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ABSTRACT

The peculiar velocity of the intergalactic gas responsible for the cosmic 21-cm background

from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional

power spectrum of brightness temperature fluctuations. Measurement of this anisotropy by

future 21-cm surveys is a promising tool for separating cosmology from 21-cm astrophysics.

However, previous attempts to model the signal have often neglected peculiar velocity or only

approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21-cm

signal in detail, improving upon past treatment and addressing several issues for the first time.

(1) We show that even the angle-averaged power spectrum, P(k), is affected significantly

by the peculiar velocity. (2) We re-derive the brightness temperature dependence on atomic

hydrogen density, spin temperature, peculiar velocity and its gradient and redshift to clarify

the roles of thermal versus velocity broadening and finite optical depth. (3) We show that

properly accounting for finite optical depth eliminates the unphysical divergence of the 21-cm

brightness temperature in overdense regions of the intergalactic medium found by previous

work that employed the usual optically thin approximation. (4) We find that the approximation

made previously to circumvent the diverging brightness temperature problem by capping the

velocity gradient can misestimate the power spectrum on all scales. (5) We further show

that the observed power spectrum in redshift space remains finite even in the optically thin

approximation if one properly accounts for the redshift-space distortion. However, results

that take full account of finite optical depth show that this approximation is only accurate in

the limit of high spin temperature. (6) We also show that the linear theory for redshift-space

distortion widely employed to predict the 21-cm power spectrum results in a ∼30 per cent error

in the observationally relevant wavenumber range k ∼ 0.1–1 h Mpc−1, when strong ionization

fluctuations exist (e.g. at the 50 per cent ionized epoch). We derive an alternative, quasi-linear

formulation which improves upon the accuracy of the linear theory. (7) We describe and

test two numerical schemes to calculate the 21-cm signal from reionization simulations to

incorporate peculiar velocity effects in the optically thin approximation accurately, by real-

to redshift-space re-mapping of the H I density. One is particle based, the other grid based,

and while the former is most accurate, we demonstrate that the latter is computationally more

efficient and can be optimized so as to achieve sufficient accuracy.

Key words: radiative transfer – methods: analytical – methods: numerical – intergalactic

medium – cosmology: theory – dark ages, reionization, first stars.

⋆E-mail: ymao@astro.as.utexas.edu (YM); shapiro@astro.as.utexas.edu

(PRS)

1 IN T RO D U C T I O N

Neutral hydrogen atoms in the intergalactic medium (IGM) at

high redshift produce a diffuse background of redshifted 21-cm

C© 2012 The Authors
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radiation which encodes information about the physical conditions

in the early Universe during and before the epoch of reionization

(EOR; z > 6). Three-dimensional mapping of this 21-cm back-

ground (also known as 21-cm tomography) has recently been pro-

posed as a promising cosmological probe. In principle, it has greater

potential than the cosmic microwave background (CMB) since it

can map most of our horizon volume, thus providing unprecedented

cosmological information (Mao et al. 2008).

The next few decades promise to become a golden age for 21-cm

tomography, with about a half-dozen experiments already proposed

or underway for measuring the 21-cm background from the EOR,

including the upcoming first generation such as 21 Centimeter Array

(21CMA),1 Murchison Widefield Array (MWA),2 Low Frequency

Array (LOFAR),3 Giant Metrewave Radio Telescope (GMRT)4 and

Precision Array to Probe Epoch of Reionization (PAPER),5 and the

next generation such as Square Kilometre Array (SKA)6 and the

Omniscope7 (Tegmark & Zaldarriaga 2009, 2010). These telescopes

will measure the 21-cm signal either statistically (first generation

telescopes) or by precise imaging and map making (next generation

telescopes).

Observations will measure the power spectra of 21-cm bright-

ness temperature fluctuations from the EOR. The information that

21-cm power spectra encode is twofold. First, cosmic reionization

leaves its imprint, such as the size distribution of the H II region, on

21-cm power spectra. Since the topology and geometry of ionized

bubbles is sensitive to the properties of the ionizing sources (see

e.g. Friedrich et al. 2011), we can learn about the ionizing sources

from 21-cm power spectra. For example, we can distinguish mod-

els with only high-mass atomic cooling sources from models with

both high-mass and self-regulated low-mass atomic cooling sources

(Iliev et al. 2011). Secondly, 21-cm power spectra are also sensitive

to cosmological parameters because the latter determine the matter

density fluctuations at high redshifts. The precision with which 21-

cm tomography can constrain cosmological parameters has been

forecast in several studies. Some of these consider mapping diffuse

hydrogen in the IGM before and during the EOR (McQuinn et al.

