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Abstract

The liver is characterized by unique regenerative properties to restore its mass and 
function after a partial loss. Hepatic regeneration arises after resection or following acute 
and chronic injuries. Resection and acute liver damage normally induce a regenerative 
process characterized by phenotypic fidelity, in which each cell type promotes its own 
replication and replacement. This process fails in chronic liver damage, where trans-
differentiation of parenchymal cells or activation of facultative progenitors occurs. Both 
liver resection and acute/chronic damages alter redox homeostasis, as a consequence of 
blood flow changes, hypoxia, metabolism modification, and activation of inflammatory 
response. Even though formerly described as ‘oxidative stress’, altered redox homeostasis 
leads to the fine regulation of several pathways involved in liver regeneration, including 
the proliferation of parenchymal cells, trans-differentiation, and activation of facultative 
progenitors.
Several redox-dependent transcription factors and pathways implicated in the 
regenerative process of the liver were described, but pre-clinical experiments using 
different antioxidants were not fully conclusive. Even though accurate study designs 
to define appropriate dosages, treatment duration, and routes of administration 
are required, modulation of redox-dependent molecular pathways to enhance liver 
regeneration is even more intriguing. Preliminary studies focused on the identification of 
these targets will pave the way for viable therapies to be tested in clinical trials.

Introduction

The liver is an extraordinary organ dedicated to 
the preservation of whole-body homeostasis. Liver 
parenchyma is composed mainly of hepatocytes and 
cholangiocytes, two epithelial cell types that differentiate 
from common progenitors named hepatoblasts. 
Hepatocytes control energy metabolism, biosynthesis of 
molecules, and clearance of endogenous and exogenous 
toxic compounds, while cholangiocytes structure the 
biliary system (Rui 2014, Stanger 2015). Hepatocytes and 
cholangiocytes are also referred as parenchymal liver cells, 
constituting ~80% of liver mass; the remaining ~20% is 

composed of nonparenchymal liver cells, which include 
mainly hepatic stellate cells (HSCs), Kupffer cells (KCs), 
and liver sinusoidal endothelial cells (LSECs) (Forbes 2014).

The liver is provided with a special regenerative 
capacity (Fig. 1). Even though the liver is normally 
characterized by a low cell turnover, it is able to 
re-establish its original mass and function after damage 
(Michalopoulos 2007). This process is a very hot topic 
for both basic and clinical sciences, being accurately 
regulated and occurring in a very short time after 
resection of a definite mass amount, not only in animal 
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models (partial hepatectomy (PHx)) but also in humans 
(partial liver transplantation (PLTx)) (Fausto et  al. 2006, 
2012). Hepatic resection or acute toxic injury are followed 
by the activation of regenerative activities characterized 
by phenotypic fidelity that is, replication of every cell 
through local cell proliferation (Michalopoulos 2007). 
Nevertheless, a failure of endogenous proliferation, which 
occurs mostly during persistent hepatic injury, stimulates 
alternative regenerative pathways, including activation 
of liver progenitors and/or trans-differentiation of 
parenchymal liver cells (Michalopoulos & Bhushan 2021).

Damages inducing liver regeneration often induce 
alterations in redox balance, which may exert an impact 
on the regenerative process after injury (Kamata et  al. 
2005, Schwabe & Brenner 2006). Although the signaling 
pathways involved in both the ‘canonical’ and the 
alternative regenerative pattern are not completely 
characterized, several of them may be redox-dependent 
and may be of interest for both redox biology and redox 
medicine.

This review aims to summarize the redox-dependent 
mechanisms which may be involved in hepatic 
regeneration. Description of basic details of redox biology 
is beyond the scope of this review since several outstanding 
papers on this topic are available (Serviddio et al. 2013, Sies 
2015, Flohe 2020, Sies 2020). After a concise presentation 
of the redox reactions and balance occurring in the liver, 
we will represent the recent knowledge of the role played 
by reactive species and redox signaling in the modulation 
of hepatic regenerative homeostasis, pointing out the most 
important clinical perspectives.

The hepatic redox homeostasis

The liver accounts for the metabolism of carbohydrates, 
lipids, and ammonia, biotransformation of endogenous 
and exogenous toxic compounds, and bile synthesis. The 
hepatic parenchyma is specialized through metabolic 
zonation associated with oxygen supply, to let different 
metabolic pathways proficiently operate in parallel, and 
to reduce futile cycles (Jungermann & Kietzmann 1996). It 
is worth to note that proliferating hepatocytes are mostly 
equidistant from the central and the portal vein (i.e. 
midlobular), while periportal and pericentral hepatocytes 
are not proliferating (Minocha et al 2017). Gene expression 
patterns and enzyme distribution in zonation are dynamic 
and regulated by not only nutrients, hormones but also 
oxygen and reactive species (Kietzmann 2017). Metabolic 
reactions in liver cells are modulated by the following:

• subcellular organelles – most oxidative reactions 
take place in mitochondria and peroxisomes, while 
reductive reactions occur in the cytosol (Hinzpeter 
et al. 2017);

• coenzyme availability – the couple oxidized/reduced 
NAD (NAD+/NADH) in catabolic (oxidative) reactions, 
and the couple oxidized/reduced NAD phosphate 
(NADP+/NADPH) in anabolic (reductive) reactions 
(Xiao et al. 2018);

• cellular AMP/ATP ratio – increased ATP utilization and/
or decreased ATP production promote catabolism via 
AMP‐activated protein kinase (AMPK); on the contrary, 
high ATP availability inhibits AMPK and switches 
metabolism toward anabolism (Foretz & Viollet 2011).

