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redox potentials is still a challenge. In this Account, we review such a method com-

bining density functional theory based molecular dynamics (DFTMD) and free energy

perturbation (FEP) methods. The key computational tool is a FEP based method for

reversible insertion of a proton or electron in a periodic DFTMD model system. The

free energy of insertion (workfunction) is computed by thermodynamic integration of

vertical energy gaps obtained from total energy differences. The problem of the loss

of a physical reference for ionization energies under periodic boundary conditions is

solved by comparing to the proton workfunction computed for the same supercell. The

scheme acts as a computational hydrogen electrode and the DFTMD redox energies can

be directly compared to experimental redox potentials.

Consistent with the closed shell nature of acid dissociation, pKa estimates computed

using the proton insertion/removal scheme are found to be significantly more accurate

than the redox potential calculations. This enables us to separate the DFT error from

other sources of uncertainty such as finite systems size and sampling errors. Drawing

an analogy with charged defects in solids we trace the error in redox potentials back to

underestimation of the energy gap of the extended states of the solvent. Accordingly the

improvement in the redox potential as calculated by hybrid functionals is explained as a

consequence of the opening up of the bandgap by the Hartree-Fock exchange component

in hybrids. Test calculations for a number of small inorganic and organic molecules

show that the hybrid functional implementation of our method can reproduce acidity

constants with an uncertainty of 1∼2 pKa units (0.1 eV). The error for redox poten-

tials is in the order of 0.2 V.
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Introduction

Redox potentials and acidity constants (pKa’s) are two most fundamental quantities in so-

lution chemistry determining the thermochemistry of electron and proton transfer reactions.

Solvation effects are commonly described by implicit solvent models1,2 or a distribution of

point dipoles.3 Modelling the solvent with a dielectric continuum gains efficiency, while so-

phisticated parameterization procedures ensure accuracy. The combination of these two

explains the impressive success of this approach in calculating the equilibrium constants of

electron/proton transfer reactions in aqueous solution. If needed QM/MM methods can add

further atomic detail replacing some or all of the continuum solvent by an atomistic classical

force field model.4,5

The alternative is a fully consistent first principles “all-atom” method treating solute

and solvent at the same level of electronic structure theory. This is the topic of the present

account. We review an all-atom method using the density functional theory based molecu-

lar dynamics (DFTMD) implementation in the CP2K package6,7 as the key numerical tool.

Energies sampled from a DFTMD trajectory are used as input for a free energy pertur-

bation (FEP) scheme8 and converted to work functions for reversible removal of electrons

and protons from the DFTMD model system. The method was developed in a series of

computations of redox potentials and pKa’s of various simple aqueous species.9–13 Electronic

polarization of both solute and solvent is included at a fundamental level. In addition, the

DFTMD method captures the statistical mechanical nature of solvent fluctuations and con-

sistently accounts for the motion of the first solvation shell and the interaction with the bulk

solvent. The obvious downside of DFTMD is the computational cost. However, thanks to

ever-increasing computer power and the development of efficient computing algorithms, it

is now feasible to run free energy calculations using DFTMD in model systems consisting

of a few hundred atoms. This is sufficient for investigations of many interesting systems

including bulky solutes11,12,14–17 and even solid-liquid interfaces.18–25

While explicitly represented in a DFTMD simulation, electronic polarization, specific
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hydrogen bonding and thermal fluctuations are classical solvation effects which ideally can

be reproduced by implicit solvent and QM/MM methods. However, the DFTMD approach

also allows for hybridization of the localized electronic states of the redox active solutes with

the extended band states of the solvent. This feature is unique to DFTMD. Unfortunately

it exposes DFTMD to the infamous delocalization error in its most vicious form, known as

the bandgap error,26 leading to significant underestimation of redox potentials.13 We became

aware of this problem only recently when it became possible to carry out DFTMD simulation

using hybrid functionals containing a fraction of Hartree Fock exchange (HFX).27

In addition to the enhancement of the delocalization error DFTMD has to face further

complications which are of no or little concern for implicit solvent models. DFTMD simula-

tions of liquids apply periodic boundary conditions (PBC). However, ionization of a solvated

species creates ions. The long range electrostatic interactions between these ions and their

periodic images are spurious and another source of computational bias. Finally there is of

course also the issue of statistical uncertainty of the sampling and limitations in the time

scale for the relaxation (reorganization) of the solvent. It is very hard to separate these

effects. We have made however some progress and are now at least able to assess the relative

severity of each of these sources of error.

