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ABSTRACT

The detailed nature of type Ia supernovae (SNe Ia) remains uncertain, and as survey statistics increase, the question of astrophysical
systematic uncertainties arises, notably that of the evolution of SN Ia populations. We study the dependence on redshift of the SN Ia
SALT2.4 light-curve stretch, which is a purely intrinsic SN property, to probe its potential redshift drift. The SN stretch has been shown
to be strongly correlated with the SN environment, notably with stellar age tracers. We modeled the underlying stretch distribution as a
function of redshift, using the evolution of the fraction of young and old SNe Ia as predicted using the SNfactory dataset, and assuming
a constant underlying stretch distribution for each age population consisting of Gaussian mixtures. We tested our prediction against
published samples that were cut to have marginal magnitude selection effects, so that any observed change is indeed astrophysical
and not observational in origin. In this first study, there are indications that the underlying SN Ia stretch distribution evolves as a
function of redshift, and that the age drifting model is a better description of the data than any time-constant model, including the
sample-based asymmetric distributions that are often used to correct Malmquist bias at a significance higher than 5o-. The favored
underlying stretch model is a bimodal one, composed of a high-stretch mode shared by both young and old environments, and a
low-stretch mode that is exclusive to old environments. The precise effect of the redshift evolution of the intrinsic properties of a SN
Ia population on cosmology remains to be studied. The astrophysical drift of the SN stretch distribution does affect current Malmquist
bias corrections, however, and thereby the distances that are derived based on SN that are affected by observational selection effects.
We highlight that this bias will increase with surveys covering increasingly larger redshift ranges, which is particularly important for

the Large Synoptic Survey Telescope.
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1. Introduction

Type la supernovae (SNe la) are powerful cosmological dis-
tance indicators that enabled the discovery that the Universe’s
expansion accelerates (Riess et al. 1998; Perlmutter et al. 1999).
They remain a key cosmological probe today for understanding
the properties of dark energy (DE) because they are the only
tool that can precisely map the recent expansion rate (z < 0.5)
when DE is driving it (e.g., Scolnic et al. 2019). Type Ia super-
novae are also the key to directly measuring the Hubble constant
(Hyp) if their absolute magnitude can be calibrated (Riess et al.
2016; Freedman et al. 2019). Interestingly, the value of Hj that
is derived when the SNe Ia are anchored to Cepheids (the Super-
novae, Hj, for the Equation of State of dark energy project,
Riess et al. 2009, 2016) is ~50 higher than what is predicted
from cosmic microwave background (CMB) data measured by
Planck assuming the standard ACDM (Planck Collaboration VI
2020; Riess et al. 2019; Reid et al. 2019), or when the SN lumi-
nosity is anchored at intermediate redshift by the baryon acous-
tic oscillation (BAO) scale (Feeney et al. 2019). While using the
tip of the red giant branch technique in place of the Cepheids
seems to favor an intermediate value of H, (Freedman et al.

* Equal contribution.

2019, 2020), time-delay measurements from strong lensing also
appear to favor high H values (Wong et al. 2020).

The H, conundrum has received much attention because it
could be a sign of new fundamental physics. No simple solu-
tion is so far able to accommodate this Hy conundrum when all
other probes are accounted for, however (Knox & Millea 2020).
Alternatively, systematic effects affecting one or several of the
aforementioned analyses might explain at least some of this dis-
crepancy. Rigault et al. (2015) suggested that SNe Ia from the
Cepheid calibrator sample differ by construction from those in
the Hubble flow sample, as the former strongly favors young
stellar populations while the latter does not. This selection effect
would affect the derivation of Hy if SNe Ia from young and older
environments differed in average standardized magnitudes.

The relation between SNe Ia and their host galaxy properties
has been studied extensively. The first key finding was that the
standardized SNe Ia magnitudes significantly depend on the host
galaxy stellar mass, with SNe Ia from high-mass host galaxies
being brighter on average (e.g., Kelly et al. 2010; Sullivan et al.
2010; Childress et al. 2013; Betoule et al. 2014; Kim et al. 2019;
Smith et al. 2020). This mass-step correction is currently used in
cosmological analyses (e.g., Betoule et al. 2014; Scolnic et al.
2018), including to derive H, (Riess et al. 2016, 2019). The
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underlying connection between the SNe and their host galax-
ies remains unclear, however, particularly when global proper-
ties such as the host stellar mass are used. This in turn raises
the question of the accuracy of such corrections because the
global properties of the host galaxies evolve with redshift. More
recently, studies have used the local SN host galaxy environment
to probe more direct connections between the SNe and their host
galaxy environments (Rigault et al. 2013), showing that local
age tracers such as the local specific star formation rate (LsSFR)
or the local color are more strongly correlated with the stan-
dardized SN magnitude (Roman et al. 2018; Kim et al. 2018;
Rigault et al. 2020). The identification of SN Ia spectral fea-
tures that are correlated with LsSFR (Nordin et al. 2018) further
support this connection. These results suggest age as the driv-
ing parameter underlying the mass step. If this is true, it would
have a significant effect for cosmology because the environmen-
tal correction that would need to be applied to SN standard-
ization could strongly vary with redshift (Rigault et al. 2013;
Childress et al. 2014; Scolnic et al. 2018). The importance of
local SN environmental studies remains highly debated, however
(e.g., Jones et al. 2015, 2019), and especially the effect of such
an astrophysical bias has on the derivation of Hy (Jones et al.
2015; Riess et al. 2016, 2018; Rose et al. 2019).

