareto weights.

We can also use decomposition (17) to obtain additional insights about

time-series properties of the optimal labor distortions studied by Farhi and

Werning (2013). Observe that Et�1
1
Uc;t

BtCt = covt�1

�
ln �; 1

Uc;t

�
: If we assume

isoelastic preferences, multiply (17) by 1
Uc;t(�)

and integrate, we get

Et�1

�
� yt (�)

1� � yt (�)

1

Uc;t (�)

�
= ��R

� yt�1
1� � yt�1

1

Uc;t�1
+ (1 + ") covt�1

�
ln �;

1

Uc;t

�
:

(21)

This equation is one of the key results of Farhi and Werning (2013). In

particular, they show that it implies that the marginal utility-adjusted labor

distortions follow an AR(1) process with a drift. Persistence of that process is

determined by the autocorrelation parameter �; and its drift is strictly positive

since generally we should expect that covt�1

�
ln �; 1

Uc;t

�
> 0: Farhi andWerning

(2013) conclude that the optimal labor distortions should increase with age.

Corollary 1 quali�es this result by showing that this drift should be observed in

the left but not right tails of shock realizations since the asymptotic behavior of

the labor distortions in the right tail is independent of t by equation (19). The

intuition for this result follows from our discussion of the underlying economic
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forces that determine the optimal labor wedge.

In the analysis above we restricted our attention to the preference speci�c-

ations for which the Frisch elasticity and the EIS are �nite. It is often possible

to obtain simpler closed form expressions when this assumption is relaxed.

These expressions, although special, can illustrate some key trade-o¤s in a

transparent way. Assume, for example, that preferences are isoelastic with

� = 0: In this case we obtain from (17) for t = 0

� y0 (�)

1� � y0 (�)
= (1 + ")| {z }

A0(�)

1� F0 (�)

�f0 (�)| {z }
B0(�)

Z 1

�

(1� � (x))
f0 (x) dx

1� F0 (�)| {z }
C0(�)

and for t > 0

� yt (�)

1� � yt (�)
= �R�

� yt�1
1� � yt�1

:

The quasi-linear case is special since it sets both the risk-aversion and the

income e¤ect to zero. Since agents are risk-neutral, they require no insurance

against lifecycle shocks and therefore the intratemporal components are zero

for all t > 0: Persistence of the shock process determines how initial hetero-

geneity a¤ects labor distortions in those periods because 't (�) = � under any

of the three stochastic processes in Assumption 5.

The absence of income e¤ects allows us to illustrate transparently the trade-

o¤ between the redistribution and the minimization of output losses (i.e. "e¢-

ciency") in period 0. Suppose that � monotonically decreases and converges to

zero, so that the planner favors redistribution from the more productive types.

In this case the redistributive component C0 monotonically increases from 0

to 1, re�ecting higher gains of redistribution from higher types. The hazard
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rate B0 starts at1 and decreases (monotonically in the case of lognormal and

Pareto-lognormal f0) to its long-run �nite value as � !1, re�ecting the fact

that labor distortions for more productive types generate higher output losses.

Figure 1 illustrates how the shape and the size of the labor distortions

depend on the hazard rate. We consider the three types of distributions from

Assumption 5 and choose the parameters of these distributions so that ln � has

mean and variance of 0 and 1 respectively in all cases. The Pareto-lognormal

distribution has a tail parameter of 2.5. The mixture is drawn from two mean-

zero normal distributions chosen so that excess kurtosis of ln � is equal to 10.8

We set " = 2 and � (�) / exp (��) :

This �gure shows several general principles that, as we shall see in Section

3, carry through to calibrated economies with risk-aversion. Panels A, B, and

C show that the redistributive component Ct converges quickly to its limiting

value of 1 as � !1; while the hazard rate Bt converges to its right limit much

slower. This implies that the shape of the optimal labor distortions resembles

the shape of the hazard rate as long as � is not too low. The hazard rates are

slowly decreasing when shocks are lognormal or Pareto-lognormal, and are �rst

U-shaped and then slowly decreasing when shocks are drawn from a mixture

of lognormal. The optimal labor distortion � y0 (solid lines in Panels D, E, and

F), which is a monotonic transformation of
�y0
1��y0

; follows the same patterns.

Panels A, B, and C of Figure 1 also show that hazard rates in lognor-

mal/mixture cases converge to their right limit of 0 slowly. At � = 20; which

is about 3 standard deviations above the mean, both the hazard rate Bt and

8There are multiple ways to generate excess kurtosis of 10 and variance of 1 from the
mixture of normal distributions. Figure 1 shows a representative pattern of distortions.
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Figure 1: Optimal labor distortions in period 0 and their components for three
distributions of shocks with quasi-linear preferences.

the optimal labor distortions with both lognormal and mixture shocks are sub-

stantially above 0. Even at � = 22; 000, which is 10 standard deviations above

the mean, the optimal labor distortion in the mixture case is equal to 0.62,

both well above its limit value of zero and the limit value of the thick-tailed

Pareto-lognormal shocks.

Panels D, E, and F of Figure 1 show that two commonly used summary

statistics of the shock process � variance and the fatness of the tail � do not

provide su¢cient information to determine the size of the distortion or whether

the optimal distortions should be progressive, even in the tail. The dashed line

in Panels D, E, and F is the average labor distortion de�ned as
R1
0
� y0 (�) dF0:
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The average labor distortions are almost 10 percentage points lower in the

mixture of lognormals case. The reason for it is that, due to the high kurtosis of

that distribution, most of the time individuals receive small shocks that require

little insurance. On the other hand, medium size shocks occur with a much

higher probability in the mixture case and hence the labor distortions for such

shocks are high. Lognormal and Pareto-lognormal shocks imply very similar

labor distortions for most of the shocks even though the former distribution

has a thin tail while the latter has a thick Pareto tail. Figure 1 also contradicts

the view that the optimal labor distortions should be progressive for high types

if shocks are fat-tailed.9 The optimal labor distortions are progressive in the

right tail if the hazard rate B0 either converges to its long run value from below

or converges from above at a faster rate than the redistributive component C0

converges to 1. The opposite result holds with Pareto-lognormal shocks for a

wide range of Pareto weights �:

2.2 Non-separable preferences

We discuss next the extensions of our analysis to the case when utility is not

separable in consumption and labor. We show that many principles discussed

in the previous section continue to hold, although with some caveats. We also

discuss the optimal savings distortions.

Let 
t (�) �
Ucl;t(�)lt(�)

Uc;t(�)
be the degree of complementary between consump-

tion and labor and �X = lim�!1
ct(�)

(1��yt (�))yt(�)
be the marginal propensity of

consume out of the after-tax income in the right tail of the distribution. We

9See, for example, Diamond (1998) and Diamond and Saez (2011).
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continue to make Assumption 4 with an additional extension that �t (�) ; "t (�)

and 
t (�) have �nite limits denoted by ��; �"; �
 as � !1:

The decomposition of the labor distortions (17) still holds in the non-

separable case, with the following modi�cations:

At (�) = 1 + "t (�)� 
t (�) ;

Ct (�) =

Z 1

�

exp

�Z x

�

�
�t (~x)

_ct (~x)

ct (~x)
� 
t (~x)

_yt (~x)

yt (~x)

�
d~x

�
(1� �1;t��t (x)Uc;t (x))

ft (x) dx

1� Ft (�)
;

and

Dt (�) =
At (�)

At�1

Uc;t (�)

Uc;t�1

�t�1
R1
�
exp

�
�
R x
�

t (~x)

d~x
~x

�
f2;t (x) dx

�ft (�)
:

One di¤erence with the separable case is in the intertemporal component

and term Dt. When preferences are non-separable, the marginal utility of con-

sumption is no longer the su¢cient statistic for the relative costs of providing

incentives in periods t and t � 1 and 
t enters into the expression for Dt: If

Ucl � 0
10 and � � 0, then much of the previous analysis of the intertemporal

component still applies because Dt (�) is bounded and both Uc;t (�) and Dt (�)

decline to zero at a geometric rate as � !1: In this case the asymptotic beha-

vior of labor distortions in the right tail, assuming shocks satisfy Assumption

10Empirical labor literature often �nds that consumption and labor are complements
(Browning, Hansen and Heckman (1999)), although some authors recently challenged that
conclusion (Blundell, Pistaferri and Saporta-Eksten (2014)).
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5, is driven by the intratemporal component. That is, as � !1,

� yt (�)

1� � yt (�)
� At (�)Bt (�)Ct (�)

�

8
><

>:

�
a 1
1+�"��


� ����


��+�"��
( �X+1)

��1
if ft is Pareto-lognormal, a

1
1+�"��


� ����


��+�"��
( �X+1)
> 0

h
ln �
�

1
1+�"��


i�1
if ft is lognormal/mixture.

(22)

A more substantive di¤erence with the separable case is that the limiting

values �"; ��, �
 and �X are endogenous and depend on the way incentives are

provided intertemporally. To illustrate the key economic mechanism, it is

convenient to re-write At and Ct not in terms of structural parameters "t; �t

and 
t but in terms of income and substitution e¤ects. In particular, let �
u
t (�)

and �ct (�) be the uncompensated and compensated elasticities of labor supply,

holding savings �xed, and �t (�) be the income e¤ect holding savings �xed

de�ned by the Slutsky equation �t (�) = �ut (�) � �ct (�) : Then At and Ct can

be written as

At (�) =
1 + �ut (�)

�ct (�)

Ct (�) =

Z 1

�

exp (gt (x; �)) (1� �1;t��t (x)Uc;t (x))
ft (x) dx

1� Ft (�)
;

where

gt (x; �) =

Z x

�

�
��t (~x)

�ct (~x)

_yt
yt
~x� �t (~x)

(1� � yt (~x)) _yt � _ct
ct

~x

�
d~x:

The dependence of At (�) on the elasticities is standard and appears in the
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same way as in the static models (see Saez (2001)). The term gt measures

the income e¤ect on labor supply. It consists of two parts. The �rst one

determines the income e¤ect on labor supply holding savings �xed, which is

also analogous to the equivalent term in the static models. In dynamic models

relaxed incentive constraints allow the planner to redistribute resources not

only in the current period but also in the future. This dynamic income e¤ect

is captured by the second term in function gt: It depends on the elasticity of

intertemporal substitution, �t; and the di¤erence between the after-tax income

and consumption in period t: This term is positive if and only if reporting a

higher � makes the consumers better o¤ in the future, !1;t+1 (�j�) � 0:11 In

this case the intertemporal provision of incentives lowers the e¤ective income

e¤ect on labor supply.