DFTMD model systems are small. A typical supercell is cubic with a side L between

10 and 12 Å. Corrections for finite system size errors have a long history in computational

solid state physics of charged defects in semiconductors and insulators28 with a parallel

development in computational solution chemistry.29,30 The solid state physics community

has reached a consensus how to deal with finite size errors in formation energies of charged

defects.31,32 While it should be possible to adapt these methods to correct solvation free

energies of ions in solution, the state of the art in computational solution chemistry still

relies on the seminal work by Hummer et al. who pointed out that for monovalent ions

the finite size errors as obtained in Ewald summation methods are surprisingly small.29,33

The powerfull dielectric screening properties of water eliminate the leading 1/L term. For
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example, for OH− the finite size error in a 10 Å cubic box is only 0.1 eV.11,33

Ewald summation acts as a boundary condition at infinity setting the average electro-

static potential to zero.29 This is a second supercell effect that should be distinguished form

the interaction between periodic images. The uncertainty in the “zero” of the electrostatic

potential has no effect on the total energy of a neutral system but for the calculation of

ionization energies the zero of the electrostatic potential must be explicitly aligned to an

external reference. The standard procedure in computational solid state physics is to in-

troduce an interface with vacuum.31 With some effort this calculation can also be carried

out for liquid water.34 Our approach is to stay close to electrochemistry and use the work

function of the proton as reference.35 The workfunction as computed using the reversible

proton insertion technique is subject to the same bias as electronic ionization energies but

with the opposite sign.11,12,20 In fact when referred to the work function of the proton ion-

ization energies can be directly represented as potentials on the standard hydrogen electrode

(SHE) scale.35

Reversible insertion of protons is computationally more involved (and expensive) than

addition/removal of electrons. However, reversible proton insertion can be used to estimate

acidity constants as well. We regard consistent treatment of ionization and deprotonation

as absolutely crucial for proton coupled electron transfer (PCET) reactions. PCET is a key

mechanism for many redox reactions in organic, inorganic and biological systems.36 From a

technical point of view, the comparison of free energy changes of PCET reactions is a strong

test for our method. Hess’s law requires dehydrogenation energies to be equal to the sum

of the corresponding deprotonation and oxidation energies. Our calculations show Hess’s

law is indeed satisfied within 0.1 eV setting a measure for the statistical uncertainty in the

computed redox potentials and pKa’s.

The conclusion is that the uncertainty due to limitations in system size and sampling

time in redox potentials and acidity constants of the small aqueous species studied in Ref. 13

is no more than 0.2 eV. This margin is sufficiently tight for a proper assessment of errors due
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to the shortcomings in the DFT approximation. The functionals commonly used in DFTMD

are based on the Generalized Gradient Approximation (GGA). We found that the computed

pKa’s were accurate with an uncertainty of 1∼2 pK units (0.15 eV). The computed redox

potentials, on the other hand, are systematically underestimated. The size of the error varies,

and for highly oxidative couples the error can be very large, e.g. 0.9 eV for Cl−/Cl•.13

The contrast in performance of the GGA for pKa and redox potential calculation was for

us a confirmation that the large errors in redox potentials are to blame on the delocalization

error. Acid dissociation is closed shell chemistry which is much less sensitive to the delo-

calization error than the open shell radicals created by oxidation. Drawing a parallel with

computational solid state defect physics,31,37 we were also able to rationalize why misalign-

ment of the band states of the solvent aggravates the error. Indeed the improvement brought

about by hybrid functionals is largely the result of the opening of the band gap which is a

well known effect of the introduction HFX.

In this Account, we will briefly recapitulate our method for computation of redox po-

tentials and acidity constants. The emphasis will be on the idea of the computational SHE

and how to relate the computed thermodynamic integrals with pKa’s and redox potentials

vs SHE. Then, we will review the previously reported results mainly calculated using GGAs

and also present some new results computed using hybrid functionals. Critical error anal-

ysis will be carried out to demonstrate how the delocalization error in GGAs affects redox

potentials. The improvement by hybrid functionals reinforces this claim. We will end this

Account with some conclusions and an outlook.