The concept of the SN Ia age dichotomy arose with
the study of the SN Ia rate. Mannuccietal. (2005),
Scannapieco & Bildsten (2005), Sullivan et al. (2006) and
Smith et al. (2012) have shown that the relative SNe Ia rate in
galaxies could be explained if two populations existed, a young
population that follows the host star formation activity, and an
old population that followed the host stellar mass (the so-called
prompt-and-delayed or A+B model). Rigaultetal. (2020)
used the LsSFR to determine the younger (those with a high
LsSFR) and the older (those with a low LsSFR) populations.
Furthermore, since the first SNe Ia host analyses, the SN stretch
has been known to be strongly correlated with the SN host
galaxy properties (Hamuy et al. 1996, 2000). This correlation
has been extensively confirmed since then (e.g., Neill et al.
2009; Lampeitl et al. 2010; Gupta et al. 2011; D’ Andrea et al.
2011; Panetal. 2014). Following the A+B model and the
connection between SN stretch and host galaxy properties,
Howell et al. (2007) first discussed the potential redshift drift of
the SN stretch distribution. In this paper we revisit this question
using the most recent SNe Ia datasets.

We here step aside from the cosmological analyses to probe
the validity of our modeling of the SN population, which we
claim is constituted of two age populations (Rigault et al. 2013,
2015, 2020): an older and a younger population, the former hav-
ing lower light-curve stretches on average and being brighter
after standardization. We use the correlation between the SN age
as probed by the LsSFR and the SN stretch to model the expected
evolution of the underlying SN stretch distribution as a function
of redshift. This modeling relies on three assumptions: (1) There
are two distinct populations of SNe Ia, (2) the relative fraction
of each of these populations as a function of redshift follows the
model presented in Rigault et al. (2020), and (3) the underlying
distribution of stretch for each age sample is constant. This paper
tests this specific model with datasets from the literature.

We present the sample we used for this analysis in Sect. 2. It
was derived from the Pantheon catalog (Scolnic et al. 2018). We
discuss the importance of obtaining a “complete” sample, that
is, a sample that is representative of the true underlying SNe Ia
distribution, and how we built one from the Pantheon sample.
We then present our modeling of the distribution of stretch in
Sect. 3 and our results in Sect. 4. In this section, we test whether
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the SN stretch distribution evolves as a function of redshift and
determine whether the aforementioned age model agrees well
with this evolution. We briefly discuss these results in the context
of SN cosmology in Sect. 5, and we conclude in Sect. 6.

2. Complete sample construction

The ideal SN Ia sample for studying this question would be a
very deep, large-area, volume-limited sample. This would cap-
ture the true underlying stretch distribution function, and we
would then study how it evolves with redshift. No such sam-
ple exists, therefore we must first construct subsamples from
existing high-redshift SN Ia samples that are as near to volume-
limited as possible.

2.1. Applying redshift cuts

We based our analysis on the most recent comprehensive SNe Ia
compilation, the Pantheon catalog from Scolnic et al. (2018). A
naive approach to testing the SN stretch redshift drift would be
to simply compare the observed SN stretch distributions in a
few redshift bins. In practice, however, differential observational
selection effects will affect the observed SN stretch distribu-
tions. Because the observed SN Ia magnitude correlates with the
light-curve stretch (and color), the first SNe Ia that a magnitude-
limited survey will miss are those at the lowest stretch (which
are the reddest). Consequently, if magnitude-related observa-
tional selection effects are not accounted for, true population
drift might be confused with survey properties, and vice versa.

Assuming sufficient (and unbiased) spectroscopic follow-up
for acquiring SN types and host galaxy redshifts, the observation
selection effects of magnitude-limited surveys should be negli-
gible below a given redshift at which even the faintest normal
SNe Ia can be observed. Aiding in the construction of nearly
volume-limited subsamples is the fact that the SN Ia popula-
tion trails off toward fainter SNe Ia. A complication is that com-
plete spectroscopic follow-up has not always been the norm, as
discussed below. In contrast, targeted surveys have highly com-
plex observational selection functions and so are discarded from
our analysis. High-redshift SN cosmology samples, such as the
Pantheon sample, are predominately assembled from magnitude-
limited surveys from which volume-limited SN Ia subsamples
can be constructed.

We present in Fig. 1 the light-curve stretch and color of
SNe Ia from the following surveys: PanStarrs (PS1, Rest et al.
2014), the Sloan Digital Sky Survey (SDSS, Frieman et al.
2008), and the SuperNovae Legacy Survey (SNLS, Astier et al.
2006). An ellipse in the SALT2.4 (xi,c) plane with x; = +3
and ¢ = +0.3 encapsulates the full parent distribution (Guy et al.
2007; Betoule et al. 2014); see also Bazinetal. (2011) and
Campbell et al. (2013) for similar contours, the second using a
more conservative |c| < 0.2 cut. Assuming the SN absolute mag-
nitude with x; = O and ¢ = 0is My = —19.36 (Kessler et al.
2009a; Scolnic et al. 2014), we can derive the absolute stan-
dardized magnitude at maximum of light M = My — ax; + Sc
within the aforementioned ellipse given the standardization coef-
ficient @ = 0.156 and B = 3.14 from Scolnic et al. (2018):
The faintest SN Ia is that with (x; = —1.65,¢ = 0.25) and an
absolute standardized magnitude at peak in Bessel B band of
M;‘iin = —18.31 mag. This object typically ought to be detected 5
days before and a week after peak to build a suitable light-curve,
the effective limiting standardized absolute magnitude is approx-
imately My, = —18.00 mag. Hence, given the magnitude limit
myim of a magnitude limited survey, we can derive the maximum
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Fig. 1. SALT2.4 stretch (x;) and color (c) light-curve parameters of
SNe Ia from the SDSS, PS1, and SNLS samples of the Pantheon cat-
alog. The individual SNe are shown as blue dots. The ellipse (x; =
+3, ¢ = +0.3) is displayed, colored by the corresponding standardized
absolute magnitude using the « and 8 coeflicients from Scolnic et al.
(2018). The diagonal gray lines represent the (x;, ¢) evolution for m =
My, for z between 0.50 and z = 1.70 using the SNLS my;,,, of 24.8 mag.

redshift zj;,, above which the faintest SNe Ia will be missed using
the relation between apparent magnitude, redshift, and absolute
magnitude W(Zjim) = Miim — Miim.

