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It is well known that regular exercise can benefit health by enhancing antioxidant defenses

in the body. However, unaccustomed and/or exhaustive exercise can generate excessive

reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and

impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise.

Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as

potential contributors to ROS production, yet the exact redox mechanisms underlying

exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to

ROS is necessary to induce body’s adaptive responses such as the activation of

antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS

levels andmuscle fatigue, as well as enhance exercise recovery. To elucidate the complex

role of ROS in exercise, this review updates on new findings of ROS origins within skeletal

muscles associated with various types of exercises such as endurance, sprint and

mountain climbing. In addition, we will examine the corresponding antioxidant defense

systems as well as dietary manipulation against damages caused by ROS.

Keywords: dietary antioxidant, exercise, exercise-induced adaptation, ROS, skeletal muscle

INTRODUCTION

Regular exercise is beneficial to our health. However, unaccustomed or exhaustive exercise can
result in detrimental health effects such as muscle damage, inflammation and oxidative stress.
Specifically, repetitive muscle contraction involves accumulation of reactive oxygen species (ROS)
(Zuo et al., 2011a, 2014, 2015b). These oxygen-derived free radicals or reactive derivatives,
including superoxide (O•−

2 ), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), have been
implicated in various diseases and physiological conditions (Alfadda and Sallam, 2012). Acting
as signaling molecules, a physiological level of ROS is essential for normal cellular functions. For
instance, exogenous antioxidant supplements have been shown to suppress muscle contractility
while the addition of H2O2 relieves such an effect, suggesting that oxidants (at low levels) may
be imperative in facilitating muscle contraction (Reid et al., 1993; Powers and Jackson, 2008).
However, the overproduction of ROS induced by exhaustive exercise training or other stresses,
along with compromised antioxidant defenses, can lead to oxidative stress and related tissue
damage (Powers et al., 2011b; Zuo et al., 2012). Interestingly, proper exercise (moderate to high
intensity exercise) stimulates the adaptive responses and strengthens the endogenous antioxidant
defense systems to combat excessive ROS thereby maintaining muscle redox balance (Parker et al.,
2014; Zuo et al., 2015b).
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Several techniques have been reported to examine oxidative
stress in muscle tissues of both human and animal models
(Powers and Jackson, 2008; Cheng et al., 2016). It is worth noting
that the direct and quantitative measurement of ROS production
continues to remain challenging in muscle redox biology due
to the reactive nature of ROS as well as the methodological
shortcomings. Commonly used indicators of ROS alteration in
intact muscle fibers, such as fluorescent probes and spin traps,
have limited specificity to the types of ROS (Powers and Jackson,
2008; Cheng et al., 2016). It is also difficult to assess the subtle
changes in ROS levels during repeated muscle contractions
directly using fluorescence (Cheng et al., 2016). Other indirect
evaluation of oxidative stress includes the measurement of
antioxidants, reduced/oxidized glutathione (GSH/GSSH) ratio,
and oxidative modified molecules such as malondialdehyde for
lipid peroxidation and 8-hydroxy-2′-deoxyguanosine for DNA
oxidation (Powers and Jackson, 2008; Cakir-Atabek et al., 2010).
These approaches are likely subject to experimental artifacts
(Powers and Jackson, 2008). Along with limitations of these
techniques on the accuracy of ROS measurement, the variation
in specific ROS sources and oxidative modifications in different
exercise protocols further contribute to the inconsistency and
difficulty seen in this type of study.

Currently, the exact redox mechanisms underlying exercise-
induced oxidative stress and exercise-induced adaptation
remain unclear. Exploring ROS pathways may advance our
understanding of muscle fatigue and recovery in exercise, as
well as the development of potential tools for ROS assessment
in exercising muscles. Although, mounting evidence has shown
an elevation of oxidative stress associated with exercise, there is
a lack of systemic review on how the activities of exercise (i.e.,
exercise type, intensity, and duration) affect ROS production.
Therefore, this review aims to provide a timely update on the
sources of ROS in different types of exercise, as well as the
paradoxical role of ROS in acute and chronic exercise.