Method

Consider the acid dissociation of an hydride XH and subsequent oxidation of its anion X−

XH → X− +H+(aq) (1)
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X− +H+(aq) → X• + 1
2
H2(g) (2)

H+(aq) is the reference ion for both the acidity and SHE scale. The free energy of reaction

1 is therefore equal to 2.3kBTpKa and that of reaction 2 to e0U
◦ where U◦ is the standard

potential vs the SHE. Summing gives the dehydrogenation reaction,

XH → X• + 1
2
H2(g) (3)

The dehydrogenation free energy denoted by ∆dhG
◦ should be equal to the sum of 2.3kBTpKa

and e0U
◦ ( Hess’s law).

The FEP method to compute these energies has been presented in detail in previous

publications11,12,20 and is summarized in Scheme 1. Reactions 1,2 and 3 are represented by

the red triangle. Changing the reference ion from the aqueous to the gas-phase proton creates

a new PCET triangle indicated in blue. The proton has been taken out of solution (H+(aq) →

H+(g)) and the gas-phase hydrogen molecule has been dissociated (1
2
H2(g) → H+(g) +

e−(vac)). These reactions are indicated by black arrows. The corresponding reaction free

energies are the workfunction of the aqueous proton (WH+) and standard chemical potential

of the gas phase proton (µg,◦

H+). The free energies of the reactions in the blue triangle are

the adiabatic deprotonation energy (ADP), ionization potential (AIP) and dehydrogenation

energy (ADH). The equations relating the free energies of the red and blue triangle are given

on the right of the diagram. The symbols used in this Account are defined in the right panel.

The energies computed by the FEP method are the insertion energies of the blue triangle.

A fictitious mapping Hamiltonian Hη = (1− η)HR + ηHP is constructed by superimposing

the Hamiltonians HR of reactant and HP of the product state.8 The coupling parameter η

connecting the reactant and product states takes the values 0 to 1. The coupling parameter

derivative of Hη is the energy difference between the reactant and product states at a fixed

configuration. This quantity, called the vertical energy gap ∆E, is obtained from the elec-

tronic structure calculation as a total energy difference. The vertical energy gap is averaged
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Scheme 1: Schematic representation of the method for computation of redox potentials and
acidity constants. The red triangle in the top left panel represents the reactions eqs. (1)
to (3). The blue triangle is the result of a change of the reference state for hydrogen to the
gas-phase proton as indicated by the black arrows. The middle panel summarizes the key
equations in the free energy calculation. The bottom left panel shows how pKa’s and redox
potentials vs SHE are related to the computed thermodynamic integrals. The blue dotted
triangle corresponds to the blue triangle in the top panel. In the calculation it is replaced
by the solid blue triangle in the bottom panel because of the uncertainty in the potential
reference under PBC, as denoted by the orange arrow. Symbols are defined in the right
panel. For µg,◦

H+ , we use the experimental value of 15.81 eV. The two correction terms, ∆Ezp

and kBTln[c
◦Λ3

H+ ], are 0.35 eV and −0.19 eV, respectively.

over molecular dynamics (MD) runs for a sequence of values of η. Integration of the thermal

average 〈∆E〉
η
converts vertical into adiabatic ionization energies (see the middle panel of

Scheme 1 for key equations).

The FEP scheme amounts to reversible deletion of a proton (eq. (1)), electron (eq. (2))

or both (eq. (3)). Addition/removal of an electron can be simply implemented by adjusting

the number of electrons and reoptimizing the electronic state. The same applies to removal
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of a proton but addition of proton can cause problems when the location of the insertion is

too close to a nearby atom. To avoid this problem the acid proton is not fully eliminated

from the system. Instead its charge is switched off and on. During the off stage, when the

proton is invisible to the nuclei and electrons, it is kept in place by a harmonic restraining

potential preventing overlap with other nuclei.10,11,38 The resulting ionization integrals are

denoted by ∆dpAXH for deprotonation and ∆oxAX− for oxidation. The workfunction WH+

of the proton is approximated by the deprotonation free energy ∆dpAH3O+ of the hydronium

ion.

