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ABSTRACT

A fundamental pillar of cosmology is the Cosmological Principle, which translates
mathematically in assuming a space-time that is spatially homogeneous and isotropic;
this leads to the Friedmann-Lemaitre-Robertson-Walker (FLRW) models. Observa-
tions provide strong support for these models, in particular for the standard “con-
cordance” ΛCDM flat cosmology. Within ΛCDM or other dark energy models certain
observations are interpreted as an acceleration of the Universe expansion. While this
picture does not seem to have serious contenders, it has lead to investigations aimed at
understanding the effects of inhomogeneities on observations. The extreme possibility
has been analysed in Clifton & Ferreira (2009a), who consider a Universe where, while
expanding on average as a FLRW model, the matter content is discretely distributed
at all times, rather than described as a continuous fluid as in standard FLRW. Even
if galaxies indeed form a discrete distribution in a largely empty Universe, the cosmic
microwave background radiation provides evidence that a continuous homogeneous
and isotropic plasma with minute fluctuations has seeded the growth of today’s struc-
tures. N-body simulations, even if limited in many respects, provide good support for
the standard structure formation picture in ΛCDM cosmology. With this in mind, here
we analyse the effects of inhomogeneities on light propagation in a flat ΛCDM back-
ground. To this end we use exact solutions of Einstein’s equations (Meures & Bruni
2011) where, starting from small fluctuations, inhomogeneities arise from a standard
growing mode and become non-linear. While the matter distribution in these models is
necessarily idealised, there is still enough freedom to assume an arbitrary initial den-
sity profile along the line of sight. We can therefore mimic over-densities and voids of
various sizes and distributions, e.g. single harmonic sinusoidal modes, coupled modes,
and more general distributions in a ΛCDM background. Our models allow for an ex-
act treatment of the light propagation problem, so that the results are unaffected by
approximations and unambiguous. We look at the redshift, luminosity distance and
angular diameter distance in these models, and find that if the spatial extent and am-
plitude of the inhomogeneities is large enough, this could lead to misinterpretations
of observations and wrong parameter estimation: even if the Cosmological Principle is
valid, the identification of the true ΛCDM background in an inhomogeneous Universe
maybe more difficult than usually assumed.

Key words: cosmology: theory, relativity, large-scale structure of Universe, super-
novae: general

1 INTRODUCTION

At the very basis of modern cosmology lies the assump-
tion the Universe is, at any given time, homogeneous and
isotropic on large scales. This is translated mathematically
into a Robertson-Walker metric, i.e. a metric that is assumed

⋆ E-mail: nikolai.meures@port.ac.uk
† E-mail: marco.bruni@port.ac.uk

to represent a space average and is therefore exactly homoge-
neous and isotropic. In addition, the non-trivial hypothesis
is made that this metric should be a solution of Einstein’s
equations, thereby giving rise to a FLRW universe model.
Having assumed the Cosmological Principle, the growth of
inhomogeneities and their effects are typically modelled with
perturbation theory about a “background” FLRW model.
Within this framework, the formation of non-linear struc-
tures at smaller scales is considered in N-body simulations
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using the Newtonian approximation (Springel et al. 2005).
Most observations are interpreted assuming this Friedman-
nian framework; in particular, distances are computed as-
suming a FLRW distance-redshift relation, i.e. completely
neglecting inhomogeneities.

We are currently living in a time when galaxy surveys
and other observations are reaching unprecedented sky cov-
erage and precision; therefore, it seems timely to fully in-
vestigate the effects of the non-linear growth of structures
on observations, within a general relativistic framework.
Much work has been done in trying to understand the effect
of inhomogeneities on observations by using perturbations
around an FLRW model (Dyer & Roeder 1972, 1973, 1974;
Sasaki 1987; Futamase & Sasaki 1989; Pyne & Birkinshaw
2004; Barausse et al. 2005; Bonvin et al. 2006; Räsänen
2011). However, these analyses are limited to linear struc-
ture growth and therefore cannot properly take into ac-
count non-linear inhomogeneities. Non-linearities can be
modelled using idealised matter distributions. Several differ-
ent approaches using generalised Swiss-Cheese models have
been considered in e.g. Brouzakis et al. (2007); Marra et al.
(2007); Brouzakis et al. (2008); Biswas & Notari (2008);
Clifton & Zuntz (2009); Bolejko & Célérier (2010); Szybka
(2010), where significant deviations are usually only found
for very large scale density inhomogeneities. On the con-
trary, claims are made that small scale structure formation
might have a back-reaction effect on the overall expansion
of the Universe, see Räsänen (2006) and Buchert (2008)
for overviews of this topic. We do not investigate this phe-
nomenon of back-reaction in this paper though, as our model
clearly splits into inhomogeneities and background dynam-
ics.

A class of models which are very appropriate for con-
sidering a discrete distribution of matter in an otherwise
FLRW expanding universe has recently been analysed in
depth by Clifton & Ferreira (2009a,b). In these models, orig-
inally introduced by Lindquist & Wheeler (1957) and re-
vised by Redmount (1988), matter is described by pointlike
masses in a spherically symmetric void box (represented by
Schwazschild space-times) and these boxes are distributed in
a lattice and the overall expansion is described by the Fried-
mann equation. The main motivation of Clifton and Ferreira
in following the Lindquist and Wheeler construction is the
observation that the Universe largely consists of galaxies
and clusters of galaxies surrounded by vacuum. The ques-
tion they address is how observations and measurements of
the cosmological parameters are affected in a highly inhomo-
geneous universe whose overall dynamics are homogeneous
and isotropic. However, this lattice construction is only an
approximate solution to Einstein’s equations and has regions
of “no man’s land” in between the matched spheres which
might have an effect on the light tracing, see Clifton (2010).
Perhaps even more importantly, the inhomogeneities in this
model are strongly non-linear at all times.

Having the same type of questions addressed by
Clifton & Ferreira (2009a) in mind, in this paper we shall
investigate the optical properties of an exact solution to
Einstein’s field equations (EFEs), developed in our previ-
ous paper (Meures & Bruni 2011). In this model, starting
from standard small perturbations of a FLRW universe, the
matter distribution is continuous and can evolve to a highly
non-linear stage. In the process, the inhomogeneities can ei-

ther form a distribution of large voids, over-densities, or a
mixture of the two with over-densities possibly even forming
pancakes as in the Zel’dovich approximation in Newtonian
cosmology. The benefit of our model is therefore two-fold:
i) we consider exact solutions of Einstein’s equations, there-
fore avoiding any possible problem associated with approxi-
mations and matching and ii) these exact solutions describe
non-linear inhomogeneities growing on top of a FLRW back-
ground with the possibility of modelling a rather arbitrary
distribution of both voids and over-densities.

