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Abstract

A heterogeneous resource, such as a land-estate, is
already divided among several agents in an unfair
way. It should be re-divided among the agents in a
way that balances fairness with ownership rights.
We present re-division protocols that attain vari-
ous trade-off points between fairness and owner-
ship rights, in various settings differing in the ge-
ometric constraints on the allotments: (a) no ge-
ometric constraints; (b) connectivity — the cake
is a one-dimensional interval and each piece must
be a contiguous interval; (c) rectangularity — the
cake is a two-dimensional rectangle and the pieces
should be rectangles; (d) convexity — the cake is
a two-dimensional convex polygon and the pieces
should be convex.

1 Introduction

Fair division of land and other resources among agents with
different preferences has been an important issue since Bib-
lical times (see Genesis 13). Today it is an active area
of research in the interface of computer science [Robertson
and Webb, 1998; Procaccia, 2015] and economics [Moulin,
2004]. Its applications range from politics [Brams, 2007] to
multi-agent systems [Chevaleyre et al., 2006].

The classic setting assumes a one-shot division: the re-
source is divided once and for all, like a cake that is divided
and eaten soon after it comes out of the oven. But in practice,
it is often required to re-divide an already-divided resource.
One example is a cloud-computing environment, where new
agents come and require resources held by other agents. A
second example is fair allocation of radio spectrum among
several broadcasting agencies: it may be required to re-divide
the frequencies to accommodate new broadcasters. A third
example is land-reform: large land-estates are held by a small
number of landlords, and the government may want to re-
divide them to landless citizens.

In the classic one-shot division setting, there are n agents
with equal rights, and the goal is to give each agent a fair
share of the cake. A common definition of a “fair share” is
a piece worth at least 1/n of the total cake value, accord-
ing to the agent’s personal valuation function. This fairness

requirement is usually termed proportionality. When propor-
tionality cannot be attained, it is often (see Section 6) relaxed
to r-proportionality, which means that each agent receives at
least a fraction r/n of the total, where r ∈ (0, 1) is constant
independent of n.

In contrast, in the re-division setting, there is an existing
division of the cake among the n agents. This division is
not necessarily fair; in particular, there may be some agents
whose allocation is empty. When the cake is re-divided, it
may be required to give extra rights to current holders. In par-
ticular, it may be required to give each agent the opportunity
to keep a substantial fraction of its current value. This may be
due either to efficiency reasons (in the cloud computing sce-
nario) or economic reasons (in the radio spectrum scenario)
or political reasons (in the land-reform scenario). We call
this requirement ownership. Given a constant w ∈ (0, 1), w-
ownership means that each agent receives at least w times its
old value. What levels of proportionality and ownership can
be attained simultaneously? Our first two results (in Section
3) provide an almost complete answer to this question.

Proposition 1. For every constants r, w ∈ [0, 1] where r +
w > 1, it may be impossible to simultaneously guarantee r-
proportionality and w-ownership.

Theorem 2. For every rational constants r, w ∈ [0, 1] where
r+w ≤ 1, and for every existing division of the cake, there ex-
ists a division that simultaneously satisfies r-proportionality
and w-ownership. It can be found with O(n2) queries.

As an example, taking r = w = 1/2, it is possible to
re-divide the cake, giving each agent at least half its previous
value, while simultaneously giving each agent at least 1/(2n)
of the total cake value.

The parameters r, w represent the level of balance between
two principles: large r means more emphasis on fairness
while large w means more emphasis on ownership rights. The
above theorems imply that the re-dividers (e.g. the govern-
ment) may choose any level of fairness and ownership-rights
that fit their ideological, political or economic goals, as long
as the sum of these fractions is at most 1.

The balance parameters can also be given probabilistic in-
terpretation. Suppose the government wants to do a land re-
form and needs the agreement of the current landowners. Nat-
urally, the current landowners do not want to give away their
lands. However, they may fear that, without land-reform, the
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landless citizens might revolt and they might lose all their
lands. If the landowners believe that the probability of a suc-
cessful revolt is 1 − w, then they will agree to a land-reform
that guarantees w-ownership. Theorem 2 implies that, in this
case, it is possible to carry out a land-reform that guarantees
(1− w)-proportionality.