Because of the uncertainty in the reference of the electrostatic potential ∆dpAXH and

∆oxAX− are not yet equal to the ADP and AIP we want to calculate.11 As indicated by an

orange arrow in the bottom left panel of Scheme 1, the energy of an anion X− under PBC is

shifted by an unknown energy e0V0. Here is where our computational SHE comes in. The

deprotonation integral of aqueous hydronium (∆dpAH3O+) differs from the experimental WH+

by the same e0V0. The acidity is the difference of the ADP of the acid and the hydronium

which can be estimated by subtracting ∆dpAH3O+ from ∆dpAXH as indicated in the lower

panel of Scheme 1. The e0V0 cancels out. Similarly the redox free energy e0U
◦ can be

calculated by adding ∆oxAX− and ∆dpAH3O+ . The dehydrogenation integral ∆dhAXH is

already invariant under a change of reference potential and ∆dhG
◦ is calculated by simply

adding ∆dpAXH and ∆oxAX− .

This is the essence of the DFTMD/FEP calculation of the pKa, e0U
◦ and ∆dhG

◦. For the

final result two correction terms have to be included (see again Scheme 1). ∆Ezp is a correc-

tion for the zero point energy of the inserted proton which is treated as a classical particle

in DFTMD.11 The kBTln[c
◦Λ3

H+ ] term adds in the free energy related to the translational

entropy generated by the acid dissociation.12
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Table 1: Deprotonation integrals (∆A) and the conversion to the free energies (∆G) and
pKa’s of the corresponding acid dissociation reactions compared to the experimental values.
PheA and PheB are two substituted phenols, Q stands for quinone, and Tyr and Tryp are
tyrosine and tryptophan, respectively. References to the original papers are given in the
text. All the energies are in eV.

Deprotonation
GGA/BLYP Hybrid/HSE06 Exp.

∆A ∆G pKa ∆A ∆G pKa ∆G pKa

H3O
+→H2O 15.35 -0.19 -3.2 15.29 -0.19 -3.2 -0.10 -1.7

H2O(l)→OH– 16.34 0.70 11.9 16.29 0.71 12.0 0.83 14.0
H2O2→HO2

– 16.11 0.57 9.7 16.09 0.61 10.3 0.69 11.7
HO2

•→O2
•– 15.73 0.19 3.2 15.74 0.26 4.4 0.21 3.6

HCl→Cl– 15.1 -0.4 -7.5 -0.41 -7.0
HCOOH→HCOO– 15.8 0.3 4.4 0.22 3.8
NH4

+→NH3 16.2 0.7 11.2 0.54 9.2
H2S→HS– 16.0 0.5 7.8 0.41 7.0
HS–→S2– 16.5 1.0 17.1 1.0 17
CH3SH→CH3S

– 16.2 0.7 11.2 0.61 10.3
PheA 16.3 0.8 12.9 0.80 13.5
PheB 16.1 0.6 9.5 0.55 9.3
H2Q→HQ– 16.20 8.6 0.58 9.8
H2Q

•+→HQ• 15.76 1.2 -0.06 -1.0
HQ•→Q– 15.94 4.2 0.24 4.1
HQ+→Q 15.23 -7.8 -0.41 -6.9
TyrOH→TyrO– 15.78 9.3 0.60 10.1
TyrpH•+→Typ• 15.54 5.2 0.25 4.3

MUE 0.07 1.0 0.09 1.4
MAE 0.01 -0.1 -0.06 -1.0

Assessment

Tables 1 to 3 give a selection of results of previous publications.10–16 We have included the

thermodynamic integrals ∆A which substituted into the key equations in Scheme 1 yield the

pKa’s, redox potentials vs SHE and dehydrogenation energies which can be directly com-

pared to experiment(see our previous publications for references). An example of calculating

the dehydrogenation integral of water (∆dhAH2O) is given in Figure S1 in the supporting

information. ∆dpAH3O+ is the reference integral that is required in all the conversions.

