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ABSTRACT

Memristive devices have been a hot topic in nanoelectronics for the last two decades in both academia and industry. Originally proposed as
digital (binary) nonvolatile random access memories, research in this field was predominantly driven by the search for higher performance
solid-state drive technologies (e.g., flash replacement) or higher density memories (storage class memory). However, based on their large
dynamic range in resistance with analog-tunability along with complex switching dynamics, memristive devices enable revolutionary novel
functions and computing paradigms. We present the prospects, opportunities, and materials challenges of memristive devices in computing
applications, both near and far terms. Memristive devices offer at least three main types of novel computing applications: in-memory com-
puting, analog computing, and state dynamics. We will present the status in the understanding of the most common redox-based memristive
devices while addressing the challenges that materials research will need to tackle in the future. In order to pave the way toward novel com-
puting paradigms, a rational design of the materials stacks will be required, enabling nanoscale control over the ionic dynamics that gives
these devices their variety of capabilities.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5129101., s

I. INTRODUCTION

A hysteretic change in the resistance of binary transition
metal oxides, as sketched in Fig. 1(a), was reported already in the
1960s.1,2 Additional research activity started in the late 1990s by
Asamitsu et al.3 and Beck et al.4 who observed similar phenom-
ena also in complex perovskite-type oxides. However, the great-
est interest in this phenomenon was triggered when it was rec-
ognized that these resistively switching cells can be described as
so-called memristors5 which had been predicted by Leon Chua as
the fourth basic circuit element because of the conceptual symme-
try with the resistor, inductor, and capacitor.6 This concept was
later generalized to a broader class of nonlinear, dynamical systems
called memristive devices,7 which describe resistive switching cells
more accurately.8 In the simplest case, memristive devices exhibit
a change between a low resistance state (LRS) and a high resis-
tance state (HRS) which can be interpreted as a switch between a
logical “1” and “0,” respectively. However, memristive devices also

show fully analog-to-continuous changes of the resistive state with
applied electrical stimulus, which enables a plethora of novel func-
tions, data storage, and data processing. With the end of Moore’s
law in mind, research on memristive devices has evolved as a
major trend in the last decade. We will present the status in the
understanding of the most common memristive devices as well
as current and future practical applications. Based on this, we
will address the challenges which materials research will have to
tackle in order to pave the way toward these novel computing
paradigms.

II. MECHANISMS AND MATERIALS

A variety of different physical phenomena comprising purely
electronic phenomena, multiferroic tunneling, electrochemical pro-
cesses, and phase transitions can result in memristive behavior.
Comprehensive review articles on the different types can be found in
Refs. 9–11. The most mature memristive devices, besides the already
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FIG. 1. (a) Current voltage-curve for bipolar switching memristive device. (b)
Sketch of a ECM with Ag as electrochemically active electrode. (c) Sketch of a fil-
amentary VCM cell. Black spheres: high work function electrode; yellow spheres:
metal oxide in the fully oxidized state; green spheres: oxygen vacancies; purple
spheres: metal oxide in a reduced valence state. (d) Sketch of an area-dependent
VCM cell. Black spheres: high work function electrode; orange spheres: metal
oxide tunnel barrier; green spheres: oxygen vacancies; yellow spheres: metal
oxide in the fully oxidized state. (e) Overview of metals in the periodic table of
elements whose oxides are reported to show bipolar VCM-type resistive switching
either in binary form or on the B-site of ABO3 perovskites.