Figure 1
The liver may regenerate through several 
mechanisms. (A) Hepatic resection activates a 
process characterized by phenotypic fidelity, that 
is, replication of every cell through local 
proliferation. (B) Chronic hepatic injury triggers 
alternative regenerative processes, trans-
differentiation of parenchymal liver cells (upper 
panel), or differentiation of progenitors toward 
adult parenchymal cells from a regenerative niche 
(lower panel).
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Origin of reactive species in the liver

In this review, the term ‘reactive species’ will refer to both 
reactive oxygen and nitrogen species. In the liver, reactive 
species are produced by several metabolic reactions 
which take place in different cell types and subcellular 
compartments.

In the cytosol of hepatocytes, xanthine oxidoreductase 
(XOR) is involved in the last two steps of purine catabolism, 
leading to the oxidation of hypoxanthine to xanthine, 
which is in turn oxidized to uric acid (Battelli et al. 2016). 
XOR mostly acts as a dehydrogenase in the human liver, 
transferring electrons to NAD+; nevertheless, XOR can 
be converted to an oxidase isoform by several stimuli, 
transferring electrons to O2 with the production of reactive 
species (Stirpe et al. 2002).

Through the respiratory chain complexes, 
hepatocellular mitochondria transfer electrons to NAD+, 
flavin mononucleotide, and flavin adenine dinucleotide 
(FAD), which act as carriers to reduce O2 in a multistep 
process linked with the production of reactive species 
(Zorov et al. 2014). Liver mitochondria normally produce 
13–15% of hepatic H2O2 by consuming nearly 2% of O2 
(Boveris et al. 1972, Zorov et al. 2014). Complexes I and III 
are the most important mitochondrial sources of reactive 
species, even though Complex II has also been described as 
a facultative producer (Moreno-Sanchez et al. 2013, Quinlan 
et al. 2013). Other mitochondrial sources of reactive species 
include monoamine oxidases A/B (Pizzinat et al. 1999) and 
cytochrome b5 reductase (Nishino & Ito 1986) in the outer 
membrane, α-glycerophosphate dehydrogenase (Mracek 
et  al. 2009), dihydroorotate dehydrogenase (Forman 
& Kennedy 1975), the electron transfer flavoprotein 
ubiquinone oxidoreductase (Watmough & Frerman 2010), 
proline dehydrogenase and the branched-chain α-ketoacid 
dehydrogenase complex (Oldford et al. 2019) in the inner 
membrane, and α-ketoglutarate dehydrogenase and 
pyruvate dehydrogenase in the matrix (Oldford et al. 2019).

Peroxisomes are organelles involved not only in fatty 
acid catabolism, metabolism of pentose phosphates and 
D-amino acids but also in alternative alcohol oxidation and 
NAD+ regeneration through malate dehydrogenase and/or 
lactate dehydrogenase (Gronemeyer et al. 2013). XOR and 
the inducible isoform of nitrate synthase are also situated 
in peroxisomes (Angermuller et al. 1987, Tikhanovich et al. 
2013). In the liver, peroxisomes account for about 20% of 
O2 consumption and 35% of H2O2 production, generating 
more reactive species than mitochondria (Fransen et  al. 
2012). H2O2 can promptly diffuse through the peroxisomal 
membrane by a porin-like channel or released in the 

cytoplasm by crystalloid core tubules (Fritz et  al. 2007, 
Rokka et al. 2009).

The endoplasmic reticulum (ER) achieves crucial tasks 
in hepatocytes, including protein synthesis, trafficking 
and folding, calcium storage, and lipid, steroid, and 
xenobiotic metabolism (Liu & Green 2019). To oxidize 
sulfhydryl groups, protein folding needs a high oxidized 
(GSSG) to reduced (GSH) glutathione ratio in the ER lumen 
(Chakravarthi & Bulleid 2004). The protein disulphide 
isomerase (PDI) and ER oxidoreductin 1 (ERO1) are 
involved in the electron transport for protein folding: PDI 
directly accepts electrons, while ERO1 transfers electrons 
to O2 as final the acceptor, producing ~25% reactive species 
in hepatocytes (Malhotra & Kaufman 2007, Csala et  al. 
2010). The microsomal monooxygenase system, which 
includes fatty acid desaturase, squalene monooxygenase, 
and 7-dehydrocholesterol reductase (involved in lipid and 
steroid metabolism), is one of the most important sources of 
reactive species in the ER. Xenobiotic metabolism involves 
phase I monooxygenation reactions (by cytochromes P450 
and the flavoprotein NADPH-cytochrome P450 reductase) 
and phase II conjugation reactions. The electron transfer 
from NADPH to P450 in the monooxygenation reaction 
shows a leakage that promotes the production of reactive 
species (Zeeshan et al. 2016). An additional leakage in the 
electron transfer process which causes the production 
of reactive species may occur via the NADH-cytochrome 
b5 reductase in fatty acid desaturation (Samhan-Arias & 
Gutierrez-Merino 2014).

