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The immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to
examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular
antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer
cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized
phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-
oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the
actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B
signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated
receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and
extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin
systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and
hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the
metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells,
macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune
training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and
endotoxin tolerance.
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INTRODUCTION
The instigation of the innate immune response commences as a
result of the recognition of an invading pathogen by organ-specific
resident macrophages, dendritic cells (DCs), fibroblasts, pericytes,
and in many cases endothelial cells [1–4]. This recognition
is accomplished by cytosolic or membrane-bound Toll-like or
NOD-like pattern-recognition receptors (PRR) that leads to the
activation of these sentinel cells and the release of cytokines and
chemokines [3–5]. Once secreted these molecules activate
endothelial cells that then express chemokines and adhesion
factors [6, 7]. Recruitment, binding, and activation of neutrophils,
monocytes, macrophages, and platelets follow these processes in
turn allowing the migration of myeloid cells into tissues that reach
the sites of infection [8–10].
The multiple phenotypical and functional roles of myeloid

cells are enabled by metabolic reprogramming comprising of
changes in levels of glycolysis, fatty acid oxidation (FAO), the
tricarboxylic acid (TCA) cycle activity, involvement of the
pentose phosphate pathway (PPP), and mitochondrial respira-
tion [11–13]. This is also true for neutrophils, T-cell activation
and differentiation into helper, effector, and cytotoxic subsets
[14], B-cell activation, differentiation and antibody production

[15], and the activation and cytotoxic properties of natural killer
(NK) cells [16].
These metabolic and redox changes are orchestrated and

regulated by the cooperative and/or antagonistic actions of nuclear
factor (NF-κB), HIF1α, the mechanistic target of rapamycin (mTOR),
and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
signaling pathway. Mitogen-activated protein (MAP) kinases, 5'
AMP-activated protein kinase (AMPK), and peroxisome proliferator-
activated receptor (PPAR) are also implicated. All these factors lead
to the increase in reactive oxygen species (ROS) produced by
mitochondria and to the upregulation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX). These transcription
factors and enzymes are all redox-sensitive as is the performance of
mitochondria [17–23].
In addition, the functioning of individual immune cells is under

redox control. It is sensitive to intracellular and extracellular levels
of nitric oxide (NO) [24, 25] and ROS [26–28] and is also heavily
influenced by the activity of nuclear factor erythroid 2-related
factor 2 (Nrf-2) and cellular antioxidants [29–31]. The action of
individual immune cells is regulated by oxidized phospholipids
[32–35], high-density lipoprotein (HDL), apolipoprotein A1
(ApoA1), paraoxonase-1 (PON1) activity [36–38], and indoleamine
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2, 3-dioxygenase (IDO) [39, 40]. The levels and immune functions
of these molecular players are under redox control as well [41].
Figure 1 shows the outcome of a STRING (STRING version

11.0; https://string-db.org) protein–protein network analysis
performed on the aforementioned proteins and enzymes, which
are discussed in detail in this review. The zero-order network
consists of 16 nodes. The number of edges (n= 50) exceeds the
expected number of edges (n= 13) with p-enrichment value
of 2.22E–15, average node degree = 6.25 and average local
clustering coefficient = 0.78.
Table 1 summarizes the functions of the proteins in this highly

interconnected protein interaction network.
This paper has three aims. Firstly, to detail the role of redox-

sensitive transcription factors and enzymes, ROS, and reactive
nitrogen species (RNS) production and the effect of cellular
antioxidants on the activation and performance of macro-
phages, DCs, neutrophils, T-cells, B-cells, and NK-cells. Secondly,
to explain the involvement of HDL, ApoA1, PON1, and oxidized
phospholipids in regulating the immune-inflammatory response.
Thirdly, to clarify the detrimental effects of chronic oxidative
and nitrosative stress on the performance of individual immune
cells and the immune-inflammatory response as a whole. We
will begin with a discussion of the effects of these factors
on macrophage activation and function, which offers a vehicle
to illustrate many of the principles involved in metabolic
reprogramming and the effects of individual signaling mole-
cules, thus avoiding unnecessary repetition in later sections of
the paper.

METABOLIC REPROGRAMMING AND REDOX FACTORS
INVOLVED IN MACROPHAGE ACTIVATION
Metabolic reprogramming in macrophages
Macrophages may be activated by cytokines, ROS, and PRR
engagement by pathogen-associated molecular patterns,
damage-associated molecular patterns, and commensal LPS
leading to the activation of NF-κB [42–44] and the PI3K/AKT
signaling pathway [45, 46]. Upregulated NF-κB results in increased
transcription of proinflammatory cytokines and chemokines,
inducible NO synthase (iNOS), and HIF1α [42–44]. Enhanced PI3K
signaling also leads to the upregulation of mTOR [47–49] which in
turn reinforces the upregulation of HIF1α [45, 46]. These signaling
pathways, enzymes, and transcription factors play an essential role
in maintaining macrophage activation and M1 polarization by
driving metabolic reprogramming. It involves the downregulation
of ATP production by mitochondrial oxidative phosphorylation
(OXPHOS) and FAO [50, 51] to ATP production via aerobic
glycolysis [52].
The shift to aerobic glycolysis is an indispensable metabolic

event for M1 macrophages in terms of maintaining and increasing
phagocytosis, production of ROS and proinflammatory cytokines
and unsurprisingly, its inhibition may impair those functions
[53–55]. Maintenance of this state is dependent on the activity of a
range of transcription factors, most notably mTOR and HIF1α, with
the latter playing a dominant role in enabling the continuance of
glycolysis under normoxic conditions [49, 56].
HIF1α acts as a modulator of transcription by changing the

methylation status of hypoxia-responsive elements in the promoter

Fig. 1 STRING protein–protein network analysis performed on the key proteins included in the present review. Nodes indicate proteins and
edges indicate protein–protein interactions. Red colour of the nodes: reflects response to stress (p < 1.57E–05), blue node colour: small
molecular metabolic process (p < 1.68E–05), green node colour: positive regulation of metabolic process (p < 2.17E–05), and yellow node
colour: regulation of immune system process (p < 3.78E–05). Colours of the edges: see https://string-db.org for details. The figure displays the
gene names and Table 1 specifies the names and functions of the proteins. NFKB1 nuclear factor (NF)-κB (NF-κB), HIF1A hypoxia-inducible
factor 1-alpha (HIF1α), MTOR the mechanistic target of rapamycin (mTOR), PIK3CA phosphatidylinositol 3-kinase (PI3K), AKT1 protein kinase B,
MAPK mitogen-activated protein kinases, PRKAB1 AMP-activated protein kinase (AMPK), PPARA peroxisome proliferator-activated receptor,
NOX NADPH oxidase, NFE2L2 nuclear factor erythroid 2-related factor 2 (Nrf-2), APOA1 apolipoprotein A1 (ApoA1), PON1 paraoxonase-1, IDO1
indoleamine 2, 3-dioxygenase (IDO), TLR-4 Toll-like receptor-4
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regions of target genes involved in the termination of OXPHOS and
the instigation of aerobic glycolysis [57]. For example, HIF1α
upregulation suppresses the activity of electron transport chain
(ETC) enzymes [58, 59], decreases mitochondrial activity, and
induces mitochondrial autophagy [60, 61]. Increased activity of this
transcription factor also suppresses genes involved in FAO [62, 63].
HIF1α restrains metabolism by activating the gene for pyruvate
dehydrogenase kinase 1, which in turn inhibits the TCA cycle [64]
and inactivates pyruvate dehydrogenase [65]. In addition, HIF1α-
regulated gene expression reduces the production of acetyl-CoA
and succinyl-CoA [66].
HIF1α intensifies glycolytic flux, thereby augmenting the

expression of glucose transporters (GLUT-1 and GLUT-3) [67].
Glycolysis is stimulated by the high levels of hexokinases [68],
aldolase A, enolase 1 [69], and phosphoglycerate kinase 1 [70].
Finally, HIF1α also induces the transcription of lactate dehydro-
genase A, which plays an indispensable role in maintaining a
continuous supply of NAD+, thereby enabling the continuation of
glycolysis [71]. HIF1α-regulated gene expression prevents acetyl-
CoA from being synthesized from glucose and fatty acid-derived
carbons [66].