In particular, we shall consider the effect of inhomo-
geneities on the redshift, angular diameter distance and
distance modulus. We begin by considering single mode
harmonic sinusoidal deviations from homogeneity and then
the case of coupled modes. Finally, closer in spirit to
the Clifton & Ferreira (2009a) work, we consider inhomo-
geneities where peaks and voids, arranged in a periodic ar-
ray, are more strongly separated than can be achieved by
simple harmonic distributions. We demonstrate that the de-
viations from the FLRW background in the determination
of the distances is mainly due to the Ricci and Weyl fo-
cusing terms in the Sachs equations and show that instead
the shear of the null congruence has a negligible effect. We
also briefly investigate the effect of mode coupling on the
growth of structure and, interestingly, we show that even
a long wavelength mode with small amplitude can strongly
enhance the growth of short wavelength modes, thanks to
the non-linear coupling. The non-linear interaction of differ-
ent modes does not seem to influence the distance measures
significantly and we find that changes in the redshift and
distances are mostly affected by the long wavelength modes.
Using an array of density profiles which are not sinusoidal
but quite peaked around the maximum and separated by
large voids, we find that the effect on the redshift and dis-
tance measures does not prove to be significantly more than
using an initially sinusoidal density distribution with the
same wavelength of the array scale. Overall, we find that
all deviations in the redshift and distance measures are less
than 1%, when we consider what we refer to as “compen-
sated inhomogeneities” along the line of sight, i.e. where the
average density along the line of sight matches the back-
ground density. However, this does not need to be the case:
when the inhomogeneities are on average above or below the
background, the effects on redshift and distances measures
can be very large.

A summary of the paper is as follows. In Sec. 2 we
will briefly present the exact solution we will be using in
this work, referring the reader to Meures & Bruni (2011)
for more details. Subsequently, in Sec. 3, we will derive the
null geodesic equations for the given metric and in Sec. 4 we
derive the form that the Sachs optical equation will take for
a given physical situation that is to be investigated. In Sec.
5 we shall present the results of our analysis, considering
single mode deviations in Sec. 5.1; multiple modes and their
coupling and effects in Sec. 5.2; and the effects of an array of
strong peaks and large voids in Sec. 5.3. In Sec. 6 we draw
our conclusions. In Appendix A we present details on the
tetrad transformations needed to derive the Sachs optical
equations in our model.

Throughout the paper, we choose units c = 8πG = 1
and assume the standard ΩΛ = 0.75 and in the commonly
used units H0 = 72kms−1Mpc−1.
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2 AN EXACT SOLUTION OF SUFFICIENT

GENERALITY

In this section, we would like to present a short summary
of the main results of our previous paper (Meures & Bruni
2011), where we developed a class of exact solutions to EFEs,

Gab = Tab − Λgab, (1)

for the synchronous comoving metric

ds2 = −dt2 + S(t)2
[

dx2 + dy2 + Z(x, t)2dr2
]

, (2)

where the variable x denotes all three spatial Cartesian co-
ordinates x, y and r. We solve Eq. (1) for an irrotational
pressureless fluid with four velocity ua = δa0 , for which

T 00 = ρ, (3)

and all other components of T µν are zero. Note that in the
line element (2), the coordinate r should be thought of as
a third Cartesian-type coordinate, together with x and y,
as in this paper (cf. (Meures & Bruni 2011)) we reserve the
use of z for the redshift. The solutions for a metric of this
type for pure dust were first introduced by Szekeres (1975)
and then brought into a similar notation that we are us-
ing here and analysed by Goode & Wainwright (1982a,b).
The solution for dust and a cosmological constant was found
by Barrow & Stein-Schabes (1984). We are here considering
one specific sub-class of these models, usually called the sec-
ond class Szekeres models, and we choose the background
to be spatially flat. For detailed accounts of exact solutions
in general relativity, see Krasinski (1997) and Bolejko et al.
(2009).

The function S(t) is the scale factor of a FLRW ΛCDM
background, with Friedmann equation

Ṡ2

S2
=

ρ̄0
3S3

+
Λ

3
, (4)

which admits the solution

S(t) =

(

1− ΩΛ

ΩΛ

)1/3

sinh2/3

(

3

2
H0

√
ΩΛt

)

. (5)

Here ρ̄ = ρ̄0/S
3 is the background energy-density and we

have used the standard parametrisation Ωm = ρ̄0/(3H
2
0 )

and ΩΛ = Λ/(3H2
0 ), where H0 is the Hubble parameter and

Ωm = 1− ΩΛ.

The function Z in the line element (2) can be split as

Z(x, t) = F (r, t) +A(x), (6)

where A can be written in the form

A(x) = 1 +Bβ+(r)
{

[x+ γ(r)]2 + [y + ω(r)]2
}

, (7)

where

B =
3

4
H2

0

[

ΩΛ(1− ΩΛ)
2]1/3 , (8)

with the free functions β+(r), γ(r) and ω(r).
Remarkably, F obeys the second order linear homoge-

neous ordinary differential equation

F̈ + 2
Ṡ

S
Ḟ − ρ̄

2
F = 0, (9)

which is exactly the same equation that δ = (ρ− ρ̄)/ρ̄ satis-
fies in Newtonian linear perturbation theory, as well as in the
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Figure 1. Plots of the growing (top panel) and decaying (bottom
panel) modes of the solution for F , as derived from Eq. (9). The
solutions plotted here are given in Eqs. (11a) and (11b).

synchronous comoving gauge for relativistic perturbations.
This equation admits two linearly independent solutions and
hence we write

F (r, t) = β+(r)f+(t) + β−(r)f−(t), (10)

where β+ and β− are free functions of r and f+ is the grow-
ing mode and f− is the decaying mode of the solution, which
we find to be

f− =
cosh(τ )

sinh(τ )
, (11a)

f+ =
cosh(τ )

sinh(τ )

∫

sinh2/3(τ )

cosh2(τ )
dτ , (11b)

where we defined the dimensionless variable τ = 3
2
H0

√
ΩΛt.

The two independent solutions for F are shown in Fig. (1). In
the matter dominated era, when the effect of Λ is negligible,
f+(t) ∝ S(t) ∝ t2/3 and f− ∝ t−1, as it is well known, see
e.g. Peebles (1980).