2006; Santos & Cooray 2006; Bowman, Morales & Hewitt 2007;

Mao et al. 2008; Barger et al. 2009; Adshead et al. 2011), oth-

ers mapping neutral hydrogen in galactic haloes after reionization

(Wyithe, Loeb & Geil 2008; Visbal, Loeb & Wyithe 2009). These

studies show that cosmological constraints based on CMB mea-

surements can be significantly improved if combined with 21-cm

measurements. In addition, it has been demonstrated in the litera-

ture that 21-cm power spectra can also constrain many cosmological

models beyond the vanilla � cold dark matter (�CDM) model e.g.

spatial curvature and the running of the spectra of primordial scalar

density perturbations (Mao et al. 2008; Barger et al. 2009), neutrino

masses (Mao et al. 2008; Pritchard & Pierpaoli 2008), compensated

isocurvature perturbations (Gordon & Pritchard 2009), primordial

non-Gaussian density perturbations (Joudaki et al. 2011), cosmic

string wakes (Brandenberger et al. 2010) and anisotropic matter

density fluctuations (Hernandez & Holder 2011).

1 http://21cma.bao.ac.cn/
2 http://www.haystack.mit.edu/ast/arrays/mwa/
3 http://www.lofar.org
4 http://gmrt.ncra.tifr.res.in
5 http://astro.berkeley.edu/dbacker/eor/
6 http://www.skatelescope.org
7 http://en.wikipedia.org/wiki/Fast_Fourier_Transform_Telescope, for-

merly termed Fast Fourier Transform Telescope.

In view of this promise which observations of 21-cm power spec-

tra hold for testing and constraining cosmological and astrophysical

models, further progress is required to ensure that predictions are

accurate enough to fulfil this promise. This accuracy depends not

only on the realistic astrophysical modelling of reionization and

the H I spin temperature, but also on the methods used to extract

the 21-cm signal from simulations of the EOR. We focus here on

this 21-cm methodology issue, and leave aside the issue of the ac-

curacy of the underlying reionization models and simulations. For

this purpose, we will make use of the results of a recent reionization

simulation of our own, based on a radiative transfer calculation com-

bined with a high-resolution N-body simulation of �CDM. While

this simulation represents the current state-of-the-art in large-scale

reionization simulations, it will serve here only as our illustrative

testbed. The accuracy and realism of the simulation, itself, is not our

concern here, as we focus, instead, on the accuracy of our method

for extracting the 21-cm signal from such simulations.

All observations will give the redshifted 21-cm signal in observer

redshift space, where the frequency not only depends on the cos-

mological redshift, but also on the peculiar velocity of the IGM.

However, most theoretical endeavours, both in analytical modelling

(e.g. Iliev et al. 2002; Furlanetto, Zaldarriaga & Hernquist 2004),

semi-numerical (e.g. Zahn et al. 2007, 2011; Alvarez et al. 2009)

and in numerical simulations (e.g. Mellema et al. 2006b; Shapiro

et al. 2006, 2008; McQuinn et al. 2007; Trac & Cen 2007; Iliev et al.

2008a), have focused on predicting the statistics of the 21-cm sig-

nal (e.g. the power spectrum of brightness temperature fluctuations)

without taking peculiar velocities into account. On the other hand,

peculiar velocities will influence the 21-cm brightness temperature

significantly as was for example shown by Mellema et al. (2006b).

In the linear regime, the effects of peculiar velocities have been

studied analytically by Bharadwaj, Nath & Sethi (2001), Bharad-

waj & Ali (2004), Barkana & Loeb (2005) and Wang & Hu (2006).

It has been shown that, in this regime, it is possible to separate

the contributions to the brightness temperature fluctuation statistics

from the patchiness of reionization and the cosmological density

fluctuations, respectively (Barkana & Loeb 2005). This, it is hoped,

would make it possible to use 21-cm measurements to solve for

cosmological parameters. However, the effects of non-linearity re-

main largely unexplored.8 There are two kinds of non-linearity that

may contribute, one associated with the gravitational growth of mat-

ter density and velocity perturbations, the other due to ionization

patchiness. The linear theory formula for the 21-cm redshift-space

power spectrum (Barkana & Loeb 2005) widely employed in the

literature was derived under the assumption that not only the matter

density and velocity fluctuations are linear, but so are the ionization

fluctuations. The latter assumption clearly breaks down on the scale

of the size of the H II region. We shall investigate here the accuracy

of this linear theory formula, particularly for the wavenumbers that

are expected to be probed by current and future 21-cm surveys of

the EOR. For this purpose, it is important to develop schemes that

can calculate the fully non-linear 21-cm background.

Given the rapid progress of observations [e.g. GMRT has placed

an upper bound on the 21-cm power spectrum at z ≈ 8.6 in their

first result release (Paciga et al. 2011), and MWA and LOFAR are

close to their data collection stage], we urgently need a thorough

8 Shaw & Lewis (2008) presented a non-linear analysis of the redshift-space

distortion. However, they assumed that the 21-cm brightness temperature

fluctuations are Gaussian, which may not be valid for the EOR (see e.g. fig.