commercially available phase change memories, are based on redox
processes which occur in conjunction with themotion of ions in ion-
ically conducting materials. Whereas phase change memory (PCM)
exhibits so-called unipolar switching, meaning that the two resis-
tive states can be addressed with one polarity but different ampli-
tude, redox-based memristive devices often show a so-called bipolar
switching process, where different voltage polarities are needed to
switch between the two resistive states [see Fig. 1(a)]. The different
types of memristive systems showing bipolar switching are illus-
trated in Fig. 1, namely, electrochemical metallization (ECM) cells
also called conductive bridge memories (CBRAM) [Fig. 1(b)] and
valence change mechanism (VCM) cells [Figs. 1(c) and 1(d)]. ECM
cells operate by the electrochemical dissolution of an active elec-
trode metal such as Ag or Cu, a drift of cations through a metal

ion conductor, and a formation of a metal nanofilament. The VCM
is typically found in metal oxides that show sufficient ion mobil-
ity of the host lattice such as oxygen ion or metal cation migration
in metal oxides. The migration of these ions changes the local stoi-
chiometry and, hence, leads to a redox-reaction accompanied with a
valence change in the cation sublattice and a change in the electronic
conductivity. This valence change usually takes place within small
filaments [Fig. 1(c)] but can also be extended to the whole device
area [Fig. 1(d)].

ECM cells rely on the oxidation and reduction of electrochem-
ically active metal cations and their migration in a solid electrolyte.
Different kinetic factors of the material system such as ion mobili-
ties and redox-rates lead to different filament growth directions and
switching properties.12 Commonly, Cu, Ag, or their compounds are
used as electrodes for injecting cations, but a variety of other met-
als such as Al, Au, Fe, Ni, Ta, Ti, V, and Zr have been employed as
well.13 The Gibbs free energy of formation of the metal/metal cation
combinations is crucial for the switching properties as well as for the
reliability. Solid electrolyte materials comprise poor ion conductors
such as oxides (SiO2 and Ta2O5) and nitrides as well as good ion-
conductors such as sulfides, iodides, selenides, tellurides, and ternary
chalcogenides.10

VCM-type resistive switching has been demonstrated in a
large variety of binary metal oxides. Figure 1(e) highlights the ele-
ments in the periodic table of elements which have been employed
as binary oxides or on the B-site of ABO3 perovskite-type com-
plex oxide. Although many rare earth metal oxides show resis-
tive switching, the most common materials are among the transi-
tion metal oxides. The most commonly used VCM materials are
amorphous or polycrystalline binary band-insulating oxides such
as TiO2, HfO2, and Ta2O5, combined with one valve metal elec-
trode, providing an ohmic contact and one high workfunction metal
such as Pt or TiN inducing a Schottky barrier. It has been shown
that these materials can exhibit highly reliable switching properties
and are fairly straight-forward to grow in thin film form. How-
ever, it is important to note that the switching performance such
as the resistance window between maximum and minimum resis-
tance values, switching speed, and reliability is often not deter-
mined by the material itself but by the interplay with the inter-
face oxide layers formed at the valve metal electrode. In order to
mimic this effect, many groups are employing bilayers of differ-
ent oxides in order to adjust the cell properties. It is interesting to
note that bilayers of strongly oxygen deficient, n-conducting oxides
or p-conducting oxides stacked with highly stoichiometric, insulat-
ing oxides often exhibit an area dependent VCM switching pro-
cess14 [see Fig. 1(c)] in contrast to the usually observed filamentary
switching.

Besides simple binary oxides, many complex perovskite-type
oxides with 3d transitionmetal oxides on the B-site such as titanates,
manganites, ferrates, cobaltides, nickelates, and cuprates have been
reported to exhibit resistive switching. Most of these materials show
strong correlation effects, and it has been suggested that these will
enhance the resistance change resulting from the redox-process-
induced changes in the carrier concentration.15 Moreover, layered
oxides such as Browmillerite-type cobaltides and ferrates contain
channels of fast diffusion which offer a pathway to enhance the ionic
motion in certain crystallographic directions.16 Therefore, these
systems provide in their single crystalline form a highly attractive
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playground for basic studies on the interrelation between crystal-
lographic orientation, ionic transport, and switching kinetics. The
same holds for single model systems of more conventional mem-
ristive materials such as TiO2

17 and SrTiO3,
18 which have provided

deep insights into the basic switching mechanisms and the role of
certain types of defects such as dislocations19 or intentionally engi-
neered phase boundaries.20 However, single crystalline materials are
less attractive for future computing applications than their polycrys-
talline or amorphous counterparts due to the required high growth
temperature that is incompatible with complementary metal-oxide
semiconductors (CMOSs). Complex, multicomponentmaterials will
also face an enormous hurdle to enter industrial production lines
since they have to compete with simple binary memristive oxides
such as HfO2 or ZrO2 which are already available as gate-oxides in
today’s CMOS lines.