While Theorem 2 is encouraging, it ignores an important
aspect of practical division problems: geometry. The division
it guarantees may be highly fractioned, giving each agent a
large number of disconnected pieces. In many practical divi-
sion problems, the agents may want to receive a single con-
nected piece. For example, when the divided resource is a
time-interval, each agent may need a single contiguous in-
terval rather than a large number of disconnected ones. Can
partial-proportionality and partial-ownership be attained si-
multaneously with a connectivity constraint? The following
proposition (proved in Section 4) answers this negatively.

Proposition 3. When the cake is a 1-dimensional interval
and each piece must be an interval, for every positive con-
stants r, w ∈ (0, 1), it may be impossible to simultaneously
satisfy r-proportionality and w-ownership.

Moreover, for every r > 0 and every integer k ∈
{1, . . . , n}, there might be k agents who, in any r-
proportional division, receive at most a fraction 1/⌊n

k
⌋ of

their old value.

The latter part of the proposition involves a property much
weaker than proportionality: all we want is to guarantee each
agent a positive value. With the connectivity constraint, even
this weak “positivity” requirement is incompatible with w-
ownership for every constant w > 0: a positive division might
require us to give one agent at most 1/n of its previous value,
give two agents at most 2/n of their previous value, give n/3
agents at most 1/3 of their previous value, etc.

Proposition 3 motivates the following weaker ownership
requirement: for every k, at least n − k agents receive
at least a fraction 1/⌊n

k
⌋ of their old value. For exam-

ple (taking k = n/3 and assuming all quotients are in-
tegers), at least 2n/3 agents should receive at least 1/3
of their old value. This criterion is inspired by the ”90th
percentile” criterion common in Service-Level-Agreements
and Quality-of-Service analysis, e.g. [Zhang et al., 2014;
Delimitrou and Kozyrakis, 2014]. It can also be justified by
political reasoning: in a democratic country, it may be suffi-
cient to win the support of a sufficiently large majority.

Our following results almost match this relaxed owner-
ship criterion. Formally, the democratic ownership prop-
erty means that, for every integer k ∈ {1, . . . , n}, at least
n − k agents receive at least a fraction 1/⌈n

k
⌉ of their previ-

ous value. Democratic-ownership is almost the same as the
upper bound implied by Proposition 3; the only difference is
that in the upper bound the fraction is rounded down (1/⌊n

k
⌋)

while in democratic-ownership the fraction is rounded up.

Theorem 4. When the cake is a 1-dimensional interval and
each piece must be an interval, it is possible to find in time
O(n2 log n) a division simultaneously satisfying democratic-
ownership and 1/3-proportionality.

It is an open question whether democratic-ownership is
compatible with r-proportionality for some r > 1/3.

Theorem 4, like most cake-cutting papers, assumes that
the cake is 1-dimensional. In realistic division scenarios,
the cake is often 2-dimensional and the pieces should have
a pre-specified geometric shape, such as a rectangle or a
convex polygon. Rectangularity and convexity requirements
are sensible when dividing land, exhibition space in muse-
ums, advertisement space in newspapers and even virtual
space in web-pages. Moreover, in the frequency-range al-
location problem, it is possible to allocate frequency ranges
for a limited time-period; the frequency-time space is two-
dimensional and it makes sense to require that the ”pieces”
are rectangles in this space [Iyer and Huhns, 2009].

2-dimensional cake-cutting introduces new challenges over
the traditional 1-dimensional setting. As an example, in
one dimension, it can be assumed that the initial allo-
cation is a partition of the entire cake; this is without
loss of generality, since any ”blank” (unallocated part)
can be attached to a neighboring allocated interval with-
out harming its shape or value. However, in two dimen-
sions, the initial allocation might contain blanks that can-
not be attached to any allocated piece due to the rect-
angularity or convexity constraints. For example, sup-
pose the cake is as the rectangle illustrated to the right.