ROS SOURCES IN MUSCLE

Muscle activity has been shown to associate with ROS
production, yet the extents and sources of ROS differ based on
types of exercise (Steinbacher and Eckl, 2015). There is a general
consensus that ROS are generated predominantly by contracting
skeletal muscles during physical activity. Indeed, moderate levels
of ROS are necessary for the production of normal muscle
force; however, excess ROS can lead to muscle fatigue and
contractile dysfunction (Powers et al., 2011a). Major endogenous
sources of ROS in skeletal muscle includemitochondria, NADPH
oxidase (NOX), and xanthine oxidase (XO) (Steinbacher and
Eckl, 2015). Under physiological conditions, ROS are released as
byproducts of cellular respiration by mitochondria. Accordingly,
mitochondria-derived O•−

2 can be observed in both resting and
exercising muscle (Sakellariou et al., 2014; Zuo et al., 2015b).
Mitochondrial respiration is in state 4 (basal) at rest, and
enters active state 3 when muscle contraction begins, which
is characterized by an increase in mitochondrial ADP levels
due to rapid breakdown of ATP. Interestingly, the rate of O•−

2

production is normally higher at basal mitochondrial respiration
(state 4) than state 3 in both skeletal muscle and the diaphragm,
suggesting that mitochondria might not be the major source of
ROS in exercising muscles (Powers and Jackson, 2008; Kavazis
et al., 2009; Sakellariou et al., 2014). On the other hand, NOX is
a key ROS generator during muscle contractions, contributing to
a larger extent of cytosolic O•−

2 than mitochondria (Powers et al.,
2011a; Steinbacher and Eckl, 2015). NOX is a multi-component
enzyme located on the plasma membrane of phagocytic cells
and several subcellular sites of skeletal muscle fibers (e.g., T-
tubules and sarcolemma) (Michaelson et al., 2010; Zuo et al.,
2011b; Sakellariou et al., 2013, 2014). NOX-induced ROS in
the T-tubules can directly activate ryanodine receptor type 1
to enhance calcium (Ca2+) release and muscle contractions
during exercise (Espinosa et al., 2006; Hidalgo et al., 2006).
Other factors, such as phospholipase A2(PLA2), have been
shown to stimulate NOX to produce ROS. PLA2 also facilitates
phospholipid turnover and releases arachidonic acid (a substrate
for lipoxygenases), leading to further ROS formation and lipid
peroxidation related damage (Zuo et al., 2004; Steinbacher and
Eckl, 2015). Found in the endothelium and cytosol of muscle,
XO contributes to the production of extracellular O•−

2 during
isometric contraction. This XO-derived O•−

2 plays a critical
role in the muscle force generation (Powers and Jackson, 2008;
Gomez-Cabrera et al., 2010). Moreover, the auto-oxidation of
myoglobin or the oxidation of hemoglobin to methemoglobin
further contributes to oxidative stress in the muscle by inducing
peroxide formation (Marciniak et al., 2009).

In addition to endogenous sources of ROS described above,
strenuous exercise-induced muscle injuries involve oxidative
burst from immune cells, leading to a rapid ROS formation
and subsequent oxidative damage (Steinbacher and Eckl, 2015).
Particularly, untrained individuals are more prone to the
detrimental effects exerted by the enhanced oxidative stress, while
the trained subjects normally experience lessened effects due
to increased oxidative tolerance (Steinbacher and Eckl, 2015).
Aging or pathophysiological states of muscle are also associated
with ROS elevation and contractile dysfunction (Steinbacher and
Eckl, 2015). For example, greater endogenous oxidant generation
has been observed in the isolated skeletal muscle fiber of old
mice compared to young mice at rest (Palomero et al., 2013;
Vasilaki and Jackson, 2013). It is suggested that such changes
in ROS levels can be attributed to chronic inactivity of the
muscle, which provides a possible explanation for the age-
related ROS overproduction in muscle (Talbert et al., 2013;
Vasilaki and Jackson, 2013). In addition, under disease states
such as muscle dystrophy, simple stretch contractions can
lead to significant muscle damage that is associated with ROS
generation, through both increased NOX activation and cytosolic
Ca2+ levels (Whitehead et al., 2010).