Significant progress has been made in the last decade with
respect to the microscopic understanding of both ECM and VCM
cells. This is based on the insights provided by advanced analy-
sis tools such as synchrotron-based spectromicroscopy as well as
high resolution electron microscopy and spectroscopy,21 partly per-
formed in an in-operandomode.22,23 Moreover, physics-based com-
pact models are available which nicely reproduce the current-voltage
curves and describe the highly nonlinear switching kinetics of the fil-
amentary systems.24 On the other hand, the intense research in this
field has also identified numerous processes which have been disre-
garded in the early days of research on these devices. It comprises
processes such as the oxygen exchange with the electrodes25 and the
surrounding atmosphere,26 the incorporation of protons27 or mois-
ture,28 and the movement of metal ions in VCM cells,29 which all
might crucially influence both switching performance and device
reliability.

III. STATE OF THE ART

The development of filamentary VCM type memristive devices
has progressed rapidly since the mid-2000s in both industry and
academia. With respect to scalability, CMOS integrated planar cell
sizes down to 10 nm × 10 nm have already been demonstrated for
HfOx/Hf ReRAM.30 By employing a sidewall electrode geometry,
operating HfO2-based VCM cells with an area of 1 nm × 3 nm have
been successfully fabricated.31 Recently, well addressable cross-bar
arrays of HfO2-TiOx VCM bilayer devices with 6 nm half-pitch and
2 nm × 2 nm area have been demonstrated.32 According to the ther-
mally assisted ionic motion in filamentary systems in combination
with the small distances which have to be overcome to move ions
in the spatially confined interface region [see Fig. 1(c)], the write
speed can be on the order of nanoseconds. In dedicated studies,
ReRAM devices have been observed to switch as fast as 100 ps33 and
potentially even faster.34

Instead of striving toward the highest possible switching speed,
the combination of requirements on the write operation, the read
operation, and the retention time imposes a voltage time dilemma
on the switching kinetics ofmemory cells.9 The application of a write
pulse (e.g., 3 V) during a nanosecond write time should lead to the
switching process, while (in worst case) a constant train of smaller
read voltage pulses (e.g., 0.3 V) during the retention time should
not change the resistance state of the cell. A ratio of 10 between
read and write voltage requires an acceleration of the switching

time of approximately 1015 in order to guarantee a retention time
of 10 years. For filamentary VCM devices, the temperature assisted,
field accelerated motion of ions provides a sufficient nonlinearity of
the switching kinetics in order to solve the voltage-time dilemma.35

With respect to low power consumption, it has been demonstrated
for TaOx based nanodevices that they can switch at sub-2-ns times
under sub-2 V with less than 10 μA, resulting in a sub-picojoule/bit
operation energy.36 By performing temperature accelerated lifetime
tests, a retention time of 10 years has been demonstrated for a
large variety of materials, e.g., in HfOx based cells.37 Typically, an
endurance of 106–108 cycles is reported; however, a best perfor-
mance of 1012 cycles has been demonstrated for TaOx based VCM
cells.38 However, one has to note that an endurance and retention
trade-off was identified for ReRAM.39 Therefore, best performance
in both retention and endurance has not been realized so far. A
crucial issue for the commercialization of ReRAM is the cell-to-cell
and cycle-to-cycle variability. According to the stochastic process of
filament formation during forming and switching, variability is an
inherent problem for filamentary ReRAM cells. For more detailed
information about the performance of ReRAM devices, we rec-
ommend the comprehensive performance table in Ref. 40, includ-
ing several material combinations published within the last years.
Driven by the superior power consumption of ReRAM in compari-
son with flash memory, Panasonic released in 2013 the world’s first
mass-production of an 8-bit microcomputer with 180 nm node,
64 kB embedded ReRAM for portable healthcare products. In the
meantime, Panasonic has succeeded with the fabrication of proto-
type ReRAM in the 40 nm node and is striving to enter the mar-
ket for IoT application in the near future.41 Within this context,
it is important to note that the leading foundry TSMC announced
to offer embedded ReRAM in combination with 22 nm FinFET
technology in 2019. If this holds true, it would be a considerable
breakthrough for embedded memory products based on ReRAM
technology.