Figure 1: Geometric constraints
require us to dispose some cake.

There are 4 agents and each
agent i has positive value-
density only inside the rect-
angle Zi. The most reason-
able division (e.g. the only
Pareto-efficient division) is
to give each Zi entirely to
agent i. But, this alloca-
tion leaves a blank in the
center of the cake, and this
blank cannot be attached
to any allocated piece due
to the rectangularity con-
straint. This counter-intuitive scenario cannot happen in a
one-dimensional cake. Handling such cases requires new
geometry-based tools. Using such tools we can handle two
common 2-dimensional settings (Sec. 5):

Theorem 5. When the cake is a rectangle and each piece
must be a parallel rectangle, it is possible to find in time
O(n2 log n) a division simultaneously satisfying democratic-
ownership and 1/4-proportionality.

Theorem 6. When the cake is a 2-dimensional convex poly-
gon and each piece must be convex, there exists a division
simultaneously satisfying democratic-ownership and 1/5-
proportionality.

Remark 7. In the interval, rectangle and convex set-
tings, the geometric constraints are mostly harmless with-
out the ownership requirement: when the cake is an in-
terval/rectangle/convex, classic algorithms for proportional
cake-cutting, such as Even and Paz [1984], can be easily
made to return interval/rectangle/convex pieces by ensuring
that the cuts are parallel. Similarly, the ownership require-
ment is easy to satisfy without the geometric constraints, as
shown by Theorem 2. It is the combination of these two re-
quirements that leads to interesting challenges.
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2 Model

2.1 Cake Division

The cake C is a polytope in the d-dimensional Euclidean
plane R

d. In this paper we focus on the common cases in
which d = 1 and C is an interval, or d = 2 and C is a poly-
gon. A piece is a Borel subset of C.
C has to be divided among n ≥ 1 agents. Each agent

i ∈ {1, . . . , n} has a value-density function vi, which is an
integrable, non-negative and bounded function on C. The
value of a piece Xi to agent i is marked by Vi(Xi) and it is
the integral of its value-density: Vi(Xi) =

∫
x∈Xi

vi(x)dx.

The definition implies that the Vi are finite measures and are
absolutely-continuous with respect to the Lebesgue measure,
i.e., any piece with zero area has zero value to all agents.
Therefore, we do not need to worry about who gets the
boundary of a piece, since its value is 0.

The division protocols access the value measures via
queries [Robertson and Webb, 1998; Woeginger and Sgall,
2007]: an eval query asks an agent to reveal its value for a
specified piece of cake; a mark query asks an agent to mark a
piece of cake with a specified value.

The present paper ignores strategic considerations and as-
sumes that agents answer truthfully. Indeed, in general it may
be impossible to build a cake-cutting protocol that is both fair
and strategy-proof [Brânzei and Miltersen, 2015].

The geometric constraints, if any, are represented by a pre-
specified family S of usable pieces. In this paper, S will ei-
ther be the set of all pieces (which means that there are no
geometric constraints), or the set of all intervals, or the set of
all rectangles, or the set of all convex pieces. We assume that
each agent can use only a single piece from the family S.

An allocation is a vector of n pieces, X = (X1, . . . , Xn),
one piece per agent, such that the Xi are pairwise-disjoint and
∪n
i=1Xi ⊆ C. Note that some cake may remain unallocated,

i.e, free disposal is assumed. We explained in the introduction
why this may be important. An S-allocation is an allocation
in which all pieces are usable, i.e, ∀i : Xi ∈ S.

For every constant r ∈ (0, 1), an allocation X is called r-
proportional if every agent receives at least r/n of the total
cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥ (r/n) · Vi(C)

A 1-proportional division is also known as “proportional”.

2.2 Cake Redivision

There is an existing S-allocation of the cake: Z1, . . . , Zn. It
is assumed that the old pieces Zj are pairwise-disjoint and
∀j : Zj ∈ S, but nothing else is assumed on the division. In
particular, the initial division is not necessarily proportional,
and some of C may be undivided.