ROS GENERATION IN VARIOUS TYPES OF
EXERCISE

In skeletal muscle, both enzymatic (e.g., glutathione peroxidase
(GPx) and catalase) and non-enzymatic (e.g., GSH, uric acid,
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FIGURE 1 | Schematic illustrating ROS generation during different types of exercise and their associated roles in adaptive response. The dash arrow

represents an indirect effect. Abbreviations: reactive oxygen species (ROS); NADPH oxidase (NOX); xanthine oxidase (XO); mitogen-activated protein kinase (MAPK);

nuclear erythroid 2 p45-related factor 2 (Nrf2); nuclear factor κB (NF-κB).

bilirubin, vitamin E, vitamin C, etc.) antioxidants function
as a unified complex to scavenge ROS (Powers and Jackson,
2008). These intracellular antioxidants are normally located
within cells, cytoplasm, and organelles (e.g., mitochondria) to
protect muscle fibers from ROS-induced damage (Powers and
Jackson, 2008; Powers et al., 2011a). However, excessive ROS
formation can offset these protective mechanisms during intense
and exhaustive exercise. In general, the intensity of aerobic
exercise is represented by maximal oxygen uptake (%VO2max)
and the intensity of anaerobic exercise is described by repetition
maximum (% RM). The extents and sources of ROS production
can be influenced by the intensity, type, and duration of exercise,
in which details will be discussed in latter paragraphs.

Aerobic Exercise
Strenuous aerobic or endurance exercise is commonly known
to induce ROS and reactive nitrogen species overproduction
due to enhanced metabolism, leading to oxidative stress and
related injuries (Powers and Jackson, 2008; Neubauer et al., 2010;
Gomes et al., 2012). It has been estimated that aerobic exercise
results in a 1–3-folds increase of O•−

2 during muscle contraction
(Sakellariou et al., 2014; Figure 1). However, mitochondria
only account for a small portion of O•−

2 generation during
aerobic exercise (Sakellariou et al., 2014; Zuo et al., 2015b). In
fact, mitochondria-derived O•−

2 formation in skeletal muscle

is decreased during exercise compared to that at rest. This is
because contractile activities alter the redox status in muscles
toward amore oxidative state, leading to a loweredmitochondrial
NADH/NAD+ ratio. The decline in NADH/NAD+ ratio is linked
with reduced complex I-dependent O•−

2 release (Sakellariou
et al., 2014). During endurance exercise, ATP is broken down
to release energy and support continuous muscle contraction.
In some instances, AMP is formed which can be further
degraded to hypoxanthine, xanthine, and uric acid through
a biochemical process involving XO. As described previously,
XO induces O•−

2 formation by utilizing molecular oxygen,
thereby exacerbating oxidative stress (Mastaloudis et al., 2001).
Elevated lipid peroxidation and DNA oxidative damage have
been observed following a single bout of intensive exercise.
Such acute inflammatory and oxidative responses can be
induced by vigorous aerobic exercise, which resemble the stress
responses following ischemic stroke and myocardial infarction
(Mastaloudis et al., 2004). In addition, oxidative burst induced
by leukocytes is an effective mechanism for fighting against
microbes during infection (Saran et al., 1999; Agarwal et al.,
2003). The long-lasting endurance exercise may compromise
the ROS-generation capability of leukocytes, resulting in an
increased susceptibility to infectious diseases in athletes (Nielsen
et al., 2004). Moreover, for exercising people with diseases
such as asthma, special cautions must be taken since asthma
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may cause substantial ROS formation and oxidative stress thus
compromising exercise-induced benefits (Jiang et al., 2014).