Although impressive advances have been obtained so far,42 the
storage capacity of ReRAM is still below most of the competing
memory technologies such as phase change memory (PCM), spin-
torquemagnetic random accessmemory (STT-MRAM), andNAND
flash.40

IV. PROSPECTS

Information technology of the near future will be challenged
by the need to provide ubiquitous computing across billions of
devices and sensors as well as storage and processing for tremendous
amounts of data, while being strongly constrained by energy supplies
and cooling to operate it all. Memristive devices have the potential
to impact these technology challenges across many dimensions. This
includes substantial, although evolutionary, improvements develop-
ing higher density and higher performance data storage systems.
Higher performance, 3D integrated ReRAM could extend the capa-
bilities of today’s solid-state drives, while bringing nonvolatility and
higher data densities to higher memory layers could improve many
application areas. Both of these would extend the lifetime of today’s
von Neumann computing systems. There is also the prospect to
enable more revolutionary architectures that substantially reduce
or eliminate most data movement, hence increasing perfor-
mance and reducing energy consumption substantially. Computing
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near-memory or in-memory is enabled by not only the nonvolatility
of memristive devices but also their high-density integration with
CMOS logic and processing elements. Looking even further out,
there is interest among researchers in the suite of novel function-
alities possible in memristive devices and their ability to play roles
typically associated with biological synapses, neurons, axons, and
other known elements of the nervous system. This section provides
an outlook for how memristive devices may play various roles in
pushing computing technology across time scales from today, the
near future, and to much longer term. The range of computing and
storage opportunities, along with materials challenges, is captured in
the table in Fig. 2, while the connection to the intrinsic memristive
device properties is illustrated in Fig. 3.

A. Evolutionary: Nonvolatile and high density memory

There are many orders of magnitude in performance that sep-
arate dynamic random access memory (DRAM) from the slower
primary storage devices such as hard disk drives and solid state
drives (SSDs).43 The holy grail for the memory industry has been
to develop a new memory, a “storage class memory” (SCM), fill-
ing the gap from a performance and price-per-byte perspective.
There are opportunities both to improve current solid-state drives
with higher performance, as well as to bring nonvolatility to already
high performance memories. In the former category, the goal has
been to out-perform NAND flash technology with lower laten-
cies in write and read times, add the feature of byte-addressability,
as well as improvements in endurance that currently limit flash.
Meanwhile, nonvolatile persistence is provided, same as in flash,
with the aim of achieving similar data densities as well. How-
ever, as a result of the breakthroughs in 3D NAND flash tech-
nology with densities up to terabit on a single chip, much of
the industry has considered it very challenging to displace flash’s
incumbency in solid state drives. Therefore, the majority of IT
related companies are currently considering ReRAM for embedded
memory applications rather than for stand-alone memories. The
chance that a 2D ReRAM approach will be able to compete on the

market is becoming increasingly unlikely and highly sophisticated
3D approaches such as the 3D X-point technology of Intel and
Micron based on PCRAM will have to be developed for ReRAM in
order to compete.