Lysosomes are vital for autophagy, a particularly 
preserved recycling mechanism consisting of the 
removal of cellular elements. These organelles maintain 
hepatocellular energy balance by modulating metabolic 
enzymes, mitochondria quality, and substrate availability 
(Madrigal-Matute & Cuervo 2016). Lysosomes are 
protective against an excess of reactive species by removing 
injured mitochondria, unfolded proteins, and toxic cellular 
compounds (Rabinowitz & White 2010, Pohl & Dikic 2019). 
Lysosomes include an electron transport chain comprising 
ubiquinone, reduced by cytosolic NADH with O2 as the 
final electron acceptor; acidification of the lysosomal 
matrix induces the partial reduction of O2, generating 
reactive species (Gille & Nohl 2000, Nohl & Gille 2002).

Hepatic NADPH oxidase and NO synthases (NOS) are 
additional sources of reactive species. NADPH oxidase is 
located in both parenchymal and nonparenchymal liver 
cells (De Minicis et al. 2006). KCs present with a phagocytic 
form of NADPH oxidase, able to produce high amounts of 
reactive species (Katsuyama 2010). HSCs are provided with 
a non-phagocytic NADPH oxidase isoform, able to produce 
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mild quantities of reactive species (Bataller et  al. 2003, 
Adachi et al. 2005, Zhan et al. 2006). Hepatic NO synthases 
are constitutive (eNOS) in LSECs, and inducible (iNOS) in 
hepatocytes, KCs, HSCs, and LSECs. Production of NO by 
eNOS is determinant to maintain the hepatic blood flow 
(Diesen & Kuo 2010). The role of iNOS in the liver is very 
complex since it can be regulated by several cytokines 
leading to the formation of reactive species with both 
protective and harmful effects (Taylor et al. 1998, Diesen & 
Kuo 2010).

Antioxidants in the liver

The liver disposes of several antioxidants to neutralize the 
excessive production of reactive species and to preserve 
redox balance. Hepatic endogenous antioxidants may be 
classified asn enzymatic and non-enzymatic. Endogenous 
antioxidants work as a complex network of redox reactions 
between the cytosol and subcellular compartments.

Enzymatic antioxidants include superoxide dismutase 
(SOD), catalase (CAT), glutathione reductase (GR), 
thioredoxin reductase (TRXR), glutathione peroxidase 
(GPX), and peroxiredoxin (PRX). SOD isoforms include 
Cu/Zn (SOD1 and SOD3) or Mn (SOD2) in their active 
site and account for the dismutation of superoxide anion 
(Fukai & Ushio-Fukai 2011). Cu/Zn-SOD is mostly located 
in the cytosol and lysosomes, while Mn-SOD is mostly 
sited in mitochondria (Okado-Matsumoto & Fridovich 
2001). Among human tissues, the liver expresses the 
highest quantity of both CuZn-SOD and Mn-SOD 
(Marklund 1980). CAT is an iron-dependent peroxidase 
which transforms two H2O2 into two H2O and one O2. 
CAT activity in the human body is highest in the liver 
and erythrocytes (Goyal & Basak 2010). The hepatic GR, 
cytosolic and mitochondrial TRXRs (TRXR1 and TRXR2, 
respectively) use NADPH to reduce disulfides to dithiols. 
In the reaction catalyzed by GR, the dithiol reduces GSSG; 
as selenoproteins, TRXRs form selenothiol pairs which 
reduce TRX (Miller & Schmidt 2019). GPX isoforms are 
selenium-dependent peroxidases which are oxidized by 
the conversion of H2O2 into H2O or organic hydroperoxide 
(ROOH) to corresponding alcohol (ROH) and are 
reduced again by GSH. Eight GPX isoforms are reported 
in humans, but only GPX1, GPX2, GPX4 (phospholipid 
hydroperoxidase), and GPX7 are located in the liver 
(Toppo et  al. 2008). GPX1, GPX2, and GPX7 target H2O2 
in the cytosol, mitochondria (GPX1), extracellular space 
(GPX2 and GPX7), and endoplasmic reticulum (GPX7), 
while GPX4 targets ROOH in the cytosol, mitochondria, 
and nucleus (Toppo et  al. 2008). The six isoforms of PRX 

(thiol hydrolases) can be oxidized by H2O2 or ROOH, being 
reduced again by TRX. The human liver expresses all PRX 
isoforms, targeting both H2O2 and ROOH in the cytosol 
(PRX1, PRX2, PRX5, and PRX6), mitochondria (PRX3 and 
PRX5), extracellular space (PRX4), nucleus (PRX5), and 
endosomes (PRX3 and PRX6) (Rhee et al. 2018).

Non-enzymatic antioxidants include GSH, 
thioredoxin (TRX), and ubiquinone (UQ). GSH, the 
most concentrated hepatocellular antioxidant, is a 
tripeptide with a sulfhydryl group in a cysteine residue, 
which exerts its reductant activity on several oxidized 
enzymes and antioxidants (Kretzschmar 1996). TRX is a 
tetrapeptide with two sulfhydryl groups in two cysteine 
residues exposed to reversible redox reactions by the 
NADPH‐dependent thioredoxin reductase. The reduced 
form of TRX is necessary to reduce oxidized peroxiredoxin, 
playing a determinant role in the hepatic redox 
homeostasis (Okuyama et al. 2008). UQ (or coenzyme Q) 
is contained in all liver cell types and, as lipophilic, is sited 
within several cell membranes, acting as an antioxidant 
in its reduced form (ubiquinol, UQH2). However, it can 
be partially reduced (ubisemiquinone, UQ•-), and the 
property to go through three different redox states allows 
it to act as an electron carrier from complexes I and II to 
complex III in the mitochondrial respiratory chain (Wang 
& Hekimi 2016). UQ is mostly concentrated in the Golgi 
vesicles, followed by mitochondria and lysosomes (Kalen 
et al. 1987).