Although, single bouts of intensive aerobic exercise may
cause potential oxidative damage to muscle fibers, regular
aerobic exercise will help enhance the cellular ability to detoxify
ROS over-accumulation (Radak et al., 2013). Regular/moderate
exercise has been shown to enhance antioxidant defense by
incrementing the activity of endogenous antioxidant enzymes
such as superoxide dismutase (SOD), GPx, and catalase (Miyata
et al., 2008). Exercise protects the body against constant
mild or moderate ROS exposure through redox-associated
preconditioning including oxidative damage repair systems
(Radak et al., 2013). This moderate exercise-mediated adaptation
also involves increased myocellular antioxidant capacity which
helps to lower ROS levels (Mastaloudis et al., 2001; Knez
et al., 2006). Moreover, increased ROS formation in active
skeletal muscles plays a critical role in exercise adaptation by
modulating muscle contraction (Mastaloudis et al., 2004; Radak
et al., 2013). For example, endurance running is regarded as
important for survival in human evolution since it can trigger
exercise-associated adaptive responses through metabolic and
redox challenges (Radak et al., 2013; Ferraro et al., 2014;
Wiggs, 2015). However, contemporary lifestyles decrease physical
activities and suppress human adaptive capacity of metabolism
and redox homeostasis (Radak et al., 2013). Substantial evidence
has suggested that at least 30 min of accumulated physical
activity (moderate-intensity) each day is necessary to maintain
good health and reduce potential disease risks (Knez et al.,
2006). Accordingly, Berzosa et al. and Georgakouli et al. both
observed a significant elevation of plasma total antioxidant
capacity in healthy individuals after a 30 min of submaximal
exercise (70% of maximum workload and 50–60% of the heart
rate reserve, respectively) on cycle ergometer (Berzosa et al., 2011;
Georgakouli et al., 2015).

Anaerobic Exercise
Although the main source of ROS during aerobic exercise has
been thoroughly reviewed in a previous study (Powers and
Jackson, 2008), little is known regarding the potential source of
ROS during short-term intensive (anaerobic) exercise such as
sprints. The redox mechanisms of anaerobic work have been
investigated in a variety of exercise models including sprinting
trainings as well as isometric and eccentric exercises (Nikolaidis
et al., 2007, 2008; Stagos et al., 2015).

Unlike other exercises, sprints predominantly rely on
anaerobic energy pathways due to its high energy demand. While
sprinting, a small portion (0.15%) of O•−

2 is produced in the
mitochondria (St-Pierre et al., 2002). This lower than usual ROS
production in skeletal muscle mitochondria can be attributed to
relatively low amounts of oxygen consumption and increased
ADP (state 3) during sprints (Herrero and Barja, 1997; Morales-
Alamo and Calbet, 2014). NOX is one of the potential sites
of O•−

2 production associated with intense muscle contractions
(Sakellariou et al., 2013; Figure 1). Additionally, XO activation
triggered by an elevation in hypoxanthine during and following
sprints, is regarded as another important contributor for ROS
production (Kang et al., 2009; Figure 1). Intensive exercise

accelerates ATP degradation, leading to elevated formation
of AMP, hypoxanthine, xanthine, and uric acid. Particularly,
the increased levels of xanthine facilitate ROS generation by
XO, thereby exacerbating oxidative stress in anaerobic exercise
(Mastaloudis et al., 2001; Radak et al., 2013). In response to
intense exercise, the active sympathetic nervous system can also
play a role in ROS formation (Figure 1). Accordingly, Bors et al.
demonstrated that adrenaline administration largely increased
H2O2 levels in vitro (Bors et al., 1978).

In static positions, isometric exercise is common in daily
activities such as holding weighted objects. A variety of oxidative
stress biomarkers have been examined in response to isometric
exercise; yet mixed results can be produced. For instance,
isometric contractions result in increased levels of hydroperoxide
and elevations in blood protein carbonyls. However, there is no
change in plasma malondialdehyde (a useful indicator of lipid
peroxidation) (Rodriguez et al., 2003; Urso and Clarkson, 2003).
Moreover, repetitive static exercise (RSE) can be considered as
a similar condition to partial ischemia/reperfusion, which may
protect the tissues against oxidative stress (Zuo et al., 2013).
However, Sahlini et al. observed no signs of ROS elevation during
prolonged RSE despite a manifestation of decreased mechanical
efficiency and force generation (Sahlin et al., 1992). Furthermore,
isometric exercise was reported to induce an increase in the
GSSH/GSH ratio, but intense isometric contraction can lead to
lactic acidosis and stimulate the conversion of O•−

2 to highly
reactive •OH (Waterfall et al., 1996; Groussard et al., 2000;
Garatachea et al., 2012).