14 of Mellema et al. 2006b).

C© 2012 The Authors, MNRAS 422, 926–954
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understanding of how peculiar velocities enter into predictions of

the 21-cm signal in observer redshift space from results of modelling

or simulations in real space.

Along these lines, Mellema et al. (2006b, their figs 4, 9 and 10)

were the first to consider the effect of peculiar velocities on the 21-

cm brightness temperature fluctuations in observer redshift space

when making spectra and maps along the line of sight (LOS). They

found significant differences between maps and spectra of bright-

ness temperature with and without the effects of peculiar velocities.

However, they did not account for this effect when calculating sta-

tistical properties such as the power spectra of the brightness tem-

perature fluctuations, nor did they explain in detail how the effects

of peculiar velocities were implemented. Lidz et al. (2007) claimed

to compute the ‘full redshift-space’ 21-cm power spectrum, but

gave no details of their calculation. Thomas et al. (2009) claimed

to include the effects of peculiar velocities in making 21-cm maps

with their 1D radiative transfer simulation, without presenting any

details on how these were calculated nor any analysis of the effects

on statistical quantities.

The 21-cm brightness temperature can diverge in the overdense

regions of the IGM when corrected for peculiar velocity in the op-

tically thin approximation, because the non-linear velocity gradient

may cancel the Hubble flow in these regions. In this paper we shall

investigate the origin of this divergence and how this unphysical

effect can be avoided. Recently, Santos et al. (2010) proposed an

approximate scheme to circumvent this divergence when computing

the 21-cm power spectrum in seminumerical models of the evolving

IGM, also adopted by Mesinger, Furlanetto & Cen (2011). In this

scheme a numerical cap on the value of the velocity gradient is im-

posed. The accuracy of their approximation, referred to henceforth

as the ‘∇v-limited’ prescription, has not yet been determined. We

shall investigate this below.

Our paper is the first in a series which sets out to build a solid

and self-consistent computational scheme to predict the fully non-

linear 21-cm background accurately in observer redshift space,

given density, velocity and ionization fraction information in real

space. This paper will focus on the methodology for incorporating

the effects of peculiar velocity in a non-linear way. We leave the

second paper of this series (Shapiro et al., in preparation) to focus

on the additional non-linear effects of inhomogeneous reionization

coupled to peculiar velocity and to test the validity of using the

anisotropy of the 21-cm background fluctuations to separate the

astrophysical effects of reionization from these of the background

cosmology. Some of our results were previously summarized by us

in Mao et al. (2010).

This paper is organized as follows. In Section 2, we will demon-

strate how important the effects of peculiar velocity are by compar-

ing the angle-averaged power spectra P(k) of brightness temperature

fluctuations when peculiar velocity is neglected, calculated from

reionization simulations, with an approximate scheme that takes

peculiar velocity into account, motivated by linear theory. We then

clarify our terminology in Section 3. In Section 4, we use a heuristic

derivation to present a simple picture of redshift-space distortions

of the 21-cm background in the limit of low optical depth and high

spin temperature, and clarify the similarities and differences with

galaxy redshift surveys. To properly take into account peculiar ve-

locity, including the effects of finite spin temperature and optical

depth and the distinction between thermal- and velocity broadening

of the line profile, we present in Section 5 the 21-cm brightness

temperature derived from the equation of transfer in an expanding

universe. We then derive the 21-cm power spectrum as measured

in redshift space in a hierarchy of approximations, from the exact

non-linear power spectrum with finite optical depth to the linear

theory in the limit of low optical depth. Since the standard linear

theory formula for 21-cm redshift-space distortion (e.g. Barkana

& Loeb 2005) assumes that all departures from the cosmic mean

values (matter density, peculiar velocity and ionization fraction) are

of linear amplitude, while ionization fluctuations are not small for

scales comparable to the size of the H II region, we present here an

improved version which takes account of ionization fluctuations to

higher order. In Section 6, we propose two computational schemes,

one based on particle data and other based on grid data. We test

and compare the accuracy and efficiency of these two schemes. In

Section 7, we investigate the accuracy of the optically thin approx-

imation with regard to the 21-cm power spectrum. In Section 8, we

test the accuracy of the linear theory formula of Barkana & Loeb

(2005) for redshift-space distortion, widely employed to predict the

21-cm power spectrum, and the new quasi-linear μk-decomposition

presented in Section 5. In Section 9, we discuss the origin of the

divergence of the brightness temperature found in previous works

and how it can be avoided. We also compare the results of the ‘∇v-

limited’ prescription for dealing with this problem to the results

from our new schemes. We conclude in Section 10. We include

some technical details of post-processing massive numerical parti-

cle data in Appendix A.

2 H OW I M P O RTA N T I S P E C U L I A R

V E L O C I T Y ?