To get the intuition for the behavior of the optimal labor distortions we

consider commonly used GHH preferences (see Greenwood, Hercowitz and

Hu¤man (1988)):

U (c; l) =
1

1� �

�
c�

1

1 + 1=�
l1+1=�

�1��
(23)

for some �; � > 0: For such preferences At (�) = 1 + 1=�; �t (�) = 0; 
t (�) � 0

and Dt (�) converges to zero at a geometric rate as � ! 1. Therefore many

of the arguments used to prove Corollary 1 continue to apply. In particu-

lar, as long as ft satis�es Assumption 5, labor distortions are asymptotically

equivalent to the intratemporal term in the right tail. If the shocks are mix-

ture/lognormal, then the income e¤ects are of second order and
�yt (�)

1��yt (�)
�

11This condition holds if Assumption 3 is satis�ed.
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h
ln �
�

1
1+1=�

i�1
(� !1) :

When the tails of the shock process are Pareto, the income e¤ects are no

longer of the second order. In this case the redistributive component Ct (�)

depends in the limit both on the marginal propensity to consume and the

limiting value of labor distortions,

lim
�!1

Ct (�) = 1 + �
���
�
1� �X

�

�X
lim
�!1

� yt (�)

1� � yt (�)
: (24)

The limiting value of labor distortions is then given by

� yt (�)

1� � yt (�)
�

"

a
1

1 + 1=�
� �

���
�
1� �X

�

�X

#�1
(� !1) ;

provided that the expression on the right hand side is positive. Unlike the sep-

arable case, the dynamic provision of incentives, summarized by �X; a¤ects the

value of labor distortions in the limit. If the marginal propensity to consume

converges to 1 for high �; as it is the case in static models, then this formula

reduces to the one obtained by Saez (2001). This labor distortion is strictly

lower than the static limit if reporting higher type in period t improves utility

in the future, since !1;t+1 (�j�) � 0 (� !1) if and only if �X � 1 (see the

online appendix).

We can obtain starker results if we replace the power utility function in

(23) with any functional form that bounds U 00=U 0 away from zero (which ef-

fectively implies that �t (�) ! 1 as � ! 1; while keeping 
t (�) > 0). In

this case it can be shown that the marginal labor distortions converge to 0

independently of the thickness of the Pareto tail (see Golosov, Troshkin and
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Tsyvinski (2011)) or properties of �X: See Lemma 9 in the online appendix for

the formal statement of this result and its proof.

We conclude this section with a general result about the optimality of

savings distortions. When preferences are separable, it is well known (see,

e.g., Golosov, Kocherlakota and Tsyvinski (2003)) that savings distortions are

positive as long as vart (ct+1) > 0:We show that a weaker version of this result

holds in the non-separable case. Let ~� st be a life-time saving distortion de�ned

as

1� ~� st
�
�t
�
�

�
1

�R

�T�t Uc
�
ct
�
�t
�
; yt
�
�t
�
=�t
�

Et

�
Uc
�
cT
�
�T
�
; yT

�
�T
�
=�T
�	 :

Proposition 2. Suppose Assumption 2 is satis�ed, Ucl � 0, and FT (0j�) = 1

for all �: Then � yt
�
�t
�
� 0 implies ~� st

�
�t
�
� 0 with strict inequality if vari-

ance of consumption in period T conditional on information in �t is positive,

vart (cT ) > 0:

Note that ~� st
�
�t
�
> 0 implies that some savings distortions following history

�t must be strictly positive. By the law of iterated expectations

1

1� ~� st
= Et

1

1� � st
� :::�

1

1� � sT�1
;

therefore, ~� st > 0 if there is a positive saving distortion in at least some states

in the future.

The intuition for this result comes from the observation made by Mirrlees

(1976) that in a static, multi-good economy it is optimal to have a positive

distortion on the consumption of goods that are complementary with leis-

ure, assuming the optimal labor tax is positive. In our dynamic economy the
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assumption that 
 � 0 implies that the future consumption is more comple-

mentary with leisure and hence a positive wedge is desirable. This wedge,

however, cannot be interpreted as a distortion in the Euler equation of the

consumer, since this is a distortion conditional on providing optimal insur-

ance in the future. Therefore an extra unit of savings does not increase future

utility by �REtUc;t+1 as in the standard incomplete market models and this

relationship in general is more nuanced.12 The optimal provision of incent-

ives implies that if in any period T̂ the labor supply becomes constant (as it

happens if individuals retire in that period), an extra unit of savings gener-

ates 1

�RT̂�t
Et

1
U
c;T̂

utils in the future, which is an extension of the Inverse Euler

equation obtained in the separable case. Then the combination of arguments

in Mirrlees (1976) and Golosov, Kocherlakota and Tsyvinski (2003) leads to

Proposition 2.

3 Quantitative analysis

We now turn to the quantitative analysis of the model calibrated to the U.S.

administrative data. We study a 65-period lifecycle in which agents work for

the �rst 40 periods, from 25 to 64 years old, and then retire for the remaining

15 years. For a baseline calibration we use isoelastic preferences (16) with

� = 1 and " = 2 and choose � = R�1 = 0:98 and utilitarian Pareto weights.

We provide comparisons where the baseline calibrated stochastic process is

12Golosov, Troshkin and Tsyvinski (2011) discuss in detail the mapping between our
recursive mechanism design problem and a static optimal tax problem with multiple goods.
We refer the reader to that paper for the intuition on how distortions driven by comple-
mentarities with leisure map into distortions in the Euler equation.
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replaced with a lognormal process with the same mean and variance, as well

as robustness checks in the online appendix.

Our analysis above emphasizes the stochastic process for skills as a crucial

determinant of the key features of the optimal distortions. Figure 1 shows that

higher moments play an important role in determining their patterns. Such

moments are di¢cult to estimate reliably using easily accessible panel data sets

such as the U.S. Panel Study of Income Dynamics due to the small sample size

and top coding. To overcome this problem we use the �ndings of Guvenen,

Ozkan and Song (2013) and Guvenen et al. (2013), who study newly available

high-quality administrative data from the U.S. Social Security Administration

based on a nationally representative panel containing 10 percent of the U.S.

male taxpayers from 1978 to 2011.

Guvenen, Ozkan and Song (2013) and Guvenen et al. (2013) document

that the stochastic process for annual log labor earnings is highly leptokurtic,

negatively skewed, and is not well approximated by a lognormal distribution.

They also show that the empirical shock process can be approximated well

by a mixture of three lognormal distributions, shocks from two of which are

drawn with low probabilities. The high-probability distribution controls the

variance of the shocks, while the two low-probability distributions control their

skewness and kurtosis.

Guvenen et al. (2013) report statistics for the stochastic process for labor

earnings, which correspond to yt in our model. To calibrate the stochastic

process for skills �t we use the following procedure. We assume that the initial

�0 is drawn from a three-parameter Pareto-lognormal distribution, analyzed in
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the previous section, and that for all t > 0 the stochastic process for �t follows

a mixture of lognormals13

ln �t = ln �t�1 + �t;

where

�t =

8
>>>><

>>>>:

�1;t � N (�1; �1) w.p. p1;

�2;t � N (�2; �2) w.p. p2;

�3;t � N (�3; �3) w.p. p3:

We impose p3 = 1 � p1 � p2, �3 = �1, �2 = 0. The individuals, whose skills

are drawn from the stochastic process, choose their optimal labor and savings

given a tax function T (y): We follow Heathcote, Storesletten and Violante

(2014), who �nd that a good �t to the e¤ective earnings taxes in the U.S. is

given by T (y) = y � �y1�� , where the progressivity parameter � is equal to

0:151.14 We choose the six parameters of the stochastic process and the three

parameters of the initial distribution to balance the government budget and to

minimize the sum of the least absolute deviations of nine simulated moments

of the earnings process in the model from the nine moments in the data in

Guvenen et al. (2013) and Guvenen, Ozkan and Song (2013).

Table 1 reports the calibrated parameters, the simulated moments, and

13Guvenen et al. (2013) �nd that the persistence of the stochastic process for earnings is
very close to one. We set � = 1 in our calibration of the shock process and later discuss the
di¤erences between the earnings process and the shock process in the model.

14The marginal labor distortions in the model correspond to the e¤ective marginal labor
tax rates in the data, which is a combination of the statutory tax rate (which is generally
progressive) and the rate of the phase out of welfare transfers (which is generally regressive).
In the U.S., there is heterogeneity in the shapes of the e¤ective tax rates as a function of
income as they vary by state, family status, age, type of residence, etc. Some typical
patterns of the e¤ective marginal rates in the U.S. data are progressive, U-shaped, and
inverted S-shaped (see CBO (2007) and Maag et al. (2012)).
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Table 1: Calibrated parameters of the shock process, simulated moments, and
the target moments in the data.