A handful studies have also assessed the oxidative stress
resulting from eccentric exercise (Nikolaidis et al., 2007, 2008),
a physical activity that can induce sarcolemma inflammation
and subsequent ROS overproduction and muscular damage
(Nikolaidis et al., 2007, 2008). One study reported that ROS
formation peaked after the large muscle function decline in
downhill running (Close et al., 2004). Other study showed that
eccentric contraction likely causes secondary muscle damage due
to ROS–induced inflammation (Nikolaidis et al., 2007; Silva et al.,
2010).

Mountain Climbing
A good example for exploring the influence of ROS on physical
activity is mountain climbing. Mountain climbing involves the
exposure to extreme environmental conditions caused by high
altitudes, stimulating ROS generation in the body (Miller et al.,
2013). Mountaineers generally experience various undesirable
conditions at altitudes of 2 km or above (Basnyat, 2001; Hackett
and Roach, 2001; Basnyat et al., 2003). For example, long-term
exposures to an altitude above 4 km could induce a loss of
appetite, leading to nutrition deficiency and weight loss (Siesjö
et al., 1996; Wasse et al., 2012). Collectively, these symptoms
associated with acute mountain sickness are related to harsh
environmental factors such as low oxygen, cold, and ultraviolet
rays (Askew, 2002; Smedley and Grocott, 2013). Particularly,
hypobaric hypoxia generates a large amount of ROS, resulting
in the subsequent tissue injuries in mountaineers (Askew, 2002;
Julian et al., 2014).
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As altitude increases, lower atmospheric pressures lead to
reduced atmospheric oxygen partial pressures and arterial blood
oxygen levels, causing hypoxic damage (Askew, 2002; Vallecilla
et al., 2014). Under normal circumstances, people are able
to resist mild oxidative stress and restore redox balance via
the body’s naturally equipped antioxidant system. However,
overwhelmed antioxidant defenses due to severe oxidative stress
(e.g., inappropriate exercise exertion) can promote cell damage
or death (Bakonyi and Radak, 2004; Zuo et al., 2015b). Oxidative
stress induced by hypoxia at high altitudes results in intracellular
Ca2+ overflow, energy metabolism disruption and cellular
organelles oxidation (Askew, 2002; Mungai et al., 2011). It is
noted that such damage can occur in both aerobic and anaerobic
exercises at any exercise intensity under hypoxic conditions
(Bakonyi and Radak, 2004).

Moreover, physical exercise associated with mountain
climbing also plays an important role in ROS production
(Askew, 2002), as physical workouts at high altitudes can
aggravate oxidative stress (Bakonyi and Radak, 2004; Miller et al.,
2013). For example, enhanced DNA breakage and oxidation
were frequently observed in exercising subjects at high altitudes
compared to sea level (Møller et al., 2001; Ziogas et al., 2010). The
antioxidant system in the body is particularly vulnerable under
stressed conditions such as hypoxia, and is unable to prevent
DNA damage caused by exercise at high altitudes (Møller et al.,
2001). In addition to physical exercise and hypobaric hypoxia,
other environmental factors including coldness, sunburn and
diet also contribute to the augmentation of oxidative stress at
high altitudes (Askew, 2002). Insufficient antioxidant intake
may exacerbate high altitude-induced anorexia as well as tissue
damage (Askew, 2002; Bailey et al., 2004). Thus, caution should
be taken at high altitudes as mountaineers could experience
intense oxidative stress from both high altitude environments
and physical workouts.