With all the free functions having been identified and
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having solved for all the time dependent functions, we can
find the expressions for the density ρ, the background den-
sity ρ̄ and density deviation δ to be

ρ =
ρ̄0A

S3(F +A)
, (12)

ρ̄ =
ρ̄0
S3

, (13)

and

δ ≡ ρ− ρ̄

ρ̄
, (14)

= −F

Z
= − F

F + A
. (15)

As we are only concerned with late times here, we will not
be considering the decaying mode of F , β−f−, as it would
not effect our results, but complicate the calculations. This
can easily be done by choosing β− = 0 in (10). On the
other hand, a very useful feature of our solution is that F
satisfies the linear differential equation (9), so that a super-
position principle applies, and that the arbitrariness of the
growing mode function β+ in (10) allows us to construct an
arbitrary matter distribution along r. We find that at early
times, along the r-axis, δ ≈ −F and so choosing a func-
tion β+ directly determines the initial matter distribution
along the r-axis. Choosing β+ = A sin(kr) and therefore
δ ∝ sin(kr) initially for some amplitude A and some wave-
length k, implies that β+ and hence the initial distribution
of δ are periodic on a scale of 2π/k. This situation is what
we will be referring to as a compensated density deviation
later on in the paper, as averaging the density deviation δ
along the r-axis at early times, would tend to a zero average
once the period of the deviations is reached. In comparison,
we will be referring to over-densities for β+ < 0, i.e. δ > 0
and under-densities for β+ > 0 and hence δ < 0.

To aid the reader in gaining an intuitive understand-
ing of the density profiles that we will be using in this pa-
per, we have included two figures with density profiles for
γ = ω = 0. In Fig. 2 we show what the shape of the density
deviation would be today, if we chose the initial profile to
be δ ∝ sin(kr) for k = 2π/8Mpc−1 along the r-axis. Only
two spatial dimensions are displayed here, but due to the
symmetry of the model for γ = ω = 0, the profile in the
third dimension can be visualised by rotating the given pro-
file around the r-axis. In Fig. 3 we display how an initial
sinusoidal density deviation grows non-linearly into a shape
with voids and high over-density peaks. While the metric
function F , initially F ∝ δ, evolves linearly and remains si-
nusoidal, δ can grow strongly, even developing pancakes, see
Meures & Bruni (2011).

3 THE NULL GEODESIC EQUATIONS

Using the Euler-Lagrange formalism, the geodesic equations
come from

∂L

∂xa
− d

dλ

[

∂L

∂
(

dxa

dλ

)

]

= 0, (16)

where the Lagrangian is found from

L = gab
dxa

dλ

dxb

dλ
. (17)

Figure 2. Density deviation profile today, corresponding to an
initial density perturbation of δ ∝ sin(kr) for k = 2π/8Mpc−1

along the r-axis, for γ = ω = 0. We only indicate the distance
√

x2 + y2 from the r-axis, as the solution for γ = ω = 0 is sym-
metric about this axis and so it would have the same profile in
the x- as in the y-direction.

5 10 15 20 r @MpcD
1

2

3
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5

∆

Figure 3. Density deviation profile along the r-axis at different
times for an initial density perturbation δ ∝ sin(kr) for k =
2π/8Mpc−1 along the r-axis, for γ = ω = 0. The solid line shows
the profile of the inhomogeneities today and the dashed line shows
the same inhomogeneities at a redshift z = 5. This shows how an
initial sinusoidal deviation in the density changes its profile at
late times due to the non-linear growth of the inhomogeneities.

Here λ is an affine parameter and xa stands for all four
space-time coordinates. Using the metric (2), we find the
Lagrangian to take the form

L = −
(

dt

dλ

)2

+ S2

{[

(

dx

dλ

)2

+

(

dy

dλ

)2
]

+ Z2

(

dr

dλ

)2
}

.

(18)
From Eq. (16), using x0 = t, we find

SṠ
[

(

dx
dλ

)2
+

(

dy
dλ

)2
+ Z2

(

dr
dλ

)2
]

+Zβ+ḟ+S
2
(

dr
dλ

)2
= − d2t

dλ2 , (19)

where an over-dot denotes differentiation with respect to
t. Using x1 = x and x2 = y we find the two very similar
equations

d2x

dλ2
+ 2

dS
dλ

S

dx

dλ
− 2BZβ+(x+ γ)

(

dr

dλ

)2

= 0, (20)
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and

d2y

dλ2
+ 2

dS
dλ

S

dy

dλ
− 2BZβ+(y + ω)

(

dr

dλ

)2

= 0. (21)

The differential equation obtained from x3 = r is slightly
more involved, as there are more r-dependent functions and
so we find

d2r

dλ2
= −

(

dr
dλ

)2

Z
((β+)r

{

f+ +B
[

(x+ γ)2 + (y + ω)2
]}

+ 2Bβ+ [(x+ γ)γr + (y + ω)ωr])

− 2
dr

dλ

[

dS
dλ

S
(22)

+ β+

df+
dλ

+ 2B(x+ γ) dx
dλ

+ 2B(y + ω) dy
dλ

Z

]

. (23)

These differential equations contain derivatives with respect
to three different variables, t, λ and r. Since only the free
functions are functions of r and we will specify them on
a case by case basis, we can consider these derivatives to
be known. We would like to consider functions of only one
variables and not two, λ and t. Since we are considering null
geodesics here, we can specify λ, such that

d

dλ
= E

d

dt
, (24)

where E is the energy of the photon. Using this relationship
and a new time variable τ = 3

2
H0

√
ΩΛt we can simplify the

set of differential equations to

− E′

E
= S2

(

9

4
H2

0ΩΛ

)

{

r′2Z

[

Z
S′

S
+ f ′

+β+

]

+
S′

S
(x′2 + y′2)}, (25)

x′′ +

(

2
S′

S
+

E′

E

)

x′ − 2BZβ+(x+ γ)r′2 = 0, (26)

y′′ +

(

2
S′

S
+

E′

E

)

y′ − 2BZβ+(y + ω)r′2 = 0, (27)

r′′ + r′2
Zr

Z
+ 2r′

[

S′

S
+

1

2

E′

E

+ β+
f ′
+ + 2B(x+ γ)x′ + 2B(y + ω)y′

Z

]

= 0, (28)

where a dash denotes differentiation with respect to τ . Initial
conditions here should be chosen according to the situation
that is to be modelled. We will always integrate starting
from the observers position (which we denote by O), which
we will therefore place at the origin, x|O = y|O = r|O = 0 as
the position, where the observer is situated, E|O = 1 as this
is just a normalisation, i.e. z = E/E|O−1 and thus E|O = 1
means that z = E−1. The initial velocity of the light bundle
is chosen according to which spatial direction we would like
to perform the light tracing. These null geodesic equations
are the most general that we can derive in the given space-
time. However, our metric only allows us to freely choose the
initial matter distribution along the r-axis (for γ = ω = 0,
otherwise along a path dictated by those two functions).
Therefore, we will mostly be interested in the propagation

of light rays along this ‘special’ r-axis. Hence it would be of
interest to investigate to what degree the above differential
equations simplify, if we only consider the case where γ =
ω = 0 and light rays only travel along the r-axis. In this case
we find the much reduced system of differential equations

− E′

E
=

S′

S
+

F ′

1 + F
, (29)

and

r′ =
2

3

1

H0

√
ΩΛSZ

, (30)

where we have used the null constraint from the line element
to reduce the order of (28). We can use these differential
equations to trace single photons into the past, finding their
position and energy at any given cosmic time. However, to
be able to plot the Hubble diagram, we also need information
about how bundles of light rays behave in this space-time
and hence we need to consider the Sachs optical equations.