We therefore considered a set of cuts that defines a first fidu-
cial sample, taking the limits as initially suggested by the previ-
ous completeness analysis. However, as this solution might be an
overly simplified way to create a complete sample, for example,
because it ignores spectroscopic follow-up in efficiency for red-
shifts below zj;,, we also considered another set of cuts to define
a so-called conservative sample. This is smaller and therefore
less statistically constraining, but also even less prone to obser-
vational selection effects. If the redshift drift is still significant
in the conservative sample, it would be even more meaningful
in a carefully tailored selection-free sample. These samples are
adequate for the goal of this study, which is to develop a first
implementation of a model for drift in SN Ia properties. If fruit-
ful, the sample selection can later be refined as required with a
more detailed model of the observational selection, for instance,
using the SNANA package (Kessler et al. 2009b).

The SNLS typically acquired SNe Ia in the redshift range
0.4 < z < 0.8; at these redshifts, the rest-frame Bessel B band
roughly corresponds to the SNLS i filter, which has a 5o depth
of 24.8 magl. This converts into a zji, = 0.60, in agreement with
Neill et al. (2006), Perrett et al. (2010), and Bazin et al. (2011).
Figure 14 of Perrett et al. (2010, see their Sect. 5), however, sug-
gests a lower limit of zj;,, = 0.55. We therefore used z = 0.60
and z = 0.55 as redshift limits for the fiducial and conservative
samples, respectively, for the SNLS.

Similarly, PS1 observed SNe Ia in the range 0.2 < z < 0.4,
their g-band 5o depth is 23.1 mag (Restet al. 2014), which
yields zjim, = 0.31, in agreement with Fig. 6 of Scolnic et al.
(2018), for example. If we were to be conservative, this figure
would also suggest of a more stringent zj;;, = 0.27 cut; we there-
fore used 0.31 and 0.27 for our fiducial and conservative sam-
ples, respectively, for PS1.

In a similar redshift range, the SDSS has a limiting mag-
nitude of 22.5 (Dilday et al. 2008; Sako et al. 2008), which
would lead to zjj, = 0.24. However, the SDSS surveys had to
contend with limited spectroscopic resources. As discussed in

1" CFHT final release website.

Table 1. Composition of the SNe Ia dataset used in this analysis.

Survey Zlim Nsn
SNf 0.08 114
SDSS  0.20(0.15) 167 (82)
PSI  031(027) 160 (122)
SNLS  0.60(0.55) 102 (78)
HST - 26
Total - 569 (422)

Notes. Conservative cuts are indicated in parentheses. The SNf limit is
set by Rigault et al. (2020), see text.
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Fig. 2. From top to bottom: redshift histograms of SNe Ia from the
SDSS, PS1, and SNLS dataset (data from Pantheon, Scolnic et al.
2018). The colored parts represent the distribution of SNe Ia that we
retained in our analysis because they are assumed to be free from obser-
vational selection bias (see Sect. 2). The darker (lighter) color responds
to the conservative (fiducial) selection cut.

Kessler et al. (2009a, Sect. 2), during the first year of SDSS,
SNe Ia with r < 20.5 mag were favored for spectroscopic follow-
up, corresponding to a redshift cut at 0.15. For the remaining
SDSS survey, additional spectroscopic resources were available,
and Kessler et al. (2009a) and Dilday et al. (2008) showed a rea-
sonable completeness up to zj,, = 0.2. Based on this, we used
Zim = 0.20 and zj;, = 0.15 for our fiducial and conservative
samples, respectively, for the SDSS.

The sample selection is summarized in Table 1, and the red-
shift distribution of these three surveys is shown in Fig. 2. As
expected, the selected redshift limits are roughly located slightly
before the peak of these histograms. In Sect. 2.2 we confirm that
these redshift limits are effective for constructing nearly volume-
limited subsamples from samples that were initially more closely
magnitude limited in their search or spectroscopic follow-up.

In addition, we used the SNe Ia from the Nearby Super-
nova Factory (SNfactory, Aldering et al. 2002) published in
Rigault et al. (2020) and that have been discovered from non-
targeted searches (114 SNe Ia, see their Sects. 3 and 4.2.2 ; see
Aldering et al. 2020). For this dataset, spectroscopic screening
was performed for candidates with » < 19.5; redshift cuts were
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Fig. 3. Bottom: SALT2.4 light-curve stretch as a function of redshift for
each survey considered in this analysis (see legend). Solid (open) mark-
ers correspond to the conservative (fiducial) redshift cuts. Top: stacked
redshift histograms in dark (light) colors for the conservative (fiducial)
redshift cuts.

then applied when selecting which SN Ia to follow, resulting in
a redshift range of 0.02 < z < 0.09, further reduced to <0.08 in
Rigault et al. (2020) to extract local host properties. These 114
SNfactory SNe Ia are thus in the volume-limited part of the sur-
vey (Aldering et al., in prep.), and are therefore assumed to be a
random sampling of the underlying SN population. The SNfac-
tory sample is particularly useful for studying SN property drift
because it enables us to have a large complete SN Ia sample
at z < 0.1. Finally, we include the HST sample from Pantheon
(Strolger et al. 2004). These high-redshift SNe are of great inter-
est as they provide the greatest leverage for testing evolution.
While at these redshifts the supernovae typing is challenging,
the target classification was robust enough to include them in
the cosmological analysis (Scolnic et al. 2018), and we did not
impose further cuts. Section 4 highlights that while compatible
with it, our results are not dependent on the inclusion of this
dataset.