Hepatic regeneration

The liver is provided with exceptional features of 
regeneration triggered by resection as well as different 
injuries (metabolic, viral, toxic, genetic, or immunologic). 
Both liver resection and acute/chronic injuries followed 
by organ regeneration are characterized by perturbations 
in redox homeostasis. In a healthy liver, functional cells 
replace the loss of liver mass according to the phenotypic 
fidelity (Michalopoulos 2013). Nevertheless, a continual 
or acute liver injury may impair the replicative capacity 
of mature liver cells, triggering alternative pathways 
of regeneration. One of these pathways includes the 
activation and differentiation of hepatic progenitor cells 
(HPCs, also termed oval cells in rodents) via ductular 
reaction (Espanol-Suner et  al. 2012). Another pathway 
is characterized by trans-differentiation of hepatic 
parenchymal cells, that is, hepatocytes and cholangiocytes 
act as facultative stem cells for each other (Michalopoulos 
& Khan 2015).
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Regeneration induced by hepatic resection

Liver parenchymal cells are mitotically quiescent (G0 
state), but a loss of liver mass induces quick proliferation of 
hepatocytes. Current understanding of liver regeneration 
derives from PHx in rodents, which consists of surgical 
removal of 70% liver mass, or toxin-induced hepatic injury. 
Liver regeneration following PHx classically recognizes 
three phases (immediate/early events, proliferation, and 
termination; Fig. 2), regulated by orchestrated molecular 
and cellular pathways which induce activation of 
nonparenchymal cells and proliferation of the remnant 
adult parenchymal cells (Michalopoulos & Bhushan 2021).

Increase in portal venous flow is the first event in 
the hepatic regenerative process, causing hemodynamic 
changes, which include enlarged sinusoidal diameter, 
increased fenestration, and widening of the intercellular 
spaces (Morsiani et  al. 1998). These changes promote 
shear stress on LSECs, which in turn release NO-inducing 
cell proliferation and angiogenesis through vascular 
endothelial growth factor (VEGF) (Carnovale & Ronco 
2012). Furthermore, portal venous flow holds several 

signaling factors from extrahepatic organs, such as EGF, 
insulin, glucagon, and bile acids (Michalopoulos & 
Bhushan 2021). Finally, increased portal venous flow may 
cause hepatic hypoxia, with consequent activation of the 
hypoxia-inducible factors (HIFs), additional promoters of 
liver regeneration (Maeno et al. 2005).

An early event following PHx is the activation of a 
urokinase-type plasminogen activator, which in turn 
activates metalloproteinases and leads to the breakdown 
and remodeling of extracellular matrix (ECM) (Kim 
et  al. 1997). This results in the activation and release of 
hepatocyte growth factor (HGF) that, in association with 
EGF and other signaling molecules, promotes the Ras/Raf/
MEK/ERK and the phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K)–protein kinase B (PKB)–mammalian target 
of rapamycin (mTOR) pathways, with the transition from G1 
to S and from G2 to M phase in proliferating parenchymal 
cells (Lindroos et al. 1991, Fausto et al. 2006). The next early 
event is represented by acute inflammation, with increased 
levels of pro-inflammatory cytokines such as interleukin-6 
(IL-6) and tumor necrosis factor (TNF) and downstream 
activation of Janus Kinase (JAK)/Signal Transducer and 

Figure 2
Regeneration following hepatic resection can be schematized in three subsequent stages: (1) immediate/early events include (i) increased hepatic portal 
flow, with consequent shear stress and hypoxia, leading to the release of vascular endothelial growth factor (VEGF) and nitric oxide (NO), (ii) remodeling of 
the extracellular matrix followed by the release of hepatocyte growth factor (HGF) and epithelial growth factor (EGF), (iii) acute inflammation which triggers 
secretion of interleukin-6 (IL-6) and tumor necrosis factor (TNF); (2) proliferation, characterized by the transition of mitotically quiescent (G0 state) toward 
cycling (G1 state) cells; (3) termination, in during which the integrin-linked kinase (ILK) promotes differentiation and stops proliferation of hepatocytes.
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Activator of Transcription 3 (STAT3) pathway, with 
the transition from G0 to G1 in quiescent hepatocytes 
(Cressman et al. 1995, Blindenbacher et al. 2003).