4 THE SACHS OPTICAL EQUATIONS

To describe the evolution of a bundle of light rays one needs
to specify its expansion θ, shear σ, and rotation ω, which
are the quantities whose evolution is described by the Sachs
optical equations (Sachs 1961). However, in this analysis,
we closely follow the notation of Chandrasekhar (1992),
who put the optical scalar equations in the context of the
Newman-Penrose formalism, see also Stephani et al. (2003).
Since we are considering point-like sources, we can ignore the
rotation ω of the light bundles. Hence, the Sachs equations
take the form

dθ

dλ
+ θ2 + |σ|2 = φ00 (31)

dσ

dλ
+ 2σθ = Ψ0, (32)

where

φ00 = −1

2
Rabl

alb (33)

and

Ψ0 = −Cabcdl
amblcmd. (34)

Here Ψ0 and φ00 are, respectively, the zerothWeyl scalar and
one of the Ricci scalars of the Newman-Penrose formalism
and represent the Weyl focusing and Ricci focusing in the
direction of la. Rab is the Ricci tensor, Cabcd theWeyl tensor,
la is the affinely parametrised tangent vector to the null
geodesic defined as

la =
dxa

dλ
, (35)

andma is a vector that is orthogonal to la, null and has mag-
nitude of 1. The two vectors la and ma are part of a complex
Newman-Penrose canonical null tetrad. The expansion θ and
shear σ are precisely

θ =
1

2
la;a (36)

|σ|2 =
1

2
l(a;b)l

a;b − θ2. (37)
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We emphasise that for the moment la points in a generic
direction and therefore is not the same la as in our previ-
ous paper (Meures & Bruni 2011); however, the advantage
of using the canonical Newman-Penrose formalism, as pre-
sented in Chandrasekhar (1992), is that it allows us to easily
express Ψ0 and φ00 in the equations above in terms of Weyl
and Ricci scalars in the special null tetrad adapted to our
metric (see below). The expansion of the bundle of light rays
is not a direct observable though and so we would rather like
to consider the angular diameter distance dA and the lumi-
nosity distance dL. One finds the relation

θ =
d(dA)
dλ

dA
, (38)

and Etherington’s theorem (Etherington 1933) states that

dL = (1 + z)2dA, (39)

where z is the redshift. In terms of the angular diameter
distance, the Sachs equations take the form

d2(dA)

dλ2
= [φ00 − |σ|2]dA, (40)

dσ

dλ
+ 2

d(dA)
dλ

dA
σ = Ψ0. (41)

As in Sec. 3, we will use the time variable τ = 3
2
H0

√
ΩΛt

and we also introduce

σ̃ =
σ

√

3H2
0ΩΛ

, (42)

and hence we can write the Sachs equations in the form

d′′A + d′A
E′

E
=

(

4

9

φ00

E2H2
0ΩΛ

− 4

3

|σ̃|2
E2

)

dA, (43)

σ̃′ + 2
d′A
dA

σ̃ =
2

3
√
3EH2

0ΩΛ

Ψ0. (44)

To calculate the Ricci focusing term φ00 and the Weyl focus-
ing term Ψ0, we need the form of the complex null tetrad.
We shall firstly consider the case where the photon travels
along the r-axis and then generalise the result to light rays
travelling in any direction. For a light ray travelling along
the r-axis we find

la = E(1, 0, 0,
1

SZ
), (45)

and

ma =
1√
2
(0,

1

S
,
−i

S
, 0), (46)

where E, again, is the energy of the photon. This tetrad is
very similar to the one derived in Meures & Bruni (2011),
except for the E factor in la and so, using this tetrad, we
find the only non-zero Weyl scalar to be1 Ψ2. Hence, for light
bundles along the r-axis, we find the two focusing terms

φ00 = −1

2
E2ρ, (47)

1 In doing this, we have chosen a null tetrad which is especially
adapted to the metric: having Ψ2 as the only non-zero Weyl
scalar is characteristic of the Petrov type D of our space-time,
see Meures & Bruni (2011) for more details. The fact that a met-
ric of the form we are using is of Pertov type D was first shown
in Barnes & Rowlingson (1989).

and

Ψ0 = 0, (48)

while

Ψ2 =
1

6
ρ̄δ (49)

This brings the Sachs optical equations along the r-axis into
the form

d′′A + d′A
E′

E
=

(

−2

9

ρ

H2
0ΩΛ

− 4

3

|σ̃|2
E2

)

dA, (50)

σ̃′ + 2
d′A
dA

σ̃ = 0. (51)

This system of equations should be integrated from today
back into the past and so we need to set initial condi-
tions today, say τO and we set σ̃|O = 0, dA|O = 0 and
d′A|O = −2/(3E|OH0

√
ΩΛ). Given these initial conditions,

it is apparent from Eq. (51) that σ̃|O = 0 implies the trivial
solution σ̃ = 0 and hence we only have to consider Eq. (50)
and the initial conditions associated with it. Essentially this
means that along the r-axis the Weyl focusing is zero and
hence the light bundles do not experience any shear, how-
ever, the Weyl focusing is an effect we are interested in, as
it might have non-negligible effects on the angular diameter
distance. Hence, we will now generalise the above treatment
to be able to consider light bundles that do not travel along
the r-axis.