While the role of HIF1α in instigating and regulating the
transition between OXPHOS and aerobic glycolysis is of para-
mount importance, it should be emphasized that the activation of
mTOR is involved. Firstly, mTOR stabilizes and enhances the
activity of HIF1α and, secondly, it increases the rate of glycolysis,
AKT, forkhead box transcription factors (FoxO), hexokinase II, and
Myc proto-oncogene [72–74]. Upregulated mTOR participates in
further reducing OXPHOS by enhancing NO and interferon (IFN)-γ
production, thus compromising the activity of the mitochondrial
ETC [75]. In total, the actions of mTOR inhibit M2 polarization [76]
and stimulate M1 polarization [77, 78].
The PPP main role is to utilize the energy released from the

metabolism of glucose-6-phosphate into ribulose-5-phosphate to
form NADPH. The latter is used in the production of NADPH
oxidase and as a reducing equivalent enabling the function of the
glutathione (GSH) and thioredoxin antioxidant systems [13, 79].
The activation of M1 polarized macrophages also results in several
other aspects of metabolic reprogramming in order to maintain
the inflammatory status and prolong survival. Most notable
are the upregulation of the cytosolic PPP [50, 80], increased
lipid synthesis, and decreased lipid catabolism [62, 81], altered

Table 1. Names and functions of the key proteins included in the present review

ID Names Main functions (based on UniProt) References

NF-κB Nuclear factor NF-kappa-B Pleiotropic transcription factor and endpoint of a
series of signal transduction events including
immune activation, differentiation, cell growth, and
apoptosis

[42–44, 88, 89]

HIF1α Hypoxia-inducible factor 1-alpha Transcriptional regulator of the response to
hypoxia. Activates over 40 genes, e.g., glycolytic
enzymes, glucose transporters, vascular endothelial
growth factor, and protein that increases oxygen
delivery

[47, 49, 54–57]

mTOR Mechanistic target of rapamycin In response to stress, hormonal and energy signals,
regulates cellular metabolism, survival, and growth

[72–78, 180, 228]

PI3K PI3-kinase
Phosphatidylinositol 4,5-
bisphosphate 3-kinase catalytic
subunit alpha isoform
Phosphatidylinositol 3-kinase

Group of signal transducer enzymes which
regulate cellular functions including proliferation,
differentiation, survival, motility, and morphology

[45, 47–49, 130, 230, 231]

AKT1 RAC-alpha serine/threonine-
protein kinase

Regulates metabolism, cell survival, proliferation,
and growth

[22, 46, 48, 73, 331, 479]

MAPK1 Mitogen-activated protein kinase Mediates adhesion, cell growth, survival, and
differentiation via transcription and translational
processes and cytoskeletal rearrangements

[435]

AMPK 5'-AMP-activated protein kinase In response to lowered ATP, regulates energy
metabolism and attenuates energy-consuming
processes. AMPK reduces carbohydrate, lipid, and
protein synthesis

[21, 133, 134, 293, 346, 448]

PPAR Peroxisome proliferator-activated
receptor

Regulates the beta-oxidation pathway and lipid
metabolism

[41, 90, 138, 139]

NADPH
oxidase (NOX)

Nicotinamide adenine dinucleotide
phosphate oxidase

May constitutively produce superoxide [144, 216, 470, 472]

TLR-4 Toll-like receptor-4 Mediates the immune response to
lipopolysaccharides

[85, 87]

Nrf-2 Nuclear factor erythroid 2-related
factor 2

Transcription activator that binds to antioxidant
response elements in the promoter regions of
(antioxidant) target genes

[160, 195, 196, 436]

PON1 Paraoxonase/arylesterase 1 Protects low-density lipoproteins against oxidative
modification and consequent atherogenicity

[525, 526]

IDO Indoleamine 2,3-dioxygenase 1 Catalyzes the first step of the catabolism of
tryptophan into kynurenine and other tryptophan
catabolites

[535]

ApoA1 Apolipoprotein A-I Acts as a cofactor for lecithin cholesterol
acyltransferase and participates in the reverse
cholesterol transport

[522–524]
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glutamine and arginine metabolism [81, 82], and a “broken” TCA
cycle [83, 84]. These parameters are discussed below commencing
with the Toll-like Receptor (TLR) and proinflammatory cytokine-
mediated reprogramming of the lipidome [85].
The synthesis of lipids is a key component in membrane

remodeling. In M1 macrophages the process depends on the
production of acetyl-CoA from citrate ATP-citrate lyase [86]. The
activity of this enzyme rapidly increases in activated macrophages.
Intracellular fatty acids can also be used to synthesize triglycerides
for energy storage, and sphingolipids for membrane synthesis, as
well as eicosanoids for signaling [81]. The increase in lipid
synthesis is largely enabled and regulated by the high activity of
sterol regulatory element binding protein-1 (SREBP-1) by TLR-4
and PI3K-activated mTOR [73, 87]. It is also controlled by the
enhanced expression of NF-κB and the presence of proinflamma-
tory cytokines [88, 89]. SREBP-1 activation stimulates the synthesis
of proinflammatory cytokines, ROS, and triggers the inflamma-
some [87–89]. M1 activation is accompanied by elevated iNOS,
which induces the conversion of arginine to NO, so that the
production of other RNS may be initiated [82, 90, 91].
M1 polarized macrophages accumulate cytosolic citrate stem-

ming from the decreased activity of isocitrate dehydrogenase
(IDH) [50] and the upregulation of the mitochondrial citrate carrier
(CIC) [92, 93]. The increased activity of IDH is mediated by ADP
levels [94]. CIC is upregulated by several inflammatory mediators
such as tumor necrosis factor (TNF)-α, IFN-γ, or commensal LPS via
the upregulation of NF-κB and or STAT-1 [92, 95]. In this scenario,
citrate exerts a multiplicity of vital roles, enabling macrophage
function and inflammatory status such as increasing NO, ROS, and
prostaglandin E2 (PGE2) production [92, 96]. Cytosolic citrate can
also act as a source of NADPH, either as a result of malate import
into mitochondria via CIC, and the subsequent formation of
pyruvate via malic enzyme, or the conversion of citrate into alpha-
ketoglutarate via the action of cytosolic IDH [97, 98]. Cytosolic
citrate is also a substrate of ACLY, producing acetyl-CoA and
oxaloacetate and upregulating acetyl-CoA carboxylase (ACC)
stimulating lipid synthesis [99].
Activated M1 polarized macrophages are characterized by high

levels of cytosolic itaconate from cis-aconitate drawn from the
Krebs cycle via a significant inflammation-mediated upregulation
of macrophage aconitate decarboxylase 1 [100, 101]. Itaconate is
involved in tolerance and suppression of inflammation [102, 103],
inhibits mitochondrial respiration, stabilizes HIF1α, and activates
Nrf-2 via alkylation of KEAP-1 [84, 104]. Finally, itaconate
accumulation leads to the inhibition of succinate dehydrogenase,
directing the accumulation of succinate and leading to numerous
proinflammatory and prooxidative consequences [103, 105, 106].
For example, elevated succinate oxidation in a cellular environ-
ment of few or no ATP generation induces a phenomenon
described as reverse electron transport whereby electrons flow
“backwards” along the ETC to complex I. As a result, large
increases in the genesis and release of ROS follow [107, 108]. High
levels of cytosolic succinate may induce an increase in lysine
group succinylation in the cellular proteome, which many
influence protein activity via changes in charge and conformation
[109]. The mechanisms involved are beyond the scope of this
review, but it is important to note that this post-translational
modification offers another route relaying subtle redox-mediated
metabolic changes to protein function [110]. Finally, once
externalized, succinate can bind to the G protein-coupled
succinate receptor 1 (SUCNR1) that is expressed on the surface
of activated M1 polarized macrophages [111, 112]. This is a
mechanism involved in sustaining and amplifying their inflamma-
tory effects [12, 113].