We present the stretch distribution and redshift histogram of
these five surveys up to their respective zj, in Fig. 3. We observe
here that the fraction of low-stretch SNe (typically x; < —1)
appears to decrease as a function of redshift; this is confirmed in
Fig. 6, in which the evolution of the mean stretch is shown, with
the data split in redshift bins of regular sample size. SNe Ia at
higher redshift have a larger stretch (0.34 + 0.10 at z ~ 0.65) on
average than those at lower redshift (—0.17 + 0.10 at z ~ 0.05),
suggesting that the underlying stretch distribution evolves with
redshift.

2.2. Testing the construction of a volume-limited sample

In Sect. 2.1 we have built volume-limited samples from a set of
magnitude-limited ones using simple redshift cuts. This simpli-
fied approach is statistically suboptimal, but should suffice to test
our key question whether redshift evolution of stretch is compat-
ible with the model of Rigault et al. (2020). However, the pos-
sibility remains that a complex observational selection function
related to spectroscopic follow-up efficiencies below our fiducial
(or even conservative) redshift cuts might still affect our sample,
making it not fully volume limited; this would in turn bias our
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Fig. 4. x, (left) and c (right) distribution histograms of different surveys
overlapping in redshift. Facing up: SDSS and PS1 within the redshift
range 0.10 < z < 0.20. Facing down: PS1 and SNLS within the redshift
range 0.20 < z < 0.31. Error bars show the Poisson noise. Our stretch
base model is illustrated in orange at the mean redshift of the redshift
ranges, 0.15 and 0.25, respectively. Kolmogorov-Smirnov test p-values
are indicated at the top (bottom) of each panel and show no sign that
the SDSS and PS1 (PS1 and SNLS) x; and ¢ distributions are not drawn
from the same underlying distributions.

conclusion about the astrophysical drift of the SNe Ia population.
We now examine this possibility.

To test for the existence of potential leftover observational
selection biases in our sample, we compared the stretch and color
distributions of the SNe Ia originating from different datasets
having overlapping redshift ranges: these distributions should be
similar if they reflect the underlying parent population. We note
that the redshift range has to be narrow enough so that any drift
would be negligible.

The two samples that overlap most in redshift are PS1 and
SDSS in the redshift range 0.10 < z < 0.20 (see Fig. 3). This
overlapping subsample consists of the 146 SNe Ia at the high-
redshift end of SDSS and thus is most likely to be affected
by residual observational selection effects (see the correspond-
ing discussion in Sect. 2.1). Over that same redshift range, PS1
has 52 SNe Ia that are in the lowest redshift bins and thus
unlikely to have any observational selection issue. To identify
potential inconsistency between the PS1 and SDSS subsamples,
Fig. 4 (upper panels) compares the stretch and color distribution
of these two surveys. The resulting Kolmogorov-Smirnov (KS)
similarity test p-values (p > 10%) do not support any inconsis-
tency, in agreement with the visual impression from Fig. 4.

We performed a similar analysis for PS1 and SNLS over the
redshift range 0.20 < z < 0.31 (Fig. 4, lower panels), where
the same conclusion can be drawn: There is no substantial sign
of discrepancy in the stretch and color distributions between
the low and high end of our fiducial SNLS and PS1 samples,
respectively. Nonetheless, the small size of the SNLS dataset at
7z < 0.31 (12 SNe Ia vs. 90 for PS1) limits the sensitivity of this
test, and only a strong deviation would be noticeable. Extend-
ing the redshift range to 0.20 < z < 0.40 (although we have no
PS1 data above 0.3) allows increasing the SNLS subsample to
31, but the stretch p-value remains high (34%), showing no sign
of inconsistency.

We finally highlight that the SNe Ia color is more prone
to observational selection effects than stretch, as illustrated in
Fig. 1; see also Fig. 3 of Kessler & Scolnic (2017), for instance.
Hence, because the comparison of color distributions shows no
significant indication of leftover observational selection effect,
this further supports our claim that our simple redshift-based
selection criteria are sufficient to build the complete SNe Ia
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samples required to test the redshift evolution of the stretch
distribution.

3. Modeling the redshift drift

Rigault et al. (2020) presented a model for the evolution of the
fraction of younger and older SNe Ia as a function of red-
shift following previous work on rates and delay-time distribu-
tions (e.g., Mannucci et al. 2005; Scannapieco & Bildsten 2005;
Sullivan et al. 2006; Smith et al. 2012; Childress et al. 2014;
Maoz et al. 2014). In short, it was assumed that the number of
young SNe Ia follows the star formation rate (SFR) in the Uni-
verse, while the number of old SNe Ia follows the number of
billion-old stars in the Universe, that is, the stellar mass (M*).
Hence, if we denote 6(z) (¢(z) = 1 — 8(z)) the fraction of young
(old) SNe Ia in the Universe as a function of redshift, then the
ratio 6/ is expected to follow the evolution of the specific star
formation rate (SFR/M*), which goes as (1 + z)*® until z ~ 2
(e.g., Tasca et al. 2015). Since 6(0.05) ~ ¥(0.05) (Rigault et al.
2013, 2020; Wiseman et al. 2020), in agreement with rate expec-
tations (Mannucci et al. 2006; Rodney et al. 2014), Rigault et al.
(2020) concluded that

6@ = (K x(1+228 +1) ()

with K = 0.87. This model is comparable to the evolution sub-
sequently predicted by Childress et al. (2014) based on SN rates
in galaxies depending on their quenching time as a function of
their stellar mass.