The development of a SCM with ReRAM remains attractive,
as indicated in Fig. 2, and aims to bring higher total random access
memory available compared to pure DRAM, while also introduc-
ing nonvolatility. It is important to note that all stand-alone mem-
ory approaches discussed here will continue to undergo the most
aggressive pitch scaling and cost reduction pressures among all
possible data storage applications. Nonetheless, for many compu-
tational workloads, the increased nonvolatile data available from
an SCM enable applications to keep local and fast access to data
instead of fetching from an SSD or even slower hard disk drives.
With adjustments to the overlying software to exploit the SCM
persistence, performance gains of 50× are possible.44 In order for
these higher performance SSDs or nonvolatile SCMs to be real-
ized, improvements and engineering are required in the ReRAM
technology.

B. Revolutionary: Advanced and neuromorphic
architectures

Even as memristive devices may enable the creation of extra
tiers between memory and storage, it has become clear that this
cache/memory/storage hierarchy itself cannot fully address the bot-
tlenecks in today’s computing systems. The challenge is that mem-
ory performance growth has not kept pace with that of processors.
This gap is referred to as the “memory wall,”45 and it is exacer-
bated by the von Neumann arrangement that separates the central
processing unit (CPU) and memory. The data movement between
these units costs time and energy, and new architectures that can
reduce such movement are desired. Thus, a revolution is gaining
steam in the computing architecture community to overturn von
Neumann’s layout wherever possible. As noted by Hennessy and
Patterson in their Turing award lecture,46 the fact that exponen-
tial gains in computing performance have slowed from a doubling

FIG. 2. Prospects and opportunities for memristive devices in computing technologies, spanning near and far terms.
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FIG. 3. Memristive devices offer at least three main types of computing appli-
cations: in-memory computing, analog computing, and nonlinear state dynam-
ics. In-memory operations utilize the nonvolatility and ability to couple compute
operations with the data, such as through Ohm’s law to perform multiplica-
tion. Extremely data-heavy applications, such as artificial neural networks, take
advantage of this by reducing the amount of data movement compared to out-
of-memory (von Neumann) architectures. Analog computing leverages the large
dynamic range of conductance, and the ability to finely tune to stable intermedi-
ate conductance values. This can be utilized, for example, in constructing analog
circuits that solve linear systems of equations in constant rather than polyno-

mial time.62 Finally, the history-dependence intrinsic to memristors is described
by Chua’s coupled differential equations and drives highly nonlinear dynam-
ics and the capability for “local activity.” This can be used in spiking neural
networks, cellular nonlinear networks, random number generators, and chaotic
oscillators.

every 1.5 years to currently doubling every 20 years (or more) opens
up a “new golden age for computer architecture.” The other fuel
to this revolution is the explosion in several types of computing
workloads for which the traditional computing architecture is poorly
suited, namely, artificial neural networks (ANN), and especially
the large deep learning47 networks that have matched or surpassed
human level capabilities in such areas as image and audio processing,
language translation, and several competitive strategy games. As
these networks grow in size, the computing resources to train and
deploy them grow well beyond what is reasonable with current
computing systems.48

Memristive devices offer many key advantages that may be
exploited in novel architectures to achieve higher performance and
enhanced capabilities. Figure 3 gives a high-level overview for three
of the key memristive properties that offer novel computing advan-
tages, as well as some example application areas that exploit these