M2 polarized macrophages
In an environment of elevated IL-4 and or IL-13, activated M1
polarized macrophages may ultimately be driven toward a range

of anti-inflammatory and tissue healing phenotypes classified as
M2a, M2b, M2c, and M2d that for the purposes of this paper may
be usefully described as “M2” [114–116]. Tyrosine phosphorylation
and activation of the signal transducer/transcription activator
6 (STAT-6) are required for macrophage M2 polarization [117, 118].
The latter then triggers a wide range of M2-associated genes
including GATA binding protein 3 (GATA3), CD36, arginase-1
(Arg1), matrix metalloproteases (MMPs), FIZZ1, and PPARγ
[119, 120]. IL-4 and IL-13 also upregulate the activity of
transforming growth factor (TGF)-β, suppressor of cytokine
signaling 1 (SOCS-1), and insulin-like growth factor 1 (IGF-1) that
act to suppress the production of proinflammatory cytokines and
promotes tissue repair [114, 115, 121]. Unlike M1 polarization, M2
polarization is associated with a return to OXPHOS and increased
FAO [114, 115]. In addition, M2 polarized macrophages possess an
intact TCA cycle [114, 115].
M2 macrophages are also characterized by activation of the

nuclear liver X receptor (LXR) thereby regulating lipid synthesis
and cholesterol homeostasis [122]. Overexpression of LXR inhibits
NF-κB and activator protein-1 (AP-1) to reduce M1 responses and
inflammation [123, 124]. One major element reinforcing the
transition from M1 to M2 polarization is the change in the
metabolism of arginine. In M1 polarized macrophages, elevated
activity of iNOS leads to the metabolism of arginine to produce
citrulline and NO. The latter is a major element in maintaining the
switch toward aerobic glycolysis as explained above [84].
However, in M2 polarized macrophages, the increased transcrip-
tion of arginase-1 metabolizes arginine to ornithine and urea. They
both play a vital role in M2 macrophage survival, proliferation, and
tissue repair [120, 125]. Glutamine metabolism is also of particular
importance in M2 macrophages for two main reasons. Firstly,
oxidation of this amino acid is an essential source of acetyl-CoA in
an inflammatory environment leading to depleted extracellular
glucose levels thereby maintaining TCA activity [126–128].
Secondly, glutaminolysis-mediated increase in α-ketoglutarate
and the activation of the glutamine–UDP-N-acetylglucosamine
(GlcNAc) pathway reinforce M2 polarization [126].
There are major differences in the regulation of the metabolic

bioenergetic pathways involved in the transition to M2 polariza-
tion compared to those governing M1 polarization. In the case of
M2 polarization the main players are AMPK and PPARγ whose
activities are briefly described below. AMPK stimulates OXPHOS
and FAO while inhibiting NF-κB and mTOR. This, in turn, decreases
inflammation, reduces the levels of HIF1α, and terminates aerobic
glycolysis [129–132]. AMPK inhibits ACC, increases glycolytic flux,
mitogenesis, lipases, autophagy, and lysosomal degradation
[133, 134]. PPAR-γ upregulates FAO, maintains mitochondrial
membrane potential, mitochondrial citrate synthase, and regu-
lates numerous genes involved in mitochondrial function includ-
ing transcription factor A (TFAM), and peroxisome proliferator-
activated receptor-gamma (PGC)-1α [135–138]. It also down-
regulates NF-κB and upregulates Nrf-2 [135–137]. PPAR stimulates
the activity of LXR [139], which controls cholesterol and lipid
homeostasis. Thus, inflammation is reduced and glycolysis is
blocked via the inhibition of NF-κB [123, 124]. Finally, PPAR-γ
promotes the oxidation of glutamine [126] whose importance in
M2 polarization has been discussed above [140].

Redox regulation of macrophage activation functions and
survival
Macrophage ROS levels affect the activity of STAT-1, MAPKs, and
NF-κB and lead to an overall increase in inflammatory signaling
[141]. ROS levels also affect the assembly of NADPH oxidase
subunits and regulate the formation of corrosive RNS species such
as peroxynitrite, thereby influencing H2O2-mediated intracellular
signaling and macromolecule damage [142]. Continually high ROS
or NO levels are accompanied by the development of macro-
phage senescence [143–145]. The mechanisms driving this
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phenomenon appear to involve the persistent expression of NF-
κB, STAT-3, IL-10, and TGF-β, and potentially the upregulation of
PD-1 [144, 146, 147].
There is also ample evidence that macrophage functions and

polarization patterns are influenced by GSH levels and the overall
activity of the GSH system [148, 149]. For example, increased GSH
oxidation compromises phagocytosis and macrophage survival
[150, 151]. The GSH system also plays a key role in regulating M1
inflammatory status and the production of PGE2 and NO, while
protecting macromolecules from oxidative damage [152, 153]. The
antiviral responses initiated following M1 macrophage activation
such as increased expression of STAT-1, Irf7, and Irf9 are also
dependent on an optimally functioning GSH system and are
compromised by GSH depletion [154].
Thioredoxin (TRX)-1 affects the inflammatory status of macro-

phages by modulating the activity of macrophage receptors, and
the macrophage migration inhibiting factor (MIF) [155]. The latter
effect reduces the proinflammatory status of M1 macrophages and
encourages M2 polarization by lowering TNF-α and monocyte-
chemoattractant protein (MCP)-1 production [156–159].
Nrf-2 upregulation also exerts an anti-inflammatory effect in

activated macrophages by attenuating the activity of IL-1β and IL-6
[160, 161]. The mechanism involves Nrf-2 binding at the relevant
gene promoter sites resulting in inhibition of the recruitment of RNA
Polymerase II complex [162]. Nrf-2 upregulation also rises the
expression of CD163 and Arg1 [161, 163]. It affects the transcription
of a multitude of genes involved in the switch between M1 and M2
polarization [160, 161].
The metabolic reprogramming in macrophages is presented in

Fig. 2 and Table 2 summarizes the effects of redox mechanisms on
macrophage functions.

METABOLIC REPROGRAMMING AND REDOX FACTORS
INVOLVED IN DENDRITIC CELLS ACTIVATION
Metabolic reprogramming of DCs
DCs are archetypal antigen presenting cells (APCs) and play a
dominant role in linking innate and humoral immunity [164]. In
physiological conditions, tissue-resident DCs drain to the lymph
nodes and, thereafter, present self-antigens to T-cells, thereby
maintaining immune tolerance [165]. However, after pathogen
invasion, TLR- mediated activation of DCs is followed by numerous
changes in function and phenotype resulting in their active
migration to lymph nodes and cytokine production [166].
Resting-state DCs rely on OXPHOS-driven TCA cycle activity

fueled by glutaminolysis and FAO to meet their energy needs
[167, 168]. Their overall metabolism is regulated by AMPK [168].
However, following pathogen recognition, TLR engagement results
in activation of NF-κB, PI3K/AKT signaling, mTOR, and PPAR-γ and in
a rapid shift to aerobic glycolysis and lactate production in a similar
manner to M1 polarized macrophages discussed above [169, 170].
In addition, glycolytic intermediates are shunted into the PPP while
increased NO production inhibits the ETC. Moreover, citrate is
withdrawn from the TCA acting as a crucial player in FA synthesis
that maintains and increases inflammatory cytokines, NO, and ROS
production [171, 172]. The acute switch to glycolytic metabolism is
facilitated by PI3K /AKT signaling [173]. However, chronic aerobic
glycolysis is enabled and regulated by mTOR and HIF1α activation
[174, 175]. In addition, upregulation of mTOR and the subsequent
increase in HIF1α activity induces the transcription of iNOS
[176, 177] leading to NO-mediated suppression of mitochondrial
OXPHOS via reversible inhibition of ETC complex I, III, and IV
[17, 178, 179]. mTOR activation initiates and controls lipid synthesis
and mitochondrial biogenesis via the downstream upregulation of
SREBPs and PPAR. It stimulates IL-6, IL-1, and TNF-α production, via
the upregulation of AKT, FOXO3, and Myc [180]. mTOR activation
serves as the enabler and master regulator of DC migration,
maturation, and endocytosis [180].