It is required to create a new S-allocation of C to all agents:
X1, . . . , Xn. For every constant w ∈ (0, 1), the re-allocation
satisfies the w-ownership property if every agent receives at
least a fraction w of its old value:

∀j ∈ {1, . . . , n} : Vj(Xj) ≥ w · Vj(Zj)

Since w-ownership is not always compatible with r-
proportionality for any r > 0, we define the following weaker

property. A re-allocation satisfies the democratic-ownership
property if, for every k ∈ {1, . . . , n}, there are at least n− k
agents j ∈ {1, . . . , n} for whom:

Vj(Xj) ≥
1

⌈n/k⌉ · Vj(Zj).

3 Arbitrary Cake and Arbitrary Pieces

In this section there are no geometric constraints on the cake
or its pieces. We start with the negative result.

Proof of Proposition 1. We are given a pair r, w where r +
w > 1. We show a scenario where no r-proportional di-
vision satisfies w-ownership. In the initial allocation, a sin-
gle agent owns the entire cake. All n agents have the same
value-density and they value the entire cake as 1. In any r-
proportional division, the n−1 landless citizens must receive
a total value of (n−1)r/n = r−r/n. Therefore the old land-
lord receives at most 1−r+r/n. By assumption, 1−r < w.
Hence, if n is sufficiently large, the old landlord receives less
than w of his previous value, contradicting w-ownership.

To prove the matching positive result we need a lemma.

Lemma 8. Given cake-allocations Z and Y and a rational
constant r ∈ [0, 1], there exists an allocation X such that, for
every agent i: Vi(Xi) ≥ rVi(Yi)+(1−r)Vi(Zi). Moreover,
it can be found using O(n2) queries.

Proof. Let r = p/q with p < q some positive integers. For
every pair of agents i, j (including i = j), the protocol does:

Step 1. Agent i divides Zi ∩ Yj to q equal-value pieces.
Step 2. Agent j takes the p best pieces in its eyes.
Step 3. Agent i takes the remaining q − p pieces.
(Note, when i = j agent i gets the entire piece Zi ∩ Yi).

The pairs i, j can be processed in any order, even in parallel.

Each agent i is allocated a piece Xi which is a union of
nq pieces: np pieces that agent i took from other agents (in-
cluding itself) in piece Yi and n(q − p) pieces that were left
for agent i from other agents in piece Zi. From every piece
Yi ∩Zj (for j ∈ {1, . . . , n}), agent i picks the best p out of q
pieces, which give it a value of at least p

q
Vi(Yi ∩Zj). Its total

value in these np pieces is thus at least rVi(Yi). In addition,
from every piece Zi∩Yj (for j ∈ {1, . . . , n}), agent i receives
q − p out of q equal pieces, which give it a value of exactly
q−p

q
Vi(Zi ∩ Yj). Its total value of these n(q − p) pieces is

thus exactly (1− r)Vi(Zi). The three steps are done once for
each pair of agents, so the number of queries is O(n2).

Proof of Theorem 2. Given a pair r, w where r + w ≤ 1, ap-
ply Lemma 8, with the initial allocation as Z, and any propor-
tional allocation as Y (a proportional allocation can be found
efficiently by classic protocols such as Steinhaus [1948],
Even and Paz [1984]). By Lemma 8, the new division satisfies
r-proportionality and (1− r)-ownership, and 1− r ≥ w.
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Remark 9. The O(n2) complexity assumes the integers p, q
are constant (not part of the input). If they are considered part
of the input, then the complexity becomes linear in q which
is exponential in the number of input bits. The number of
queries can be reduced using concepts from number theory,
but this is beyond the scope of this paper. See McAvaney et
al. [1992], Robertson and Webb [1998].

Remark 10. Our redivision protocol gives each agent a piece
that is not only worth at least (1− r)Vi(Zi), but also a subset
of Zi (in addition to a subset of Yi). This may be desirable in
some cases. E.g. in land division, old landlords may want not
only a high value but also a subset of their old plot.

4 Interval Cake and Interval Pieces

In this section the cake is an interval and each piece must be
an interval. Again we start with the negative result.