Proliferation of both parenchymal and 
nonparenchymal liver cells is regulated by a series of 
intracellular and extracellular events, controlled by 
signaling pathways classified according to their effect 
on hepatic regeneration: (i) complete mitogens, whose 
ablation stops the process; (ii) auxiliary/partial mitogens, 
which support the regenerative response, even though their 
ablation does not abolish it; (iii) complex mediators, which 
include multiple elements not completely characterized 
(Michalopoulos & Bhushan 2021). Complete mitogens 
include HGF and its receptor c-MET, EGF, amphiregulin, 
tumor growth factor-α (TGF-α), and heparin-αbinding 
EGF-like growth factor (HB-EGF) as ligands of the EGF 
receptor (Michalopoulos 2007, Michalopoulos 2013). 
Several pathways are recognized as auxiliary/partial 
mitogen signals, including the already cited TNF and IL-6, 
VEGF and its receptors, bile acids and farnesoid-X-receptor, 
noradrenalin and its α1 receptor, and different hormones 
such as insulin, leptin, serotonin, and growth hormone 
(Cressman et al. 1996, Yamada et al. 1998, Han et al. 2008, 
Fafalios et al. 2011, Borude et al. 2012). Complex mitogenic 
signals include the Wnt-β-catenin system, the Hedgehog 
and the Hippo-YAP pathways, and the TGF-β1 signaling 
(Yang et al. 2014, Swiderska-Syn et al. 2016, Patel et al. 2017, 
Oh et al. 2018). In particular, TGF-β1 signaling is a complex 
pathway controlling the hepatocyte cell cycle and response 
to mitogens: TGF-β1 inhibits mitosis so that its removal 
from the liver after PHx is associated with cell proliferation, 
while its subsequent rise is concomitant to termination of 
regeneration (Michalopoulos & Bhushan 2021).

Cessation of liver regeneration is characterized by 
the gradual acquisition of a quiescent phenotype of 
parenchymal cells, accompanied by the renewal of ECM, 
a process regulated by a network of signals between 
hepatocytes and HSCs (Rudolph et  al. 1999). In this 
network, a determinant role is played by the integrin-
linked kinase (ILK), which induces differentiation and 
stops the proliferation of hepatocytes (Gkretsi et al. 2008).

Alternative mechanisms of liver regeneration

Severe or chronic hepatic damage may induce 
hepatocellular senescence, causing a disruption in the 
regenerative mechanisms of liver parenchymal cells 
(Marshall et al. 2005).

In the setting of biliary injury, hepatocytes may 
exhibit phenotypic plasticity and trans-differentiate 

toward biliary-like cells to fix a cholestatic damage (Nejak-
Bowen 2020). Although several mediators may be involved 
in this process, YAP activation plays an essential role 
(Pepe-Mooney et  al. 2019). More than supplying a pool 
of cells to help recover injured bile ducts in severe biliary 
disease, hepatocytes may acquire transient biliary-like 
functionality (Gadd et al. 2020).

Severe hepatocellular injury may induce direct 
conversion of cholangiocytes to hepatocytes (Deng et al. 
2018). Nevertheless, it is possible that less severe injury 
might also trigger de-differentiation of cholangiocytes to a 
bipotent progenitor state, through the so-called ‘ductular 
reaction’ (Sell 1998). The intrahepatic bile ductules (or 
canals of Hering, located between hepatocytes and the bile 
ducts) represent the anatomical site of hepatic regenerative 
niches, in which HPCs expressing both hepatocyte and 
cholangiocyte markers emerge and proliferate in response 
to severe or chronic liver injury (Xiao et al. 2003, Miyajima 
et  al. 2014). HPC activation is accompanied by ECM 
remodeling, macrophage infiltration, and myofibroblast 
stimulation, involving several signaling pathways 
mediated by Wnt/β-catenin, Notch, and TNF-related weak 
inducer of apoptosis (TWEAK) (Jakubowski et  al. 2005, 
Boulter et al. 2012). Moreover, YAP and mammalian target 
of rapamycin complex 1 (mTORC1) signals have been 
recently reported as determinants for HPC activation, 
since these pathways positively modulate the growth of 
cholangiocyte-derived organoids and the proliferation 
of HPCs in mice (Planas-Paz et  al. 2019). Proliferation 
of HPCs is further regulated by several inflammation-
related cytokines (TNF, IL-6) and growth factors (HGF/
MET, VEGF, and TGF-β) (So et  al. 2020). The origin of 
HPCs was defined by lineage tracing studies, which 
described cholangiocytes as sources of HPCs in several 
models (Schaub et al. 2014, Tarlow et al. 2014a, Raven et al. 
2017). However, different lineage tracing investigations 
in chronic liver injury models reported hepatocytes as 
a supplementary source of HPCs through metaplastic 
process (Yanger et  al. 2013, Tarlow et  al. 2014b, Yanger 
& Stanger 2014). Mechanisms supporting hepatocyte 
metaplasia involve both YAP and Notch signaling (Yanger 
et  al. 2013, Yimlamai et  al. 2014, Pepe-Mooney et  al. 
2019). It is worth to note that HPC-dependent hepatic 
regeneration is not effective in repairing the loss of liver 
mass in severe or chronic liver diseases (Weng et al. 2015). 
Furthermore, the persistence of undifferentiated HPCs 
amplifies inflammation and fibrosis (Lukacs-Kornek 
& Lammert 2017). On the contrary, stimulating HPC 
differentiation may simultaneously lead to functional 
parenchymal cells and mitigation of fibrosis.
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Redox control of hepatic regeneration

Although formerly considered harmful, reactive species 
are progressively involved in several cell fate outcomes 
and signalling pathways (Holmstrom & Finkel 2014). In 
the liver, oxidants modulate several processes that may 
impact hepatic regeneration. We will elucidate redox-
dependent mechanisms implicated in liver regeneration 
occurring after PHx/PLTx or in severe or chronic liver 
diseases (Table 1).