Calibrated Shock Parameters

�1 �3 �1 �2 p1 p2 � � a
0.03 -0.47 0.22 2.64 0.71 0.15 0.17 5.59 2.73

Moments of Distributions

Stochastic process Initial distribution

Mean SD Kurtosis Kelly�s Skewness P10 P90 P50 P90 P99

Simulated shock moments (�t):
0.010 0.46 10.15 -0.24 -0.47 0.49 10.41 11.13 12.07

Simulated equilibrium earnings moments (yt):
0.008 0.51 11.30 -0.20 -0.45 0.44 10.39 11.06 11.94

Data earnings targets (ydatat ):
0.009 0.52 11.31 -0.21 -0.44 0.47 10.06 10.76 11.71

the data targets.15 Table A.4 in Guvenen, Ozkan and Song (2013) provides

the 50th; 90th and 99th percentiles of the earnings of the 25 year old in their

base sample that we use as data targets for period-0 distribution of earnings

in the model and report as the last three numbers in the bottom row of Table

1. Guvenen et al. (2013) report in Table II, Speci�cation 3, their estimation

results for the stochastic process of earnings in the data, which we use to

generate the other six data targets reported in the bottom row of Table 1.16

3.1 Computational approach

We use the recursive formulation of the planning problems (6) and (11). Here

we provide a summary of our approach while the online appendix contains

15Kelly�s skewness is de�ned as (P90�P50)�(P50�P10)
(P90�P10) ; where Pz is the zth percentile

growth rate.
16We take unconditional moments. Guvenen et al. (2013) and Guvenen, Ozkan and Song

(2013) also report how they change with age, with income level, and over the business cycle.
This can be incorporated with age-dependent parameters that depend also on past shock
realizations and on an aggregate shock.
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further details.

The main problem is a �nite-horizon discrete-time dynamic programming

problem with a three-dimensional continuous state space. We solve it by value

function iteration starting from the period before retirement, T̂ � 1. The

present value of the resources required to provide promised utility over the

remaining T � T̂ + 1 periods of retirement is added to the value function in

period T̂ � 1. We approximate each value function with tensor products of

orthogonal polynomials evaluated at their root nodes and proceed by backward

induction. To solve each node�s minimization sub-problem e¢ciently, we use

an implementation of interior-point algorithm with a trust-region method to

solve barrier problems and an l1 barrier penalty function. Assumption 2 is

satis�ed trivially for the preferences and parameter values we chose above.

We verify the increasing properties in Assumption 3 numerically. We compute

ŵ0 such that V0 (ŵ0) = 0 and compute the optimal allocations reported below

by forward induction. The optimal labor and savings distortions are then

computed from the policy functions using de�nitions (13) and (14).

3.2 Results

We �rst discuss the optimal labor and savings distortions in the calibrated

economy. Figure 2 shows typical distortions for representative histories. Each

thick line in Panel A plots � yt

�
��
t�1
; �t

�
at a given t for a history of past shocks

��
t�1

=
�
��; :::; ��

�
. We chose �� for Panel A so that an individual with a life-

time of �� shocks will have the average lifetime earnings, 1
T̂

PT̂�1
t=0 yt

�
��
t
�
where

yt

�
��
t
�
= ��lt

�
��
t
�
, approximately equal to the average U.S. male earnings in
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Figure 2: Optimal distortions at selected periods: Panels A and B have a history
of �� shocks chosen so that an individual with a lifetime of �� shocks will have the
average lifetime earnings approximately equal to the average U.S. male earnings in

2005; Panels C and D are the analogues with �� chosen so that the average lifetime
earnings approximately equal twice the U.S. average.

2005; Panel C is the analogue with �� chosen so that the average lifetime earn-

ings approximately equal twice the U.S. average.17 The distortions are plotted

against current earnings, yt

�
��
t�1
; �t

�
= �tlt

�
��
t�1
; �t

�
, measured on the hori-

zontal axis in 1,000s of real 2005 dollars. The lines in Panels B and D plot

the corresponding values for � st

�
��
t�1
; �t

�
. The thin lines in Panels A and C

17The average lifetime earnings are $53,934 for the history in Panel A and $108,990
in Panel C. According to the U.S. Census, the average male earnings in 2005
were $54,170 (see U.S. Census Bureau, Historical Income Tables, Table P-12 at ht-
tps://www.census.gov/hhes/www/income/data/historical/people/)
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display f
�
�j��
�
.

Several insights emerge from examining the distortions in Figure 2. First,

the optimal labor distortions are highly non-linear, with pronounced U-shape

patterns. The U-shapes are centered around the expected realization of the

shock conditional on past earnings, as indicated by the peaks of the condi-

tional distributions. The individuals who experienced higher realizations of

the shocks in period t� 1 are expected to have higher productivity in period

t and the U-shape of their labor distortions is shifted to the right. Since the

individuals in Panel C have a history of higher earnings than the individuals

in Panel A, the U-shapes in Panel C are centered around higher earnings than

those in Panel A. The optimal savings distortions, Panels B and D, are sim-

ilarly non-linear and non-monotone but the non-monotonicities are much less

pronounced than in labor distortions.

Proposition 1 and Corollary 1 show that an understanding of the economic

forces behind these observations can be gained by examining our decompos-

ition (17). Figure 3 illustrates the decomposition for the histories shown in

Figure 2. The intratemporal terms Bt and Ct are shown in Panels A and C

(At is constant given the preferences); Panels B and D show the intertemporal

terms Dt: Many of the insights that emerge from Figure 3 can be understood

from our analysis in Section 2. The intertemporal term Dt converges to zero

at a geometric rate as labor earnings increase (cf. Proposition 1). The hazard

term Bt �rst follows a U-shape and then declines to zero but at a much slower

rate (see Corollary 1), while Ct increases. The U-shaped pattern of the hazard

term is driven by the high kurtosis of the calibrated shock process, implied by
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Figure 3: The decomposition of optimal labor distortions: Panels A and B have a
history of �� shocks chosen so that an individual with a lifetime of �� shocks will have
the average lifetime earnings approximately equal to the average U.S. male earnings

in 2005; Panels C and D are the analogues with �� chosen so that the average lifetime
earnings approximately equal twice the U.S. average.

the high kurtosis in the labor earnings in the data. The behavior of terms Bt

and Ct and their implications for the optimal labor distortions are very similar

to the quasi-linear example in Figure 1, Panels C and F, with the exception

that Ct is not necessarily monotone. The sum of the intratemporal component

(1 + ")BtCt and the intertemporal component
� t�1
1�� t�1

Dt implies the U-shaped

patterns of the labor distortions in Figure 2. Finally, note that all three terms

Bt; Ct, and Dt depend little on individual age t and are mainly driven by the

past realization of the shock. In the online appendix we provide additional
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illustrations of the decompositions.

Figure 2 also shows that the labor distortions increase with age at low and

medium labor earnings but do not depend on age at high labor earnings. Farhi

and Werning (2013) showed that it is optimal for labor distortions to increase

with age on average (see also our discussion around equation (21)), while our

Corollary 1 quali�es this insight by showing that the increase happens only

for shocks in the left tail.

The second insight that emerges from examining distortions in Figure 2 is

that their quantitative magnitude is relatively high. The labor distortions for

high shocks often exceed 70 percent. Savings distortions are de�ned as a wedge

in the gross return to capital (i.e., interest return plus principle) and for high

realizations of shocks can be as high as 2 percent. We could equivalently de�ne

savings distortions on the net capital return R� 1; given our parametrization

of R the net savings distortion is approximately 50 times the gross savings

distortion. In the online appendix we report robustness checks for the re-

calibrated economy with " = 1 and " = 4: The labor distortions remain high,

especially in the tails.

To examine the magnitudes of the optimal distortions more systematically

we compute a weighted average of labor distortions that a person with a real-

ization of a shock �t experiences in period t: In particular, we de�ne average

distortions as �� it (�t) �
R
�t�1

� it
�
�t�1; �t

�
dF
�
�t�1

�
for i 2 fy; sg : In Figure

4 we show these distortions plotted against labor earnings �yt (�t) = �t�lt (�t),

where �lt (�t) is the weighted average across the simulated histories for a given

t. At high earnings these average labor distortions are about 75 percent and
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Figure 4: Optimal average labor (Panel A) and savings distortions (Panel B) as
functions of current earnings at selected periods.

are virtually independent of t: At average earnings they vary from about 25

percent early in life to about 65 percent late in life. Average savings distor-

tions range from about 0.3 percent at average labor earnings to 2-2.5 percent

at high earnings.

It is instructive to compare the quantitative predictions about the size

of the optimal labor distortions with the distortions that arise in a static

model. Saez (2001) calibrated the distribution of skills in a static model using

data on the cross-sectional distribution of labor earnings. The speci�cation

that is closest to ours is his Figure 5, Utilitarian criterion, utility type II. He

�nds that the optimal labor distortions are U-shaped, with the distortions

at average earnings about 40-55 percent and at high earnings about 65-80

percent, depending on the chosen elasticity of labor supply. The cross-sectional

distribution of labor earnings in our data and the magnitude of the average

distortions in Figure 4 are similar.18 In our dynamic model these distortions

18Saez (2001) uses preference speci�cation ln(c) � ln
�
1 + l1+�

1+�

�
and targets the com-

pensated elasticity of labor supply 1=� rather than the Frisch elasticity that we use in our
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are history dependent and are similar to the distortions in the static model

only on average. As we showed in Figure 2, the U-shapes in the dynamic

economy are centered around the expected realization of earnings conditional

on past earnings, while in the static model they are centered around the cross-

sectional average labor earnings. In the dynamic economy, the planner also

conditions the average labor distortions on age and uses savings distortions.

The third insight that emerges from our analysis is that higher moments

of the stochastic process for idiosyncratic shocks, such as kurtosis, have an

important e¤ect on both the shape and the size of the optimal distortions. To

illustrate their e¤ect, we compare our baseline simulations with the simulations

in the economy where we set the shock process to be lognormal with the same

mean and variance as our baseline. Figure 5 compares the distortions with the

lognormal shocks (thick lines) to the baseline mixture case (thin lines), for a

history of low earnings in Panels A and B and for the average distortions in

Panels C and D.

Since the baseline uses a mixture of lognormals, the hazard ratios and

the labor distortions with both log-normal and mixture distributions are pro-

portional to 1= ln � in the right tail. Away from their asymptotic limit, the

labor distortions behave very di¤erently in the two cases. While the labor

distortions are U-shaped in the mixture case, they are mildly regressive in

the lognormal case. This implies di¤erent responses to earnings shocks: the

labor distortions typically increase in response to a positive earnings shock

in the baseline economy, while they decrease in the economy with lognormal

analysis. Saez (2001) reports optimal taxes for the compensated elasticities of 0.25 and
0.5. Our preference parametrization implies the compensated elasticity of 0.33 in the static
model.
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Figure 5: Optimal distortions with and without higher moments: the lognormal
process (thick lines) has the same mean and variance as the mixture (thin lines).