properties. These are not comprehensive but meant to illustrate a
connection between intrinsic device properties and some important
application areas. As noted above, the main challenge in the present-
day von Neumann layout is the dependence of processing units on
data arriving through the bus from a distant memory. Near-memory
computing approaches aim to supply higher density and higher per-
formance memory as close to the processing units as possible.49 This
has the benefit of minimizing the changes to current computing sys-
tems, focusing on high density memory integration, but not fully
addressing the memory wall. In contrast, efforts at in-memory com-
puting50–53 seek to colocate computing with memory and thereby
eliminate the von Neumann bottleneck. The gains can be tremen-
dous, but this involves changes to both the memories and the com-
puting units themselves, with a method to couple the data storage
with the data processing. Memristive devices, where data are stored
in the conductance of a cell and may be reprogrammed depending
on the voltage applied, offer many options54 to provide such cou-
pling. This is illustrated in the leftmost oval of Fig. 3 along with
some applications. It becomes possible, for example, for write oper-
ations performed on one memristor cell to depend on the conduc-
tance of another, for example, thereby performing “stateful” logic
operations.55–57 This takes advantage of the nonvolatility of mem-
ristive devices and can bring power savings, but such applications
also favor reprogramming endurances to be far beyond what has
been demonstrated to date. Other forms of in-memory computing
can take advantage of the analog nature of memristive devices, illus-
trated in the rightmost oval of Fig. 3. These can also operate in a
“read” mode, dramatically reducing the endurance requirements.
An example is performing important multiplication and addition
(or MAC) operations directly in large resistive arrays. Such oper-
ations are costly in the digital domain, but massive parallelism is
possible by taking advantage of Ohm’s law to perform the multi-
plication between a set of input voltages and programmed conduc-
tances in an array and leveraging Kirchoff’s law for summing the
currents. This can perform vector-matrix multiplications in a sin-
gle compute cycle, which are the dominant operations performed
in modern neural networks.58–61 Another exciting example is solv-
ing linear systems of equations and eigenvalue/eigenvector problems
directly in analog crossbar arrays in constant time,62 even surpassing
quantum approaches. Other implementations use the nonvolatil-
ity of memristive devices to lower the power in building content
addressablememories,63 which have applications in network routing
and security. Finally, by also leveraging the dynamics and repro-
grammability of memristive devices (bottom oval in Fig. 3), it is
possible, for example, to accelerate the costly training of large neu-
ral networks. Here, the full back-propagation algorithm is accel-
erated dramatically, including the tuning of the synaptic weights
that are encoded in memristive devices, as well as the above matrix
computations.64–67

While significant progress has been made using modern neu-
ral networks to solve many important classification tasks, there
remains a significant distance to cover to match the feats per-
formed by humans and other mammals in processing visual, audi-
tory, tactile, and other sensory input in real-time. Responding
to novel and unpredictable environments by enacting complex
movements is unparalleled by artificial systems. Simultaneously,
such biological computations and actuations are performed while
operating well below 100 Watts of power consumption. Thus, there
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are significant efforts to understand enough of how brains compute
to leverage this know-how in designing future “biologically inspired”
systems. It may result that altogether new computing approaches
are developed that do not strictly follow the path nature has fol-
lowed. Nonetheless, mimicking many of the currently known func-
tionalities and elements in biological nervous systems, including
neurons, axons, synapses, etc., is of interest at a bare minimum in
order to improve our understanding. Simulating the hundreds of
billions of neurons (with hundreds of different neuron types) and
the 1000–10 000 synapses for each neuron is far beyond the capa-
bility of today’s supercomputers. Yet, this tremendous connectivity
and scale are believed to be a crucial aspect of the computing power
in biological systems. Part of the excitement in memristive devices
stems from the strong analogies between the biological computing
elements and memristors.68,69 In addition to the clear analogies to
synapses,70 the spiking neuronlike behavior is also observed,71 as
well as axonlike transmission of signals72 and the diffusive interac-
tions with neurotransmitters.73,74 Many of these functionalities stem
from the nonlinear state dynamics in memristive devices (bottom
oval in Fig. 3), and while there is a rich history in implementing
such functionalities in CMOS elements,75 memristive devices offer
a promising approach that may take orders of magnitude fewer ele-
ments to achieve similar functionality. Additionally, many of the
device challenges such as variability and stochastic responses may
not be significant obstacles when mimicking the highly unreliable
neuronal firing, for example. Such randomness may, in fact, pro-
vide a valuable computing resource, allowing the system to explore
a larger optimization landscape, avoid overfitting, and enable gen-
eralization and abstraction. It is notable that true random num-
ber generation can be expensive to achieve in digital systems, yet
inexpensive and fast in memristive systems.76,77 There are many
open questions in the area of biophysical computing, and memris-
tive devices offer the potential to build scaled-up emulation plat-
forms that would otherwise take orders of magnitude more CMOS
elements to construct. Whether such emulation platforms would
be trained by interacting with environmental stimulus, or would
be cloned based on other trained systems, re-programmability and
yield would still be critical properties of the memristive devices. To
reach the tremendous network sizes with hundreds of billions of
neurons and several orders of magnitude more synapses, incredi-
ble densities using 3D integration will be critical, along with low
power enabled by low current operation. On the other hand, many
of the key requirements for shorter term technological opportu-
nities, such as endurance and even multilevel capabilities, may
be significantly relaxed. This is an exciting prospect as it means
that conquering many of today’s challenges in memristive devices
may be the hardest ones faced, with the rewards being not just
improved memories and storage but also higher performance com-
puting and the ability to control and understand biological cognition
itself.