Redox involvement in regeneration after 
hepatic resection

Hepatic resection induced by PHx or PLTx is characterized 
by an excess of reactive species, which were mainly 
ascribed to intermittent inflow occlusion (Guerrieri 
et  al. 1999, Senoner et  al. 2019). It is conceivable that 
molecular pathways regulated by reactive species would 
be determinant in the process of regeneration following 
hepatic resection. On the other side, antioxidant 
treatments demonstrated to improve liver regeneration, 
suggesting that high concentrations of reactive species 
might be harmful in this process (Zeng et al. 2015, Cordoba-
Jover et  al. 2019). Thus, current evidence indicates that 
redox homeostasis is a determinant for the outcome of 
hepatic regeneration.

Modification of redox status in immediate/
early events
Liver resection induces significant perfusion changes in 
the organ remnant, which influence hepatic functions via 
immediate modifications in O2 supply, followed by indirect 
alterations of cellular metabolism. Indeed, since hepatic 
arterial and venous blood flow and pressure compensate 
for each other, increase in portal pressure is balanced by 
contraction of the hepatic artery (hepatic arterial buffer 
response) (Eipel et  al. 2010). This means that the liver 
remnant receives a high portal and a low arterial blood 
flow, with reduced O2 tension (Smyrniotis et al. 2002).

NO is a short-lived and highly unstable reactive species 
acting as both intra- and extracellular signaling molecule 
to modulate vasodilation and angiogenesis (Cooke & 
Losordo 2002). Hepatic NO concentration and metabolism 
are increased immediately after resection, associated with 
liver-specific cytokine-dependent overexpression of iNOS 
(Hortelano et  al. 1995). More than regulating vascular 
dynamics in regenerating liver, NO is involved in the 
induction of DNA synthesis, even though it can partially 
promote lipid peroxidation (Carnovale et  al. 2000). It 
is worth to note that NO is not the only redox-related 
mediator for hepatic vasodilation after resection since an 
upregulation of heme-oxygenase 1 (HO-1) by KCs promotes 
the production of carbon monoxide to contribute to 
vasodilation (Eipel et al. 2010).

Table 1 Redox-dependent modulators of hepatic regeneration.

Type and phase of regeneration Regulatory factor Role References

Regeneration following liver 
resection

Immediate/early phase Nitric oxide Vasodilation Carnovale et al. (2000)
Induction of DNA synthesis

HIF-1α Hepatocellular metabolism Maeno et al. (2005)
Angiogenesis Tajima et al. (2009)

HIF-2α Angiogenesis Kron et al. (2016)
Proliferation H2O2 Induction of HB-EGF and 

amphiregulin
Miyazaki et al. (1996)

NF-κB Induction of TNF and IL-6 Mullen et al. (2020)
NRF2 Induction of IL-6 Wruck et al. (2011)

Activation of insulin/IGF-1R Beyer et al. (2008)
Nucleoredoxin Inhibition of Wnt/β-catenin Funato et al. (2006)
FOXOs Inhibition of cell cycle Essers et al. (2005)
HIF-1α Activation of Hedgehog Bijlsma et al. (2008)
TRX1 MST1 inhibition Chae et al. (2012)

YAP activation Wang et al. (2019)
Termination O2

- ILK inhibition Saito et al. (2004)
NO ILK impairment Reventun et al. (2017)

Alternative pathways of liver regeneration NRF2 p21 signaling Fan et al. (2014)
Activation and 

differentiation of HPCs
Bellanti et al. (2021) 

FOXOs, forkhead box O transcription factors; HB-EGF, heparin-binding EGF-like growth factor; HIFs, hypoxia inducible factors; HPCs, hepatic progenitor 
cells; IGF-1R, insulin-like growth factor-1 receptor; IL-6, interleukin-6; ILK, integrin-linked kinase; MST1, mammalian sterile 20-like kinase-1; NF-κB, nuclear 
factor-κB; NRF2, nuclear factor erythroid 2-related factor 2, TNF, tumor necrosis factor; TRX1, thioredoxin-1; YAP, yes associated protein.
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Blood flow changes after liver resection cause local 
hypoxia with consequent activation of the redox-
dependent transcription factors HIFs. HIF-1α is able to 
regulate hepatocellular metabolism and angiogenesis 
during liver regeneration induced by PHx (Maeno et  al. 
2005, Tajima et  al. 2009). HIF-2α is also activated by 
resection-induced hypoxia, to coordinate the proliferation 
of hepatocytes with VEGF-driven LSECs reconstruction 
and angiogenesis (Kron et  al. 2016). This redox-sensitive 
mechanism can be pharmacologically modulated to 
accelerate the process of liver regeneration, as suggested 
by studies using prolactin-induced HIF-1α-VEGF axis or 
prolyl hydrolase inhibitors (Olazabal et  al. 2009, Schadde 
et  al. 2017). Furthermore, blood flow changes induced by 
PHx alter the remodeling of sinusoids affecting shear stress-
induced eNOS, accounting for senescent LSECs via Notch 
activation, but Sirtuin 1 inhibition was able to promote 
liver regeneration by abolishing Notch-induced senescence 
(Duan et al. 2022). The latter is the first study demonstrating 
that LSEC senescence is triggered by endothelial Notch 
activation, with Sirtuin 1 as a direct target of Notch (Duan 
et al. 2022).