Panels A and B have a history of �� shocks chosen so that an individual with a
lifetime of �� shocks will have the average lifetime earnings approximately equal to
the average U.S. male earnings in 2005; Panels C and D are average distortions.

shocks. The magnitudes of the distortions are also di¤erent, for example, at

the annual labor earnings of $500,000 the average labor distortion is almost

four times as large as in the lognormal case. The intuition for these �ndings

follows directly from our discussion of Figure 1. The di¤erences in savings

distortions are much less signi�cant in the two cases, as are the di¤erences

in lifetime average distortions, 1

T̂

PT̂�1
t=0

R
�t
� it
�
�t
�
dF
�
�t
�
for i 2 fy; sg: the

average labor distortions are 42.7 percent in the mixture case and 40.6 percent

in the lognormal case; the average savings distortions are 0.6 and 0.5 percent
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respectively. In the online appendix we illustrate the corresponding changes

to earnings and consumption moments.

Finally, we quantify the importance of nonlinearities and history depend-

ence emphasized above by computing welfare losses from using simpler, a¢ne

tax functions. We consider an equilibrium in the economy with linear taxes

on capital and labor income, reimbursed lump-sum to all agents. In the �rst

experiment the tax rates are the same for all ages and are chosen to maximize

ex-ante welfare. In the second experiment we allow tax rates to depend on t

and set them to the age-t average constrained-optimal labor and savings distor-

tions,
R
�t
� it
�
�t
�
dF
�
�t
�
for i 2 fy; sg. In each case, we compute consumption

equivalent welfare loss, �, from using a simple policy instead of the constrained

optimal policies, given by E�1
PT

t=0 �
tU (ccet ��; l

ce
t ) = E�1

PT
t=0 �

tU (ct; lt)

where (c; l) are constrained-optimal allocations and (cce; lce) are equilibrium

choices given the simple policy.

In the baseline mixture case, the policy of age-independent taxes leads to

the welfare loss of 3.64 percent of consumption, with the labor tax of 43.1 per-

cent, quite close to the lifetime average, and the capital tax of 0.05 percent.

The age-dependent tax rates reduce the welfare loss to 1.81 percent. Higher

moments of the shock process have a signi�cant impact on the losses. Repeat-

ing the same two experiments in the lognormal case, the welfare losses from

age-independent policies are 0.51 percent, with the labor tax of 41.2 percent

and the capital tax of 0.07 percent, while the age-dependent policies reduce

the loss to 0.30 percent. The smaller welfare changes with lognormals shocks

are perhaps not surprising in light of the analysis of Figure 5 where linear
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taxes appear to be better approximations for the optimal distortions.

4 Conclusion

This paper takes a step toward the characterization of the optimal labor and

savings distortions in a lifecycle model. Our analysis focuses on the distortions

in fully optimal allocations, restricted only by the information constraint. The

optimal allocations and distortions can be implemented as a competitive equi-

librium with non-linear taxes that depend on the current and past choices of

labor supply and savings. Our approach is complementary to that of Con-

esa, Kitao and Krueger (2009), Heathcote, Storesletten and Violante (2014)

or Kindermann and Krueger (2014) and others, who restrict attention to a-

priori chosen functional forms of tax rates as a function of income and optimize

within that class. Informationally constrained optimum that we study provides

an upper bound on welfare that can be attained with such taxes. The proper-

ties of the distortions in the constrained optimum can serve as a guidance in

choosing simple functional forms for taxes that capture most of the possible

welfare gains.
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A Online Appendix

A.1 Proof of Lemma 1

Given any solution u� (�), following a sequence of reports
�
�t�1; �̂

�
, to max-

imization problem (6) and (11), we can construct

!
�
�̂j�
�
=

Z 1

0

u�
�
�t�1; �̂; s

�
ft+1 (sj�) ds:

We can re-write (5) as

max
�̂
V
�
�̂; �
�
� max

�̂
U
�
c(�̂); y(�̂); �

�
+ �!(�̂j�):

Since c (�) and ! (�j�) are piecewise C1, they are di¤erentiable except at a

�nite number of points. Then for all � where they are di¤erentiable,

Uc (c(�); y(�); �) _c (�) + Uy (c(�); y(�); �) _y (�) + �!1(�j�) = 0; (25)

where _c and _y are derivatives of c and y: Optimality requires that y (�) and

V (�; �) are piecewise C1 and c (�) and ! (�j�) are.

Suppose that the global incentive constraint is violated, i.e. V
�
�̂; �
�
�

V (�; �) > 0 for some �̂: Suppose �̂ > � is a point of di¤erentiability. Then

0 <

Z �̂

�

@V (x; �)

@x
dx

=

Z �̂

�

�
Uc (x; �) _c (x) + Uy (x; �) _y (x) + �

d! (xj�)

dx

�
dx:

i



Since all of the objects under the integral are piecewise di¤erentiable, it

can be represented as a �nite sum of the terms

Z �j+1

�j

Uc (x; �)

�
_c (x) + _y (x)

Uy (x; �)

Uc (x; �)
+ �

!1 (xj�)

Uc (x; �)

�
dx

for some �nite number of intervals (�j; �j+1) :

If x > �, Uy(x;�)
Uc(x;�)

� Uy(x;x)

Uc(x;x)
and Uc (x; �) � Uc (x;x) (from the single crossing

property in Assumption 2 and Ucl � 0 in Assumption 3) and !1 (xjx) �

!1 (xj�) from Assumption 3. Therefore

Z �j+1

�j

Uc (x; �)

�
_c (x) + _y (x)

Uy (x; �)

Uc (x; �)
+ �

!1 (xj�)

Uc (x; �)

�
dx

�

Z �j+1

�j

Uc (x; �)

�
_c (x) + _y (x)

Uy (x;x)

Uc (x;x)
+ �

!1 (xjx)

Uc (x;x)

�
dx

= 0

where the last equality follows from (25). Therefore,
R �̂
�
@V(x;�)
@x

dx � 0; a con-

tradiction. If �̂ < � the arguments are analogous. Finally, since V
�
�̂; �
�
is

continuous in �̂; taking limits establishes that V
�
�̂; �
�
� V (�; �) at the points

of non-di¤erentiability.
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A.2 Decomposition in equation (17)

We omit explicit time subscripts t whenever it does not lead to confusion. The

Hamiltonian to problem (6) and (11) is

H =
�
c� �l +R�1Vt+1 (w;w2; �)

�
ft +  

�
�Ul(c; l)

l

�
+ �w2

�

��1��tu (�) ft + �2u (�) f2;t + ' [u� U(c; l)� �w] ;

where f2;t = 0 if t = 0: The envelope conditions are

@Vt
@ŵ

= �1;
@Vt
@ŵ2

= ��2: (26)

The �rst-order conditions are

'� �1��tf + �2f2 = � _ (27)

�Ul'� �f = �
1

�
 

�
Ulll + Ul

Ul

�
(�Ul) (28)

f �  Ucl
l

�
= 'Uc (29)

1

R

@Vt+1
@w

f = '� (30)

1

R

@Vt+1
@w2

f = � �
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Use (29) to substitute away for '

1

Uc
f � �1��tf + �2f2 �

 

�

Ucll

Uc
= � _ (31)

�
Ul
Uc
f �  

Ucll

Uc

(�Ul)

�
� �f = �

1

�
 

�
Ulll + Ul

Ul

�
(�Ul) (32)

1

�R

@Vt+1
@w

=
1

Uc
�

 

�f

Ucll

Uc
(33)

1

�R

@Vt+1
@w2

= �
 

f
(34)

Use de�nitions of "; 
 to write (32) as

�
Ul
�Uc

+ 1

�
�f =

1

�
 (1 + "� 
) (�Ul) :

Since � y = 1 + Ul
�Uc

this can be equivalently written as

� y

1� � y
=
 Uc
�f

(1 + "� 
) : (35)

This expression together with (34) implies

�2;t+1 = �
@Vt+1
@w2

= �R
� yt (�)

1� � yt (�)

�

Uc;t (�)
(1 + "t (�)� 
t (�))

�1 : (36)

To �nd  we integrate (31)

 (�) =

Z 1

�

exp

�
�

Z x

�


 (~x)
d~x

~x

��
1

Uc (x)
f (x)� �1��t (x) f (x) + �2f2 (x)

�
dx:
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From boundary condition  (0) = 0 we get

�1;t =

R1
0
exp

�
�
R x
0

t (~x)

d~x
~x

� �
1

Uc;t(x)
ft (x) + �2;tf2;t (x)

�
dx

R1
0
exp

�
�
R x
0

t (~x)

d~x
~x

�
��t (x) ft (x) dx

(37)

and �2;t is given by (36). If U is separable, then 
 = 0 and from our assumption

on Pareto weights that implies that
R1
0
��t (x) ft (x) dx = 1 for all t, we get

�1;t =
R1
0

ft(x)dx
Uc;t(x)

for all t:

Use the expression for  (�) and (36) for t� 1 to substitute into (35):

� yt (�)

1� � yt (�)

= (1 + "t (�)� 
t (�))
1

�tft (�)

Z 1

�

Uc;t (�t)

Uc;t (x)
exp

�
�

Z x

�


t (~x)
d~x

~x

�
(1� �1;t��tUc;t (x)) ft (x) dx

+�R
� yt�1

1� � yt�1

1 + "t (�)� 
t (�)

1 + "t�1 � 
t�1

Uc;t (�)

Uc;t�1

�t�1
�ft (�)

Z 1

�

exp

�
�

Z x

�


t (~x)
d~x

~x

�
f2;t (x) dx:

Finally note that

Uc;t (�t)

Uc;t (x)
exp

�
�

Z x

�


t (~x)
d~x

~x

�
= exp

�
ln
Uc;t (�t)

Uc;t (x)
�

Z x

�


t (~x)
d~x

~x

�
(38)

= exp

�
�

Z x

�

dUc;t (~x)

Uc;t (~x)
�

Z x

�


t (~x)
d~x

~x

�

= exp

�Z x

�

�
�t (~x)

_ct (~x)

ct (~x)
� 
t (~x)

_yt (~x)

yt (~x)

�
d~x

�

which is the same expression as (17) in the general, non-separable case.
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A.3 Proofs of Proposition 1, Corollary 1, equation (22)

A.3.1 Preliminary results

We �rst prove some preliminary results about the speed of convergence of

ct (�) ; yt (�), and lt (�) ; provided that limits exist, distortions remain �nite,

and elasticities are bounded. These arguments are the same for both separable

and non-separable preferences, so we present them for the general case.