3.1. Base underlying stretch distribution

To model the evolution of the full SN stretch distribution as
a function of redshift, we need to model the SN stretch dis-
tribution for each age subsample given our aforementioned
model of the evolution of the fraction of younger and older
SNe Ia with cosmic time. Rigault et al. (2020) presented the
relation between SN stretch and LsSFR measurement, a pro-
genitor age tracer, using the SNfactory sample. This relation is
shown in Fig. 5 for the SNfactory SNe used in the current anal-
ysis. Given the structure of the stretch-LsSFR scatter plot, our
model of the underlying SN Ia stretch distribution is defined
as follows: the stretch distribution of the younger population
(log(LsSFR) > —10.82) is modeled as a single normal distri-
bution N(u1, 012), and the stretch distribution of the older popu-
lation (log(LsSFR) < —10.82) is modeled as a bimodal Gaussian
mixture a X N'(up, a2+ (1-a)x N (o, 0?), where one mode is
the same as for the young population, a representing the relative
effect of the two modes.

The stretch probability distribution function (pdf) of a given
SN will be the linear combination of the stretch distributions of
these two population weighted by its probability y' to be young
(see Sect. 3.2). In general, however, the fraction of young SNe Ia
as a function of redshift is given by 6(z) (see Eq. (1)), and there-
fore our redshift drift model of the underlying stretch distribution
of SNe Ia as a function of redshift X;(z) is given by

Xi(2) = 6(2) x N, o)
+(1=6@) % [ax N, o) + (1 - @) x N(ua, o3)| ()

This is our base drifting model.

3.2. Comparison to data

Given the probability y' that a given SN is young and assuming
our base model (see Sect. 3.1), the probability of measuring a
SALT2.4 stretch x| with an error dx; is given by

P 16:4x1,5) =3 XN () [, o +dy?)
+(1—yi)x[‘1XN(x'i|M1,0'%+dx"12)

+(1 = a) X N (¥} | pa, 03 + dxi?)]. 3)

The maximum-likelihood estimate of the five free parame-
ters @ = (U, o, 01, 02, a) of the model is obtained by minimiz-
ing the following:

—2In(L) = —2Zm¢>(x§ | 6:dxi.y'). )

Depending on whether y' can be estimated directly from
LsSFR measurements, there are two ways to proceed. We dis-
cuss them below.

3.2.1. With LsSFR measurements

For the SNfactory sample, we can readily set y' = p;',, the proba-
bility of having log(LsSFR) > —10.82 (see Fig. 5), to minimize
Eq. (4) with respect to . Results of fitting the SNf SNe with this
model are shown Table 2 and illustrated in Fig. 6.

3.2.2. Without LsSFR measurements

When direct LsSFR measurements are lacking (i.e., pi.), we can
extend the analysis to non-SNfactory samples by using the red-
shift evolution of the fraction 6(z) of young SNe Ia (Eq. (1)) as
a proxy for the probability of a SN to be young. This still cor-
responds to minimizing Eq. (4) with respect to the parameters
0 = (1, W, 01, 02, a) of the stretch distribution X; (Eq. (2)), but
this time, assuming y' = () for any given SN i.

For the remaining analysis, we therefore minimized Eq. (4)
using p;, the probability for the SN i to be young, when available

(i.e., for SNfactory dataset), and 6(z'), the expected fraction of
young SNe Ia at the SN redshift 7/, otherwise.

Results of fitting this model to all the 569 (resp. 422) SNe
from the fiducial (conservative) sample are given Table 2, and
the predicted redshift evolution of mean stretch (expected x;
given the distribution of Eq. (2)) illustrated as a blue band in
Fig. 6 accounting for parameter errors and their covariances.
This figure shows that the measured mean SN Ia stretch per red-
shift bin of equal sample size closely follows our redshift drift
modeling. This is indeed what is expected if old environments
favor low SN stretches (e.g., Howell et al. 2007) and if the frac-
tion of old SNe Ia declines as a function of redshift. See Sect. 4
for a more quantitative discussion.

3.3. Alternative models

In Sect. 3.1 we have modeled the underlying stretch distribution
following Rigault et al. (2020), that is, as a single Gaussian for
the young SNe Ia and a mixture of two Gaussians for the old SNe
Ia population, one being the same as for the young population,
plus another one for the fast-declining SNe Ia that appear to only
exist in old local environments. This is our so-called base model.
However, to test different modeling choices, we implemented a
suite of alternative parameterizations that we also adjusted to the
data following the procedure described in Sect. 3.2.2.
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Fig. 5. Main: SALT2.4 light-curve stretch (x,) as a function of the LsSFR for SNfactory SNe. The color corresponds to the probability, p,, for the
SNe Ia to be young, i.e., to have log LsSFR > —10.82 (see Rigault et al. 2020). Right: p,-weighted histogram of the SN stretches, as well as the

adjusted base model; contributions of the younger and older population are shown in purple and yellow, respectively.

Table 2. Best-fit values of the parameters for the base stretch distribution model when applied to the SNfactory dataset only (114 SNe Ia), the

fiducial 569 SN Ia sample, or the conservative sample (422).

Sample Wi ol w2 o2 a
SNfactory 041+008 055+006 -138+0.10 044+0.08 0.48=+0.08
Fiducial 037+0.05 0.61+0.04 -122+0.16 0.56+0.10 0.51+0.09
Conservative 0.38 £0.05 0.60+0.04 -1.26+0.13 0.53+0.08 0.47 +0.09
== SNf (114) = Reference(569) Conservative (422) Mean stretch
0.4 4
0.2 1
—
X
C
S 0.0 1
()
S
_02 .
—0.4 1
1072 16—1 160
redshift

Fig. 6. Evolution of the mean SN SALT2.4 stretch (x;) as a function of redshift. Markers show the stretch plain mean (the error is estimated from
the scatter) measured in redshift bins of equal sample size, indicated in light gray at the bottom of each redshift bin. Full and light markers are used
when the fiducial or conservative samples are considered, respectively. The horizontal orange line represents the mean stretch for the nonevolving
Gaussian model (last line of Table 3) on the fiducial sample. Best fits of our base drifting model are shown as blue, dashed blue, and gray when
fitted on the fiducial sample, the conservative sample, or the SNfactory dataset only, respectively; all are compatible. The light blue band illustrates
the amplitude of the error (including covariance) of the best-fit model when considering the fiducial dataset.
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Table 3. Comparison of the relative ability of each model to describe the data.

