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ABSTRACT
Redpin is a fingerprint-based indoor localization system de-
signed and built to run on mobile phones. The basic princi-
ples of our system are based on known systems like Place Lab
or Radar. However, with Redpin it is possible to consider the
signal-strength of GSM, Bluetooth, and WiFi access points
on a mobile phone. Moreover, we devised methods to omit
the time-consuming training phase and instead incorporate
a folksonomy-like approach where the users train the system
while using it. Finally, this approach also enables the sys-
tem to expeditiously adapt to changes in the environment,
caused for example by replaced access points.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering, Implementation;
C.2.4 [Computer-Communication Networks]: Distributed
Systems—client/server

General Terms
Measurement, Human Factors, Performance

Keywords
Positioning Systems, Indoor Localization, Zero-Configuration,
User Collaboration, Adaptive Algorithms, Open-Source

1. INTRODUCTION
The location of a user or a device is a very meaning-

ful and significant information for many applications in the
field of ubiquitous computing [13, 27]. It certainly is the
most prominent contribution when it comes to determining
a user’s context or activity [7]. While determining the po-
sition of a mobile device outdoors is accurately possible in
many situations using GPS, there is no free and easy to use
system for indoor localization as far as we know.

Still, research in the past few years has shown that finger-
printing is the most promising approach to determine the
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location of a mobile device in various indoor settings with
very different signal propagation characteristics. Hence, a
lot of research focused on solving the problems that arise
when using the received signal strength (RSS) to fingerprint
a location, such as detecting and modeling line-of-sight ob-
structions [24], absorption by humans, or reflection on walls.
In addition, a lot of effort was spent on finding accurate and
robust algorithms to select a known fingerprint given a cur-
rent RSS measurement, for example [9, 16, 17, 21, 23] . We
will cover related work more extensively below.

However, most currently known localization systems that
apply fingerprinting work in two phases. An offline training
phase and an online phase in which data from the first phase
is used to determine the current position of a mobile device.
Moreover, these systems are only as accurate as the training
phase has been detailed.

In this paper, we present a novel approach to fingerprint-
ing that does not require an explicit offline phase but rather
incorporates the training of the system into the usage and
thus makes it an ongoing process that allows it to quickly
adapt to changes in the environment.

1.1 Related Work
As mentioned above, the current location of a user or even

a device is a very useful information for many different appli-
cations. Thus a lot of research has been done to determine
the location of mobile devices indoors. A few commercial
systems have also been introduced to address this need.

One class of indoor localization systems that have been
demonstrated to be very accurate are systems that use spe-
cial hardware (for example, RFID [10], infrared [28], or ul-
trasound [11]). Although being very accurate, such systems
usually require the installation of hardware that is needed
for the localization.

Another approach is to use empirical measurements of ra-
dio signals emited by already installed hardware. Using this
fingerprinting approach, systems have been proposed that
use GSM signals (for example [26]), WiFi signals (for exam-
ple [2, 16]), and also Bluetooth signals [4]. Extending this
idea, LaMarca et al. [19] are using multiple wireless tech-
nologies simultaneously to increase both the robustness as
well as the accuracy of localization. But most of these sys-
tems require a designated training phase that can take an
extended period of time.

The work of Lim et al. [22] requires no training by au-
tomating the calibration of the effect of wireless physical
characteristics on RSS measurements. But such automa-
tion requires very accurate RSS readings and thus the usage
of sensitive WiFi network cards. With Redpin, however,



we want to use standard mobile phones which are usually
equipped with smaller and hence less sensitive antennas.

The rest of this paper is organized as follows. In the next
section, we will first motivate our system and conclude with
our goals. In Section 3 we describe the basic mechanisms
while exploring the architecture in detail in Section 4. In
Section 5 we show how Redpin localizes mobile devices and
present first results of our method in Section 6. We conclude
this paper with our findings and a short outlook on future
research directions.