ROS-INDUCED ADAPTIVE RESPONSE TO
EXERCISE

In the past decades, majority of studies mainly emphasize on
the detrimental effects of exercised-induced oxidative stress on
muscles, whereas researchers recently reported the significance
of ROS in triggering and mediating body’s adaptive responses to
exercise (Yavari et al., 2015). Acute exercise generates excessive
ROS that cause damage in the body, while regular exercise results
in bodily adaptations leading to resistance against oxidative
damage via antioxidant pathways (Yavari et al., 2015). It has
been observed that the antioxidant capacity of skeletal muscle
can be altered by exercise training. For example, SOD levels are
commonly higher in the resting blood and muscle of trained
individuals compared to those of control groups (Tiidus et al.,
1996). Endurance training may increase the activities of SOD and
GPx in both plasma and exercised muscles (Lambertucci et al.,
2007; Brooks et al., 2008; Vieira Junior et al., 2013; Azizbeigi et al.,
2014). This magnitude of exercise-mediated changes in SOD or
GPx activities is dependent on the intensity and duration of that
specific exercise. For example, high-intensity exercises may lead

to a higher muscular GPx activity than that in low-intensity ones
(Powers et al., 1994; Fisher et al., 2011). Similarly, long-duration
exercise trainings (e.g., 60 min/day) increase more muscular
GPx function than short-duration (30 min/day) exercise bouts
(Powers et al., 1994). The enhancement of exercise-induced SOD
and GPx activity is fiber type-specific, and a greater increase is
normally observed in skeletal muscles mainly composed of highly
oxidative fibers (e.g., type I and type IIa) (Powers et al., 1994;
Gonchar, 2005; Ferraro et al., 2014). However, whether catalase
(another major antioxidant enzyme) expression or activity can
be affected by chronic exercise remains controversial, as previous
studies reported mixed results (Vincent et al., 2000; Brooks et al.,
2008; Liberali et al., 2016).

Several important pathways have been proposed in mediating
the adaptive responses to exercise training (Morris et al.,
2008; Samjoo et al., 2013; Csala et al., 2015). It is suggested
that mitochondrial ROS generated during regular exercise are
necessary for the activation of primary signaling pathways
associated with muscle adaptation (Yavari et al., 2015). Nuclear
factor erythroid 2-related factor (Nrf2), a redox-sensing
transcription factor, is the primary regulator of antioxidants
as well as other cytoprotective cofactors that are responsible
for the enhanced antioxidant defense system (Osburn and
Kensler, 2008; Muthusamy et al., 2012). Upregulated Nrf2
expression occurs after high-intensity exercise (Gounder
et al., 2012). In a mouse myocardium, acute exercise activates
Nrf2 signaling via increased ROS production, which in turn,
promotes the trans-activation of antioxidant genes, leading to
improved cardioprotection (Muthusamy et al., 2012; Figure 1).
However, there is a lack of human studies that address the
Nrf2-mediated adaptive responses generated by exercise.
Another adaptation to exercise involves the enhancement
of mitochondrial biogenesis via upregulated peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α)
gene expression (Steinbacher and Eckl, 2015). PGC-1α has
been demonstrated to upregulate Nrf2 in order to control
mitochondrial biogenesis (Wu et al., 1999; Wright et al., 2007).
The upstream signals that regulate PGC-1α expression such as
mitogen-activated protein kinase (MAPK) and nuclear factor
(NF)-κB are redox-sensitive (Dodd et al., 2010; Derbre et al.,
2012). In addition, proteasome inhibition, which reduces NF-κB
activation, has been shown to enhance cellular antioxidant
defenses via an Nrf2-dependent transcriptional mechanism,
suggesting the indirect effects of NF-κB on antioxidant
regulation (Karin and Ben-Neriah, 2000; Elliott et al., 2003;
Dreger et al., 2009; Figure 1). Exercise-induced ROS also plays
a role in adaptation through the oxidation of cysteine residue
in various proteins. For example, cysteine-rich peroxiredoxin,
an antioxidant responsible for H2O2 catalysis, is oxidized and
formed stable dimers in response to elevated H2O2 levels
during exercise, managing H2O2 gradients and regulating
extracellular redox-signaling (Wadley et al., 2016). Moreover,
the disulfide bonds formed by oxidized cysteine residues likely
enhance protein synthesis in active individuals (Buresh and Berg,
2015).