Fiducial sample (569 SNe)

Conservative sample (422 SNe)

Name Drift k —2In(L) AIC AAIC -2In(L) AIC AAIC
Base 0(2) 5 1456.7  1466.7 - 1079.5 1089.5 -

Howell+drift 6(2) 4 1463.3 14713 -4.6 1088.2  1096.2 -6.7
Asymmetric - 3 14852 14912  -245 1101.3  1107.3 -17.8
Howell+const f 5 14842 14942  -27.5 1101.2  1111.2 -21.7
Base+const f 6 14842 1496.2  -29.5 1101.2  1113.2 -23.7
Per sample Asym. per sample 3 X 1468.2  1498.2 -31.5 1083.6 1113.6 -24.1
Gaussian - 2 1521.8 1525.8 -59.1 1142.6  1146.6 -57.1

Notes. For each considered model, we report whether the model is drifting, its number of free parameters, and for both the fiducial and the
conservative cuts, —2 In(L) (see Eq. (4)), the AIC and the AIC difference (AAIC) between this model and the base model used as reference because

it has the lowest AIC.

Howell et al. (2007) used a simpler unimodal model per age
category, assuming a single normal distribution for each of the
young and old populations. We thus considered a Howell+drift
model, with one single Gaussian per age group and the §(z) drift
from Eq. (1).

Alternatively, because we aim to probe the existence of
an evolution with redshift, we also tested constant models by
restricting the base and Howell models to use an assumed
redshift-independent fraction 6(z) = f of young SNe; these mod-
els are hereafter labeled base+constant and Howell+constant.

We also considered another intrinsically nondrifting model,
the functional form developed for beams with bias correc-
tion (BBC, Scolnic & Kessler 2016; Kessler & Scolnic 2017),
used in recent SN cosmological analyses (e.g., Scolnic et al.
2018; Abbott et al. 2019; Riess et al. 2016, 2019) to account
for Malmquist biases. The BBC formalism assumes sample-
based (hence intrinsically nondrifting) asymmetric Gaussian
stretch distributions: N (pt, o lifx < u, else o'+2). The idea
behind this sample-based approach is twofold: (1) Malmquist
biases are driven by survey properties, and (2) because current
surveys cover limited redshift ranges, having a sample-based
approach covers some potential redshift evolution informa-
tion (Scolnic & Kessler 2016; Scolnic et al. 2018). See a more
detailed discussion of BBC in Sect. 5. Finally, for the sake of
completeness, we also considered redshift-independent pure and
asymmetric Gaussian models.

4. Results

We adjusted each of the models described above on both the
fiducial and conservative samples (cf. Sect. 2). The results are
gathered in Table 3 and are illustrated in Fig. 7.

Because the various models have different degrees of free-
dom, we used the Akaike information criterion (AIC, e.g.,
Burnham & Anderson 2004) to compare their ability to properly
describe the observations. This estimator penalizes additional
degrees of freedom to avoid overfitting the data and is defined
as follows:

AIC = -2In(L) + 2k, (%)

where —21In(L) is derived by minimizing Eq. (4), and k is the
number of free parameters to be adjusted. The reference model
has the smallest AIC; in comparison to this model, the models
with AAIC < 5 are coined acceptable, those with 5 < AAIC <
20 are not favored, and those with AAIC > 20 are deemed

01 @
_5 4 o Acceptablel
10 Unfavored
%’ —15 1
_20 -4
—25 @) .
-30 1 @) o B
351 . . . . V. Excluded
< & Y 3 < QO
2 D O o o -0
® & & Xc,°° & ¥ &
$® A& $Q>\ o ((\Q\e &
S S >
Oy S (‘,;b
Q@

Fig. 7. AAIC between base model (reference) and other models (see
Table 3). Full and open blue markers correspond to models with and
without redshift drift, respectively. Light markers show the results when
the analysis is performed on the conservative sample rather than the
fiducial one. Color bands illustrate the validity of the models, from
acceptable (AAIC > =5) to excluded (AAIC < —20), see text. Accord-
ing to the AIC, all nondrifting models (open symbols) are excluded as
a poorer representation of the data than the base (drifting) model.

excluded. This roughly corresponds to 2, 3, and 5 o limits for
a Gaussian probability distribution.

The best model (with the smallest AIC) is the so-called base
model and thus is our reference model; this is true for the fiducial
and conservative samples. The base model also has the smallest
—2In(L), making it the most likely model even when the overfit-
ting issue that is accounted for by the AIC formalism is ignored.

Furthermore, we find that redshift-independent stretch distri-
butions are all excluded as suitable descriptions of the data rel-
ative to the base model. The best nondrifting model (the asym-
metric model) has a very marginal chance (p = exp (AAIC/2) =
5 x 107°) to describe the data as well as the base model. This
result is just a quantitative assessment of qualitative facts that
are clearly visible in Fig. 6: The mean SN stretch per bin of red-
shift strongly suggests a significant redshift evolution rather than
a constant value, and this evolution is well described by Eq. (1).

Surprisingly, the sample-based Gaussian asymmetric mod-
eling used by current implementations of the BBC technique
(Scolnic & Kessler 2016; Kessler & Scolnic 2017) has one of
the highest AIC values in our analysis (see Sect. 4). While its
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Table 4. Best-fit parameters for our sample-based asymmetric modeling
of the underlying stretch distribution.