2. MOTIVATION
Although Marc Weiser’s vision of ubiquitous computing

[29] is finally starting to become reality, one key missing
technology that still hinders a broad emergence of such ap-
plications is a ubiquitously available localization system.
Despite the fact that commercial systems like Ekahau1 or
UbiSense2 are very accurate, the costs of installation, main-
tenance, and thus ownership are still high. Moreover, most
commercial systems require one to purchase and install spe-
cific hardware, i.e., they can not be used with portable de-
vices already at hand.

Academic systems that have been made publicly available
like Place Lab [19] on the other hand are not easy to setup3

and require one to train the system afterwards. In addition,
the offline phase is usually time consuming, as these sys-
tems try to optimize the accuracy of the localization, which
increases with the quality of the trained fingerprints. The
COMPASS system for example is able to determine the po-
sition with an average error distance of less than 2.05 meters
[16] using WiFi RSS. Yet, in order to reach this accuracy,
it was necessary to measure at grid-aligned points with a
spacing of only 1 meter and take measurements in 8 differ-
ent directions at each point. Even in a very small building
with a floor area of, for example, 125 m2, the training phase
would take more than 4 hours4. But the biggest issue with
having a designated training phase is that is has to be re-
peated whenever the environment changes, for example due
to a replaced access point.

However, such accuracy is only feasible when the mea-
sured signal strengths fluctuate only very slightly. Our own
measurements (see Section 6) showed that the RSS of GSM
signals can change up to 30% in only a few dozen seconds
and the RSS of WiFi access points can even slip more than
50% within one hour. Furthermore, the RSS of WiFi access
points depends heavily on whether humans are in the line of
sight as the human body absorbs electromagnetic radiation
quite well [18]. Hence, in rooms where the number of peo-
ple is high and changes frequently, it seems unlikely that an
accuracy of under 2 meters can be achieved.

Luckily, however, surveys of the most prominent chal-
lenges and issues in ubiquitous computing have shown that
it is sufficient to localize a user within room-level accuracy
for almost all applications [1, 3, 6, 12, 15, 30].

1http://www.ekahau.com
2http://www.ubisense.net
3It took one of our students almost two days to get the
system running on just one mobile phone.
4This is, if we account 20 seconds per measurement, which
is about the amount of time we experienced in our own ex-
periments. See Section 6 for details.

2.1 Project Goals
Based on the findings presented above, we decided to build

a fingerprinting-based indoor localization system. In addi-
tion we wanted our system to meet the following require-
ments:

• Use hardware that everyone already has

• Doesn’t require the installation of special hardware in
the building

• Must be very easy to setup and to maintain

• Should at least provide room-level (i.e., small office)
accuracy

• Must be able to adapt to changes in the environment

One of our main goals with this project was to not only
develop a system that would be easy to setup and use, but
also to make it publicly available and release it under an
open source license.

3. BUILDING PRINCIPLES
Given the requirements listed above, we decided to use

symbolic identifiers to denote locations, thereby forgoing a
potentially erroneous calculation of exact geographic coordi-
nates. Consequently, localization of a mobile user or device
can be reduced to the problem of mapping a set of RSS
measurements to a known symbolic identifier, like for ex-
ample a room number (see Figure 4). As mentioned in the
introduction, this information is sufficient for most applica-
tions in ubiquitous computing. The unique assignment of a
measurement to a location is called a fingerprint. Note how-
ever, that many fingerprints may be assigned to the same
location.

In order to achieve room level accuracy, i.e., selecting the
correct location given a measurement, we measure the signal
strength of the currently active GSM cell, the signal strength
of all WiFi access points as well as the Bluetooth identifier
of all non-portable Bluetooth devices in range. We could ad-
ditionally increase the system’s accuracy by measuring the
signal strength of all GSM cells, and not just the one GSM
cell that is currently active, but due to technical limitations
this is not currently possible with the devices we used (see
Section 4 for details). But still, it is possible to determine
the indoor location with a median localization error of 2.32
meters using only WiFi RSS [22], we were confident to be
able to correctly map the combination of all readings to a
location in almost every case. Moreover, reducing the prob-
lem to this simple mapping of room-level identifier entails
the advantage that rooms are divided by walls that absorb
and/or reflect electromagnetic radiation and thereby con-
tribute in making a measurement unique.