Let U be a utility function that satis�es Assumption 2, let �; " be as

de�ned in (15) and 
 � Ucll
Uc
: Preferences are separable if 
 = 0 for all (c; l) :

Preferences are GHH if U (c; l) = 1
1��

�
c� 1

1+1=�
l1+1=�

�1��
for �; � > 0:

We use notation xt (�) to represent the optimal value of variable xt
�
�t�1; �

�

for a given �t�1: We make the following assumption.

Assumption 6. "t (�) ; �t (�) ; 
t (�) ;
ct(�)
yt(�)

have �nite, non-zero limits;
�yt (�)

1��yt (�)

has a �nite limit; _ct(�)=ct(�)
_yt(�)=yt(�)

has a limit as � ! 1: � (�) is bounded and

� (�) ; "t (�) ; Uc;t (�) have �nite limits as � ! 0:

Note in particular that when preferences are separable, then Assump-

tion 4 implies Assumption 6. Let �t (�) ! ��; 
t (�) ! �
; "t (�) ! �";

� t (�) = (1� � t (�))! ��= (1� ��) for some ��; �
; �"; ��= (1� ��) ; and let Xt (�) �

ct(�)
(1�� t(�))�lt(�)

! �X as � !1: If Assumption 6 is satis�ed, these limits are well

de�ned, �nite and, with the exception of �
 and ��= (1� ��) ; are non-zero.

Lemma 2. Suppose that Assumption 6 is satis�ed. If lim�!1 � _lt=lt and lim�!1 � _ct=ct
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are �nite, then

lim
�!1

_lt
lt
� =

1� �� + �
 �X

�� + �"� �

�
�X + 1

� ; lim
�!1

_yt
yt
� = lim

�!1

_ct
ct
� =

1 + �"� �


�� + �"� �

�
�X + 1

� :

(39)

If U is separable or GHH, then these limits exist and �nite. In separable case,

��; �"; �
 generically depend only on U : �
 = 0, �� = limc!1
�Uccc
Uc

; �" = liml!1
Ulll
Ul

if �� < 1; �" = liml!0
Ulll
Ul
if �� > 1: In GHH case, lim�!1

_lt
lt
� = �; lim�!1

_yt
yt
� =

lim�!1
_ct
ct
� = 1 + �:

Proof. Since _ct
_yt
= _ct=ct

_yt=yt
ct
yt
and the limit of the right hand side exists as � !1;

lim�!1
_ct
_yt
exists. We must have ct (�) ; yt (�) ! 1 as � ! 1; otherwise

1� � yt (�) =
�Ul;t(�)

�Uc;t(�)
! 0; contradicting the assumption that lim�!1

�yt (�)

1��yt (�)
<

1: Therefore the L�Hospital�s rule implies

lim
�!1

ct (�)

yt (�)
= lim

�!1

_ct (�)

_yt (�)
= lim

�!1

_ct (�) =ct (�)

_yt (�) =yt (�)

ct (�)

yt (�)

or

1 = lim
�!1

_ct
ct
�

_yt
yt
�
= lim

�!1

_ct
ct
�

1 +
_lt
lt
�
: (40)

Since �� < 1; applying L�Hospital�s rule,

1 =
lim�!1

Ul;t(�)

�Uc;t(�)

� (1� ��)
= lim

�!1

"t (�)
_lt
lt
� � 
t (�)Xt (�)

_ct
ct
�

1� �t (�)
_ct
ct
� + 
t (�)

_lt
lt
�
: (41)

When lim�!1 � _lt=lt; lim�!1 � _ct=ct are �nite, we can use (40) and (41) to get

(39).

We verify that lim�!1 � _lt=lt; lim�!1 � _ct=ct are �nite when preferences are
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separable or GHH. If either limit is in�nite, then lim�!1

�
� _ct
ct

�
=
�
�
_lt
lt

�
= 1

by (40). Suppose lim�!1

���� _lt=lt
��� = 1: Consider GHH preferences �rst, in

which case (41) is 1 = 1
�
lim�!1 � _lt=lt = �1; a contradiction. With separ-

able preferences 
t (�) = 0 for all � and (41) implies that 1 = ��"=�� < 0; a

contradiction.

Since lim�!1 ct (�) =1, if preferences are separable then �� = � limc!1 Uccc=Uc:

By (41), this implies that lim�!1 lt (�) = 1 if �� < 1 and lim�!0 lt (�) = 0 if

�� > 1: This justi�es the de�nition of �": Note that if �� = 1 then lim�!1 � _lt=lt =

0 and lim�!1 � _ct=ct = 1:

Finally, note that with GHH preferences (40) simpli�es to lim�!1 � _lt=lt =

�; lim�!1 � _ct=ct = 1 + �.

Lemma 3. Suppose that Assumption 6 is satis�ed. Then ct (�) = o
�
�k̂
�

(� !1) for any k̂ > 1+�"��


��+�"��
( �X+1)
and there exists � > 0 such that Uc;t =

o
�
���
�
(� !1) : If preferences are separable, this holds for any � < (1+�")��

��+�"
:

Proof. We �rst show that for any k̂ > 1+�"��


��+�"��
( �X+1)
there exist K̂; �̂ such that

ct (�) � K̂�k̂ for all � � �̂: By Lemma 2 for any k̂ > 1+�"��


��+�"��
( �X+1)
we can pick

�̂ such that � _ct=ct < k̂ for all � � �̂: Let K̂ = ct

�
�̂
�
=�̂
k̂
: Consider a function

G (�) � K̂�k̂ � ct (�) ; which is continuous for � � �̂ with G
�
�̂
�
= 0: For any

� > �̂ we have

G (�) =

Z �

�̂

G0 (x) dx =

Z �

�̂

�
K̂k̂xk̂ �

_ct (x) x

ct (x)
ct (x)

�
dx

x
:

IfG (�) = 0 for some � � �̂; thenG0 (�) =
h
K̂k̂�k̂ � _ct(�)�

ct(�)
ct (�)

i
1
�
> 1

�
_ct(�)�
ct(�)

G (�) =

0: Since G
�
�̂
�
= 0; this implies that for all � � �̂; G (�) never crosses zero
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from above and is weakly positive. This establishes that ct (�) = O
�
�k̂
�
:

Since ct (�) = O
�
�k
�
for any k 2

�
1+�"��


��+�"��
( �X+1)
; k̂

�
and �k = o

�
�k̂
�
it also

implies that ct (�) = o
�
�k̂
�
:

If preferences are separable, we can use the same arguments to show that

Uc (c) = o
�
c�
~k
�
for any ~k < ��: We then de�ne � = ~kk̂ to show that Uc;t =

o
�
���
�
for any � < (1+�")��

��+�"
: For all other preferences

Uc (ct (�) ; lt (�))�Uc
�
ct

�
�̂
�
; lt

�
�̂
��
=

Z �

�̂

"

��t (x)
_ct (x) x

ct (x)
+ 
t (x)

_lt (x) x

lt (x)

#
Uc;t (x) dx

x

and the bounds are established analogously to the bounds for ct (�) :

Lemma 4. Suppose that Assumptions 1, 2 and 6 are satis�ed and lim�!1Dt (�) =

0. Then Ct (�) � 0 for su¢ciently large � and

lim
�!1

Ct (�) = 1 +
��

1� ��

�� � �


�� + �"� �

�
�X + 1

� : (42)

Assumption 6 is satis�ed only if equation

��

1� ��
= (1 + �")

 

1 +
��

1� ��

�� � �


�� + �"� �

�
�X + 1

�

!

lim
�!1

1� Ft (�)

�ft (�)
(43)

holds for a non-negative ��
1���

:

Proof. Let gt (~x) �
h
�t (~x)

_ct
ct
~x� 
t (~x)

�
_lt
lt
~x+ 1

�i
and re-write Ct as

Ct (�) =
exp

�
�
R �
0
gt(~x)
~x
d~x
� R1

�
exp

�R x
0
gt(~x)
~x
d~x
�
(1� �1;t��t (x)Uc;t (x)) ft (x) dx

1� Ft (�)
:

(44)
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Since
�yt (�)

1��yt (�)
; At (�) ; Bt (�) and Dt (�) all tend to �nite limits as � ! 1 by

Assumptions 1 and 6, equation (17) implies that the limit of Ct (�) also exists

and is �nite. Since Uc;t (�)! 0 (� !1) from Lemma 3 and ��t (�) is bounded,

Ct (�) is positive for su¢ciently high �:

Apply L�Hospital�s rule and substitute for Ct (�) from (17)

lim
�!1

Ct (�) = lim
�!1

� (1� �1;t��t (�)Uc;t (�)) ft (�)

�ft (�)
+ lim
�!1

�gt (�)Ct (�) (1� Ft (�))

��ft (�)
(45)

= 1 + lim
�!1

gt (�)

��
� t (�)

1� � t (�)
� �R

� t�1
1� � t�1

Dt (�)

�
1

At (�)

�

= 1 + lim
�!1

��
�t (�)

_ct
ct
� � 
t (�)

_yt
yt
�

� �
� t (�)

1� � t (�)
� �R

� t�1
1� � t�1

Dt (�)

�
1

At (�)

�
:

Equation (42) follows from substituting (39) and lim�!1Dt (�) = 0 into the

expression above.