Redox regulation of DC activation and function
Phagosomal ROS levels are involved in MH1-mediated presenta-
tion of digested antigens to CD8 T cells [181, 182]. In this context,
it is noteworthy that the activation of CD8 T cells requires
upregulation of mitochondrial reactive oxygen species (mtROS)
production [183]. DC production of ROS following TLR activation
also plays a major role in the maturation and priming of CD4
T cells [184, 185]. Many aspects of DC function are influenced by
the GSH system activity. For example, GSH levels regulate DC
differentiation and function as APCs [186]. DC GSH levels also
determine T-cell polarization patterns by affecting IL-27 and IL-12
production [187, 188]. GSH depletion is associated with the
differentiation of naive T cells [188] and inhibits DC maturation
and inflammatory cytokine production leading to profound
cellular dysfunction [189]. Moreover, DCs directly influence the
redox state of activated T cells via the transfer of thioredoxin [190].
Redox homeostasis within activated DCs is regulated by Nrf-2

which acts to restrain T-cell proliferation by repressing IL-12
production and upregulating IL-10 [191, 192]. Conversely, DCs that
lack Nrf-2 generate increased numbers of activated T helper (Th)
cells and reduced numbers of T regulatory (Treg) cells [193].
Moreover, Nrf-2 depletion and the resultant prooxidative state in
DCs encourage a Th-2 pattern of differentiation in naive T cells
[194, 195]. Finally, Nrf-2 also plays an important role in the
transition between glycolysis and OXPHOS in tolerogenic DCs that
enables their long-term survival [196].
There is considerable evidence of DC dysfunction in diseases

underpinned by chronic inflammation and oxidative stress
[197, 198]. Such dysfunction may be directly or indirectly driven
by increased inflammatory cytokines, RNS, and ROS. Direct effects
involve damage to functional macromolecules and increased
activation of apoptotic pathways [199, 200]. Indirect effects
include enhanced Wnt signaling [90], epigenetic dysregulation,
and compromised TLR activity [166, 201–203].
The metabolic reprogramming of DCs is shown in Fig. 3 and

Table 3 summarizes the effects of redox mechanisms on DC
functions.

METABOLIC REPROGRAMMING AND REDOX REGULATION OF
NEUTROPHIL ACTIVATION
Metabolic reprogramming of neutrophils
Neutrophils are the first line responders of the innate immune
system, which play a key role in the destruction of invading
pathogens. However, these leucocytes also participate in humoral
immunity via a sophisticated cross-talk with other immune cells
[204–206]. Importantly, these regulatory functions extend beyond
modulation of the activity of myeloid cells and also involve
modifying the function of T-cells, marginal zone B-cells, and NK-
cell homeostasis [204–206]. There is also considerable evidence of
functionally distinct subsets and extensive cellular plasticity
enabling a range of roles depending on cellular location and
inflammatory status [207, 208]. These immune cells may be
activated and/or primed by multiple stimuli such as inflammatory
cytokines, chemokines, growth factors, PRRs (mainly c-type lectin
receptors), opsonins (C3a and IgG), and G protein-coupled receptors
[209, 210].
Glycolysis is the primary energy source for activated neutrophils

under physiological conditions [211]. This is also true for
inflammatory environments [212]. However, neutrophils adjust
their metabolism to carry out their various effector functions such as
phagocytosis, degranulation, oxidative burst, neutrophil extracel-
lular traps (NET) formation, and chemotaxis [213]. The weight of
evidence suggests that NET formation is reliant on glycolysis, with
extensive involvement of lactate synthesis, the PPP, and glutamine
metabolism as sources of NADPH [214, 215]. This metabolic
reprogramming also supplies superoxide production, and induces
ROS and hypochlorous acid, used in the neutrophil oxidative burst
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following phagocytosis of invading pathogens [211, 216–218]. The
metabolic changes underpinning chemotaxis are somewhat more
complicated, however, and involve mitochondrial contributions in
addition to upregulated glycolysis [219–221]. This activity supplies
ATP which activates membrane-bound P2Y2 receptors following
the receipt of chemotactic stimuli (2019–2021). Mitochondrial
activity provides the ATP required for neutrophil activity in regions
of profound glucose deprivation. It occurs in an environment of

extreme inflammation and also plays a dominant role in neutrophil
autophagy and survival via FAO (2011) [222].
These metabolic changes underpinning neutrophil activity in

inflammatory environments are primarily regulated by the
cooperative action of NF-κB [43, 223], HIF1α [224, 225], and
mTOR [211, 226]. The multiple and arguably pivotal roles of the
latter include the regulation of NET production, autophagy,
oxidative burst, phosphorylation, and stabilization of NOX and

Fig. 2 Metabolic reprogramming in macrophages (Maf ). DAMPs damage-associated molecular patterns, PAMPs pathogen-associated
molecular patterns, ROS reactive oxygen species, LPS lipopolysaccharide, STAT-6 signal transducer/transcription activator 6, GATA3 GATA
binding protein 3, Arg1 Arginase-1, LXR liver X receptor, PPARγ peroxisome proliferator-activated receptor, AMPK AMP-activated protein
kinase, iNOS inducible nitric oxide synthase, NO nitric oxide, PGE2 prostaglandin E2, OXPHOS oxidative phosphorylation, TCA tricarboxylic
acid cycle, FA fatty acid, NF-kB nuclear factor NF-kappa-B, PI3K phosphatidylinositol 3-kinase, mTOR mechanistic target of rapamycin, STAT-1
signal transducer and activator оf transcription 1, HIF1α hypoxia-inducible factor 1-alpha

Table 2. Redox mechanisms influencing macrophage functions

Redox mechanisms Macrophage functions References

Reactive oxygen species (ROS) Increase inflammatory signaling via STAT-1, MAPK, and NF-KB mechanisms [141]

Modulate NADPH oxidase assembly thereby further increasing superoxide and ROS
production as well as RNS with peroxynitrite formation

[142–147]

Glutathione (GSH) GSH oxidation compromises phagocytosis and leads to attenuated macrophage
survival

[148–151]

Regulates M1 inflammatory status [152, 153]

As a ROS scavenger, protects against oxidative stress damage [154]

Thioredoxin (TRX) Modulates MIF signaling thereby lowering inflammation and encouraging M2
polarization

[155–159]

Nuclear factor erythroid 2-related factor
2 (Nrf-2)

Anti-inflammatory effects through attenuating IL-1 and IL-6 [160–163]

Transcription of a multitude of genes involved in the switch between M1 and M2
polarization

[160, 161]
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HIF1α [226, 227]. mTOR also increases the surface expression of
GLUT-1 and intensifies mitochondrial biogenesis and FAO via the
upregulation of PPARγ and SREBPs [72]. Elevated mTOR activity
increases the production of leukotrienes, prostaglandins, resol-
ving, and proinflammatory cytokines via phosphorylation of AKT
[228]. mTORC1 also exerts an inhibitory effect on OXPHOS by
upregulation of IFN-γ and NO which inhibits the activity of
enzymes in the ETC [229].
While mTOR upregulation plays a key role in the optimal

function of activated neutrophils, it should be stressed that other
enzymes and transcription factors are also important regulatory
elements enabling pathogen destruction. This in turn restrains
extreme inflammation and prevents excessive survival. For

example, PI3K enables chemotaxis and endothelial crawling via
an intricate pattern of “cross-talk” with the Rho family GTPases
[230, 231]. On the other hand, AMPK regulates and restrains NF-κB
and the production of proinflammatory cytokines, limiting tissue
inflammation and destruction while optimizing chemotaxis and
phagocytosis [232, 233]. Finally, PPAR-γ also regulates migration
and restrains inflammation by inhibiting NF-κB while stimulating
IL-10 production [211, 234].

Redox regulation of neutrophil activation and function
The function of individual neutrophils is heavily influenced by
cellular redox status in terms of cellular antioxidant system activity
and or ROS/RNS production. For example, excessive ROS fabrica-
tion may compromise the initiation and outcome of phagocytosis
[235], resulting in a dysregulated or decreased oxidative burst
[236] and production of NETs [237]. In addition, intracellular and
extracellular levels of ROS play a role in neutrophil “sensing “ of
pathogens and consequent activation of the NLRP3 inflamma-
some and cytokine synthesis [238, 239]. Chronically upregulated
ROS and cytokine production may also result in the internalization
of membrane chemokine receptors, most notably CXCR2 [240],
thereby decreasing neutrophil migration.
Upregulated NO inhibits neutrophil migration, crawling, and

adhesion [241–243]. Mechanistically, this is achieved via the
downregulation of adhesion factors such as E-selectin, P-selectin,
ICAM-1, and VCAM-1. As a result, neutrophil binding to the
endothelium is compromised, and subsequent crawling and
transmigration to inflammatory centers are damaged [244].
Neutrophil migration may also be hampered by increased
production of peroxynitrite due to the combination of NO and
superoxide cations [245–248]. There is evidence suggesting that