Redox modulation of proliferation pathways
Redox balance is involved in the regulation of several 
growth factors implicated in the proliferation of 
hepatocytes. HGF and its receptor c-MET, main regulators 
of hepatocellular proliferation, are also key modulators 
of the cellular redox state in a multimodal manner, 
but particularly upregulating the antioxidant GSH 
system, and repressing NADPH oxidase and CYP2E1 
(Clavijo-Cornejo et  al. 2013). In gastric mucosal cells,  
hydrogen peroxide is able to induce the expression of 
HB-EGF and amphiregulin in a concentration-dependent 
manner, and this induction is blocked by co-treatment  
with the antioxidant N-acetylcysteine (Miyazaki et  al.  
1996). In rat liver cells, hydrogen peroxide induces 
phosphorylation of EGF receptor, promoting 
transformation (Huang et al. 2001).

Cytokine-associated pathways involved in 
regeneration after hepatic resection are greatly influenced 
by the redox state. Mild concentrations of reactive species 
activate the transcription factor nuclear factor-κB, a 
potent inducer of TNF, IL-1β, IL-6, and its downstream 
STAT3 molecule expression (Mullen et  al. 2020). Of 
interest, the IL-6 promoter matches an antioxidant 
response element and is strongly activated by the nuclear 
factor erythroid 2-related factor 2 (NRF2), one of the most 
important redox-sensitive transcription factors (Wruck 
et al. 2011). TGF-β inhibits hepatocyte proliferation, while 

its inactivation leads to increased proliferative response 
after liver resection (Russell et al. 1988, Romero-Gallo et al. 
2005). The family of NADPH oxidases is recognized targets 
of TGF-β, mediating many of its effects on several liver 
cells and influencing liver regeneration after resection 
(Herranz-Iturbide et al. 2021).

Hormones involved in liver regeneration after PHx/
PLTx may be modulated by cellular and extracellular redox 
state, including norepinephrine, growth hormone, insulin, 
and thyroid hormone, all of which in turn induce the Ras/
Raf/MEK/ERK and PI3K/PKB/mTOR signaling pathways 
(Abu Rmilah et  al. 2020). Of note, the contribution of 
insulin/insulin growth factor-1 receptor signaling in liver 
regeneration after PHx requires NRF2, since its inactivation 
leads to oxidative stress-related insulin resistance, 
impairing the activation of anti-apoptotic and pro-
mitogenic pathways (Beyer et al. 2008). Of interest, NRF2 is 
dynamically regulated following PHx, showing activation 
in the presence of a pro-oxidant agent (such as ethanol) 
or antioxidant compounds, suggesting that this pathway 
may be triggered by liver resection independently of redox 
status (Morales-González et al. 2017).

Redox homeostasis alterations affect all the complex 
mitogenic signals involved in liver regeneration after PHx/
PLTx. Overexpression of nucleoredoxin, a TRX family 
protein, selectively inhibits the Wnt/β-catenin pathway, 
while its ablation accelerates cell proliferation through 
Ras or MEK (Funato et al. 2006). Low amounts of reactive 
species promote the interaction between β-catenin and 
forkhead box O (FOXO) transcription factors, inhibiting 
the cell cycle progression (Essers et al. 2005). On the other 
side, Wnt/β-catenin signaling is necessary for hepatocyte 
protection against reactive species-mediated apoptosis, 
inducing the phosphorylation of FOXO3 and increasing 
hepatocyte proliferation (Tao et  al. 2013). The Hedgehog 
cascade may be triggered by HIF-1α through hypoxia 
consequent to hepatic resection (Bijlsma et  al. 2008). It 
is also worth to note that Hedgehog is a target of Wnt/β-
catenin in the liver, suggesting a redox-dependent crosstalk 
between these pathways in regeneration following hepatic 
resection (Gebhardt 2014). The Hippo-YAP pathway is 
variably modulated by redox homeostasis, producing 
different functional outcomes. YAP, the main downstream 
effector of the Hippo cascade, is inactivated by the 
mammalian Ste20-like kinases 1/2 (MST1/2). Interestingly, 
TRX1 may prevent MST1 activation, while reactive species 
trigger MST1 activity, with opposite effects on YAP (Chae 
et al. 2012, Wang et al. 2019). Furthermore, the redox state 
may directly regulate YAP expression and activity in the 
liver (Wu et al. 2013).

https://doi.org/10.1530/REM-22-0008
https://rem.bioscientifica.com� ©�2022�The�authors

Published�by�Bioscientifica�Ltd.
This work is licensed under a Creative Commons 
Attribution 4.0 International License.