Since U satis�es Assumption 2, At (�) � 0 for all � and therefore lim�!1
�yt (�)

1��yt (�)
=

lim�!1At (�)Bt (�)Ct (�) � 0: Therefore equation (43) should be satis�ed for

a non-negative ��
1���

:

A.3.2 Proof of Proposition 1

Proof. We �rst show that there are real k1; k2 such that At (�)Bt (�)Ct (�) �

k1
Ft(�)
�ft(�)

; Dt (�) � k2't (�) (� ! 0) . Use (38) to write Ct as

Ct (�) =

Z 1

�

Uc;t (�)

Uc;t (x)
(1� �1;t��t (x)Uc;t (x))

ft (x) dx

1� Ft (�)
:

x



Note that since Uc;t (0) is well-de�ned and �nite by Assumption 4,

lim
�!0

Ct (�) = Uc;t (0)

Z 1

0

�
1

Uc;t (x)
� �1;t��t (x)

�
ft (x) dx

= Uc;t (0)

�Z 1

0

1

Uc;t (x)
ft (x) dx� �1;t

�
= 0

from the de�nition of �1;t and the fact that
R1
0
��t (x) ft (x) dx = 1 for all t:

Applying L�Hospital�s rule,

lim
�!0

Ct (�)
1�Ft(�)
Uc;t(�)

Ft (�)
= �

�
1

Uc;t (0)
� �1;t��t (0)

�
;

since limits of Uc;t (�) and ��t (�) are well de�ned. Let k1 = � (1 + "t (0)) (1� �1;t��t (0)Uc;t (0)),

which is well-de�ned by Assumption 4. We have

lim
�!0

At (�)Bt (�)Ct (�)

k1Ft (�) =�ft (�)
= lim

�!0

1

k1
At (�)Uc;t (�)

Ct (�)
1�Ft(�)
Uc;t(�)

Ft (�)
= 1:

The result for Dt (�) follows immediately by setting k2 =
At(0)
At�1

Uc;t(0)

Uc;t�1
; which is

well-de�ned by Assumption 4.

We next show that Dt (�) = o
�
1
�k4

�
(� !1) and k4 > 0 generically

depends only on U: Since 't (�) is bounded by Assumption 1 and At (�) is

bounded for � su¢ciently high by Assumption 4, jDt (�)j � Kt�1Uc;t (�) for

some Kt�1 > 0: Lemma 3 yields the result.

Finally we show that At (�)Bt (�)Ct (�) � k3
1�Ft(�)
�ft(�)

as � !1 and k3 > 0
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depends generically on U and f: Using Lemma 4,

��

1� ��
= lim

�!1
At (�)Bt (�)Ct (�) = (1 + �")

�
1 +

��

1� ��

��

�� + �"

�
lim
�!1

1� Ft (�)

�ft (�)
:

(46)

If lim�!1
1�Ft(�)
�ft(�)

= 0; then At (�)Bt (�)Ct (�) � (1 + �") 1�Ft(�)
�ft(�)

(� !1) : If

lim�!1
1�Ft(�)
�ft(�)

> 0, then (46) de�nes ��
1���

as a function of ft; �"; ��: Then setting

k3 = (1 + �")
�
1 + ��

1���
��
��+�"

�
we obtain the result for � ! 1: Note that �"; ��

generically depend only on U by Lemma 2.

A.3.3 Proof of Corollary 1

We �rst prove a preliminary lemma about the properties of f:

Lemma 5. Suppose ft satis�es Assumption 5. Then

i 't (�) = � for all �; If � � 0 then there is �̂ such that f2;t (�) � 0 for all

� � �̂:

ii Ft(�)
�ft

� ft
�f 0t
� �2

� ln �
(� ! 0) ;

iii If ft is lognormal/mixture, then
1�Ft(�)
�ft

� ft
�f 0t

� �2

ln �
(� !1) ; if ft is

Pareto-lognormal then lim�!1
1�Ft(�)
�ft

= 1
a
and lim�!1

ft
�f 0t
= � 1

a+1
:

Proof. Let � (�) ; � (�) be standard normal cdf and pdf. Direct calculations

yield

lim
x!1

� (x)

� (x)
= 0; lim

x!�1

� (x)

� (x)
=1; lim

x!�1

� (x)

�x� (x)
= 1: (47)

When ft is lognormal, it is given by ft (�) =
1
��
�
�
ln ���̂t
�

�
where �̂t =

bt+� ln �t�1; when ft is a mixture then ft (�) =
PI

i=1
pi
��i
�
�
ln ���̂i;t

�i

�
where �̂t =
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bt+�i+� ln �t�1; when ft is Pareto-lognormal then (see Colombi (1990), Reed

and Jorgensen (2004)) ft (�) = Ât�
�a�1�

�
ln ���̂t�a�

2

�

�
where Ât = exp (a�̂t + a2�2=2),

�̂t = � ln �t�1 + bt �
1
a
; in which case E [ln �j ln �t�1] = � ln �t�1 + bt:

(i). Suppose ft is lognormal. Then �t�1f2;t = � �
�2�
�0 = � �

�

@�( ln ���̂t� )
@�

:

Therefore 't (�) =
��

R

1

�
@�( ln x��̂t� )=@�dx
�( ln ���̂t� )

= �: The same argument applies for

the mixtures of lognormal. If ft is Pareto-lognormal, then

�t�1f2;t (�) = �Ât
�

�
��a�1�

�
ln � � �̂t � a�2

�

�
+ a�ft (�) :

Note that using integration by parts

Z 1

�

Ât
�

�
x�a�1�

�
ln x� �̂t � a�2

�

�
dx = �a

Z 1

�

Âtx
�a�1�

�
ln x� �̂t � a�2

�

�
dx

��Ât�
�a�

�
ln � � �̂t � a�2

�

�

= a� (1� Ft (�))� ��ft (�) :

Therefore

Z 1

�

�t�1f2;t (x) dx = �a� (1� Ft (�)) + ��ft (�) + a� (1� Ft (�)) = ��ft (�)

and hence 't (�) = � for all �: The second part of (i) follows by inspection of

expressions for f2;t (�) :

(ii) and (iii). Suppose ft is lognormal. Then �f
0
t = �ft

�
1 + ln ���̂t

�2

�
; and
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therefore �f 0t=ft � �
ln �
�2
(� ! 0;1) : By L�Hospital�s rule,

lim
�!0

Ft (�)

�ft (�)
= lim

�!0

1

�f 0t (�) =ft (�) + 1
= 0;

lim
�!1

1� Ft (�)

�ft (�)
= lim

�!1

�1

�f 0t (�) =ft (�) + 1
= 0;

and

lim
�!0

�Ft ln �=�
2

�ft
= lim

�!0

� ln �=�2 � Ft= (�ft�
2)

(�f 0t=ft + 1)
= 1;

lim
�!1

(1� Ft) ln �=�
2

�ft
= lim

�!1

� ln �=�2 + (1� Ft) = (�ft�
2)

(�f 0t=ft + 1)
= 1:

This implies that Ft (�) =�ft �
�2

� ln �
(� ! 0) and (1� Ft (�)) =�ft �

�2

ln �
(� !1) :

If ft is a mixture, assume without loss of generality that �1 � �i for all i:

Then

�f 0t
ft
= �

�
ln � � �̂1;t

�21
+ 1

�
p1
�1
+
PI

i=2
pi
�i

�
�

ln ���̂i;t
�i

�

�
�

ln ���̂1;t
�1

�

ln ���̂i;t

�2
i

+1

ln ���̂1;t

�21
+1

p1
�1
+
PI

i=2
pi
�i

�
�

ln ���̂i;t
�i

�

�
�

ln ���̂1;t
�1

�

:

Since �1 � �i; �
�
ln ���̂i;t

�i

�.
�
�
ln ���̂1;t

�1

�
! 0 as ln � ! �1 and therefore

the last term in the expression above converges to 0 as ln � ! �1: This

implies that �f 0t=ft � � ln �=�
2
1 (� ! 0;1) : The rest follows by analogy with

the lognormal case.

If ft is Pareto-lognormal, then �f
0
t = (�a� 1) ft+ft

1
�
�
�
ln ���̂
�

�
=�
�
ln ���̂
�

�
;
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which immediately implies that �f 0t=ft ! � (a+ 1) (� !1) : Also

lim
�!0

�f 0t
ft

�

� ln �
= lim

�!0

�
�
ln ���̂
�

�

� ln ��
�
ln ���̂
�

�

From (47), �
�
ln ���̂
�

�
=�
�
ln ���̂
�

�
� � ln ���

�

�
ln ���
�

! �1
�
; therefore �f 0t=ft �

� ln ���
�2

� � ln �
�2

(� ! 0) : The rest follows by analogy with the lognormal

case.

With this lemma we can prove Corollary 1.

Proof (of Corollary 1). If ft satis�es assumption 5, then Lemma 5 and Propos-

ition 1 show that At (�)Bt (�)Ct (�) � k1
�2

� ln �
(� ! 0) ; Dt (0) = �Uc;t(0)

Uc;t�1
> 0.

This establishes (20). They also establish that lim�!1Dt (�) = 0: Therefore

from Lemma 4 it follows that lim�!1Ct (�) = 1+
��
��+�"

��
1���

and the expressions

for �� and �" in terms of limits of Uccc
Uc

and Ulll
Ul
follows from Lemma 2. This

establishes (18).