Proof of Proposition 3. We are given an initial allocation Z,
a positive constant r ∈ (0, 1), and an integer k ≤ n. We show
a scenario in which, in every r-proportional allocation, the
value of every agent j ∈ {1, . . . , k} is at most Vj(Zj)/⌊n

k
⌋.

Assume that the valuations are as follows. Each agent j ∈
{1, . . . , k} values his original piece Zj as ⌊n

k
⌋ and the rest

of the cake as 0. The value-density of j in Zj is piecewise-
uniform: It has ⌊n

k
⌋ regions with a value of 1 and ⌊n

k
⌋ − 1

”gaps” — regions with a value of 0. The other n − k agents
are divided to k groups of roughly equal size: the size of each
group is either ⌊n−k

k
⌋ = ⌊n

k
⌋− 1 or ⌈n−k

k
⌉ = ⌈n

k
⌉− 1. Each

agent in group j assigns a positive value only to a unique gap
in the piece Zj (so when the group size is ⌊n

k
⌋ − 1, each gap

is wanted by exactly one agent; otherwise, there is one gap
wanted by two agents). The following figure illustrates the
value-densities that are positive in piece Z1.

Figure 2: Solid boxes represent the value-density of agent #1; each
dotted box represents a value-density of a single agent in group #1.

In any r-proportional division, each gap in Zj must be at
least partially allocated to an agent in group j. Hence, the
interval allocated to agent j must contain at most a single
positive region in Zj — it is not allowed to overlap any gap.
Therefore the value of agent j is at most Vj(Zj)/⌊n

k
⌋.

To prove the matching positive result (Theorem 4), we use
a protocol for fair division of an “archipelago” — a cake made
of one or more interval “islands”.

Lemma 11. Let C be a cake made of m ≥ 1 pairwise-
disjoint intervals: C = Z1 ∪ · · · ∪ Zm. There exists a di-
vision X of C among n agents, in which (a) Each agent i
receives an interval entirely contained in one of the islands:
∀i : ∃j : Xi ⊆ Zj , and (b) Each agent receives a value of at
least Vi(C)/(n + m − 1). Moreover, X can be found using
O(mn log n) queries.

Proof. We normalize the valuations of all agents such that
∀i : Vi(C) = n+m− 1. We aim to give each agent a piece
worth at least 1. The proof is by induction on m. When m =

1, divide the single island among all agents using the Even–
Paz protocol [Even and Paz, 1984]. It finds, using O(n log n)
queries, a connected division in which each agent receives
value at least Vi(C)/n = 1.

When m > 1, pick an arbitrary island, say Z1. Pick the
n′ agents whose valuations of Z1 are the highest, where n′

is chosen such that all these agents value Z1 as at least n′.
Divide Z1 among them using Even–Paz, giving each of them
value at least 1. It can be shown that the remaining n − n′

agents value the remaining m − 1 islands as at least (n −
n′)+(m−1)−1; divide the islands recursively among them.

There are m steps, so the runtime is O(mn log n).

Proof of Theorem 4. We re-divide the interval as follows.

Step 1. Given the original partial allocation Z1 ∪
· · ·Zn ⊆ C, extend it to a complete allocation Z ′

1 ∪
· · ·Z ′

n = C, by attaching each ”blank” (unallocated in-
terval in C) arbitrarily to one of the two adjacent allo-
cated intervals. This, of course, does not harm the old
values: ∀j ∈ {1, . . . , n} : Vj(Z

′

j) ≥ Vj(Zj).
Step 2. For each agent j ∈ {1, . . . , n}, add a “helper

agent” j∗ and assign it a value-density function v∗j :

v∗j (x) = vj(x) if x ∈ Z ′

j

v∗j (x) = 0 if x /∈ Z ′

j

Use the protocol of Lemma 11 with n + n agents, re-
garding the cake C as an archipelago and the pieces
Z ′

1, . . . , Z
′

n as the islands.
Step 3. Give each agent j ∈ {1, . . . , n} either the in-

terval allocated to its normal agent j or the interval allo-
cated to its helper agent j∗, whichever is more valuable.