Downloaded from Bioscientifica.com at 09/25/2023 02:09:39AM
via free access

https://doi.org/10.1530/REM-22-0008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R77F Bellanti and others 2022:1

Redox commitment in termination of regeneration
ILK is a key determinant for termination of liver 
regeneration after Phx, since its ablation causes enhanced 
proliferation of parenchymal cells and hepatomegaly, 
associated with Hippo-YAP activation (Apte et  al. 2009). 
A model of transient focal cerebral ischemia showed 
that superoxide inhibits ILK, while SOD expression is 
associated with increased ILK level (Saito et  al. 2004). In 
damaged vascular endothelium, ILK protein stability and 
signaling cascade were impaired by high amounts of NO 
produced by iNOS (Reventun et  al. 2017). These studies 
support the hypothesis that ILK is repressed by reactive 
species (including NO) in the early and intermediate phase 
of liver regeneration; when termination is approaching, 
redox balance tunes toward a reduced status, allowing ILK 
signaling to coordinate termination of regeneration.

Redox-dependent modulation of alternative liver 
regeneration pathways

The mechanisms underlying liver parenchymal cell trans-
differentiation or ductular reaction involve key regulators of 
transcription (such as YAP, Wnt/β-catenin, Notch, TWEAK, 
and mTORC1), cytokines (TNF and IL-6), and growth factors 
(HGF/c-MET and VEGF). As already described, all these 
pathways are redox-responsive and take place following 
liver resection. Nevertheless, redox modifications are not 
triggered by blood flow modifications with reduced O2 
tension and shear stress. On the contrary, the impairment 
of redox homeostasis characterizing acute and chronic liver 
conditions contributes to disease pathogenesis, accounting 
for dysfunction or death of parenchymal cells (Medina 
& Moreno-Otero 2005, Mari et  al. 2010). Hepatocellular 
trans-differentiation and ductular reaction are associated 
with metabolic changes, which include downregulation 
of oxidative pathways and mitochondrial dysfunction 
(Serviddio et al. 2013, Caldez et al. 2018).

When hepatocyte proliferation is impaired by loss of β1-
integrin or p21 overexpression, cholangiocytes may behave 
as facultative progenitors to contribute to hepatocellular 
regeneration (Raven et al. 2017). Evidence from a model of 
toxic liver injury suggests that p21 signaling follows oxidative 
burst and is coordinated with the NRF2 pathway, expression 
of antioxidant genes, and control of the oxidative injury 
(Fan et al. 2014). Hepatic damage induced by thioacetamide 
(TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) 
is followed by regeneration sustained by biliary epithelial 
cells (Deng et  al. 2018). Of note, liver damage induced by 
both TAA and DDC administration is associated with 
alterations of redox homeostasis which induce upregulation 

of the NRF2 cascade (Stankova et  al. 2010, Demirel et  al. 
2012, Singla et al. 2012). These data indicate that the master 
antioxidant regulator NRF2 could play a determinant role 
in the trans-differentiation process of liver parenchymal 
cells, but further specific investigations need to address this 
hypothesis.

Persistent hepatic chronic damage leads to an excess 
in reactive species with consequent oxidative stress, which 
may induce a senescent phenotype of parenchymal cells, 
impairing their capacity to proliferate (Roskams 2006, 
Bellanti & Vendemiale 2021). Thus, the ductular reaction 
occurs as a response to an oxidative injury, leading to HPC 
activation in a specialized microenvironment defined as 
a regenerative niche (Michelotti et al. 2016, Govaere et al. 
2019, Overi et  al. 2020). Nevertheless, the contribution 
of HPC activation and differentiation from hepatic 
niches is questioned, because of a lower efficiency with 
respect to phenotypic fidelity and trans-differentiation 
(Michalopoulos & Bhushan 2021). The final fate of HPC 
differentiation process is determined by different signaling 
pathways occurring in the niche, which is dependent on 
the etiology of liver injury (Boulter et  al. 2012, Govaere 
et  al. 2019). Regenerative niches are sites of multifaceted 
immunological events played by both immune and non-
immune cells, and redox signaling is determinant in the 
fine tuning of the immune response in the HPC niche 
(Bellanti et al. 2020). More than modulating the immune 
signals within and around the niche, recent evidence 
demonstrates that the redox-dependent transcription 
factor NRF2 is a key determinant of HPC fate since its 
inhibition triggers their activation and differentiation 
(Bellanti et al. 2021). Further research is needed to clarify 
whether other redox-dependent transcription factors may 
potentially regulate the commitment of undifferentiated 
progenitors toward specific hepatic lineages.

Concluding remarks

Changes in redox homeostasis occur both following 
hepatic resection and during acute or chronic liver injuries. 
Understanding of several redox-dependent transcription 
factors and pathways implicated in the regenerative process 
of the liver has significantly improved in the last years. Several 
studies tested the hypothesis that antioxidants would boost 
liver regeneration by counteracting the negative effects of 
reactive species. Pre-clinical experiments using silymarin, 
quercetin, curcumin, resveratrol, baicalein, geraniol, 
and melatonin showed controversial results, suggesting 
the need for accurate study designs to define appropriate 
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dosages, treatment duration, and routes of administration 
(Canbek & Yaylaci 2018). Furthermore, pharmacological 
modulation of redox-dependent molecular pathways to 
enhance liver regeneration represents a fascinating aim 
of the research. Indeed, pioneering reports suggest that 
potent pharmacologic activation of NRF2 is a potential 
approach to improve hepatic regeneration (Dayoub et  al. 
2013, Chan  et  al. 2021). Pre-clinical studies aimed at the 
definition of these targets will identify viable therapies to 
be tested in human trials.
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