Finally, to show (19) we �rst suppose that ft is Pareto-lognormal. Then

from Lemma 5 lim�!1Bt (�) = a�1; and taking limits of (17) yields

��

1� ��
=
1 + �"

a

�
1 +

��

1� ��

��

�� + �"

�
:

Re-arranging the terms, we obtain ��
1���

=
�
a 1
1+�"

� ��
��+�"

��1
: By Lemma 4 this

limit must be non-negative, therefore a necessary condition for the distortions

to be �nite is that a 1
1+�"

� ��
��+�"

> 0:

If ft is lognormal/mixture, then Lemma 5 and Proposition 1 imply that

Bt (�) �
�
ln �
�2

��1
; Dt (�) = o

��
ln �
�2

��1�
(� !1) ; the latter follows from the
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fact that lim�!1 �
�� ln � = 0 for any � > 0: Since lim�!1At (�) = 1 + �"

and Ct (�) are bounded, this implies that lim�!1
�yt (�)

1��yt (�)
= 1 and therefore

lim�!1Ct (�) = 1: Therefore
�yt (�)

1��yt (�)
� At (�)Bt (�)Ct (�) �

�
ln �
�2

1
1+�"

��1
:

A.3.4 Proofs in Section 2.2

We �rst show equation (22).

Lemma 6. Suppose that Assumptions 5 and 6 are satis�ed, � � 0; Ucl � 0:

Then (22) holds.

Proof. We �rst show that Dt (�) = o
�
���
�
(� !1) where � as de�ned in

Lemma 3. If ft satis�es Assumption 5 and � � 0; then by Lemma 5 there

exists �̂ such that f2;t (�) � 0 for all � � �̂: Therefore if Ucl � 0 then 
 � 0

and exp
�
�
R x
�

 (~x) d~x

~x

�
f2;t (x) � f2;t (x) for all x; � such that x � � � �̂: Using

Lemma 5,

�t�1
R1
�
exp

�
�
R x
�

 (~x) d~x

~x

�
f2;t (x) dx

�ft (�)
� � for all � � �̂:

Therefore Dt (�) � Kt�1Uc;t (�) for some Kt�1 and then Lemma 3 yields the

result that Dt (�) = o
�
���
�
. Since lim�!1Dt (�) = 0; Lemma 4 implies that

the limit �� satis�es (43). The rest of the steps are identical to the proof of

Corollary 1.

We now show the remaining results discussed in Section 2.2.
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Lemma 7. Suppose that Assumption 6 is satis�es. Then

�w1;t (�) �

Uc;t (�) ct (�)
=
(1� � yt (�)) _yt � _ct

ct
�: (48)

In the limit

lim
�!1

�w1;t (�) �

Uc;t (�) ct (�)
=
1� �X
�X

lim
�!1

_yt
yt
�: (49)

Proof. Di¤erentiating (10), we get _ut (�) = Uc;t (�) _ct (�)+Ul;t (�) _lt (�)+� (w1;t (�) + w2;t (�)) :

Substitute into (7) to get

Uc;t (�) _ct (�) + Ul;t (�) _lt (�) + �w1;t (�) = �Ul;t (�)
lt (�)

�
: (50)

Re-arrange to get (48). Note that � _yt=yt = 1+ � _lt=lt: Then use (39) to obtain

the limit.

Compensated and uncompensated elasticities holding savings �xed coincide

with compensated and uncompensated elasticities in the static model, where

they are given by (see p. 227 in Saez (2001))

�u =
Ul=l � (Ul=Uc)

2 Ucc + (Ul=Uc)Ucl

Ull + (Ul=Uc)
2 Ucc � 2 (Ul=Uc)Ucl

;

�c =
Ul=l

Ull + (Ul=Uc)
2 Ucc � 2 (Ul=Uc)Ucl

;

�� = �c � �u:

Note that normality of leisure implies � < 0: We use �ut (�) ; �
c
t (�) ; �t (�) to

denote the elasticities evaluated at the optimum and ��
u
; ��
c
; �� their limits as

� !1:
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Lemma 8. At (�) and Ct (�) can be written as

At (�) =
1 + �ut (�)

�ct (�)
;

Ct (�) =

R1
�
exp

��R x
�
��t(~x)
�ct (~x)

_yt
yt
+ �t (~x)

(1��yt (~x)) _yt� _ct
ct

�
~xd~x

�
(1� �1;t��tUc;t (x)) ft (x) dx

1� Ft (�)
:

If preferences are GHH, then (24) holds.

Proof. The proof for At (�) follows from the de�nition of elasticities. To re-

write Ct (�) let gt (�) be as de�ned in the proof of Lemma 4. Using (48) it can

be written as

gt (�) = ��t (�)
(1� � yt (�)) _yt � _ct

ct
� �

�t (�)

�ct (�)

_yt
yt
�:

Substitute into (44) to get the expression for Ct: When preferences are GHH,

�t (�) = 0 and lim�!1
_yt
yt
� = 1 + � by Lemma 2. Use this fact together with

Lemma 7 to show that gt (�) !
1� �X
�X
(1 + �) (� !1) in this case. Since

At (�) = (1 + �) =�; this together with (45) implies (24).

Proof (of Proposition 2). We can express ' using (30) rather than (29), in

which case the di¤erential equation for  ; (31), becomes 1
�R

@Vt+1
@w

f � �1f +

�2f2 = � _ : Integrate this expression from 0 to in�nity, use the boundary

conditions  (0) =  (1) = 0 and
R1
0
f2dx = 0 to obtain

19

�1;t =
1

�R

Z 1

0

@Vt+1
@w

(x) f (x) dx:

19To see that
R
1

0
f2 (xj��) dx = 0 for all ��; di¤erentiate both sides of

R
1

0
f (xj��) dx = 1

with respect to ��
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Combine this expression with (26) to get @Vt
@w
= 1

�R
Et

@Vt+1
@w

and by the law of

iterated expectations

@Vt
@w

=

�
1

�R

�T�t�1
Et
@VT
@w

: (51)

When FT (0j�) = 1 for all �;
@VT
@w

�
�T
�
= 1

Uc(�T )
; which, from (51), implies

�1;t =
@Vt
@w

> 0 for all t (52)

and, in combination with (33),

1

Uc
�
�t
� �

 

�f

 =

�
1

�R

�T�t
Et

1

Uc
�
�T
� :

Note that @
@�

Uy(c;y=�)

Uc(c;y=�)
� 0 from Assumption 2 implies that 1 + " � 
 � 0;

therefore from equation (35) the sign of  is equal to the sign of � y: Thus if

� y � 0 then

1

Uc
�
�t
� �

�
1

�R

�T�t
Et

1

Uc
�
�T
� �

�
1

�R

�T�t
1

EtUc
�
�T
� ;

where the last expression follows from Jensen�s inequality. This expression

implies that ~� st
�
�t
�
� 0: This inequality is strict if var�t (cT ) > 0:

Lemma 9. Suppose that preferences are U
�
c� 1

1+1=�
l1+1=�

�
; where U is con-

cave, U 00=U 0 is bounded away from zero, ft satis�es Assumption 5 with � � 0

and FT (0j�) = 1 for all �: If � yt (�) is positive and bounded away from 1 for

high �; then � yt (�) ! 0 as � ! 1: A su¢cient condition for � yt (�) to be
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bounded is that U is exponential: U (x) = � exp
�
�k̂x

�
for some k̂ > 0:

Proof. The �rst order conditions (29) and (30) can be written as

1

Uc
�

 

�f

Ucll

Uc
=

1

�R

@Vt+1
@w

:

From (35) we have

 

�f
=

� y

1� � y
(1 + "� 
)�1

1

Uc

which implies

1

�R

@Vt+1 (w)

@w
Uc = 1�

� y

1� � y
(1 + 1=�)�1

Ucll

Uc
= 1� (1 + 1=�)�1

�U 00

U 0
� y�l

(53)

Since FT (0j�) = 1; both sides of this expression must be positive by (52).

Suppose that � y does not converge to 1. Take any sequence � y (�n) and

since � y (�n) 2 [0; 1] it must have a convergent subsequence. We will show

that any such subsequence that does not converge to 1 must converge to 0.

Suppose � y (�n) ! �� y < 1: Then the FOCs l1=� = � (1� � y) implies that

l ! 1 (� !1) and, since �U 00

U 0
is bounded away from 0, the right hand

side of (53) converges to �1: The left hand side is positive, leading to a

contradiction.

Under our assumptions � y (�) diverges to 1 only if either Ct (�) or Dt (�)

diverge to+1: Either of these cases would imply that Ut (�)! �1 as � !1:

If U is exponential, it is bounded above in all periods, and therefore Ut (�)!

�1 in any t would violate the incentive compatibility. In particular, to see
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that Ct (�)!1 implies Ut (�)! �1; note that with exponential U there is

some k̂ > 0 so that

Ct (�) =

Z 1

�

exp

�Z x

�

�
U 00t (~x)

U 0t (~x)
_ct (~x) d~x

�
(1� �1;t��t (x)U

0
t (x))

ft (x) dx

1� Ft (�)

=

Z 1

�

exp
�
�k̂ (ct (�)� ct (x))

�
(1� �1;t��t (x)U

0
t (x))

ft (x) dx

1� Ft (�)
:

Since �1;t > 0 by (52), 1��1;t��t (x)U
0
t (x) is bounded from above and therefore

Ct (�) can diverge to in�nity only if the exponent diverges to in�nity, which is

possible only if ct (x)! �1 and therefore Ut (x)! �1:

A.4 Additional details for Section 3

We �rst describe further details of the analysis in Section 3 and then provide

additional illustrations and robustness checks.

To make the numerical solution feasible we exploit the recursive structure

of the dual formulation of the planning problem that we discussed in Section

1. The recursive problem is (6) together with (11) and V0 (ŵ0) = 0, which

is a �nite-horizon discrete-time dynamic programming problem with a three-

dimensional continuous state vector: ŵ is the promised utility associated with

the promise-keeping constraint (8); ŵ2 is the state variable associated with the

threat-keeping constraint (9); �� is the type in the preceding period. In the

initial period the state is ŵ0, given by the solution to V0(ŵ0) = 0.

We proceed in stages. First, we implement a value function iteration for

problems (6) and (11). We start from the last working period, T̂ � 1, and

proceed by backward induction. Since Ft (0j�) = 1 for all � for t � T̂ , the
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Figure 6: Optimal average labor (Panel A) and savings (Panel B) distortions as
functions of current shock realization at selected periods.

planner sets w2 (�) = 0 for all � in period T̂ � 1 and we replace the value

function VT̂ (w (�) ; 0; �) in problem (6) for period T̂ � 1 with the discounted

present value of resources required to provide promised utility w over the

remaining T � T̂ + 1 periods.