The BLYP approximation is the functional of choice in DFTMD simulation of aqueous

systems and was also the functional used in all calculations until the efficient algorithm for
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calculation of HFX became available in CP2K.27 Using this method we have recalculated

some of the integrals using the hybrid functionals HSE0639 and PBE0.40 These results are

new and also listed in the tables. No finite size correction have been applied as they can be

assumed to be minimal for free energies for ions of low charge11,33 (see also introduction).

Table 2: Oxidation integrals (∆A) and corresponding redox potentials (U◦) compared to
experiment. The hybrid functional used to calculate CO2 is PBE0. All the energies are in
eV, and redox potentials are in V vs SHE.

Oxidation
GGA/BLYP Hybrid/HSE06 Exp.
∆A U◦ ∆A U◦ U◦

OH–→OH• 2.1 1.3 2.52 1.65 1.90
HO2

–→HO2
• 1.1 0.3 1.33 0.46 0.75

O2
•–→O2 0.3 -0.5 0.52 -0.35 -0.16

Cl–→Cl• 2.3 1.5 2.73 1.87 2.41
HS–→HS• 1.3 0.5 1.71 0.84 1.08
CO2

•–→CO2 -1.26 -2.07 -1.09 -1.96 -1.90
H2Q→H2Q

•+ 1.12 0.40 1.10
HQ–→HQ• 0.54 -0.12 0.46
HQ•→HQ+ 1.23 0.57 0.76
Q•–→Q 0.48 -0.18 0.10
TyrO–→TyrO• 1.28 0.16 0.72
TyrpH→TypH•+ 1.53 0.41 1.15

MUE -0.51 -0.26
MAE 0.51 0.26

Before discussing the comparison to experiment, we first check the intrinsic consistency of

our calculations. Hess’s law requires the dehydrogenation integrals to be equal to the sum of

the deprotonation and oxidation integrals, regardless uniform shifts in ionization potentials,

finite size and DFT errors. It is also a strong check for the statistical accuracy. According

to tables 1 to 3, all our calculations satisfy Hess’s law within 0.1 eV.

The overall errors are indicated by the mean unsigned error (MUE) and mean signed

error (MAE). The calculation reproduces the experimental pKa’s at a high accuracy; The

error is within 0.1 eV, comparable to the size of the statistical error (table 1). Both BLYP

and hybrid functionals perform well over the full range of 20 pKa units covered by the model

acids we investigated. This is encouraging. It is strong evidence that the deprotonation
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Table 3: Dehydrogenation integrals (∆A) and dehydrogenation free energies (∆G) compared
to experiment. The liquid is used as standard state for water. All the energies are in eV.

Dehydrogenation
GGA/BLYP Hybrid/HSE06 Exp.
∆A ∆G ∆A ∆G ∆G

H2O(l)→OH• 18.54 2.10 18.89 2.45 2.72
H2O2→HO2

• 17.19 0.84 17.43 1.08 1.44
HO2

•→O2 16.16 -0.19 16.27 -0.08 0.05
H2Q→HQ 16.83 0.50 1.04
HQ•→Q 16.57 0.24 0.35
TyrOH→TyrO• 16.91 0.59 1.32
TyrpH→Typ• 17.21 0.89 1.41

MUE -0.48 -0.26
MAE 0.48 0.26

integrals including the reference integral ∆dpAH3O+ are insensitive to details of the density

functional approximation and may therefore not suffer from the delocalization error. Also,

the accuracy of the pKa calculation is support of our claim that finite size errors are small.

The errors in redox potentials are much larger. For BLYP the error is 0.5 V reduced by

half by HSE06. Redox potentials are consistently underestimated as implied by the same

magnitude of MUE and MAE. The reference ∆dpAH3O+ is essentially the same for BLYP and

HSE06. The error can therefore only stem from the oxidation integrals. Finally, the errors

in the dehydrogenation energies are similar to the errors in the redox potentials. This is

expected as restrained by Hess’s law the dehydrogenation energies have to inherit the errors

in the redox potentials.

Energy level diagrams

Energy level diagrams are a convenient way of analyzing ionization potentials. Particu-

larly instructive are diagrams combining adiabatic and vertical levels. Adiabatic levels are

thermodynamic energy levels. −e0U
◦ plays this role in redox chemistry. A vertical level is

obtained when the electron detachment/attachment takes place without allowing for ionic

reorganization. There are therefore two vertical levels, minus the vertical ionization potential
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of the equilibrated reduced state (IPR) and the minus vertical electron affinity of the equili-

brated oxidized state (EAO). The differences between adiabatic and vertical energies are the

reorganization energies, λO in the oxidized state and λR in the reduced state. If the solvent

response is linear, as assumed in Marcus theory, λO = λR As a result eU◦ = 1/2(IPR + EAO).