3.1 User Collaboration
As mentioned in the introduction, we wanted our local-

ization system to be easy to use and in particular easy to
setup. First and foremost, our system should not require a
designated training phase. Thus, after installing the soft-
ware, we have no information about neither the building(s)
nor the WiFi access points and Bluetooth devices installed
therein.



(a) (b) (c) (d)

Figure 1: Using Redpin on a Nokia N95.

The key concept of Redpin is to let the users of the system
create and manage the locations (i.e., the symbolic identi-
fiers that denote a location) in a collaborative way. Us-
ing Redpin, every user can create, modify and, most impor-
tantly, use location information that was created by other
users. We believe that this collaborative approach is feasi-
ble as people evidently like to participate and contribute to
folksonomy-based systems. The massive success of websites
such as Wikipedia5 or OpenStreetMap6 is just one evidence
for this. Recent research in this area has in addition shown
that people contribute because of ideological reasons and
even more so, because it is fun [5, 25]. This however entails,
that a system that relies on the contribution of its users
should provide an appealing user interface.

In our first implementation, we do not actually capture the
concept of a user, i.e., every mobile device that contributes
to the system uses the same database of fingerprints. This
allows to easily share knowledge about locations and enables
a quick mapping of a building (see Section 6). On the other
hand, this aspect entails security implications which are not
yet addressed in our current work.

3.2 Redpin in Action
After installing Redpin on its mobile device, for example

his or her mobile phone, the user can start-up the applica-
tion right away. During initialization (see Figure 1(a)), the
application is measuring the RSS of the active GSM cell,
the RSS of all WiFi access points in range as well as the ID
of all non-portable Bluetooth devices. We call this process
sniffing. This measurement is then sent to a central server
which will subsequently try to locate the mobile device given
all known fingerprints. If the system can locate the mobile
device, the user is presented the plan of the floor and his or
her current location, indicated by a red, pulsing circle, as
illustrated in Figure 1(b).

If the system can not locate the mobile device, for exam-
ple because the location is yet unknown, Redpin will display
the last known location. In the background, the system will
continuously take measurements and compare the last three
measurements, thereby trying to detect a stable state (see
Section 5 for details). Upon detecting a stable state, the

5http://www.wikipedia.org
6http://www.openstreetmap.org

system will again try to locate the device. If the device can
not be located, the user will be prompted to name the place
of his or her current location and indicate the appropriate
position on the floor plan. Thus, the user can choose from
a list of known floor plans (see Figure 1(c)), set the marker
(blue cross) to its current position, and enter the name of the
current location, for example the room number as illustrated
in Figure 1(d). In addition, a user can always correct the
location in case Redpin provided the wrong identifier. This
way, several fingerprints may be stored for the same iden-
tifier with a different timestamp. This mechanism allows
Redpin to continuously adapt to changes in the electromag-
netic environment.

In order to display not only the name of the current loca-
tion but also show the position on the floor plan, the system
must be given image files of each floor. These images can
be uploaded to the server at anytime. However, the system
does not require floor plan images since a location is defined
solely by its symbolic identifier in Redpin.

4. ARCHITECTURE
Redpin consist of two basic components: a Sniffer com-

ponent that gathers and collects information about different
wireless devices in range in order to create a fingerprint, and
a Locator component, which stores measured fingerprints in
a repository and contains the algorithm to locate a mobile
device. While the Sniffer component has to run on the mo-
bile device for obvious reasons, the Locator component can
be run either on a central server or on each mobile device
separately. Although running the Locator, and hence stor-
ing the fingerprints, locally would be beneficial considering
the users privacy, we need to store this data on a central
server in order to allow for users collaborating. Thus, we
implemented the Locator as a server, using Java SE 5.0
and MySQL as illustrated in Figure 2. We use Java Mi-
cro Edition for the GUI and all communication aspects, and
Symbian Series 60 for the Sniffer component. This separa-
tion was necessary, as only the Symbian API would allow
us to get the information we wanted to collect. For both
the server and the mobile client, we used the Open Bandy7

library to handle the serialization, transmission, and storage
of the measured data.