We approximate value functions with tensor products of orthogonal poly-

nomials evaluated over the state space. We use Chebyshev polynomials of

degrees 1 through 10 and check in the baseline case that value function di¤er-

ences do not exceed 1 percent of original values after doubling the degrees to

20. The evaluation nodes are allocated over the state space at the roots of the

polynomials, given by rn = � cos (� (2n� 1) =2N), where n = 1; ::; N indexes

the nodes. This gives the roots on the interval [�1; 1] and a change of variables

is needed to adjust the root nodes. We let N = 11 for both the promise, ŵ,

and for the threat, ŵ2. For the skill, we set 30 logarithmically spaced nodes

to better capture the more complex U-shapes in the left tail. The polynomial

coe¢cients are computed by minimizing the sum of squared distances from

the computed values at the nodes. The approximation provides each period-t
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Table 2: Simulated earnings and consumption moments of the constrained
optima and the earnings moments in the data.

Stochastic process Initial distribution

Mean SD Kurtosis Kelly�s Skewness P10 P90 P50 P90 P99

Data earnings moments (ydatat ):
0.009 0.52 11.31 -0.21 -0.44 0.47 10.06 10.76 11.71

Lognormal constrained-optimum earnings moments (ylognormalt ):
-0.005 1.09 2.51 -0.03 -1.02 0.90 13.46 13.79 14.48

Mixture constrained-optimum earnings moments (ymixturet ):
0.004 0.79 11.48 -0.37 -0.90 0.51 13.03 13.73 14.29

Lognormal constrained-optimum consumption moments (clognormalt ):
0.001 0.75 3.95 -0.18 -0.13 1.07 10.52 11.92 12.66

Mixture constrained-optimum consumption moments (cmixturet ):
-0.001 0.13 19.07 0.15 -0.33 0.55 11.89 12.07 13.43

problem (6) with a continuously di¤erentiable function approximating Vt+1.

We use the trigonometric form of the polynomials in the evaluation of the

tensor products, Pd (r) = cos (d arccos (r)), to be able to apply an implement-

ation of algorithmic (chain rule) di¤erentiation.

It is a familiar property of the state space in such problems that no con-

strained optimal allocations may exist for some nodes (see, e.g., the discussion

in subsection 3.2. in Abraham and Pavoni (2008)). To deal with this while

maintaining large enough number of computed nodes, we follow the procedure

in Kapiµcka (2013) in subsections 7.1 and 7.2.20

For computational feasibility it is essential to use an e¢cient and robust

optimization algorithm for the minimization problems at each node. We use

an implementation of the interior-point algorithm with conjugate gradient it-

20Generally one has a choice to implement a state space restriction procedure, to eliminate
such nodes, or a procedure assigning su¢ciently large penalties. For discussions of both and
examples of implementation in closely related problem see, e.g., Abraham and Pavoni (2008)
and Kapiµcka (2013) and references therein.
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Figure 7: The decomposition of optimal labor distortions as functions of current
earnings: only intratemporal forces (AtBtCt) in Panels A and C; both intra- and

intertemporal forces (� yt =1� �
y
t ) in Panels B and D. Panels A and B have a history

of �� shocks chosen so that an individual with a lifetime of �� shocks will have the
average lifetime earnings approximately equal to the average U.S. male earnings in

2005; Panels C and D are the analogues with �� chosen so that the average lifetime
earnings approximately equal twice the U.S. average.

eration to compute the optimization step.21 It uses a trust-region method to

solve barrier problems; the acceptance criterion is an l1 barrier penalty func-

tion. To improve the accuracy of the solution estimates, including multipliers,

we proceed to active-set iterations that use the output of the interior-point al-

gorithm as its input. The implementation of the active-set algorithm is based

on the sequential linear quadratic programming.

21See, for example, Su and Judd (2007).
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Table 3: Calibrated parameters of the shock process for selected Frisch elasti-
city parameter values.

Stochastic process Initial distribution

�1 �3 �1 �2 p1 p2 � � a
The higher elasticity case of " = 1:
0.03 -0.45 0.23 2.76 0.71 0.14 0.17 5.49 2.74

The baseline case of " = 2:
0.03 -0.47 0.22 2.64 0.71 0.15 0.17 5.59 2.73

The lower elasticity case of " = 4:
0.02 -0.51 0.20 2.52 0.71 0.16 0.17 5.67 2.69

We check at this stage the increasing properties of Assumption 3 used in

Lemma 1 (Assumption 2 is satis�ed analytically given the choices of prefer-

ences). At each node, we compute relative forward di¤erences in policies c (�),

! (�j�), and !1
�
�̂j�
�
, i.e. the di¤erences in a policy at �00 and at �0 < �00 relat-

ive to the value of the policy at �0. To verify the nodes with numerical errors

(the largest relative error is one one-thousands of 1 percent of the policy at

the lower type), we then follow the procedure in subsection 7.2.2 in Kapiµcka

(2013) as an additional check of global incentive constraints, which amounts to

letting the agent re-optimize with respect to reported type given the policies

and verifying that the true type is a solution.22

The next stage computes ŵ0 such that V0 (ŵ0) = 0 using binary search

given V0 computed in the �rst stage.

In the �nal stage, we simulate the optimal labor and savings distortions

described in Section 3. Given Vt�s computed in the �rst stage and ŵ0 solved

for in the second stage, we generate optimal allocations by forward induction,

starting from policy functions produced by V0 (ŵ0) from (11). Optimal distor-

22Abraham and Pavoni (2008) in subsection 3.3 and Farhi and Werning (2013) in sub-
section 2.2.4 describe applications in related settings.
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Figure 8: An illustration of the typical e¤ects on the optimal labor distortions of
the changes in the Frisch elasticity parameter.

tions can then be computed from the policy functions using de�nitions (13)

and (14). To compute the average distortions in Section 3 we do 5�105 Monte

Carlo simulations. As a robustness check, Figure 6 here provides the analogue

of Figure 4 in the main text plotted against the shock realizations. In addi-

tion, Table 2 summarizes the changes in aggregate earnings and consumption

moments in the simulations discussed in the main text.

At this stage we also compute the objects whose limiting behavior is re-

quired by Assumption 4: Uc;t (�),
ct(�)
yt(�)

, and _ct(�)=ct(�)
_yt(�)=yt(�)

. In the Monte Carlo

histories we �nd that these expressions have �nite numerical values of the

same order of magnitude as the terms in Figure 3 in the main text, both in

the left and right tails of the distribution. In a given period, the terms ct(�)
yt(�)

and _ct(�)=ct(�)
_yt(�)=yt(�)

asymptote fairly quickly as � ! 1, to virtually constant val-

ues at earnings above $300,000. Relatedly, Figure 7 here further quanti�es

the intertemporal forces in Figure 3 in the main text. For the history of low

earnings, Panel A in Figure 7 isolates intratemporal forces, displaying them
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Figure 9: Optimal labor distortions as functions of current earnings at selected
periods compared to an experiment with a static model with the distribution of

shocks given by F0. Panel A has a history of �� shocks chosen so that an individual
with a lifetime of �� shocks will have the average lifetime earnings approximately
equal to the average U.S. male earnings in 2005; Panel B is the analogue with ��
chosen so that the average lifetime earnings approximately equal twice the U.S.

average.

without the intertemporal terms, and Panel B provides an illustration of the

e¤ect of including intertemporal forces; Panels C and D illustrate the same for

the history of high earnings.

We provide several further robustness checks and additional illustrations.

First, we summarize the robustness checks with respect to a key fundamental,

the Frisch elasticity of labor supply. We follow the same procedure we de-

scribed for the baseline case of parameter " = 2 in the main text, calibrating

the same setup except with " = 4 and then with " = 1, which correspond to

Frisch elasticities of 0:25 and 1 respectively. Table 3 compares the calibrated

parameters for the initial distribution and the stochastic process for the shock

in the three cases. The parameters are chosen to match the moments from

the data displayed in Table 1 in the main text. In particular, lower Frisch
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Figure 10: The e¤ects of increasing kurtosis on optimal labor distortions in period
0 and their components with quasi-linear preferences.

elasticities of labor supply (which correspond to higher values of ") require

lower maximum variance in the mixture, but drawn with higher probability to

match the same data moments we discussed in the main text, particularly the

high kurtosis.

We simulate the optimal distortions in the economies with " = 4 and with

" = 1 and compare them to the baseline distortions: Figure 8 displays the

typical e¤ects, shown here for a representative history of twice the average

earnings. Lower elasticities result in generally higher distortions, especially

for the left part of the earnings distribution around the U-shapes. The right

tail of the distribution displays the same pattern but with smaller di¤erences
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because the e¤ects of the higher parameter " are o¤set by the e¤ects of the

lower maximum variance in the mixture.

Next, to supplement the comparison with the static results of Saez (2001)

in the main text, we illustrate here an experiment where a static model is

simulated with the shock distribution given by our calibrated initial distribu-

tion, F0. Figure 9 reproduces the labor distortions from our baseline simu-

lation, analyzed in the main text with Figure 2, and compares them to the

static distortions in the experiment. It is important to keep in mind, how-

ever, that the static model in which shocks are drawn from an initial-period

Pareto-lognormal distribution understates the actual cross-sectional dispersion

of shocks and leads to lower distortions, as Figure 9 indicates.

Finally, we make here transparent the role of kurtosis explored in the main

text and illustrated with Figures 1 and 5. Figure 10 here provides an analogue

of Figure 1 where we vary the kurtosis in the mixture distribution. The three

distribution examples in Figure 10 illustrate the e¤ects of increasing the level

of kurtosis from 3 in the case of normal shocks (reproduced in Panels A and D

from Figure 1) to the kurtosis of 6 (Panels B and E) and �nally to 12 (Panels

C and F). The rest of the parameters are kept unchanged compared to Figure

1.
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