The redox level is midway between the −IPR and −EAO level.

The FEP method converts vertical to adiabatic energies by a coupling parameter integral.

The end points of this integral are physical and are the vertical energies we need for the level

diagram. Specifically, 〈∆E〉
η=0 = IPR and 〈∆E〉

η=1 = EAO. Similarly the computational

hydrogen electrode can be used to align adiabatic as well as verticals levels to the SHE. The

offset is the same. The BLYP and HSE06 levels obtained by this procedure are listed in

Table S1 in the supporting information.

Also relevant are the conduction band minimum (CBM) and valence band maximum

(VBM) of liquid water. Their positions can be obtained from the IP or EA of the pure

liquid calculated by either using total energy differences or Kohn-Sham orbital energies. For

extended states, these two should be identical even though both can be incorrect due to the

bandedge error.26,37 This is indeed the case for water as shown in Table S2 in the supporting

information (See also Refs. 20 and 34).

The computed vertical and adiabatic levels are plotted together with the band edges

of water in fig. 1. The underestimation of redox potentials shows a linear correlation with

the redox potentials (blue lines in fig. 1(a)(b)); The error is larger for more positive redox

potentials. The improvement of HSE06 over BLYP is manifested in the reduced slope of the

linear fit. There is a clear asymmetry in the reorganization energies for BLYP with the λR/λO

ratio (red squares in fig. 1(a)(b)) varying from 0.2 to 3.2. Changing to HSE06 alleviates the

asymmetry but only at the positive end of the redox potential interval. Comparing the levels

in fig. 1(c)(d), the maximum discrepancy between BLYP and HSE06 is the position of the

−IPR level at high potential and, related to this, the different λR/λO ratios.
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Figure 1: The errors in the redox potential calculation (upper panel) and level alignment
(lower panel) for six aqueous species using GGA (left panel) and hybrid functionals (right
panel). In (a)(b), the blue circles stand for the difference of the computed redox potentials
and the experimental estimates plotted against the experimental estimates. The blue lines
are linear fits. The asymmetry in reorganization energies are shown as the ratio λR/λO (red
squares). In (c)(d), the short black, blue and red lines correspond to the computed redox
potentials, vertical electron affinities of oxidized states and vertical ionization potentials of
reduced states, respectively. The shaded areas in blue and red show the calculated con-
duction bands and valence bands of water, respectively. The long dashed lines indicate the
experimental CBM and VBM.

Coupling to bandstates

Water is a wide gap insulator. In fact the experimental band gap of liquid water (8.7 eV)

is close to that of solid SiO2. DFT calculation of charge transition levels (redox potentials)

of point defects in main group oxides such as SiO2 or MgO have already a long and rather

frustrating history with large discrepancies between various levels of DFT approximations

and experiment31,37 . A breakthrough was made when it was realized that the energy of

midgap levels when aligned with an external reference (ideally vacuum), rather than with

the VBM, are actually reproduced rather well by DFT. It was the position of the VBM
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itself that was wrong. Moreover it was established that the errors in charge transition levels

increase when the level is approaching the band edges (shallow defects) showing that the

mixing with the misaligned band states is a source of error. This raises the question whether

the band states of water in fig. 1 could have a similar effect.

The parallel is suggestive. Just as other main group oxides DFT liquid water suffers from

a severe band gap problem. The GGA underestimates the bandgap by almost 4 eV (see Table

S2 in the supporting information). The VBM, consisting of O2p levels, is placed ∼3.5 eV

too high while the position of the CBM is ∼0.5 eV too low (see fig. 1). The band gap error

is therefore basically due to underestimation of the ionization potential. This effect is also

reflected in the opening up of the band gap by HSE06. It does so mainly by pushing down

the VBM. However, HSE06 doesn’t quite make it. The residual error in the VBM position

is still about 2 eV. The CBM is lifted ending up almost at the right energy. PBE0 further

increases the band gap by ∼0.6 eV, but this improvement is not the result from lowering the

VBM but underestimating the vertical electron affinity (For a GW perspective see Ref. 34).