V. CHALLENGES

For all fields of applications, further improvements in ReRAM
technology are required. Most importantly, the cell-to-cell and
cycle-to-cycle variabilities must achieve high volume manufac-
turing thresholds to be commercialized. While ReRAM tech-
nology shows overall favorable scaling down to the single-digit

nanometer dimensions of CMOS nodes, however, it has to
be clarified if these dimensions may exacerbate the impact of
atomic-scale sources of variability. Higher data densities must be
achieved through 3D fabrication approaches, as well as nonlin-
ear selector devices that eliminate sneak path currents.78 Con-
trolled engineering and processing as well as gaining control over
ionic motion on the nanoscale will be required to meet these
challenges.

A. Handling trade-offs

Although best performance has been shown for memristive
devices with respect to switching speed, low power dissipation,
scalability, endurance, and retention, these properties have not been
shown on the same devices. For themost common filamentary VCM
and ECM systems, there exist several trade-offs, such as between
retention and endurance.39 This is related to the fact that devices
with softly formed filaments and comparably low RON/ROFF ratios
are more sensitive to slight variations in the number of oxygen
vacancies and thereby can show a worse retention. In turn, devices
with strongly formed filaments and large RON/ROFF ratios suffer
much more from repeated cycling than small filaments. It is impor-
tant to note that reliability issues such as the switching voltage
variability and failure rates are improved while scaling down the
devices in the submicrometer range down to 25 nm.79 However, it
is conceivable that further shrinking to the scale of a few nanome-
ters may exacerbate atomic-scale sources of variability. In general,
area dependent VCM systems show a much smaller cycle-to-cycle
variability due to the lack of a stochastic filament formation pro-
cess and a less sharp SET process which could be advantageous
to establish analog switching. However, due to the lack of Joule-
heating in these systems, the RON/ROFF ratios are on the order of
10 or even lower. Moreover, due to the less pronounced influence
of Joule-heating, the switching kinetics are expected to be less non-
linear, possibly resulting in inferior retention times and switching
speeds compared to filamentary systems. This might also hold true
for the softly addressed intermediate states of filamentary analog
switching devices. Some of the trade-offs could possibly be elimi-
nated in the future by exploring novel materials and/or novel mate-
rial combinations. However, the different applications mentioned in
Sec. IV have very different requirements with respect to variability,
switching speed, retention time, and endurance (see the summary in
Fig. 2). It is therefore more straight forward to tailor the materials
stacks to the specific application instead of striving toward a sin-
gle materials solution for all applications. As mentioned in Sec. IV,
rather than fighting variability, the randomness of the ionic switch-
ing process of memristive devices may be employed to enhance
the computational abilities of certain neural networks. Moreover,
due to an endurance-retention trade-off, devices with poor reten-
tion may offer better endurance, which is key for the write-intensive
training phase. Once the neural network converges, information
can be stored more permanently, either through stronger program-
ming80,81 or by employing different materials such as the choice in
electrode.81 It has furthermore been shown that the time constants of
volatile VCM-type devices may be tailored by engineering the elec-
trode interfaces.82–84 Tailoring the volatility of memristive devices
offers the ability to match varying time constants needed in artifi-
cial neural networks or to toggle between synapselike or neuronlike
functions.81
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B. Gaining control over ionic motion on the nanoscale