We now prove that the resulting allocation is 1/3-
proportional and satisfies the democratic-ownership property.

(a) Proof of 1/3-proportionality. We apply Lemma 11 with
2n agents and m = n islands. Each of the 2n agents receives
an interval contained in one of the pieces Z ′

1, . . . , Z
′

n, with a
value of at least 1/((2n) + n − 1) its total cake value. This
value is larger than 1/(3n).

(b) Proof of democratic-ownership. We focus on the n
helper agents. First, by Lemma 11, every helper agent j∗

must receive an interval contained in Z ′

j , since its value is
positive only in the island Zj . Moreover, by the pigeonhole
principle, for every integer k ≤ n, at most k islands are pop-
ulated by at least ⌈n

k
⌉ normal agents. Hence, at least n−k is-

lands are populated by at most ⌈n
k
⌉−1 normal agents. Adding

the helper agent, these islands are populated by at most ⌈n
k
⌉

agents. Hence, the proportional allocation in Lemma 11 gives
these helper agents an interval subset of Z ′

j , which is worth

for agent j at least Vj(Z
′

j)/⌈n
k
⌉.

Note that the above protocol, like the protocol of the Sec-
tion 3 (see Remark 10) gives each agent an option to take a
subset of his old plot — the one allocated to his helper agent.
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5 Polygonal Cake and Polygonal Pieces

Rectangle Cake and Pieces

We assume that C is a rectangle in R
2. Each piece Zj in the

initial division is a rectangle parallel to C and each piece Xi

in the new division must be a rectangle parallel to C.
The Even–Paz protocol can easily be adapted to this set-

ting, by instructing each agent to make vertical cuts parallel
to the rectangle’s sides. Thus Lemma 11 and steps #2 and #3
in the protocol of Theorem 4 work in this setting too.

The problem is that Step #1, the allocation-completion
step, is no longer trivial. We cannot just attach each unal-
located part of C to an allocated rectangle, since the result
might not be a rectangle. We still need to extend the initial
partial allocation Z1 ∪ · · ·Zn ⊆ C to a complete allocation,
but the number of rectangles in the complete allocation might
be larger than n, since we might have unattached blanks.

Our goal, then, is to find a partition of C to rectangles, Z ′

1∪
· · ·Z ′

n+b = C, with b ≥ 0, such that every input rectangle is

contained in a unique output rectangle: ∀j ∈ {1, . . . , n} :
Zj ⊆ Z ′

j . The additional b rectangles are called blanks. In
Step 3, we will have m = n+ b islands and 2n agents, so the
value guarantee per agent will be 1/((2n) + (n + b) − 1) =
1/(3n+b−1); therefore, we would like the number of blanks
b to be as small as possible. An example of the input and
output of the allocation-completion step is shown below.

⇒

Figure 3: Allocation completion with b = 1 blank, denoted Z
′

5.

We replace step #1 with the following:
Step 1’. Let i loop over the agents in an arbitrary order, e.g,

i = 1, . . . , n. extend Zi in all four directions to the maximum
extent without intersecting the other Zi’s. By construction,
the resulting arrangement is maximal — no rectangle can be
extended any further without overlapping other rectangles.
Akopyan and Segal-Halevi [2018] show that, in any maximal
arrangement, the number of rectangular blanks b is at most
n− 2

√
n−O(1). Plugging this into the protocol of Theorem

4 gives a value per agent of at least 1/(4n−2
√
n) > 1/(4n),

satisfying 1/4-proportionality and proving Theorem 5.

Convex Cake and Pieces

The situation is similar when C is convex and the pieces
should be convex. The Even–Paz protocol can operate on
a convex cake, requiring the agents to make cuts parallel to
the each other. This guarantees that the pieces will be con-
vex. In Step #1, a similar challenge arises. We have an initial
partial allocation Z1 ∪ · · ·Zn ⊆ C, where each Zj is convex.
We need a complete allocation Z ′

1 ∪ · · ·Z ′

n+b = C, where

each Z ′

j is convex, every input piece is contained in a unique
output piece, and the number of blanks b is minimal.