We are interested in the case where γ = ω = 0, since
these two functions only displace the center of deviations,
and therefore in this special case, our model displays an ax-
ial symmetry about the r-axis, see Meures & Bruni (2011).
This implies that considering light rays in the y-r-plane is
completely general, as one could always do a rotation about
the r-axis without changing the metric but making the tan-
gent vector point out of the y-r-plane. We name the angle
that the tangent vector la subtends with the r-axis α and
all quantities in the rotated system are denoted with a tilde.
The null tetrad in the rotated frame then takes the form

l̃a = E(1, 0,
sin(α)

S
,
cos(α)

SZ
), (52)

and

m̃a =
1√
2
(0,

1

S
,
−i cos(α)

S
,
−i sin(α)

SZ
). (53)

Since we are dealing with pure ΛCDM, dust and a cosmolog-
ical constant, it follows from EFEs that the Ricci focusing
term does not depend on rotations in the basis vectors and
so we find that

φ̃00 = φ00 = −1

2
E2ρ. (54)

However, deriving the Weyl focusing term in the rotated
frame is not as straight forward and we need to consider the
effect of rotations in the complex null tetrad on the Weyl
scalars. In the complex null tetrad constructed for light rays
travelling along the r-axis, we found that the only non-zero
Weyl scalar was Ψ2, Eq. (49). Rotating the original com-
plex null tetrad to coincide with the the physical situation
of light propagation at an angle α with the r-axis requires
four separate canonical rotations in the complex null tetrad,
see Appendix A for the details. These rotations have the ef-
fect of making all five Weyl scalars non-zero in general, but
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expressible in terms of the original Ψ2, in particular, we find

Ψ̃0 = −3 sin2(α)E2Ψ2 = −1

2
sin2(α)E2ρ̄δ, (55)

where ρ̄ is the background density and δ is the density devi-
ation. Therefore, we find the general Sachs optical equations
for our space-time

d′′A + d′A
E′

E
=

(

−2

9

ρ

H2
0ΩΛ

− 4

3

|σ̃|2
E2

)

dA, (56)

σ̃′ + 2
d′A
dA

σ̃ = − 1

3
√
3

sin2(α)E

H2
0ΩΛ

ρ̄δ, (57)

where we choose initial conditions again as σ̃|O = 0, dA|O =
0 and d′A|O = −2/(3E|OH0

√
ΩΛ) and integrate into the

past. Clearly, choosing σ̃|O = 0 here does not imply the
trivial solution for σ̃, since the Weyl focusing term is non-
zero in general.

5 RESULTS OF THE LIGHT TRACING

In this section, we would like to present how the results of
the light tracing we performed in our model differ from the
standard FLRW results commonly used. To find the position
and redshift of the bundle of light rays, we need to integrate
Eqs. (25)-(28) in general, whereas, to find the angular diam-
eter distance and shear of the bundle, we need to integrate
Eqs. (56) and (57). Inspecting the last two equations, we
find that they are coupled to the geodesic equations and
hence, we need to solve all six differential equations simul-
taneously. From the angular diameter distance, we can find
the luminosity distance, using Eq. (39), but we would also
like to compare the distance modulus we find to the standard
FLRW result and therefore we use

∆dM = dM − dFLRW
M = 5 log10

(

dL
dFLRW
L

)

, (58)

where dM is the distance modulus and dL is the luminos-
ity distance, where a superscript FLRW denotes the same
quantity in the FLRW background. To compare the angular
diameter distance and redshift in our model to the standard
FLRW result, we choose the definitions

∆z =
z − zFLRW

zFLRW
, (59)

and

∆dA =
dA − dFLRW

A

dFLRW
A

, (60)

which should give the reader an intuitive idea of what the
fractional difference is between the results we derive here
and the commonly used FLRW values.

Having derived the geodesic equations and Sachs optical
equations and having defined quantities to analyse our re-
sults, we have to consider which physical situations we would
like to model. For a detailed discussion of which matter dis-
tributions are possible and a discussion of singularities, see
the relevant sections in Meures & Bruni (2011). Here, how-
ever, we would like to mention the main points that charac-
terise the matter distributions we can model. In this paper,
we concentrate on the γ = ω = 0 case, which reduces the
freedom of the model to one function, the space distribution
of the growing mode β+, which gives us the freedom to set

the initial matter distribution along the r-axis, whereas we
do not have any freedom to set the distributions along the x-
and y-axis. If we only consider under-densities, (β+ > 0) we
do not find singularities in any space-time point. However,
as long as β+ is negative in some region, which corresponds
to an over-density in the same region, pancakes can eventu-
ally form in the model - as also expected from Newtonian
gravitational collapse. What is important for the analysis
presented here is that for over-densities which have not yet
collapsed by today (which is what we are interested in), we
can, at any time in the past, find a region around the r-axis
which is free from singularities and therefore we can perform
light tracing in those regions.

5.1 Single mode density distributions

As we explained in Sec. 2, the linearity of Eq. (9) allows
for the validity of a superposition principle for the metric
function F . In addition, we only consider the growing mode
whose spatial distribution is encoded in the function β+(r).
Therefore, in this section, we first look at harmonic distri-
butions of matter along the line of sight, i.e. single mode
sinusoidal distributions.

The first question that comes to mind is whether to
consider a distribution of over-densities, under-densities or a
combination thereof. As a first analysis, we would like to see
what the effect of either of those three choices is and hence
in Fig. 4 we present the redshift and the angular diameter
distance dA obtained from a model with only over-densities
(red lines), only under-densities (blue lines) and compen-
sated density profiles (black lines). The solid lines are for
light rays along the r-axis and the dashed lines correspond
to light rays which travel at an angle of 10 and 40 degrees off
the r-axis, the 40 degrees lines are always the ones further
away from the respective solid line. No deviation between
the different angles is visible for the black line as no differ-
ence from the FLRW curves are visible at this resolution for
any angle in the compensated case. In Fig. 4 we have cho-
sen all inhomogeneities to be periodic on a scale of 8 Mpc,
the initial conditions have been chosen such that at early
times, δover ∝ 1 − cos( 2πr

8Mpc
), δunder ∝ cos( 2πr

8Mpc
) − 1 and

δcomp ∝ cos( 2πr
8Mpc

), where δcomp stands for a density pertur-
bation which is compensated on the above mentioned 8 Mpc
scale along the r-axis. The amplitude of the over-densities
in the compensated and only over-density cases correspond
to δ ≈ 1 today, whereas the under-densities grow to voids of
δ ≈ −0.3 today. The figures show significant deviations in
the redshift and distance measure, if we only consider over-
or under-densities along the line of sight. One might get the
impression here that for the compensated case there are no
deviations from the FLRW values, therefore in Fig. 5 we
have plotted a zoom in on the very small redshift range of
Fig. 4 for the compensated case only and a periodic devia-
tions is clearly visible.