A shallow acceptor state near the VBM can hybridize with the extended band states of

the host repelling the level. In a worst case scenario a localized defect level can be overtaken

by the VBM and become a resonant impurity state.31 This could be the fate of a radical such

as Cl• or OH• produced by vertical ionization. The ionizable orbitals of the corresponding

anions have a similar lone pair p-orbital character as the states making up the top of the

valence band of water. The resonance generates a new defect level above the VBM as

illustrated in fig. 2(a). In any case a shallow defect level will follow the destabilized VBM

to more negative reduction potentials. The delocalization error in the GGA destabilized the

water VBM by as much as 3.5 eV. The error is passed on to p-like solute levels although in

a somewhat mitigated form. This is shown in fig. 2(b) for OH•/OH−.13

Note that hybridization between solute levels and band states can be a real effect. The

GGA exaggerates by pushing up the water VBM. Looking at the negative end of the potential

interval in fig. 1 we see that the GGA gives a good redox potential for CO2/CO
−

2 even in
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the presence of mixing of the −EAO level and the conduction band of water, as manifested

by the asymmetry in reorganization energies. Recall that the CBM is at about the correct

energy. This hybridization effect is most likely real and underlines the significance of the

band structure of water in describing aqueous species.
!
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Figure 2: (a) Schematic representation of how the solvent band states affect solute energy
levels. The tranparent rectangle stands for the valence band moved up by the delocalization
error in density functional approximations. This turns a solute level in the gap (black level
on the right) in a resonant impurity generating a shallow defect level (dotted line) just above
the misaligned valence band. (b) Energy levels of the OH•/OH− couple aligned with the
band edges of water.13

HFX is known to increase the band gap. Normally the CBM moves up by as much as

the VBM down.37 However, hybrid functionals seem to be an exception at least in the case

liquid water. As illustrated in fig. 2(b), HSE06 pushes down the VBM. The effect on the

CBM is much more modest. The results is a significant decrease in the error in the −IPR and

redox level of the OH•/OH−. PBE0 shows a similar effect (see Table S3 in the supporting

information, note that CP2K truncates PBE0 to fit in the supercell).

Increasing the fraction of HFX is a device that has been successfully used to adjust

the charge transition levels in solids.31,37 To see whether this also works for water we have

calculated the redox potential of the OH•/OH− couple using PBE0 with 0.37 and 0.5 HFX.

It is somewhat surprising to see the results get worse. Structural analysis indicate that

with too much HFX the solvation structure becomes unstable. For example, we find that
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the effective number of H-bonds of the O atom in OH• decreases from 1.7, 1.3 to 1.1 with

increasing HFX mixing. Coordination is more labile in liquids than in solids making the

minimization of the error in redox potentials a rather more delicate affair.

Finally, we comment on the issue of potential alignment. In experimental solid state

physics, defect levels are often referred to band edges. From the perspective of DFT this is

not a good choice. Other references such as core electron levels and averaged electrostatic

potentials are preferred.37 The advantage of our SHE is that the reference energy we compare

against, ∆dpAH3O+ , can be accurately calculated in the GGA and is pracically insensitive

to details of density functionals. We recapitulate that ∆dpAH3O+ is composition dependent

and must be recomputed for every supercell. With this caveat, the scheme is general and

can also be used for the alignment of energy levels across electrochemical interfaces.20

Conclusion

We have summarized the DFTMD/FEP method we have developed for computation of

aqueous redox potentials and acidity constants. The overall error for acidity constants is

within 1∼2 pKa units even at the GGA level. The error for redox potentials is much larger,

particularly for species with high redox potentials. Consistency of acidity constant and redox

potential calculations was a crucial concern in the design of the method. This allowed us

to attribute the poor performance for redox potentials to the delocalization error. Indeed,

hybrid functionals significantly improve on the GGA, reducing the error to ∼0.2 eV.