Akopyan and Segal-Halevi [2018] prove that, for every ini-
tial allocation Z, there exist a maximal extension where the
number of convex blanks b is at most 2n − 5. Plugging this
into the protocol of Theorem 4 gives a value per agent of at
least 1/(5n − 6) ≥ 1/(5n) in the convex case — satisfying
1/5-proportionality and proving Theorem 6. However, we do
not know how to find this maximal extension efficiently; this
computational-geometric question is left for future work.

6 Related Work

Dynamic Fair Division

Our cake redivision problem differs from several division
problems studied recently.

1. In dynamic resource allocation [Kash et al., 2013;
Friedman et al., 2015], the resources are homogeneous,
which means that the only thing that matters is what quan-
tity of each resource is given to each agent. In contrast, our
cake is heterogeneous and different agents may have different
valuations on it, so our protocol must decide which parts of
the cake should be given to which agent.

2. Population monotonicity [Thomson, 1983; Moulin,
2004; Segal-Halevi and Sziklai , 2018] is a property of a fair
division rule. It requires that, when new agents arrive and the
same division rule is re-activated, the value of all old agents is
weakly smaller — all agents should participate in supporting
the newcomers. We, too, assume that old agents support new
ones, but add the ownership requirement, which guarantees
the old agents a fraction of their previous value.

3. Private endowment means that each agent is endowed
with an initial part of cake. Then, agents exchange resources
using a market mechanism [Aziz and Ye, 2014, and others].
A basic requirement in these works is individual rationality,
which means that the final value allocated to each agent must
be weakly larger than the value of the initial endowment. We
cannot make this assumption as it is incompatible with fair-
ness: since some agents may initially own no land, they have
nothing to give in the exchange and might remain landless.

4. Online division is a setting in which either the agents
or the divided resources are not all available at the time of
the division, but rather arrive in different times [Walsh, 2011;
Aleksandrov et al., 2015]. It is required to give some cake
to agents who come early while keeping a fair share to those
who come late. In contrast to our model, there allocated re-
sources are consumed so it it is impossible to re-divide them.

5. Land reform is the re-division of land among citizens. It
has been attempted in numerous countries around the globe
and in many periods throughout history [Powelson, 1988],
since ancient Egypt in the times of King Bakenranef (8th cen-
tury BC) to the Scotland land-reform act (2016 AD). Balanc-
ing fairness and ownership rights is a major concern in such
reforms [Lipton, 2009; Sellar, 2006].

Partial Proportionality

While proportionality is the most common criterion of fair
cake-cutting, it is often relaxed to partial-proportionality in
order to achieve additional goals:

1. Speed: finding a proportional division takes Θ(n log n)
queries, but finding an r-proportional division takes only
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Θ(n) queries, for some sufficiently small r ≤ 0.1 [Edmonds
and Pruhs, 2006, and others].

2. Improving social welfare: proportional allocations may
be socially inefficient; efficiency can be improved by decreas-
ing the value-guarantee per agent [Zivan, 2011; Arzi, 2012].

3. Minimum-size constraint: In some 1-dimensional set-
tings, each agent may get several intervals but the length of
each interval should be above a threshold. It is impossible
to guarantee an r-proportional allocation for any r > 0, but
additive approximations exist [Caragiannis et al., 2011].

4. Geometric constraints: For example, when the cake is
square and the pieces must be square, it is impossible to guar-
antee an r-proportional allocation for any r ≥ 1/2, but there
is an algorithm that guarantees a 1/4-proportional allocation
[Segal-Halevi et al., 2017] .

Geometric Cake Models

The most prominent cake-model is a one-dimensional inter-
val, in which case the pieces are often required to be contigu-
ous sub-intervals. Some exceptions are:

1. The cake is a 1-dimensional circle and the pieces are
contiguous arcs [Thomson, 2007, and others].

2. The cake is a 2-dimensional territory that lies among
several countries. Each country should receive a piece adja-
cent to its border [Hill, 1983; Beck, 1987].