Exhaustive endurance and/or resistance exercise may induce
temporary immunosuppression (i.e., a reduction in CD4/CD8)
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(Jin et al., 2015). Particularly, the elevated oxidative and
physical stress reflected by the level of intracellular ROS and
cortisol, respectively, may contribute to the immunosuppression
(Jin et al., 2015; Figure 1). For example, NF-κB is activated
in response to stimulants such as H2O2, TNF-α, and other
proinflammatory cytokines (e.g., IL-6). The activated NF-κB then
binds to a specific DNA binding domain and upregulates the
corresponding antioxidant gene expression (e.g., SOD) (Morgan
and Liu, 2011; Figure 1). Accordingly, the NF-κB signaling
pathway can be activated following an acute bout of exercise in
rats (Ji, 2007). In addition, low levels of inflammatory markers
have been observed in the elderly who frequently exercise
(Marzatico et al., 1997). As mentioned previously, MAPK
also plays an important role in exercise-induced adaptation in
skeletal muscle. MAPK is composed of four subfamilies (ERK1/2,
JNK, p38 MAPK, and ERK5) (Kramer and Goodyear, 2007;
Figure 1). The activities of ERK and MEK have a positive
correlation with exercise intensity in human skeletal muscle
(Widegren et al., 2000). ROS such as H2O2, can induce the
activation of ERK, JNK, and p38 MAPK in skeletal myoblasts
in a dose- and time-dependent manner (Kefaloyianni et al.,
2006). Oxidative stress could also modulate the MAPK signaling
pathway through insulin signaling and glucose transport (Kim
et al., 2006; Sandström et al., 2006; Kramer and Goodyear, 2007;
Figure 1).

ANTIOXIDANT INTERVENTION

Growing evidence on exercise-induced oxidative damage
and impaired muscle performance has prompted intensive
research into the efficacy of antioxidant supplementation
in exercising individuals (Gomes et al., 2012). It has been
suggested that oral antioxidant supplements, which are
common intakes among athletes, support endogenous
antioxidant defense system against oxidative stress (Peternelj and
Coombes, 2011). However, studies on the effects of antioxidant
supplements in muscle damage prevention and recovery remain
inconsistent, mostly due to different exercise protocols, research
designs, and analytical methods (Peternelj and Coombes,
2011).

Most commonly known antioxidants are vitamins, which can
be obtained readily through natural foods such as vegetables and
fruits (Trapp et al., 2010). Indeed, vegetarians have been shown
to have higher levels of endogenous vitamin than omnivores due
to antioxidant–rich diets, providing effective protections against
exercise-induced oxidative stress (Rauma and Mykkanen, 2000;
Trapp et al., 2010). Similar nutritional strategy is wisely utilized
by the athletes to improve performance and promote hastened
muscle recovery (Margaritis and Rousseau, 2008). Antioxidant
vitamins have demonstrated potential prophylactic effects. In the
study performed byHe et al., short-term combined vitamin C and
E supplementation not only attenuated levels of creatine kinase (a
muscle damage marker) and muscle soreness, but also enhanced
muscle protection following the second bout of aerobic exercise
(He et al., 2015). Moreover, a supplemental or adequate intake
of nutritional antioxidants is necessary for endurance athletes

(Wagner et al., 2010). For example, long-distance runners who
took vitamin C and E for 4 or 5 weeks prior to a marathon
experienced less muscle damage (Urso and Clarkson, 2003).
Likewise, Fogarty et al. reported that both short- and long-term
supplementation of watercress, which is rich in lipid soluble
antioxidants (i.e., α-tocopherol, β-carotene, and xanthophyll),
can reduce exhaustive exercise-associated lipid peroxidation and
DNA damage (Fogarty et al., 2011). Phenolic compounds found
in grapes also exhibited great antioxidant and anti-inflammatory
properties, and has been shown to improve exercise performance
in recreational runners (15% increase in time-to-exhaustion
running) (Ali et al., 2010; Toscano et al., 2015). Moreover,
Pala et al. suggested that coenzyme Q10 supplementation
protects tissue from oxidative injury during exercise training
through a mechanism involving Nrf2 expressions (Pala et al.,
2016).