Before developing our methodologies we will illustrate the effects

of peculiar velocities on the 21-cm power spectrum as measured in

redshift space, to show their importance. For this purpose, we focus

on the limiting case in which the spin temperature greatly exceeds

the CMB temperature and the optical depth is small, so we can

write the differential brightness temperature, δTb ≡ Tb − TCMB, as

follows:

δTb(νobs) = δ̂T b(zcos)
1 + δr

ρH I
(r)∣∣1 + δ∂r v(r)

∣∣ , (1)

where the pre-factor δ̂T b is the cosmic mean value in this limit, to

be defined in equation (35). Here zcos is the cosmological redshift,

r is the comoving real-space coordinates and δr
ρH I

and δr
ρH

are the

fluctuations of neutral and total hydrogen density in real space,

respectively; i.e. ρH I = ρH xH I, and δr
ρH I

= δr
ρH

+ δr
xH I

+ δr
ρH

δr
xH I

,

where xH I is the neutral hydrogen fraction. Furthermore, we define

the quantity

δ∂r v(r) ≡
1 + zcos

H (zcos)

dv‖

dr‖
(r), (2)

the gradient of the proper radial peculiar velocity along the LOS,

normalized by the conformal Hubble constant H/(1 + zcos). The

power spectrum of brightness temperature fluctuations in ob-

server redshift space can then be written as 〈δ̃T ∗
b (k)δ̃Tb(k′)〉 ≡

(2π)3P 3D
�T (k)δ(3)(k − k

′), where δ̃Tb(k) is the Fourier transform of

δTb. Hereafter Px,x is the autopower spectrum of the field x, and Px,y

is the cross-power spectrum of the fields x and y.

In Fig. 1 we present slices for three versions of the three-

dimensional power spectrum, the first being the one without in-

cluding any effects of peculiar velocities (hereafter dubbed the ‘un-

corrected for peculiar velocity’, or UPV, scheme), given by

P
UPV,3D
�T (k) = δ̂T

2

b(zcos)Pδr
ρH I

,δr
ρH I

(k). (3)

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 929

Figure 1. 3D power spectra �2(k) ≡ k3P21(k)/2π
2 (in units of mK2) of 21-cm brightness temperature fluctuations. The panels show a slice through the kx–ky

plane, with the LOS along the x-axis, calculated from our numerical simulation at the 50 per cent ionized epoch (z = 9.457). Top left: UPV scheme; top right:

quasi-linear μk-decomposition scheme; bottom: the fully non-linear PPM-RRM scheme.

The second version is calculated according to the ‘quasi-linear

μk-decomposition scheme’ (a generalization of linear theory in

Barkana & Loeb 2005; but see the exact definition and derivation

in Section 5.3):

P
s,qlin,3D
�T (k) = δ̂T

2

b(zcos)
[
Pδr

ρH I
,δr

ρH I

(k)

+ 2 Pδr
ρH

,δr
ρH I

(k) μ2
k
+ Pδr

ρH
,δr

ρH
(k) μ4

k

]
. (4)

On large scales, according to linear theory, the second and fourth

moments of the μk-decomposition in equation (4) come from the

cross-correlation of the peculiar velocity gradient with neutral hy-

drogen density fluctuations and the autocorrelation of the peculiar

velocity gradient, respectively. Here μk ≡ k‖/|k|, where k‖ is the

LOS component of k. The moments in the right-hand side of equa-

tion (4) are angle-averaged in a spherical k-space shell with k = |k|,
i.e. Pδr

ρH I
,δr

ρH I

(k) = 〈Pδr
ρH I

,δr
ρH I

(k)〉, etc. Note that in equation (4), the

quasi-linear μk-decomposition power spectrum can be computed

directly from the real-space data, avoiding the need to specify a

computational scheme for calculating the redshift-space-distorted

21-cm signal data cube.

The third version of the three-dimensional power spectrum of

21-cm brightness temperature fluctuations shown in Fig. 1 is cal-

culated using a numerical scheme that finds the fully non-linear

redshift-space-distorted 21-cm brightness temperature signal as a

function of position and frequency (the PPM-RRM scheme, see Sec-

tion 6.2.1). This last version of P 3D
�T (k) will be derived in the sec-

tions which follow, based on the results of numerical reionization

simulations.

The simulation data used for Fig. 1 are taken from a radiative

transfer (RT) simulation of a 114 h−1 Mpc box with 2563 RT reso-

lution (more fully presented in Section 6.3). For the UPV scheme

(top left), the power spectrum is seen to be numerically fluctuating

in equal-|k| shells, but otherwise to be isotropic in the sense that it

does not show any directional preference. For the quasi-linear μk-

decomposition scheme (top right), the power spectrum is perfectly

distorted along the LOS direction, i.e. elongated for small k and

C© 2012 The Authors, MNRAS 422, 926–954
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squeezed for large k. For the PPM-RRM scheme (bottom centre), it

is hard to see the distortion for the small-k modes due to the small

number of modes, but the compressed nature of the large-k modes

is clearly visible, albeit with some numerical noise. Clearly, pecu-

liar velocities introduce noticeable anisotropies in the 21-cm power

spectra.