As a result of the need for ultimate scaling and improved reli-
ability in devices which are based on the motion of ionic species, it
will be mandatory to gain control over ionic motion on the atomic
scale. This comprises the control over (i) which ionic species move
in a given materials stack, (ii) how fast they move during the write
procedure, and (iii) how long they stick to their position during
read-out. This will require a control of the chemical composition,
the electrostatic potentials, and the temperature at the atomic scale,
resulting in a well defined redox-reaction rate between the differ-
ent involved species. To this end, a rational stacking of building
bricks of different materials (see the sketch in Fig. 4) has to be
employed to tailor the energetic landscape of ionic defects and their
motion on the one hand. On the other hand, the metal electrodes
and/or their interfaces have to be tailored in order to provide both
sufficient Joule heating and solubility of the active ionic species.
Figure 4 summarizes a selection of building brick material’s param-
eters which have to be combined within the memristive device stack
to tailor the device properties such as switching speed, resistance
values, switching, and forming voltages as well as retention and
endurance. It is important to note that the material’s properties
do not combine in a linear fashion but have strong nonlinear cou-
plings that require a system-whole analysis after exchanging a single
building brick.

Systematic variations of the material’s parameters such as the
oxygen vacancy concentration of the oxide,85 the difference in oxy-
gen formation energy of the interface oxide,25 and the mobility of
certain ionic species83 have been performed and their impact on the
forming voltages, the switching speed, and certain devices failures
has been identified. Although it is intuitively expected that a high ion
mobility is beneficial for fast switching memristive devices, it will at
the same time result in short retention times if the underlying rate-
determining step in the switching process lacks the required strong
nonlinearity to solve the voltage-time-dilemma. A rational design
of device properties as proposed in Fig. 4 is furthermore impeded
by the fact that the exact material’s parameters in a given configura-
tion are often unknown since thematerial’s properties in ultrathin or
even amorphous layers might strongly differ from their bulk values.
Even the defect concentration in thin films grown at nonequilibrium

FIG. 4. Sketch of a rational design of memristive device stacks: materials (oxides
or metals) with different properties have to be combined in order to tailor the ionic
motion on the nanoscale.

conditions is far away from the values of bulk materials in thermal
equilibrium, and confinement effects might come into play. There-
fore, strong efforts are needed to combine systematic experiments
with multiscale modeling ranging from ab initio86 to continuum
simulations of materials. Finally, in order to implement memris-
tive devices into the different computing approaches mentioned in
Sec. IV, suitable compact models are requisite to enable a reliable
circuit design.

VI. CONCLUSIONS

Redox-based memristive devices have the potential to be
employed for a plethora of applications in information technol-
ogy. This includes evolutionary improvements developing higher
density and higher performance data storage systems to extend
the lifetime of today’s von Neumann computing systems. Besides
this, they will enable revolutionary computing architectures such
as in-memory computing and bio-inspired, neuromorphic com-
puting. ReRAM technology has strongly advanced over the past 5
years. Sub-nanosecond switching, high integration densities, and
first approaches for 3D stacking have been demonstrated for proto-
typical ReRAM systems, and no fundamental limits to use ReRAM
for highly integrated data storage applications have been identified
so far. However, there exist several trade-offs which could be elimi-
nated in the future by exploring new materials and/or new material
combinations. However, one should keep in mind that industrial
groups have focused so far on materials which have already been
introduced in their CMOS-lines, such as HfO2 and Ta2O5. There-
fore, a considerable threshold of performance improvement has to
be overcome in order to justify the introduction of novel, more
complex materials. Besides this, a large amount of processing and
integration issues, in particular, with respect to 3D integration, will
have to be addressed in the future for ReRAM to become compet-
itive with both conventional and alternative emerging data storage
technologies.
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