However, when we make actual observations in the Uni-
verse, we generally assume that we observe along typical
lines of sight and that the density deviation along this line
of sight should average to zero, or at least we expect that the
assemble average of the density deviation along many lines
of sight in different directions should average to zero. Hence,
we would like to consider in the following matter distribu-
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

zFLRW

z

Figure 4. Redshift z found in our model, as compared to the
redshift zFLRW the same object would have in an FLRW model,
top panel, and angular diameter distance dA as a function of
observed redshift z, bottom panel. We are considering only over-
densities (red lines), only under-densities (blue lines) and com-
pensated density distributions (black lines). The deviations are
periodic on scales of 8 Mpc along the r-axis, the solid lines are
for on-axis light rays and the dashed lines for off-axis rays (cor-
responding to 10 and 40 degree deviations). The dashed lines for
the compensated case are not visible here, as they are not distin-
guishable form the on-axis case at this resolution.

tions which we can show to average to zero over some char-
acteristic distance. This is automatically achieved with the
harmonic sinusoidal distribution we are dealing with which
clearly implies a zero average over one period of the func-
tion. Figs. 6, 7 and 8 show the density deviation δ, redshift
deviation ∆z, angular diameter distance deviation ∆dA and
the distance modulus deviation ∆dM for density deviations
on different scales and of different amplitudes. On all plots,
the solid lines correspond to light rays which travelled along
the r-axis and dashed lines correspond to off-axis light rays.
The off-axis light rays were directed at angles of 5, 10 and
20 degrees from the r-axis. To distinguish the lines, one can

0.000 0.002 0.004 0.006 0.008
0.000

0.002

0.004

0.006

0.008

zFLRW
z

Figure 5. Redshift found in our model z versus the redshift an
object at the same distance from us would have in an FLRW
model zFLRW . The solid line is the redshift found from the light

tracing for a compensated density profile, which corresponds to
δ ≈ 1 today, periodic on a scale of 8 Mpc today. We are only
plotting very small redshifts here, so the deviations found are
visible. The solid line corresponds to the redshifts we find from
the light tracing and the dashed line corresponds to the FLRW
values, plotted for reference. This is a zoom in to the black line
on the top panel of Fig. 4.

assume that the ones that deviate from the solid line the
most are the ones sent at an 20 degree angle and the ones
sent at 5 degrees are hardly distinguishable from the solid
lines.

Looking at Figs. 6, 7 and 8, we can see deviations from
the FLRW background values in all the quantities we dis-
play, however all these deviations seem to be below the 1%
level, given the conservative assumptions we made.

We would like to understand what term in the Sachs
equations, Eqs. (31) and (32), causes these deviations and
hence we consider the non-FLRW parts of the Ricci focus-
ing, Weyl focusing and the resultant shear. For the Ricci
focusing, we will introduce the variable

∆φ = φ00 − φFLRW
00 = −1

2

(

E2ρ− Ē2ρ̄
)

, (61)

where Ē is the photon energy in the background FLRW
model. For the Weyl focusing, there is no background con-
tribution, hence, we just have to consider the Weyl scalar
Ψ0; for the contribution of the shear, we will consider |σ|2
as this is the term present in the Sachs equations, and again,
σ vanishes in the background given our initial conditions. In
Fig. 9 we compare the above mentioned variables for a repre-
sentative matter distribution: we choose δ periodic on scales
of 100 Mpc along the r-axis with an amplitude of δ ≈ 1 to-
day. We have performed the integration for light rays which
travel at an angle of 20 degrees with the r-axis. From the
plots we can see that the Ricci focusing deviation dominates
over the Weyl focusing. Although from Eq. (61) we see that
∆φ ≈ Ēρ̄δ so that the source of both the Ricci and Weyl fo-
cusing is ρ̄δ, the Weyl focusing is strongly suppressed by the
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Figure 6. The effect of inhomogeneities with δ ≈ 0.1 today,
periodic on a scale of 500 Mpc.

sin2(α) factor in Eq. (55). Finally, the shear contribution is
much smaller than the two focusing terms and so we expect
a negligible contribution from the shear for the considered
density profiles.

5.2 Mode coupling and its effects

The above results show that single mode density deviations
do not have a large effect on the redshift, angular diameter
distance and distance modulus for the compensated profiles
we considered. From this we cannot conclude though that a

Figure 7. The effect of inhomogeneities with δ ≈ 1 today, peri-
odic on a scale of 100 Mpc.

density profile, where the metric function F is the sum of
many modes, has a small effect as well, since the structures
in our model grow non-linearly. In other words, an initial
deviation consisting of the superposition of two modes in
F may excite many different modes in δ during its non-
linear growth and the resultant density profile might have
completely different effects on the redshift and the distance
modulus. The real Universe clearly does not consist of only
one wavelength deviation and therefore the step of including
several modes should make our analysis more realistic.

In general in our model we find that the growth of sin-
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Figure 8. The effect of inhomogeneities with δ ≈ 3 today, peri-
odic on a scale of 1 Mpc. Here we are only showing the results
from light tracing along the r-axis for clarity.

gle mode density deviations does not depend on their wave-
length, that is, if we only had deviations periodic on a 1 Mpc
scale, they would grow to the same amplitude as if we only
had deviations on a scale of 100 Mpc. If we had an initial
small density deviation which is a superposition of those two
modes in F , the growth of δ would be quite different to the
individual modes. In Fig. 10 we show how modes on scales of
1 Mpc, 20 Mpc and 100 Mpc interact. From these plots one
can see how peaks in the long wavelength perturbation cause
the short wavelength perturbations to grow non-linearly and
it becomes clear that the profiles are not superposition of the

0.0 0.2 0.4 0.6 0.8 1.0
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0.0 0.2 0.4 0.6 0.8 1.0

-4.´10-8

-2.´10-8

0

2.´10-8

Y
0

0.0 0.2 0.4 0.6 0.8 1.0
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Σ
2

Figure 9. Plot of the non-FLRW contributions in the Sachs equa-
tions as a function of redshift. Here we have used compensated
density deviations on scales of 100 Mpc which would have an am-
plitude of δ ≈ 1 today and the light tracing was performed at an
20 degree angle with the r-axis. Where ∆φ = φ00 − φFLRW

00 , Ψ0

is the zeroth Weyl scalar and σ is the shear of the light bundle.

individual modes any more. More precisely, in the top panel
of Fig. 10 we show the growth of a 1 Mpc mode together
with a 20 Mpc mode and their interaction. It is clear that
the growth of the short wavelength mode gets and extra non-
linear kick from growing on top of the larger scale mode. On
the other hand, peaks of the short scale mode that grow in
the voids of the larger scale mode are depressed. The same
qualitative behaviour can be observed in the middle panel
of Fig. 10, where we now consider the 1 Mpc mode together
with a 100 Mpc mode, plotting on the same length scale as
the top panel. In this case the peak of the larger scale mode
(in the middle of the figure) is very broad and the short
wavelength mode is growing almost as if on top of a differ-
ent background. However, non-linearity is again important
and the peaks are much higher than they would be if sim-
ply raised by this “new background”. Finally, in the bottom
panel we show the effect of adding the larger 100 Mpc mode
to the deviations in the top panel. The red profile for the
coupled 1 Mpc and 20 Mpc modes of the top panel is shown
again in red in the bottom panel. The green profile shows
the effect of coupling the three modes together. This bottom
plot in Fig. 10 therefore shows that even adding a small am-
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plitude (δ ≈ 0.3 today) 100 Mpc mode to the 1 Mpc and
20 Mpc allows the peaks on the shorter scale to grow much
stronger, more than a factor of 4 than without.