Table 3. Redox mechanisms influencing dendritic cell and neutrophil functions

Redox mechanisms Dendritic cell functions References

Reactive oxygen species (ROS) ROS due to NADPH oxidase (NOX-2) modulates the presentation of digested antigens
to CD8 T cells

[181–183]

ROS due to TLR activation modulates maturation and the priming of CD4 T cells [184, 185]

Glutathione (GSH) DC differentiation and function as APC [186–189]

T-cell polarization [188]

DC maturation and inflammatory cytokine production [189]

Nuclear factor erythroid 2-related factor 2
(Nrf-2)

Redox homeostasis in DCs [190–192]

Restrains T-cell proliferation by repressing IL-12 production and upregulating IL-10 [191–195]

Transition between glycolysis and OXPHOS in tolerogenic DCs [196]

Redox mechanisms Neutrophil functions

Reactive oxygen species (ROS) Compromise initiation and outcome of phagocytosis [235]

Dysregulate or decrease oxidative burst and NET production [236, 237]

Neutrophil sensing of pathogens [238, 239]

Activation of the NLRP3 inflammasome [238, 239]

Nitric oxide (NO) Inhibits neutrophil migration, crawling, and adhesion [240–243]

Downregulates adhesion molecules [244]

Compromises neutrophil binding to the endothelium [244]

Peroxynitrite Compromises neutrophil migration [245–248]

Nuclear factor erythroid 2-related factor 2
(Nrf-2)

Efficiency of neutrophil phagocytosis [250]

Recruitment to inflammatory sites and survival [251, 252]

GSH reductase Sustains neutrophil respiratory burst [245, 253]

Sustains NET production [253, 254]

Influences optimal phagocytotic activity [255, 256]

Thioredoxin (TRX) Neutrophil chemotaxis [263, 264]

Desensitization of neutrophils toward monocyte-chemoattractant protein-1 [264–266]

Fig. 3 Metabolic reprogramming of dendritic cells (DCs). OXPHOS
oxidative phosphorylation, TCA tricarboxylic acid cycle, FA fatty acid,
NF-kB nuclear factor NF-kappa-B, mTOR mechanistic target of
rapamycin, HIF1α hypoxia-inducible factor 1-alpha, PPARγ peroxi-
some proliferator-activated receptor, ROS reactive oxygen species,
NO nitric oxide
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the tyrosine nitration mediates inhibition of P-selectins [245–247]
and upregulation of haem oxygenase (HO-1)-1 [249].
A multitude of neutrophil functions is heavily affected by the

cellular antioxidant system. For example, Nrf-2 activity influences
the efficiency of neutrophil phagocytosis [250], recruitment to
inflammatory sites [251], and prolonged survival [252]. The
glutathione system regulates various functions displayed by
activated neutrophils most notably the stimulation of glutathione
reductase. It sustains the neutrophil respiratory burst and NET
production [253, 254] influencing optimal phagocytic activity
[255, 256]. It is noteworthy that the basal activity of the GSH
system in neutrophils appears to be lower than that found in
myeloid cells [257], rendering these immune cells vulnerable to
depleted GSH levels [257]. This may result in compromised
cytoskeletal reorganization, affecting chemotaxis and transmigra-
tion and leading to reduced recruitment to sites of inflammation,
impaired degranulation, and early apoptosis [258, 259]. In this
context, it should be noted that prolonged neutrophil activity
depletes levels of GSH, likely due to excessive production of
myeloperoxidase (MPO) during chronic nitro-oxidative stress and
inflammation [260–262].
TRX plays an important role in the regulation of neutrophil

chemotaxis as a result of its release from infected cells and/or
inflamed tissues [263, 264]. This effect appears to be a result of the
desensitization of neutrophils toward MCP-1 [264, 265], thereby
restraining neutrophil recruitment into inflammatory tissues [266].
The mechanisms involved are not fully understood, but they
appear to rely at least in part on the oxidation state of functional
cysteine residues within the TRX protein [264].

Table 3 summarizes the redox mechanisms that affect neutrophil
functions, and the metabolic reprogramming of neutrophils is
presented in Fig. 4.

METABOLIC REPROGRAMMING AND REDOX REGULATION OF
T-CELL ACTIVATION
Metabolic reprogramming of T-cells
Activation of T-cells follows the ligation of the T-cell receptor (TCR)
and the major histocompatibility complex molecules by APC.
Nuclear factor of activated T cell 1 (NFAT1), activation protein-1
(AP)-1, and NF-κB are triggered as a result of this signaling cascade
[267]. When TCRs are ligated, ROS production increases by
mitochondria and NOXs [268], which in turn regulates the
signaling pathways required to enable and modulate T-cell
activation, proliferation, and differentiation [268].
Unsurprisingly, T-cell activation and differentiation require

extensive metabolic reprogramming [269–273]. In general, such
reprogramming is regulated by the collaborative activity of PI3K/
AKT, mTOR, HIF1α, and c-Myc [274–276]. However, it should be
stressed that the metabolic reprogramming pathways of various
T-cell subsets display important differences [277–279]. The
metabolic needs of naive and memory T and Treg cells are
relatively modest and are met by reliance on OXPHOS and FAO
[274, 277, 279]. However, the differentiation and various effector
functions of effector CD4 and CD8 cells require ATP obtained from
aerobic glycolysis and NADPH. They are supplied by increased
activity of the PPP and glutaminolysis, which is largely mediated
by high levels of HIF1α and mTOR [278, 280–284].

Fig. 4 Мodulation of effector functions of neutrophils. PRRs pattern-recognition receptors, GPCRs G protein-coupled receptors, NET
neutrophil extracellular traps, ROS reactive oxygen species, PPP pentose phosphate pathway, FA fatty acid, ATP adenosine triphosphate, NF-kB
nuclear factor NF-kappa-B, HIF1α hypoxia-inducible factor 1-alpha, mTOR mechanistic target of rapamycin, PI3K phosphatidylinositol 3-kinase,
AMPK AMP-activated protein kinase, PPARγ peroxisome proliferator-activated receptor
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Important differences exist between subsets when it comes to
FA metabolism and T-cell activation and differentiation. For
example, effector T-cell activity relies on FA uptake and FAS
while T memory cells utilize stored FA [285, 286]. Uniquely,
the relative reliance on FA uptake versus FA synthesis exerts
a major influence on the differentiation of naive T cells into
Tregs or Th-17 cells [286, 287]. In particular, uptake of
environmental FA is a characteristic feature of Treg develop-
ment, while Th-17 differentiation counts on ACC-mediated FA
synthesis [276, 287].
TCR signaling also leads to the upregulation of amino acid

transporters, facilitating the uptake of branch chain amino acids
such as alanine, cysteine, leucine, glycine, and glutamine [288–290].
These amino acids, in combination with high PPP activity, promote
the rapid increase of GSH needed for T-cell survival and function
[284]. Augmented glutamine catabolism following T-cell activation,
mediated by mitochondria-dependent oxidation, is of particular
importance as the resultant increase in α-ketoglutarate production
stimulates TCA activity and fuels increased OXPHOS [268, 291].
TCR-dependent uptake of glutamine, valine, and leucine is
implicated in inflammatory T-cell responses, the differentiation of
Th-1 and Th-17 cells, and the development of effector and memory
CD8 cells [292–295].