To make a more quantitative comparison, we compute the angle-

averaged power spectrum P
s,qlin,1D
�T (k) = 〈P s,qlin,3D

�T (k)〉 for the

quasi-linear μk-decomposition scheme,

P
s,qlin,1D
�T (k) = δ̂T

2

b(zcos)
[
Pδr

ρH I
,δr

ρH I

(k)

+
2

3
Pδr

ρH
,δr

ρH I

(k) +
1

5
Pδr

ρH
,δr

ρH
(k)

]
, (5)

as a function of k = |k|, and the same for the UPV scheme,

P
UPV,1D
�T (k) = δ̂T

2

b(zcos)Pδr
ρH I

,δr
ρH I

(k). Fig. 2 shows the ratio of these

two, P
s,qlin,1D
�T (k)/P

UPV,1D
�T (k), for 10 different phases of reioniza-

tion. Two limiting cases are obvious: for the early phases of reion-

ization, the ratio approaches an almost constant value of 1.87; for

the late phases the ratio tends to 1.0. These limits hold best at low k.

They can be understood as follows. At early times, the neutral frac-

tion fluctuations δr
xH I

are negligible, i.e. the neutral hydrogen den-

sity traces the total hydrogen density almost exactly, and, therefore,

the 21-cm power spectrum in the quasi-linear μk-decomposition

Figure 2. Ratio of 21-cm redshift-space-distorted power spectrum in the

quasi-linear μk-decomposition scheme and 21-cm power spectrum in the

UPV scheme as a function of comoving wavenumber k, at a series of redshift

z and mass-averaged ionization fraction xi,M . Arrows indicate the direction

of the evolution of the curves at low k as reionization proceeds. Starting from

the curve at xi,M = 0.002 (dark blue, short dash–long dash) near the ratio

=1.87 limit, the ratio at low k moves up through the curves, in sequence,

at xi,M = 0.009 (purple, short dash–long dash), xi,M ≈ 0.05 (orange, short

dash–long dash), xi,M ≈ 0.1 (dark red, short dash–long dash), flips the

direction at xi,M ≈ 0.2 (magenta, dot–long dash), then moves down through

the curves at xi,M ≈ 0.3 (cyan, dot–short dash), flips the direction again at

xi,M ≈ 0.4 (blue, long dash), moves up through the curves at xi,M ≈ 0.5

(green, short dash), xi,M ≈ 0.75 (red, dot) and approaches the curve at xi,M

≈ 0.9 (black, solid) near the ratio =1 limit.

scheme differs from P
UPV,1D
�T ≈ δ̂T

2

b(zcos)Pδr
ρH

δr
ρH

by a factor of

1 + (2/3) + (1/5) = 1.87. At late times, neutral fraction fluctua-

tions dominate over density fluctuations,9 so its autopower Pδr
xH I

,δr
xH I

becomes the dominant term in both versions of the power spectra,

making their ratio approach unity. As pointed out above, the density

fluctuation terms in equation (4) reflect the redshift-space distortion

caused by peculiar velocity. Hence, the effect of peculiar velocity on

the power spectrum of 21-cm brightness temperature fluctuations

becomes subdominant towards the end of reionization, as noted also

by McQuinn et al. (2006) and Mesinger & Furlanetto (2007).