Asymmetric o- o Wo

SNfactory 1.34+0.13 041+0.10 0.68+0.15
SDSS 1.31+0.11 042+0.09 0.72+0.13
PS1 1.01+£0.11 0.52+0.12 0.38+0.16
SNLS 141+0.13 0.15+0.13 1.22+0.15
HST 0.76+0.36 0.79+0.35 0.11+0.44

—2In(L) is the smallest of all redshift-independent models (but
still —11.5 lower than the reference base model), it is strongly
penalized for requiring 15 free parameters (g, 0. for each of
the five samples of the analysis). Hence, its AAIC < —20, which
could be interpreted as a probability p = 2 x 1077 of being as
good a representation of the data as the base model.

We note that when models are compared that were adjusted
on individual subsamples rather than globally, the Bayesian
information criterion (BIC = —21In(L) + k In(n), with n the num-
ber of data points) might be better suited than AIC because it
explicitly accounts for the fact that each subsample is fitted sep-
arately: the sample-based model BIC is rightfully the sum of the
BIC for each sample. We find ABIC = —48, again refuting the
sample-based asymmetric Gaussian model as being as pertinent
as the base model.

In order to ensure that our results are not driven by the
incompletely modeled HST subsample, we recomputed AAIC
for each model excluding this dataset; this did not change AAIC
by more than few tenths. The consistency of these values with
those in Table 3 shows that the HST subsample does not drive
our conclusions.

We report in Table 4 our determination of py and o, for each
sample when an asymmetric Gaussian model was implemented,
and adjusted on the nominally selection-free samples using our
fiducial cuts (see Sect. 2). Our results are in close agreement with
those of Scolnic & Kessler (2016) for the SNLS and SDSS and
with the results reported by Scolnic et al. (2018) for PS1, who
derived these model parameters using the full BBC formalism,
using numerous simulations to model the observational selec-
tion effects (see details, e.g., Sect. 3 of Kessler & Scolnic 2017).
The agreement between our fit of the asymmetric Gaussians
on the supposedly selection-free part of the samples and the
results derived using the BBC formalism supports our approach
to constructing a sample with negligible observational selec-
tion effects. If we were to use the Scolnic & Kessler (2016)
and Scolnic et al. (2018) best-fit values of the ug, 0. asymmet-
ric parameters for the SNLS, SDSS and PS1, respectively, the
AAIC between our base drifting model and the BBC modeling
would go even deeper from —32 to —47. We further discuss the
consequence of this result for cosmology in Sect. 5.

We also performed tests allowing the high-stretch mode of
the old population to differ from the young population mode,
hence adding two degrees of freedom. The corresponding fit is
not significantly better, with a AAIC of —0.4. This reinforces our
assumption that the young and old populations indeed appear to
share the same underlying high-stretch mode. Furthermore, we
might wonder whether a low-stretch mode might also exist in
the young population (see Fig. 5). We tested for this by allowing
this population to also be bimodal, finding the amplitude of such
a low-stretch mode to be compatible with 0 (<2%) in this young
population. More generally, this raises the question of how well
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a given environmental tracer (here LsSFR) traces the age. An
analysis dedicated to this question will be presented in Briday
et al. (in prep.).

Finally, ignoring the LsSFR measurements, which are only
available for the SNfactory dataset (see Sect. 3), reduces the sig-
nificance of the results presented in this section, as expected.
Even so, nondrifting models remain strongly disfavored. For
instance, the best-fitting sample-based Gaussian asymmetric
model is still AAIC < —10, which is less representative of the
data than our base drifting model.

5. Discussion

To the best of our knowledge, a SN Ia stretch redshift drift
modeling has never been explicitly used in cosmological anal-
yses, although a Bayesian hierarchy formalism such as UNITY
(Rubin et al. 2015), BAHAMAS (Shariff et al. 2016), or Steve
(Hinton et al. 2019) can easily allow it (see, e.g., Sects. 1.3
and 2.5 of Rubin et al. 2015). Not doing so is a second-order
issue for SN cosmology because it only affects the way in which
the Malmquist bias is accounted for. As long as the Phillips rela-
tion (Phillips 1993) standardization parameter « is not redshift
dependent (a study that is beyond the scope of this paper, but
see, e.g., Scolnic et al. 2018), the stretch-corrected SNe Ia mag-
nitudes used for cosmology are indeed blind to the underlying
stretch distribution for complete samples. However, surveys usu-
ally do have significant Malmquist bias for the upper half of
their SN redshift distribution. As a consequence, mismodeling of
the underlying stretch distribution will bias the SN magnitudes
derived from such surveys.

Commonly used Malmquist bias correction techniques, such
as the BBC-formalism, assume per-sample asymmetric Gaussian
functions to model the underlying stretch and color distributions.
As shown in Sect. 4, however, such a sample-based distribu-
tion is excluded in comparison to our drifting model. In con-
trast to what Scolnic & Kessler (2016, Sect. 2) and Scolnic et al.
(2018, Sect. 5.4) have suggested, that is, that traditional surveys
span sufficiently limited redshift ranges such that the per-sample
approach accounts for implicit redshift drifts, a direct modeling
of the redshift drift is therefore more appropriate than a sample-
based approach. We add here that as measurements of modern
surveys try to cover increasingly larger redshift ranges in order
to reduce calibration systematic uncertainties, this sample-based
approach becomes less valid, notably for PS1, DES and, soon,
the Large Synoptic Survey Telescope.