3. The cake is 2-dimensional and the pieces are rectangles
determined by the agents [Iyer and Huhns, 2009].

4. The cake is 2-dimensional and the pieces must be
squares or fat polygons [Segal-Halevi et al., 2017].

5. The cake is 2-dimensional; the geometric constraints are
connectivity or convexity [Devulapalli, 2014].

6. The cake is multi-dimensional and the pieces are sim-
plexes or polytopes [Berliant et al., 1992; Dall’Aglio and
Maccheroni, 2009].

7 Future Work

7.1 Handling Other Geometric Constraints

Two steps in our redivision algorithm are sensitive to the ge-
ometric constraints: the allocation-completion (Step #1 in
Theorem 4), and the Even–Paz protocol (Lemma 11). We de-
scribe how these steps are affected by alternative constraints.

1. Convexity in three or more dimensions. The Even–Paz
protocol can easily operate on multi-dimensional boxes or
other convex objects, requiring the agents to cut using hyper-
planes parallel to each other. However, we currently do not
have an allocation-completion algorithm for convex objects,
or even for boxes, in three or more dimensions.

2. Connectivity in two dimensions. If the pieces have to be
polygons that are connected but not necessarily convex, then
the allocation-completion step is much easier and no blanks
are created [Akopyan and Segal-Halevi, 2018]. However, it is
not clear how to use the Even–Paz protocol in this case: when
the cake is not convex, making parallel cuts might create dis-
connected pieces.

3. Two pieces per agent. Theorem 2 allows an unlimited
number of pieces per agent, while the other theorems allow
only a single piece per agent. We do not know what happens

between these extremes. For example, if the cake is a one-
dimensional interval and each agent can get two intervals,
what ownership-proportionality combinations are attainable?

7.2 Handling Other Fairness Requirements

1. Envy-freeness. In this paper we took proportionality as a
benchmark of fairness. An alternative benchmark is envy-
freeness. Envy-freeness means that each agent values its
piece at least as much as each of the other pieces. Similarly,
r-envy-freeness means that each agent values its piece as at
least r times the value of each of the other pieces. For what
pairs r, w is r-envy-freeness compatible with w-ownership?
With democratic-ownership?

2. Pareto-efficiency. From an existential point of view,
Pareto-efficiency does not add much difficulty. Both r-
proportionality and w-ownership are preserved by Pareto-
improvements. Therefore, if there exists a division sat-
isfying r-proportionality and w-ownership (or democratic-
ownership), then there also exists a Pareto-optimal division
satisfying these properties. However, it may not be easy to
find such a division algorithmically.

7.3 Improving the Constants

Our redivision protocol is 1/3 or 1/4 or 1/5-proportional (de-
pending on the geometric constraint). We see two potential
ways to improve these numbers.

1. In Step #2 of our redivision protocol, we add n helper
agents, so the total number of agents is 2n. But in the Step #3,
each agent chooses either its helper or its normal agent, while
the other agent is “wasted”. If we could know the n choices of
the agents in advance, we could employ only n agents over-
all, subtracting 1 from the denominator of the constant (the
constants would become 1/2 or 1/3 or 1/4). We may view
this as a strategic game in which each agent has two possible
strategies: “normal” vs. “helper”. We conjecture that a pure-
strategy Nash equilibrium exists in this game, and it corre-
sponds to an allocation satisfying the partial-proportionality
and democratic-ownership requirements. While finding a
Nash equilibrium is usually a computationally-hard problem,
it may be useful as an existential result.

2. In Lemma 11, we treat each existing piece Zj as an
”island” and insist that each new piece be entirely contained
in an existing piece, i.e, we do not cross the existing division
lines. This may be desirable in the context of land division,
since it respects the Uti Possidetis principle [Lalonde, 2002].
However, it may be possible to improve the proportionality
guarantees by devising a different redivision procedure that
crosses the existing division lines.

These possibilities invoke the following open question:
what is the highest level of proportionality that is compati-
ble with democratic-ownership?
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