Redox regulation of T-cells
ROS levels rise rapidly after TCR engagement and are critical in
driving T-cell activation, proliferation, and differentiation
[268, 291, 296, 297]. Unsurprisingly, given the information
discussed above, ROS influences the differentiation patterns and
the disparate effector functions of various T lymphocytes. For
example, the Th-2 polarized phenotype is encouraged by
excessive microenvironmental ROS [298]. Conversely, Th-1 and
Th-17 polarizations occur at low microenvironmental levels of ROS
[299]. Excessive ROS resulting from either high production or
damaged cellular antioxidant defenses may lead to mitochondrial
membrane polarization with fatal consequences for T-cell activa-
tion and survival following TCR engagement [300]. Similarly,
prolonged or chronic ROS upregulation may result in T-cell
hyperresponsiveness, exhaustion, and anergy [301–305]. Several
mechanisms appear to underpin this phenomenon including
compromised mitochondrial ETC activity and dynamics [302, 306],
upregulation of PD-1 [307, 308], dysregulated NF-κB signaling,
chronic IKKβ signaling [309–311], and oxidation of functional
cysteine groups in proteins [312–314]. Finally, excessive ROS
production may lead to dysregulated T-cell homeostasis by
differential modulation of T-cell homeostasis as effector T cells
are more susceptible to ROS-mediated cell death than Tregs
[201, 315, 316].
Nrf-2 transcription is upregulated following TCR engagement on

naive T cells and restrains inflammatory T-cell activity. Thus, a Th-2
pattern is activated following TCR stimulation [317, 318]. Animal
studies show that the upregulation of Nrf-2 increases the
proliferation of Tregs [319] and amplifies their immunosuppressive
and cytotoxic functions [320].
As previously discussed, GSH synthesis rapidly escalates

following TCR activation and affects T-cell survival and function
[284]. Increased de novo GSH synthesis also suppresses Th-17
differentiation while encouraging the production of Tregs.
Conversely, GSH depletion or loss of de novo GSH synthesis in
a state of chronic nitro-oxidative stress [321] compromises
mTOR, NFAT, and N-Myc function. Thus, the metabolic repro-
gramming is abrogated enabling the maintenance of aerobic
glycolysis and leading to the termination of T-cell activation
[322–324]. Tregs also appear to exert at least some of their
cytotoxic and immunosuppressive functions on effector T cells
by decreasing GSH synthesis [325].
The TRX system activity exerts a range of influences on T-cell

proliferation and activation via increased TRX-1 production. This

restrains their stimulation and encourages the development of
Tregs from naive T cells, decreasing their differentiation down the
Th-1 and Th-17 pathways [326]. TRX-1 upregulation is important in
enabling T effector and Treg cell survival and function during
chronic nitro-oxidative stress by protecting membrane protein
thiols from oxidation [327, 328]. Increased TRX-1 activity is needed
to maintain the production of IL-2 [329] and Th-mediated
activation of B cells [330].
The metabolic reprogramming of T cells is depicted in Fig. 5 and

Table 4 summarizes the redox mechanisms that affect T-cell
functions.

METABOLIC REPROGRAMMING AND REDOX REGULATION OF
B-CELL ACTIVATION
Metabolic reprogramming of B-cells
B-cell receptor (BCR) or cytokine-associated activation of naive B
cells results in PI3K phospholipase C gamma 1 expression,
leading to calcium mobilization and NF-κB activation and
upregulation of c-Myc, HIF1α, AKT, mTOR, and STAT-6 [331].
Once activated, these lymphocytes migrate to germinal centers
and display high rates of glycolysis and OXPHOS [332–334]. The
short-term metabolic reprogramming and increased glycolysis
are controlled by PI3K, HIF1α, AKT, and STAT-6 signaling
[332–334]. The role of mTOR appears to be confined to the
upregulation of GLUT-1 [335]. It is noteworthy that GSK-3 has a
key role in regulating glycolysis in activated B cells and may also
adjust ROS production and changes in mitochondrial dynamics
[335, 336]. However, while mTOR may not be the primary player
in the regulation of glycolysis, sustained germinal center B-cell
BCR signaling requires activation of mTOR [337, 338]. mTOR is
also involved in somatic hypermutation and in the formation of
memory B cells [339–341].
The relative levels of OXPHOS and glycolysis differ in plasma-

blasts and memory B cells, with glycolysis being dominant in the
former and OXPHOS being dominant in the latter to enable their
long-term survival [342]. B1 and B2 subsets appear to display
differing metabolic profiles, with PPP, FAO, and aerobic glycolysis
being more active in B1 compared to B2 cells [342]. The production
of high-affinity antibodies by plasmablasts is an energetically
demanding process and requires rapid increases in glucose
consumption and mitochondrial mass accompanied by significant
changes in mitochondrial dynamics [336, 343, 344], reviewed in
[342]. Unsurprisingly, functional mitochondria are an indispensable
element in B-cell differentiation and effector functions [345]. The
process of antibody synthesis is also regulated by AMPK, which
enables memory B-cell formation and survival in part by regulating
mitochondrial dynamics and suppressing the activation of mTOR
[133, 346, 347].

Redox regulation of B-cell activation and function
High levels of hydrogen peroxide are required to initiate and
maintain BCR signaling [348, 349]. This is primarily provided by the
activity of NOX-2 [350], but in the longer term, the source of
hydrogen peroxide is mtROS [348, 349]. In addition, the cellular
redox state and mtROS release play a major role in B-cell survival
and differentiation and IgM synthesis [351, 352]. However, excessive
mitochondrial mtROS synthesis may inhibit B-cell activation and the
differentiation of B cells into antibody-producing plasmablasts
[353]. Increased concentrations of mtROS may also inhibit the
production of antibodies by downregulating CD19 expression [354].
Finally, chronically upregulated ROS can upregulate the consump-
tion of IgM antibodies [355, 356].
In this context, it is noteworthy that B-cell activation is

accompanied by a concomitant stimulation of the TRX and GSH
system, with the latter involving triggering of the cystine
transporter xCT and higher uptake of cysteine [352]. Upregulation
of GSH/TRX systems by activated B cells enables their medium-
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term survival [357]. The intensive function of both systems
correlates with elevated production of IgM [352]. Finally, there is
evidence associating increased Nrf-2 expression in activated B
cells with prolonged survival and resistance to ROS-mediated
apoptosis [358–360].
Table 4 summarizes the redox mechanisms that affect B-cell

functions, and the metabolic reprogramming of B cells is depicted
in Fig. 5.

METABOLIC REPROGRAMMING AND REDOX REGULATION OF
NK-CELL ACTIVATION
Metabolic reprogramming in NK-cells
The signaling mechanisms involved in NK-cell activation [361, 362]
entail the engagement of multiple activation receptors such as
natural cytotoxicity receptors [363–365] leading to the stimulation
of AP-1, NFAT, and NF-κB [361, 366]. Cytoskeletal reorganization and
release of chemokines, inflammatory cytokines, and lytic granules
containing granzyme A, B, and perforin follows [367–369].
Unsurprisingly, the various effector and regulatory functions of
activated NK-cells are enabled by metabolic programming, which is
underpinned by the upregulation of glucose-driven glycolysis,
OXPHOS, increased FA synthesis, and glutamine metabolism
[370–373]. Metabolic reprogramming, glycolysis, and mitochondrial
activity are controlled by mTOR that is upregulated in NK cells
following stimulation by IL-15 and IL-3 [372, 374, 375]. The high
expression of this kinase is also responsible for increased FA
synthesis and glutamine metabolism by activated NK cells via the
upregulation of SREBPs and N-Myc [370, 376].
In inflammatory conditions, PI3K/mTOR signaling, along with

NF-κB and STAT-3 transcriptional activity, is responsible for

triggering HIF1 protein synthesis [377, 378]. The importance of
mTOR and HIF1α in NK-cell proliferation and function is difficult to
overemphasize as reduced HIF1α and mTOR activity are asso-
ciated with loss of cytotoxic effects. It is evidenced by decreased
production of perforin and granzyme B, and premature apoptosis
[372, 379, 380].

Redox regulation of NK-cell activation and function
Increased ROS production enables NK-cell-mediated cytolysis by
promoting the release of perforin and granzyme B [381] and NK-
cell division and proliferation after pathogen invasion [382]. Nrf-2
activation serves as an immunological checkpoint following NK-
cell activation [383, 384].
The upregulation of GSH synthesis may enable the proliferation

and cytotoxic functions of NK-cells and, conversely, GSH down-
regulation results in compromised functions and recruitment to
sites of inflammation [385–387]. In an inflammatory environment,
the upregulation of TRX-1 plays a role in NK-cell survival by
maintaining membrane cytoprotective sulfhydryl residues in a
reduced state [388, 389]. This phenomenon may protect those
cells from hydrogen peroxide-mediated NK-cell dysfunctions
[388, 389]. However, this level of protection is clearly limited as
chronic nitro-oxidative stress may result in NK-cell hypofunction
and loss of cytotoxic activity [390–393]. There is evidence
suggesting that this is due to compromised hydrogen peroxide
signaling following NOX-2 hyperactivity [390]. However, there is
also proof that NK-cell function may be impaired by excessive
production of NO [392].
Table 4 summarizes the redox mechanisms that affect NK-

cell functions, while Fig. 6 shows the metabolic reprogramming in
NK-cells.