This level of accuracy should be sufficient for many applications in aqueous chemistry(e.g. geo-

chemistry) but care should be taken when the vertical levels of solutes approach the band

edges of water. Another important application area is interfacial electrochemistry, espe-

cially for semiconductor electrodes with medium band gaps where HSE06 gives good band

alignment. Further improvement requires eliminating the residual delocalization error, in

particular lowering the VBM of water to the correct position. A promising way is to use
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many body perturbation methods, e.g. GW34,41 or MP2 and RPA42,43 Finally, the combi-

nation of computation of redox potentials and acidity constants allows for calculating the

thermochemistry of PCET. This is expected to be a fruitful application direction as PCET

is crucial in the chemistry of energy conversion such as water oxidation and CO2 reduction.
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Figure S1: Time accumulative averages of vertical energy gaps against coupling parameter η

(〈∆E〉η ) for the dehydrogenation of a water molecule. The density functional used is hybrid

HSE06, and a standard cubic simulation box containing 32 water molecules was used. Time step

for MD simulations is 0.5 fs, i.e. a 5 ps run consists of 10000 MD steps. Usually 5∼10 ps DFTMD

runs are sufficient to converge vertical energy gaps 〈∆E〉η . Numerical integration is done by using

Simpson’s rule or trapezium rule over a few values of coupling parameter η .
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Table S1: Calculated thermodynamic integrals (∆A) and vertical energy gaps (〈∆E〉0 and 〈∆E〉1) of

redox pairs, and their conversions to adiabatic levels (U◦) and vertical energy levels (IPR and EAO)

on the SHE scale. Reorganization energies λO and λR are calculated from differences between

adiabatic and vertical levels. The hybrid functional used to calculate CO2 is PBE0. All the energies

are in eV, and potentials in V.

OH–→OH• HO–
2→HO•

2 O•–
2 →O2 Cl–→Cl• HS–→HS• CO•–

2 →CO2

BLYP

∆A 2.1 1.1 0.3 2.3 1.3 -1.26

〈∆E〉0 2.9 2.5 2.2 2.9 2.2 1.57

〈∆E〉1 -0.1 -0.9 -1.3 0.4 -0.3 -1.89

U◦ 1.3 0.3 -0.5 1.5 0.5 -2.07

IPR 2.1 1.7 1.4 2.1 1.4 0.76

EAO -0.9 -1.7 -2.1 -0.4 -1.1 -2.70

λO 0.8 1.4 1.9 0.6 0.9 2.8

λR 2.2 2.0 1.6 1.9 1.6 0.6

HSE06

∆A 2.52 1.33 0.52 2.73 1.71 -1.09

〈∆E〉0 4.16 3.38 2.79 4.20 2.90 2.16

〈∆E〉1 0.25 -1.19 -1.55 0.57 0.21 -2.50

U◦ 1.65 0.46 -0.35 1.87 0.84 -1.96

IPR 3.29 2.51 1.92 3.33 2.03 1.29

EAO -0.62 -2.06 -2.42 -0.30 -0.66 -3.37

λO 1.64 2.05 2.27 1.56 1.19 3.25

λR 2.27 2.52 2.07 2.17 1.50 1.41

Exp.

U◦ 1.90 0.75 -0.16 2.41 1.08 -1.90
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Table S2: Calculated and experimental CBM and VBM of liquid water represented vs SHE in V.

The potentials in the columns labelled ∆E are calculated from total energy differences, while those

labelled ε are estimated from the Kohn-Sham orbital energies.

H2O
BLYP HSE06 PBE PBE0

Exp.1

∆E ε ∆E ε ε ε

CBM -2.57 -2.60 -3.09 -3.24 -2.74 -3.74 -3.2

VBM 2.31 1.97 3.65 3.56 2.07 3.69 5.5

Band gap 4.88 4.57 6.74 6.80 4.81 7.43 8.7

Table S3: Redox potentials calculated using PBE0 with various fractions of HFX. The reference

deprotonation integral of hydronium is calculated to be 15.24 eV using PBE0.

Oxidation
PBE0-0.25 PBE0-0.37 PBE0-0.5

∆A U◦
∆A U◦

∆A U◦

OH–→OH• 2.43 1.51 2.33 1.41 2.24 1.32

HO–
2→HO•

2 1.23 0.31

O•–
2 →O2 0.30 -0.62
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