Between these two limits, Fig. 2 shows that as reionization pro-

ceeds the ratio evolves rather non-linearly, changing both ampli-

tude and shape non-monotonically. Reionization proceeds ‘inside-

out’ in our simulation, i.e. overdense regions ionize earlier than

underdense regions, so the cross-power Pδr
ρH

,δr
xH I

between den-

sity fluctuation and neutral fraction fluctuation is negative at large

scales. Shortly after the onset of reionization (xi � 0.2), the to-

tal density power spectrum Pδr
ρH

,δr
ρH

still dominates over the other

terms, but the cross-power Pδr
ρH

,δr
xH I

also contributes significantly

and is the next most important term, so P
s,qlin,1D
�T /P

UPV,1D
�T ≈

(1.87Pδr
ρH

,δr
ρH

+ 2.67Pδr
ρH

,δr
xH I

)/(Pδr
ρH

,δr
ρH

+ 2Pδr
ρH

,δr
xH I

) ≈ 1.87 −
1.07(Pδr

ρH
,δr

xH I

/Pδr
ρH

,δr
ρH

), moving the ratio up since the neutral frac-

tion fluctuations increase as reionization proceeds. When reioniza-

tion reaches the midway point (xi � 0.4) and large ionized bubbles

have formed, the neutral fraction autopower Pδr
xH I

,δr
xH I

starts domi-

nating over other powers and the cross-power Pδr
ρH

,δr
xH I

becomes sub-

leading, so P
s,qlin,1D
�T /P

UPV,1D
�T ≈ 1 + (2/3)(Pδr

ρH
,δr

xH I

/Pδr
ρH I

,δr
ρH I

) ≈
1 + (2/3)(Pδr

ρH
,δr

xH I

/Pδr
xH I

,δr
xH I

). Since the cross power Pδr
ρH

,δr
xH I

is

negative, the ratio is less than unity. As reionization proceeds to-

wards its final stages, the neutral fraction fluctuations continue to

grow, pushing the ratio closer and closer to unity. Between xi ≈ 0.2

and 0.4, the competition between neutral fraction fluctuations and

density fluctuations makes the ratio at large scales first turn around

at a large value ∼4–5 (xi ≈ 0.2), then move all the way down to less

than 1 (xi ≈ 0.4), then turn around again and begin to approach the

limit of 1.

These comparisons illustrate the non-trivial effects when ap-

plying redshift space distortions using the quasi-linear μk-

decomposition scheme. However, the fully non-linearly distorted

21-cm power spectrum may well show a more complicated be-

haviour, which has not been previously explored. In order to cal-

culate the fully non-linear redshift-space-distorted 21-cm power

spectrum, we need a robust scheme to compute it from simula-

tion results. The aim of this paper is to develop such a scheme,

taking into account all peculiar velocity effects. In a subsequent

paper we will use this scheme to study the non-linear distortion in

the 21-cm power spectrum and test the validity of quasi-linear μk-

decomposition scheme upon which the 21-cm cosmology is based.

3 T E R M I N O L O G Y

Before we proceed to the main content, we summarize in this section

our terminology which otherwise may be confusing.

9 The variance in neutral fraction can be estimated as (�xH I)
2 =〈

(xH I − x̄H I)
2
〉

≈ x̄H I(1 − x̄H I), so the rms neutral fraction fluctuation

is δrms
xH I

= �xH I/x̄H I ≈
√

(1 − x̄H I)/x̄H I. Thus the neutral fraction fluctu-

ations grow as reionization proceeds, even though the variance in neutral

fraction decreases near the end of reionization.
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3.1 Reference frames

We distinguish between different reference frames. These are the

following.

(i) Emitter space: the local rest frame of the emitting atoms.

(ii) FRW space: the cosmic reference frame in which space is

uniformly expanding, as described by the Friedmann–Robertson–

Walker metric.

The emitter space and the FRW space are related by the local

Lorentz transformation at the position of emitting atoms, and the

relative motion of these two frames is the peculiar velocity of atoms.

From the observer’s point of view, the coordinates of source (t, r)

in FRW space can be relabelled by tarrival (arrival time of radiation

emitted at time t by source located at comoving location r), zcos

(cosmological redshift experienced by photons from time t of their

emission to the time tarrival at which they reach the observer) and �

(angular coordinates on the sky).

(iii) Observer real space: for fixed tarrival = tpresent (present time),

the observer can reconstruct a part of the FRW space theoretically

– those (t, r) on the light-cone that can be determined by zcos. In

particular, r = r(zcos)|tpresent =
∫ zcos

0
c dz′/H (z′). We call this the

observer real space. In the rest of this paper, quantities measured in

real space are superscripted with ‘r’, so for example nr is a number

density in real space.

(iv) Observer redshift space: in practice, observers can only

measure the observed redshift of radiation, since the wavelength

is redshifted both cosmologically and by the Doppler shift asso-

ciated with peculiar velocity, νobs = ν0/(1 + zobs) and 1 + zobs

= (1 + zcos)(1 − (v‖/c))−1. Observers can set up a ‘distorted’

comoving coordinate system, known as observer redshift space,

in which the position of the emitter is the apparent comoving

position if the redshift is interpreted as only cosmological, i.e.

s ≡ r(zobs)|tpresent =
∫ zobs

0
c dz′/H (z′), which shifts the real co-

moving coordinate r along the LOS (r̂) to

s = r +
(1 + zobs)

H (zobs)
v‖(t, r) r̂ . (6)

Note that the transformation between observer real and redshift

spaces is not covariant (in a general relativistic sense) or even

Galilean invariant, since it does not preserve spatial intervals at

fixed time. In the rest of this paper, quantities measured in observer

redshift space are superscripted with ‘s’, so for example, ns is a

number density in redshift space.

3.2 3D mapping distortion

One can distinguish between several types of distortions.

(i) Apparent location distortion in redshift space: when the ob-

served frequency of a spectral line from a distant source is used to

locate the source along the LOS, the answer depends upon solv-

ing equation (6), which requires a knowledge of the LOS peculiar

velocity of the source at the time of emission. The term ‘redshift-

space distortion’ usually refers to the error one makes in locating

the source by assuming the peculiar velocity to be zero.