7http://www.openbandy.org



Figure 2: Redpin system architecture overview.

4.1 Server
The Redpin server provides several services for mobile

clients. First of all, it provides a service that allows it to
store fingerprints in a central database. This service is called
whenever a mobile user stores or redefines a location. An-
other service allows the mobile clients to retrieve maps, i.e.,
images of the floor plan that are associated with a certain
location. And most importantly, the server provides a ser-
vice to locate a mobile device, i.e., to retrieve the fingerprint,
and thus the location that best matches the measurement
taken by the mobile client.

Figure 3: Sniffer architecture on the mobile phone.

4.2 Mobile Client
As mentioned above, our decision to use Symbian made it

necessary to have two applications on the mobile device as
illustrated in Figure 3. As we wanted our application to be
as portable as possible, and in order to reuse code written
for the server, we decided to implement the client software
in Java ME. But as the limited API of Java ME would not
allow access to the current RSS of neither the GSM nor
WiFi, we had to implement the Sniffer component in Sym-
bian. Hence, the Sniffer maintains a separate, asynchronous
thread for each signal type (GSM, WiFi, and Bluetooth)
that collects the appropriate information and stores it in a
common buffer. This is necessary, as scanning GSM and
WiFi signal usually is a matter of seconds whereas scanning
for Bluetooth devices can take up to 2 minutes, depending
on how many devices there currently are. To alleviate this
problem, we additionally limit the Bluetooth scanner to 10
seconds. Eventually, the Sniffer communicates its current
measurement to the Java MIDlet via a local TCP socket.

The Java MIDlet on the other hand provides the user with
the GUI depicted in Figure 1 and handles all the communi-
cation with the server.

5. POSITIONING
Because a location is simply expressed by a symbolic iden-

tifier in Redpin, the problem of calculating the current po-
sition is reduced to the problem of finding one fingerprint
that best matches the given measurement. Hence, to de-
termine the current location of a mobile device, we need
to find the one known fingerprint that matches the current
measurement best.

5.1 Sniffer Measurements
To increase the overall localization accuracy, in our case

the success rate of calculating the correct location identi-
fier, we measure three different signal sources, namely GSM,
WiFi, and Bluetooth. In addition, we try to read the RSS of
as many different sources as possible; a wide range of signal-
strength fingerprints have been shown to increase accuracy
of indoor localization systems significantly [26]. While both
GSM and WiFi signals may fluctuate, Bluetooth devices are
not always detected in the very short time range when we
scan for devices. As a result, measurements can differ con-
siderably, even when taken at the same place and in short
succession. Hence, the biggest advantage of having com-
bined fingerprints of GSM, WiFi, and Bluetooth signals is
that we can adapt the localization algorithm dependent on
the actual measurement.

Figure 4: The Redpin data model.

To create an internationally unique GSM identifier, we
readout the cell identifier (CI), the mobile country code
(MCC), the mobile network code (MNC), as well as the
location area code (LAC). In addition, we also retrieve the
current received signal strengths (RSS) as an absolute value.
Unfortunately, the current version of Symbian’s Telephony
API only provides information about the currently active
cell. We hope to be able to read information about all GSM
cells in range in a future version.

As the basic service set identification (BSSID) is unique
by definition, it is sufficient to get this value along with the
according RSS. Unlike with GSM, we are able to collect this
information about all WiFi access points in range.



Bluetooth devices can be uniquely identified by the Blue-
tooth device address (BD ADDR), similar to the MAC ad-
dresses of a network card. However, as we only want to
consider non-portable devices, we have to retrieve the major
and the minor device class during inquiry. This way, we can
ignore mobile devices like mobile phones or portable audio
devices that would distort the result otherwise. The RSS,
although available on the Bluetooth host controller interface
(HCI), is not exposed in the Symbian API8.