To investigate the effect of the mode coupling on the
redshift and distances, in Fig. 11 we show how two coupled
modes, one 1 Mpc mode and one 100 Mpc mode, affect the
redshift and distances. The two modes have been chosen to
be of equal initial amplitude and combine to result in struc-
ture of δ ≈ 1 today. The amplitude of deviations in redshift,
angular diameter distance and distance modulus are com-
pletely dominated by the effects of the long wavelength, 100
Mpc deviation. This analysis has been done for many more
pairs of modes, from 1 Mpc to 500 Mpc, and the results al-
ways seem to be dominated by the long wavelength modes.
The fact that the main effects in redshift and therefore in
distances is dominated by the larger scales inhomogeneities
should not come as a surprise. The basic mechanism at work
is the same that is at the basis of the Rees-Sciama and the
integrated Sachs-Wolfe effect. In an expanding universe pho-
tons travel through dynamical inhomogeneities. When the
characteristic scale of the inhomogeneity is negligible com-
pared to the Hubble radius, the effect of the expansion is
negligible and therefore a photon will come out of the inho-
mogeneity with the same energy that it had when it entered
it. Instead, in going through a large scale inhomogeneity,
photons have to exit though a different potential well when
they come out of the inhomogeneity than when they were
entering it, changing their energy in the process.

5.3 Peaks and voids of arbitrary profile

After having analysed a variety of different sinusoidal sin-
gle mode matter distributions and their coupling, we would
like to investigate whether a more complex matter distribu-
tion would give a more significant deviation from the FLRW
background. As shown in Fig. 4, choosing a matter distri-
bution which is not compensated, i.e. where integrating F
over any distance along r does not give zero, has signifi-
cant effects on redshift and angular diameter distance. Now
we would like to investigate whether compensated profiles
which are more complex than simple single mode sinusoidal
can have significant effects as well. To this end, we choose
the initial profile for each over-density to take the form

δ ∝ cosh−1(
r

10Mpc
)− C, (62)

where C is a constant, and propagate light rays through a
periodic array of such shapes. To ensure that this distribu-
tion is compensated, the constant C needs chosen carefully.
In Fig. 12 the results of this analysis are shown, where we
have chosen the distance between the peaks to be 100 Mpc
today. The deviations from the FLRW results are not sig-
nificantly different to the ones obtained by using sinusoidal
distributions in particular the dominant parameter in the ef-
fects on redshift and distances is the maximum length scale
of the deviations.

6 CONCLUSIONS

In this paper we have analysed the effects of non-linear
structure on redshift and distance measures using the exact

Figure 10. Illustration of how different modes interact in the
density profile. Each profile is plotted at a redshift of z = 5
(smaller amplitude curves) and today. The top panel demon-
strates the interaction of a mode that is periodic on 1 Mpc, blue
curves, and a mode periodic on 20 Mpc, black curves, and how
the two modes interact, red curves, if superimposed as initial con-
ditions. The same is shown in the middle panel for modes periodic
on 1 Mpc, blue curves, and 100 Mpc, black curves, and their in-
teraction, red curves. In the bottom panel, we show how an initial
superposition of the 1 Mpc and 20 Mpc modes, red curves, behave
compared to an initial superposition of all three, 1 Mpc, 20 Mpc
and 100 Mpc modes, green curves.

solution developed in our previous paper (Meures & Bruni
2011). This model, described by the synchronous comoving
line element (2), allows us to choose an arbitrary matter
distribution along one line of sight with the growth rate of
structure and the density distribution away from this axis
being set by EFEs. A remarkable feature of our model is that
the inhomogeneities are described by a single metric function
F , which satisfies the same linear second order differential
equation satisfied by the linear density perturbation δ in
Newtonian perturbation theory as well as in relativistic per-
turbations when the synchronous comoving gauge is used.
Therefore F satisfies a superposition principle and, in par-
ticular, extends into the non-linear regime the same growing
and decaying modes that δ shows in the linear regime.

We have developed the null geodesic equations and the
Sachs optical equations in our model for light rays travel-
ling in arbitrary directions. This set-up has then been ap-
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Figure 11. The effect of inhomogeneities with δ ≈ 1 today, with
the initial condition being a superposition of two modes, one pe-
riod on scales of 1 Mpc and the other on 100 Mpc. The initial
amplitude of the two different perturbations was chosen to be
the same. Here we are only showing the results from light tracing
along the r-axis for clarity.

plied to different physical situations, considering single si-
nusoidal mode deviations in the density, the coupling of two
and three harmonic modes as well as a more complex matter
distribution described by an array of peaks and voids along
the line of sight. Furthermore, we have investigated which
terms in the Sachs optical equations are mainly responsi-
ble for deviations from the FLRW values. Additionally, we
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Figure 12. The effect of inhomogeneities with δ ≈ 2.3 today,
with the choice of the initial profile shown in Eq. (62). Here we
are only showing the results from light tracing along the r-axis
for clarity. This graph clearly shows that choosing non-sinusoidal
matter deviations does not change the results significantly.

have analysed the interaction of two and three modes in the
growth of structure within our exact non-linear framework.

We consider the redshift and distance measures for sin-
gle mode density deviations on different length scales and of
different amplitudes. The largest effect for the redshift and
distance measure to deviate from the FLRW results seems to
be obtained for larger density deviations and larger scales.
The results are shown in Figs. 6, 7 and 8. Given our con-
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servative assumptions on the density profiles, all deviations
are below the 1% level.