(ii) Brightness temperature distortion in real space: radiative

transfer effects can result in a modification of the observed 21-cm

brightness temperature due to gradients in the velocity field, as

shown in Section 5.1. This effect is independent of the adoption of

either real- or redshift space. In other words, even if an observer

could construct a 3D mapping of 21-cm brightness temperature in

observer real space by knowing the peculiar velocities along the

LOS, gradients in the peculiar velocity field can still modify the

magnitude of brightness temperature.

(iii) 21-cm redshift-space distortion: this is the combination of

the previous two distortions, namely the apparent location distortion

in redshift space and the brightness temperature distortion in real

space. The observed 21-cm signal is modified by the presence of

peculiar velocities according to this combination.

3.3 Power spectra

Power spectra can be calculated in different dimensions in k-space

and with different methods for applying the effects of peculiar

velocities. We use the following terminology.

(i) 3D power spectrum P3D(k): the power spectrum in three-

dimensional k-space.

(ii) 1D power spectrum P1D(k): the power spectrum in one-

dimensional |k|-space (or simply k-space), obtained by averaging

the 3D power spectrum over modes in spherical shells in k-space:

P1D(k) ≡ 〈P3D(k)〉shell with k = |k|.
(iii) 21-cm power spectrum: an abbreviation of ‘power spectrum

of 21-cm brightness temperature fluctuations’.

(iv) 21-cm redshift-space-distorted power spectrum: the 21-cm

power spectrum in observer redshift space, i.e. taking the 21-cm

redshift-space distortion into account.

(v) 21-cm real-space power spectrum: the 21-cm power spec-

trum evaluated with velocity gradient corrections and yet in real

space, i.e. the power spectrum which results from the Fourier trans-

form of the scalar field corresponding to the true (i.e. peculiar-

velocity-corrected) 21-cm brightness temperature at each point in

real space at a single cosmic time. This power spectrum so-defined is

not the power spectrum of the observed 21-cm brightness tempera-

ture field evaluated in redshift space in which each plane transverse

to the LOS corresponds to a single observed frequency. Instead,

this ‘real-space power spectrum’ represents the brightness temper-

ature at different observed frequencies for different locations in real

space, as a result of Doppler shifts caused by peculiar velocity.

(vi) 21-cm UPV power spectrum: the 21-cm power spectrum

evaluated without any velocity gradient corrections and in real

space, i.e. taking into account neither the brightness temperature

distortion in real space nor the apparent location distortion in red-

shift space; ‘UPV’ stands for ‘uncorrected for peculiar velocity’.

(vii) 21-cm quasi-linear μk-decomposition power spectrum: an

abbreviation of 21-cm power spectrum calculated with the ‘quasi-

linear μk-decomposition scheme’ (see Section 3.4).

3.4 Computational schemes

Below we develop different schemes for applying the effects of

peculiar velocities. We summarize these here.

(i) Linear theory: a scheme to compute 21-cm power spectrum

in redshift space, where all fields, density, velocity and ionization

fraction, are linearized; introduced by Barkana & Loeb (2005).

(ii) Quasi-linear μk-decomposition scheme: a scheme to com-

pute 21-cm power spectrum in redshift space, assuming the density

and velocity fields to be linear, but without constraints on the ion-

ization fraction field; introduced in Section 5.3.3.

(iii) Particle-to-Particle-to-Mesh Real-to-Redshift-Space-Mapp-

ing (PPM-RRM) scheme: a particle-based numerical scheme to con-

struct the 21-cm data cube in observer redshift space, using the

real- to redshift-space re-mapping of density, velocity and ioniza-

tion fraction data; introduced in Section 6.2.1.
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(iv) Mesh-to-Mesh Real-to-Redshift-Space-Mapping (MM-RRM)

scheme: same as the PPM-RRM scheme, but grid based; introduced in

Section 6.2.2.

(v) Direct Evaluation by Multiple Real-space FFTs (DEMRF)

scheme: a scheme to compute the 21-cm power spectrum in redshift

space by a direct integration technique; introduced in Section 6.5.3.

4 21 -CM REDSHIFT-SPACE DISTORTION:

O P T I C A L LY T H I N A N D H I G H Ts LIMIT

In this section we consider the simplest scenario, namely in the

limit of small optical depth and high spin temperature Ts ≫ TCMB,

and show that in this limit, peculiar velocities affect the 21-cm

brightness temperature in an analogous way to the redshift-space

distortion in galaxy redshift surveys.