Fig. 5 Metabolic reprogramming of T and B cells. Tm cells memory T cells, Treg cells regulatory T cells, OXPHOS oxidative phosphorylation, FA
fatty acid, PPP pentose phosphate pathway, GSH glutathione, PI3K phosphatidylinositol 3-kinase, mTOR mechanistic target of rapamycin,
HIF1α hypoxia-inducible factor 1-alpha, c-Myc Myc proto-oncogenes, Pl cells plasma cells, Bm cells memory B cells, B1/B2 subclass of B-cells
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ROLE OF THE HDL COMPLEX AND OXIDIZED PHOSPHOLIPIDS
IN THE IMMUNE RESPONSE
Role of HDL, ApoA1, and PON1 in the regulation of the
immune response
Previously, we have reviewed the important role of the HDL/ApoA1/
PON1 complex in regulating immune responses [13, 41, 79, 90, 394].
In brief, HDL attenuates the activation of TLR-4 by stimulating
cholesterol efflux from membrane lipid rafts (MLR), NF-κB activity,
DC maturation and activation, and antigen presentation to T
lymphocytes. It also affects Th-1 and Th-17 differentiation, T-cell and
BCR activation, the complement system, and monocyte and
macrophage chemotaxis [13, 41, 79, 90, 394]. HDL-mediated MLR
disruption underpins anti-inflammatory and immunosuppressive

effects. HDL exerts a unique immunoregulatory role by activating
pentraxin 3, an immunosensory molecule. ApoA1 regulates the
balance between Th-17 and Tregs, improves mitochondrial func-
tions, increases the activity of the ETC, and stabilizes PON1 within
the HDL particle, thereby maintaining PON1 activity. The latter
protects against immune cell membrane lipid peroxidation,
circulating oxidized lipoproteins, and oxidative damage to mito-
chondria. It positively affects glucose metabolism, PPP, FAO, PPAR-γ
activity, and aerobic glycolysis via upregulation of GLUT-1 [41, 90].

Role of oxidized phospholipids in the regulation of the
immune response
Evidence suggests that the bulk of oxidized phospholipids present
in the circulation exists as immune complexes with natural IgM
and IgG due to their status as oxidation-specific epitopes or
neoantigens [395, 396]. It is also proposed that oxidized
phospholipid complexes are proinflammatory [397, 398] using
several routes, which include recruitment of the complement
cascade [399] and production of inflammatory responses in
human macrophages largely by engagement of the Fc gamma
receptor 1 [400, 401]. These complexes may activate mature DCs
leading to a primed inflammasome thereby exaggerating IFN-γ
and IL-1 production [402–404]. Moreover, DCs activated and
primed via this mechanism may trigger naive T cells and induce
Th-17 polarization [404–406].

Fig. 6 Metabolic reprograming in NK-cells. AP-1 activator protein-1,
NFAT nuclear factor of activated T cell, NF-kB nuclear factor NF-
kappa-B, OXPHOS oxidative phosphorylation, FA fatty acid

Table 4. Redox mechanisms influencing T-, B-, and NK-cell functions

Redox mechanisms T-cell function References

Reactive oxygen species (ROS) Encourage Th-2 polarized phenotype [298]

Mitochondrial membrane polarization with fatal consequences for T-cell activation
and survival following TCR engagement

[300]

When chronic, may result in T-cell hyperresponsiveness, exhaustion, and anergy [301–305]

Dysregulated T-cell homeostasis [201, 315, 316]

Nuclear factor erythroid 2-related factor 2
(Nrf-2)

Restrains inflammatory T-cell activity [319, 320]

Encourages a Th-2 pattern following TCR activation [317, 318]

Glutathione (GSH) Suppresses Th-17 differentiation [321]

Encourages the production of Tregs [321]

Thioredoxin (TRX) Restrains T-cell activation [326–328]

Encourages the development of Tregs

Enables T effector and Treg cell survival

Redox mechanisms B-cell functions

Mitochondrial reactive oxygen species
(mtROS)

Increased ROS inhibit B-cell activation [353]

Increased ROS inhibit the differentiation of B-cells into antibody-producing
plasmablasts

[351, 352]

Increased ROS inhibit the production of antibodies by downregulating CD19
expression

[358]

Increased ROS upregulate the consumption of IgM antibodies [355–360]

GSH/TRX Enables medium-term survival [357]

Increased production of IgM [352]

Nuclear factor erythroid 2-related factor 2
(Nrf-2)

Increased survival and increased resistance of ROS-mediated apoptosis [358–360]

Redox mechanisms NK-cell functions

Reactive oxygen species (ROS) Enable NK-cell-mediated cytolysis [381]

Enable NK-cell division and proliferation following pathogen invasion [382]

Nuclear factor erythroid 2-related factor 2
(Nrf-2)

Restrains activation and regulates effector functions [383, 384]

Glutathione (GSH) Enables the proliferation and cytotoxic functions of NK-cells [385–387]

Thioredoxin 1 (TRX-1) Maintains membrane cytoprotective sulfhydryl residues in a reduced state [388, 389]

Protects cells from hydrogen peroxide-mediated NK-cell dysfunctions [390–393]
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As a result of activating neutrophil PRR, oxidized phospholipids
contribute significantly to inflammation and oxidative stress and
the formation of NETs [407, 408]. In addition, oxidized phospho-
lipid engagement with monocytes, macrophages, DCs, and NK
cells may induce epigenetic and metabolic reprogramming
leading to “immune training”. The process effectively endows
these leucocytes with a de facto memory, resulting in an amplified
inflammatory or anergic response to future antigenic challenges
[409, 410]. The mechanisms driving the metabolic and epigenetic
changes described above appear to depend, at least in part, on
mTOR-induced assembly of NADPH oxidase and subsequent
increases in ROS-mediated signaling [410, 411].
The final part of this review deals with the detrimental effects of

chronic oxidative and nitrosative stress on the immune response
as a whole. In physiological conditions, NOX-derived cytosolic
hydrogen peroxide regulates redox-sensitive intracellular signal-
ing pathways [412–416]. However, in conditions of excessive ROS
production, hyperoxidation of thiolate anions to sulfonic acid
essentially incapacitates reversible cysteine oxidation. It is an
effective signaling mechanism, locking functional cysteines in the
oxidized mode [90, 417].
The other signaling system involved in regulating the activity of

redox-sensitive proteins and enzymes is reversible S-nitrosylation
[17, 418]. However, pathological levels of ROS disable the
mechanisms responsible for maintaining the reversibility of
S-nitrosylation inducing a cellular state described as protein
hypernitrosylation [202]. Hyperoxidation and S-nitrosylation can
result in impaired function of the redox-sensitive transcription
factors and enzymes regulating metabolic reprogramming in
immune cells. Compromised mitochondrial functions and ser-
iously suppressed immune cell activation and function may follow.
Chronic nitro-oxidative stress also affects the activity of HDL,
apoA1, and PON1 whilst increasing the density of oxidized
phospholipids further dysregulates the immune response [41].
Finally, chronic nitro-oxidative stress and inflammation also
stimulate IDO that may result in a state of profound immune
suppression [419]. The section below deals with these processes,
beginning with the effects of hypernitrosylation and hyperoxida-
tion on transcription factors and enzymes.