Even if the metric function F satisfies a linear equation,
our model is non-linear and so the effects of two modes on
the redshift and distances does not need to be the same as
their combined effects, hence we considered how modes in-
teract in the growth of the density deviations and how the
redshift and distance measures are affected by them. We
find that combining small and large scale density deviations
has significant effects on the growth of structure, in that
the peaks of the large scale modes significantly enhance the
growth of small scale deviations, see Fig. 10 for plots illus-
trating this point and the text in Sec. 5.2. For more details
on the growth of structure in our model, see Meures & Bruni
(2011) and for a more general discussion of the relativistic
behaviour of inhomogeneities and overall properties of the
class of solutions we consider, see Matarrese et al. (1994a,b);
Bruni et al. (1995a,b). The interaction between short and
long wavelength modes observed in our model does not seem
to have a significant effect on the redshift and distances mea-
sures though, as the effect of the long wavelength deviation
remains dominant despite the presence of small scale devi-
ations, see Fig. 11 for the results of a 1 Mpc and 100 Mpc
(today) mode combination. This implies that mode coupling
does not provide significantly larger deviations on the red-
shift and distances than the individual modes.

To generalise our result to density distributions where
peaks and voids are more pronounced than in a single mode
sinusoidal, we have considered an array of density profiles
given in Eq. (62), which provides quite peaked over-densities
and large voids separating them, choosing a typical array
scale of 100 Mpc today. The results of the light tracing for
this distribution is given in Fig. 12, where the density distri-
bution is shown in the top panel. Given this density profile,
which is clearly non-sinusoidal for all times, the deviations
from the FLRW redshift and distance measure are still com-
parable in amplitude to the results found in the single 100
Mpc mode analysis, with the large scale deviations being
below the 1% level.

For all the different density distributions, we considered
which of the terms in the Sachs optical equations is domi-
nant in providing the deviations, see Fig. 9 for the different
terms for a single mode deviation. We find that in all cases
the Ricci focusing term is dominating, while the effect of
the shear on the angular diameter distance seems to be van-
ishingly small. Due to its special geometric character (the
space-time is Petrov type D), in our model the Weyl focus-
ing is exactly zero along the r-axis of symmetry and it is
sub-dominant with respect to the Ricci focusing in direction
at an angle α with respect to the r-axis because of a sin2(α)
factor. However, both the Ricci and Weyl focusing are pro-
portional to the density deviation δ and so we may expect
that in a more general space-time they would be of the same
order.

All the above mentioned results are for density devia-
tions which we refer to as compensated, i.e. where the met-
ric function F averages to zero along the line of sight at
all times, so that the initially small density profile is also
compensated. The results from considering density profiles
which do not average to zero initially, however, are quite dif-
ferent. In Fig. 4, we show that over-dense and under-dense
lines of sight have significant effects on the redshift and an-

gular diameter distance. This implies that if we, on average,
observe along lines of sight which are more or less dense than
the background, we may need to expect significant effects.
Therefore it is important to understand whether the lines of
sight we observe along are really average “skewers” through
the Universe matter distribution. It also emphasises the im-
portance of identifying the correct background density with
observations, as an over- or under-estimate may affect our
interpretation of observational results significantly. Under-
standing these effects is crucial to our interpretation of cos-
mological observations and hence we leave a deeper analysis
for future work.

Finally, part of the motivation for our work has come
from the strong deviations from the standard FLRW results
in Clifton & Ferreira (2009a), and therefore we would like
to briefly compare our results here. Considering density dis-
tributions which are initially compensated along the line of
sight cannot provide deviations in the redshift and distance
measures as large as found in Clifton & Ferreira (2009a).
This does seem to be in agreement with most Swiss-Cheese
type analyses. However, considering lines of sight which have
an average density which is lower than the background den-
sity can provide similar results as found in Clifton & Ferreira
(2009a).
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APPENDIX A: TETRAD TRANSFORMATIONS

Here we would like to present how to find the Weyl focus-
ing term Ψ0 for light rays travelling at an angle α from
the r-axis. In the Newman-Penrose formalism, the five Weyl
scalars (Ψ0-Ψ4) are contractions of the Weyl tensor with a
complex null tetrad, la, na, ma and m̄a; for our notation see
Chandrasekhar (1992). In our first paper, (Meures & Bruni
2011), we have derived the Weyl scalars for the null tetrad

ma =
1√
2
(0,

1

S
,−i

1

S
, 0), (A1)

na =
1√
2
(1, 0, 0,− 1

SZ
), (A2)

la =
1√
2
(1, 0, 0,

1

SZ
), (A3)

where S and Z are the metric functions and m̄a is simply
the complex conjugate of ma. Please note that we are us-
ing slightly different notation here than in the first paper,
as we follow the exact notation of Chandrasekhar (1992)
here to avoid confusion when referring to this book. In this
special null tetrad, the only non-zero Weyl scalar is Ψ2. In
this paper, we are interested in light tracing and we find
that the tetrad vector la = dxa/dλ and so depending on the
direction the light rays travel in, the vector la is going to
change. Hence we need to understand how changes the com-
plex null tetrad affect the Weyl scalars. Given the properties
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of complex null tetrads, there are only three distinct types
of transformations, those of type I

la → la, ma → ma + ala, m̄a → m̄a + a∗la,

and na → na + a∗ma + am̄a + aa∗la, (A4)

of type II

na → na, ma → ma + bna, m̄a → m̄a + b∗na,

and la → la + b∗ma + bm̄a + bb∗na, (A5)

and of type III

la → A−1la, na → Ana,ma → eiθma,

and m̄a → e−iθm̄a, (A6)

where a and b are complex functions and A and θ are real val-
ued functions. Each of these three rotations has the effect of
mixing the Weyl scalars in a certain way, see Chandrasekhar
(1992) for the exact relations. To find the tetrad determined
by Eqs. (52) and (53) from the tetrad presented here, we
need to perform a combination of the above transforma-
tions. We have used, in the given order, a transformation of
type II with

b = i
cos(α)− 1

sin(α)
, (A7)

a transformation of type III with

A1 = 2
1− cos(α)

sin2(α)
and θ1 = 0, (A8)

a transformation of type I with

a = −i
cos(α)− 1

sin(α)
, (A9)

and finally a transformation of type III with

A2 =
1√
2E

and θ2 = 0. (A10)

From these rotations, we obtain the null tetrad given in Eqs.
(52) and (53) from the null tetrad in Eqs. (A1) -(A3). Given
the transformation rules of the Weyl scalars for the above
rotations, we find all five Weyl scalars to be non-zero in
general and specifically, we find that

Ψ̃0 = −3 sin2(α)E2Ψ2, (A11)

where the tilde denotes the quantity after the rotations. This
is the Weyl focusing term for light rays travelling at an angle
α to the r-axis.
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