We illustrate in Fig. 8§ the prediction difference in the under-
lying stretch distribution between the per-sample asymmetric
modeling and our base drifting model for the PS1 sample. Our
model is bimodal, and the relative amplitude of each mode
depends on the redshift-dependent fraction of old and young
SNe Ia in the sample: the higher the fraction of old SNe Ia (at
lower redshift), the higher the amplitude of the old-specific low-
stretch mode. This redshift dependence on the underlying stretch
distributions is shown with colors from blue to red in Fig. 8 for
the redshift range covered by PS1. The observed x; histogram
follows the model we defined using the sum of individual under-
lying SN-redshift distributions. As expected, the two modeling
approaches differ mostly in the negative part of the SN stretch
distribution. The asymmetric Gaussian distribution goes through
the middle of the bimodal distribution, overestimating the num-
ber of SNe Ia at x; ~ —0.7 and underestimating it at x; ~ —1.7
in comparison to our base drifting model for typical PS1 SN red-
shifts. This means that the SN bias-corrected standardized mag-
nitude estimated at a redshift plagued by observational selection
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Fig. 8. Distribution of the PS1 SN Ia SALT2.4 stretch (x;) after the fidu-
cial redshift limit cut (gray histogram). This distribution is supposed to
be a random draw from the underlying stretch distribution. The green
lines show the BBC model of this underlying distribution (asymmetric
Gaussian). The full line (band) is our best fit (its error); the dashed line
shows the Scolnic et al. (2018) result. The black line (band) shows our
best-fit base modeling (its error, see Table 2) that includes redshift drift.
For illustration, we show (colored from blue to red with increasing red-
shifts) the evolution of the underlying stretch distribution as a function
of redshift for the redshift range covered by PS1 data.

effects would be biased by a mismodeling of the true underlying
stretch distribution.

Assessing the amplitude of this magnitude bias for cosmol-
ogy is beyond the scope of this paper given the complexity of
the BBC analysis. It would require a full study using our base
model (Eq. (2)) in place of the sample-based asymmetric model-
ing as part of the BBC simulations. However, we already high-
lighted that even if a nondrifting sample-based model could pro-
vide comparable result in the volume-limited part of the various
samples, these models would differ when extrapolated to higher
redshifts, precisely where the underlying distribution will matter
for correcting Malmquist biases.

In the era of modern cosmology, where we aim to mea-
sure wy at a subpercent level and w, with 10% precision (e.g.,
Ivezi€ et al. 2019), we stress that correct modeling of potential
SN redshift drift should be further studied and care should be
taken when samples are used that are affected by observational
selection effects.

6. Conclusion

We have presented an initial study of the drift of the underly-
ing SNe Ia stretch distribution as a function of redshift. We built
effectively volume-limited SN Ia subsamples from the Pantheon
dataset (Scolnic et al. 2018, SDSS, PS1, and SNLS), to which
we added HST and SNfactory data from Rigault et al. (2020)
for the high- and low-redshift bins. We only considered the SNe
that have been discovered in the redshift range of each survey
in which observational selection effects are negligible, so that
the observed SNe Ia stretches are a random sampling of the true
underlying distribution. This resulted in a fiducial sample of 569
SNe Ia (422 SNe when more conservative cuts were applied).
Following predictions made in Rigault et al. (2020), we intro-
duced a redshift drift model that depends on the expected fraction
of young and old SNe Ia as a function of redshift, with each age
population having its own underlying stretch distribution.

In addition to this base model, we studied various distribu-
tions, including redshift-independent models; we also studied
the prediction from a per-sample asymmetric Gaussian stretch
distribution used, for instance, by the beams with bias correction
Malmquist bias correction algorithm (Scolnic & Kessler 2016;
Kessler & Scolnic 2017). Our conclusions are listed below.

1. The underlying SN Ia stretch distribution is significantly
redshift dependent, as previously suggested by Howell et al.
(2007), for example, in a way that observational selection
effects alone cannot explain. This result is largely indepen-
dent of the details of each age-population model.

2. Redshift-independent models are quantitatively excluded as
suitable descriptions of the data relative to our base model.
This model assumes that (1) the younger population has a
unimodal Gaussian stretch distribution while the older pop-
ulation stretch distribution is bimodal, one mode being the
same as the young one, and (2) the evolution of the rela-
tive fraction of younger and older SNe Ia follows the pre-
diction made in Rigault et al. (2020). This second result fur-
ther supports the existence of both young and old SN Ia
populations, in agreement with rate studies (Mannucci et al.
2005; Scannapieco & Bildsten 2005; Sullivan et al. 2006;
Aubourg et al. 2008).

3. Models using survey-based asymmetric Gaussian distribu-
tions, for instance, as employed in the current implementa-
tion of BBC, are excluded as a good description of the data
relative to our drifting model. This means that the sample-
based approach does not accurately account for redshift drift,
a problem that will be exacerbated as surveys span increas-
ingly larger redshift ranges. As a result, even if the necessary
extra degrees of freedom might be acceptable given the large
number of SNe Ia in cosmological studies, extrapolating the
SN property distributions from the volume-limited part of a
survey to its Malmquist-biased magnitude-limited part would
still be inaccurate because of the redshift evolution.

4. Given the current dataset, we suggest the use of the following
stretch population model as a function of redshift:

X1 (2) = 8(z) X N(wr, 0% + (1 = 6(z))

xlax Nqu, o) + (1= a) x NG, o2)|, @)
with a = 051, ; = 0.37, u, = -1.22, oy = 0.61, and
o, = 0.56 (see Table 2), and using the age-population drift
model,

6@ = (K x (1 +228 + 1) )

with K = 0.87.

We considered a simple two-population Gaussian mixture mod-
eling. Additional data free from significant Malmquist bias
would enable us to refine it as required. We note that samples
at the low- and high-redshift ends of the Hubble diagram would
be particularly helpful for this drifting analysis; fortunately, this
will soon be provided by the Zwicky Transient Facility (low-
z, Bellm et al. 2019; Graham et al. 2019) and the Subaru and
SeeChange SNe Ia programs (high-z), respectively.

The next step in this line of analysis will incorporate our
model into the SNANA framework (Kessler et al. 2009b), both
to more accurately account for observational selection functions
and to test the effect of our model on the derivation of cosmo-
logical parameters. This study is currently being conducted.
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