THE DETRIMENTAL EFFECTS OF CHRONIC NITRO-OXIDATIVE
STRESS ON THE IMMUNE RESPONSE
Chronic nitro-oxidative stress on transcription factors and
enzymes
S-nitrosylation exerts a significant inhibition of NF-κB function by
reducing the binding of its subunits to DNA thereby decreasing the
activity of the complex as a transcription factor [420–422], as well as
the expression of target effector genes [420, 423]. This conse-
quence is largely due to S-nitrosylation-mediated conformational
changes to crucial functional cysteine residues located on the
p65 subunit of p50/p65 abrogating NF-κB DNA-binding capacity
[420, 424]. The outcomes involve decreased levels of IL-12 [425], IL-
1β [426], IL-6, IL-8, and iNOS [427, 428]. Moreover, S-nitrosylation
may inhibit TLR-4 [429, 430] and TLR-2 signaling [431].
There is also in vivo evidence that S-nitrosylation leads to the

inhibition of numerous MAPKs, most notably p38/MAPK [432, 433],
Janus kinase [432, 434], and consequent STAT-3 and NF-κB
activation [435]. S-nitrosylation is additionally involved in Nrf-2
triggering, which appears to be affected via the conformational
modification of crucial thiol groups [436–438]. Hypernitrosylation
is also accompanied by chronic activation of HIF1α via upregula-
tion and/or stabilization of HIF1α [439–441]. In addition, irrever-
sible nitrosylation of functional cysteine thiols may cause chronic
upregulation of PI3K/AKT and mTOR signaling [442–445] thereby
decreasing the capacity of immune cells to adapt to environ-
mental conditions or changing metabolic needs. Moreover, mTOR
may be directly activated following S-nitrosylation of the tuberous

sclerosis complex 2 [445] and the nitrosylation of small GTPases
[446]. Prolonged nitrosylation may also compromise immune cells
via the chronic upregulation of GSK-3 [202]. Finally, by inhibiting
AMPK activity, nitrosylation-mediated upregulation of PI3K/AKT
and GSK-3 may introduce a further dimension of metabolic
disorders [447, 448]. In addition, in an environment of chronic
nitro-oxidative stress, mTOR may be inactivated by oxidation of
Cys1483 [449] and AMPK activation [450, 451]. In an environment
of increased ROS, several enzymes involved in regulating
metabolic reprogramming in immune cells are triggered most
notably via PPAR-γ [452, 453].

Detrimental effects on immune cells due to nitro-oxidative
stress-mediated mitochondrial dysfunction
Chronically elevated ROS/RNS can impair mitochondrial structure
and functions by injuring DNA, proteins, and lipids. The most
prominent results are damage to the enzymes of the ETC
[248, 454–456] and a range of structural and functional
phospholipids, basically cardiolipin [457–459]. This ultimately
leads to altered ATP production and accelerated ROS, provoking
further impairement of macromolecules, forming the basis of self-
amplifying pathology [248, 454–456]. Increased NO production by
mitochondria in an environment of nitrosative stress may also be a
source of dysfunction and damage [460–462]. In essence, two
pathways are implicated. The first involves reversible inhibition of
ETC enzymes by NO-mediated S-nitrosylation [17, 463, 464]. The
second comprises irreversible nitration of functional enzymes and
structural proteins by ONOO- [248, 465]. This pattern of pathology
leads to a vicious circle of bioenergetic failure and elevated mtROS
production [466–469].
Clearly compromised mitochondrial function has many direct

adverse effects on the activity of immune cells, as discussed
above. However, mitochondrial dysfunction may also lead to
numerous indirect negative consequences related to depleted
levels of NADPH, which results from the distorted activity of this
organelle [470–472]. This is a significant source of metabolic
dysfunction in immune cells as the GSH/TRX systems are wholly
dependent on the presence of adequate levels of NADPH, which
acts as an indispensable source of reducing equivalents [473–476].
The synthesis of NADPH from NADP [477, 478] and NAD+ kinases,
which catalyze the production of NADP from NAD+ [479, 480], is
dependent on mitochondrial respiration and on an adequate
supply of ATP [470, 471, 481]. Mitochondrial dysfunction is
associated with depleted levels of NAD+ [13] due to the fact that
the enzyme nicotinamide mononucleotide adenylyl transferase,
which catalyzes the formation of NAD+ synthesis from nicotina-
mide mononucleotide as part of the salvage pathway [482], is
dependent on ample supplies of ATP [483–485].
An important adverse consequence of depleted NAD+ levels is

the compromised mitochondrial NADPH production by malic
enzyme 2, IDH, methylenetetrahydrofolate dehydrogenase 2, and
aldehyde dehydrogenase, which are all NAD+ dependent
[486, 487]. Lowered levels of malic enzyme 2 and IDH may affect
the TCA cycle [488, 489]. NAD+ deficiency can impair the PPP's
ability to produce NADPH via decreased hexokinase activity
[490–492].

Chronic nitro-oxidative stress and the inhibition of
antioxidant systems and TCA activity
Chronic nitro-oxidative stress may cause nitrosylation and
hyperoxidation of the key cysteine residues within TRX and
thioredoxin reductase thereby compromising or abrogating TRX
activity [493–496]. Chronically elevated ROS/RNS decrease GSH
system activity [497, 498]. Mechanistically, this is achieved via the
oxidation and nitrosylation or tyrosine nitration or via inhibiting
the activity of GSH, glutathione peroxidase, and glutathione
reductase [13, 321, 499]. Increased production of radical species
also raises the activity of multidrug resistance-associated proteins,
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resulting in extrusion of GSH and GSSH into the intercellular
environment. The decreased importation of cysteine, which
follows, leads to reduced synthesis of replacement GSH
[500–503]. A state of persistent nitro-oxidative stress may also
cause Nrf-2 inhibition via several mechanisms, including activation
of MAPK kinase, decreased DJ-1 [459, 504], and reduced TRX
system activity [505, 506].
Oxidation and/or nitrosylation of functional cysteine groups in

several TCA enzymes may cause adverse effects on the
metabolism of immune cells. Such inactivated enzymes are α-
ketoglutarate dehydrogenase [507–509] and conitase, which
catalyze the conversion of citrate to isocitrate [510, 511], IDH
[512–514], ME2 [515, 516], and pyruvate dehydrogenase kinase
[517]. The negative consequences of lowered α-ketoglutarate
dehydrogenase and aconitase are of particular importance, and
may lead to reduced TCA cycle activity and NADPH synthesis
[518, 519] and accumulation of citrate [519]. The inactivation of
pyruvate dehydrogenase kinase also results in adverse metabolic
consequences by attenuating the conversion of pyruvate to
acetyl-CoA [517].

Detrimental effects of chronic nitro-oxidative stress on the
HDL complex
Chronically elevated ROS/RNS levels are a cause of depleted
circulating HDL [520–522], ApoA1 [522–524], and PON1 [525, 526]
levels. Chronic oxidative stress induces HDL [527–529] and ApoA1
[521, 530, 531] dysfunctions. PON1 is rendered dysfunctional in
such an environment, which appears to be mediated by the high
activity of MPO [525, 526, 532]. The mechanisms underpinning the
development of a dysfunctional HDL particle and reduced activity
of ApoA1 are complex and readers are referred to the work of
Morris et al. [41].

Chronic nitro-oxidative stress and the advent of
immunosuppression
Chronic nitro-oxidative stress can induce the development of
endotoxin tolerance by provoking IDO activation [533, 534].
Increased IDO activity upregulates the tryptophan catabolite
(TRYCAT) pathway, as well as TGF-β1 and IL-10 [535, 536], which
exert multiple inhibitory effects on TLR signaling [537, 538].
Neutrophils with endotoxin tolerance are characterized by
decreased oxidative burst, downregulated TLR-4 receptors, and
impaired cell adhesion, rolling, and migration [539–541]. Macro-
phages with endotoxin tolerance display significant dysregulation
of their function as APCs [542]. Impaired antigen presentation is
also seen in DCs following IDO activation [542]. In this state, DC
activation of naive T cells leads to Th-2 polarization [543, 544]. DCs
may inhibit T memory and T effector cells and induce CD4 and
CD8 T-cell anergy and activation of Tregs [545, 546]. This explains
that prolonged endotoxin tolerance is typified by impaired
proliferation and anergy of CD4 T and CD8 T cells and increased
Treg cell numbers [547–549]. Finally, endotoxin tolerance is
characterized by a reduced number and cytolytic function of NK
cells [550–552].

SUMMARY AND CONCLUSION
The functions, performance, and survival of immune cells are
strongly regulated by redox mechanisms, including intracellular
and extracellular ROS/RNS and oxidized phospholipids, cellular
antioxidants such as glutathione, thioredoxin, the HDL complex,
and Nrf-2. Hypernitrosylation and chronic nitro-oxidative stress
may inhibit these antioxidant systems, thereby decreasing the
activity levels of the TCA cycle, mitochondrial functions, and
immune cell metabolism. As such, redox mechanisms regulate and
modulate many different immune functions, including but not
limited to macrophage and Th cell polarization, phagocytosis,
production of pro- and anti-inflammatory cytokines, metabolic

reprogramming of immune cells, immune training and tolerance,
chemotaxis, pathogen sensing, antiviral and antibacterial effects,
TLR activity, and endotoxin tolerance. ROS/RNS, oxidized phos-
pholipids, and the key antioxidant systems could be regarded as
new drug targets in the treatment and prevention of immune
disorders.
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