Despite beneficial effects mentioned above, a thorough
understanding on the application of vitamin and antioxidant
supplements such as effective dosage and administration method
is necessary to avoid undesirable effects. Some studies have
indicated that antioxidant supplements fail to protect against
the damaging effects of oxidative stress such as exercise-
induced lipid peroxidation and inflammation, both of which
hinder muscle recovery (Teixeira et al., 2009). Specifically,
prolonged antioxidant supplementation is not recommended
since it can disrupt endogenous antioxidant levels and interfere
exercise-induced adaptation, thereby blunting body’s defense
against oxidative stress (Peternelj and Coombes, 2011; Rowlands
et al., 2012). Excessive antioxidant intake, such as vitamin
C and E supplementation, has been shown to delay healing
process and muscle strength restoration in athletes following
an exhaustive exercise training (Margaritis and Rousseau,
2008; Theodorou et al., 2011). Additionally, an increased
exercise-induced oxidative stress is observed in individual
taking high-doses of α-tocopherol (Margaritis and Rousseau,
2008). In short term, N-acetyl-cysteine (NAC; antioxidant)
and allopurinol (an inhibitor of XO) do attenuate muscle
damage and lipid oxidation caused by acute exhaustive exercise
(Gómez-Cabrera et al., 2003; Braakhuis and Hopkins, 2015).
Nevertheless, long-term intakes of these antioxidants may
not be beneficial (Braakhuis and Hopkins, 2015). Gomez-
Cabrera et al. further suggested that 8 weeks of vitamin
C supplementation prevents training-induced mitochondrial
biogenesis by suppressing the expression of SOD and GPx
(Gomez-Cabrera et al., 2008). A double-blinded and placebo-
controlled study also showed that the combination of vitamins
C and E blunts mitochondrial adaptive responses (i.e., increase
in COX4 protein) after 11 weeks of endurance training (Paulsen
et al., 2014).

Collectively, mixed results from antioxidant intervention
studies may be interpreted by the variances in participants’
baseline redox status, the dose and length of the antioxidant
supplementation, and the choice of oxidative stress markers.
Instead of antioxidant supplements, a balanced diet consisting
natural antioxidants from fruits and vegetables is sufficient to
meet the dietary requirement for physically active individuals
(Bloomer et al., 2007; Poljsak et al., 2013; Yavari et al., 2015).
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PERSPECTIVES

In the past decades, exercise-induced oxidative stress and
its effects have been largely studied. Despite the increasingly
sophisticated approaches on the study of ROS in skeletal
muscle, inconsistency in the results of several studies remains,
which is likely associated with different methodology of
ROS measurements and exercise protocols. It is therefore
essential to determine an appropriate measuring module for
various types of exercises and muscles in order to obtain
reliable and valid data (Zuo et al., 2015a; Jackson, 2016).
Excessive ROS production beyond the capability of antioxidant
defense following exhaustive and/or unaccustomed exercise
could adversely affect human adaptive responses. The current
challenge is the lack of in-depth human studies that explore
the molecular mechanisms of how ROS regulate the key redox-
sensitive transcription factors including Nrf2, NF-κB, MAPK
and PGC-1α. Further studies focusing on minimizing oxidative
damage and maximizing adaptive response induced by exercise
are indispensable. Developing promising strategies that combine
an effective natural antioxidant diet with customized exercise
within a variety of populations (e.g., disease population, obese

individuals, the elderly, and trained/untrained individuals) could
tremendously improve health and quality of life. Moreover,
identifying the effective and reliable biomarkers of alterations in
redox homeostasis is critical in monitoring the training tolerance
of individuals and may shed a light on optimizing a customized
training program.
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