5.2 Distance Measure
In order to compare different measurements, we defined a

very simple distance measure for our first prototype. Note
that the quality of this measure greatly accounts for the
accuracy of the localization and we are currently working
on more sophisticated algorithms and methods.

The distance between two measurements is computed us-
ing a straightforward account model. Every matching unique
identifier, for example a WiFi BSSID that occurs in both
measurements, adds to the cumulative distance while differ-
ing identifiers cause a diminution. For every matching pair of
identifiers, an additional contribution is calculated based on
the measured RSS, provided that the signal strength could
be measured. This contribution can be negative in case the
RSS values differ too much.

A stable state can thus be detected, by comparing the
distance measure of at least three successive measurements.
If the distance between all measurements is lower than the
threshold, we assume that the mobile device has not been
moved.

5.3 Locator Algorithm
To locate a mobile device, the Locator compares the cur-

rent measurement with all known fingerprints in the database
by calculating the distance measure as described above. If
a fingerprint can be found whose distance to the current
measurement is smaller than the threshold, the associated
location will be returned to the mobile device. If multiple
fingerprints are found, the system will return the best match.

6. EVALUATION
Given the requirements and goals defined for the Redpin

system, we can evaluate the systems performance by answer-
ing two questions. First, how good is the localization, i.e.,
in how many cases is the room correctly determined? And
second, how long does it take until a device can be located
in every room, i.e., until the map for a building is complete?

To get answers to these questions, we installed the client
software on multiple mobile phones9 and conducted several
experiments in our office building. In order to investigate the
success rate, we added the fingerprints of 26 randomly cho-
sen rooms to our database as illustrated in Figure 5. Note
that some rooms in this building are smaller than 5 by 3
meters. Subsequently, we used another mobile device to de-
termine the current location. We repeated the verification
several times and over several days, during work hours as
well as in the night. Overall, the system located the device
in the correct room in 9 out of 10 cases. The cases where the
algorithm returned the wrong identifier could be explained

8Symbian Version 9.2
9We used two Nokia N95 and one Nokia N95 8GB for all
our tests.

by our threshold settings, which we set to very strict val-
ues in order for the system to work in buildings with small
rooms. In this case, the Locator would return the identi-
fier of a room next to the one sought-after. Note that we
never added additional fingerprints during the experiment
to adapt to changes in the environment.

Figure 5: Points where measurements were taken.
The labels A to W indicate on-floor measurements
while X, Y, and Z indicate measurements that were
taken on the stairs between the floors.

Given these results, the time it takes to get at least one
fingerprint for every room depends only on how active users
are in contributing to the system and on their mobility. A
very short survey showed that when only 10 (out of 50 people
working on this floor) contribute to the system, the map is
complete after just one day.

7. CONCLUSIONS
In this paper we have presented Redpin, an adaptive in-

door localization system that does not require a designated
and time consuming training phase. The main contribution
of our work is a novel approach to training fingerprint-based
localization systems utilizing user contribution and hence
allow collaboration. Initial experiments showed that even
with a very simple distance measure and locator algorithm,
the system achieves a success rate of about 90%. Moreover,
we found that in most cases it is sufficient to have only one
fingerprint per room. Thus, to get a complete map of an
office building, only a few users must actually contribute to
the system. Also, as Redpin allows several fingerprints for
the same location, it is able to adapt to changes in the en-
vironment since users can always enter new fingerprints by
correcting their location.

While results with the very simple locator algorithm pre-
sented are already viable, the next steps for the project are
to explore and investigate more sophisticated ideas inspired
by [8, 22]. We might also be able to automatically learn
places and locations by applying the concepts described in
[20] and in particular [14]. In addition, we are continuously
testing our software on more mobile devices and hope to
support different platforms soon.

As one of our goals was to make the system publicly avail-
able, Redpin is open source (LGPL) and available for down-
load at www.redpin.org.
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