Recall that galaxy redshift surveys can distinguish individual

galaxies. In other words, galaxies can be counted directly. Peculiar

velocities move galaxies to their apparent locations, thereby affect-

ing the number density of galaxies in redshift space. For 21-cm

surveys, however, individual 21-cm-line emitters – each neutral hy-

drogen atom – cannot be resolved and the H I number density can

only be inferred from the observed brightness temperature of 21-cm

emission. This fundamental difference from galaxy redshift surveys

implies that radiative transfer effects associated with peculiar veloc-

ities must be taken into account when calculating the redshift-space

distortion of the 21-cm background.

In the optically thin limit, the emission from each individual H I

atom can be regarded as independently transferred along the LOS.

In the high spin temperature (Ts ≫ TCMB) limit, the stimulated emis-

sion/absorption is negligible compared to the spontaneous emission.

Therefore when both limits apply, each H I atom can be thought of

as an independently shining 21-cm-line source with the intrinsic

luminosity Lν0
= hν0A10, where ν0 = 21 cm/c = 1420.4057 MHz,

and A10 = 2.85 × 10−15 s−1 is the Einstein spontaneous emission

coefficient of the 21-cm transition. Then the emissivity at frequency

ν ′
RF in the emitter space is

jRF
ν =

1

4π
Lν0

nr
1φ(ν ′

RF), (7)

where nr
1 ≈ (3/4)nH I is the number density of H I atoms in the

upper hyperfine state in real space. The function φ(ν ′
RF) is the line

profile and satisfies the normalization condition
∫ ∞

−∞ φ(ν) dν = 1.

The radiative transfer equation in FRW space then becomes

dIν

dξ
= jν, (8)

where Iν is the comoving specific intensity of a light ray. The ray

path can be labelled by the proper distance along it, dξ = c dt,

where t is the physical time. Since the emissivity transforms as ν2

(see e.g. Mihalas 1978), jν = (1 − (v‖/c))2 jRF
ν in FRW space. The

observed specific intensity then is

Iνobs
=

1

4π
Lν0

∫
a3
(

1 −
v‖

c

)2

nr
1φ(ν ′

RF) dξ. (9)

In the idealized case of no thermal broadening, the line profile is a

δ-function peaked at the transition frequency seen from the emitter

space, i.e.

φ(ν ′
RF) = δ(ν ′

RF − ν0). (10)

Therefore, the integration picks up the integrand evaluated at the

location of emission. Using an identity, whose derivation will be

described in Section 5:∣∣∣∣
dν ′

RF

dξ

∣∣∣∣ =
1

c
ν0 H (a)

∣∣∣∣1 +
1

aH (a)

dv‖

dr‖

∣∣∣∣ , (11)

where r‖ is the comoving LOS distance, we find that the observed

specific intensity is

Iνobs
=

cLν0
aν2

obs

4πν3
0H (a)

nr
1∣∣1 + (1/aH (a))(dv‖/dr‖)

∣∣ . (12)

Now we consider the distortion of apparent location. The number

density in redshift space ns
1 satisfies

ns
1 =

nr
1∣∣1 + (1/aH (a))(dv‖/dr‖)

∣∣ , (13)

since the number of H I atoms are preserved between real- and

redshift space, and the volume element in redshift space is distorted

as δVs = δV r|1 + (1/aH(a))(dv‖/dr‖)|. Therefore we find that

Iνobs
=

cLν0
aν2

obs

4πν3
0H (a)

ns
1. (14)

(We will express equation 14 in terms of the familiar brightness

temperature in Section 5.) This is to say, the simple proportionality

relation between the specific intensity (or brightness temperature)

and the neutral hydrogen density is preserved with and without

peculiar velocities.

There is a simple explanation for equation (14). In the limit

of optically thin and high spin temperature, 21-cm radiation from

each neutral atom is emitted and then transferred independently.

Therefore, the radiative transfer effects of peculiar velocity on a

pocket of gas is simply equivalent to the simple picture of having

all emitters shine from their apparent locations. Note that this net

effect combines the peculiar velocity effects on the radiative transfer

and on the distortion of apparent locations of sources.

Equation (14) establishes that, in this limit, there is an analogy

between 21-cm brightness temperature measurements and galaxy

number density measurements, in that the neutral hydrogen atom

number in 21-cm tomography corresponds to the galaxy number

in galaxy surveys. Therefore the 21-cm power spectrum should

be affected by peculiar velocities in a form similar to the linear

redshift space distortion on large scales (first shown by Barkana &

Loeb 2005), similar to the galaxy matter power spectrum (Kaiser

1987). In both cases, the effects of peculiar velocities can be thought

of as the distortion due to displacing sources to their apparent LOS

locations.

In the more general case in which optical depth is not small and/or

Ts � TCMB, however, the analogy between the redshift-space dis-

tortion of the 21-cm background signal and that in galaxy redshift

surveys breaks down. Since galaxy redshift surveys can resolve

and count discrete galaxies, they do not depend upon measuring

the unresolved intensity of galactic emission to deduce the number

density of galaxies. For the 21-cm background, however, we can-

not resolve individual sources (i.e. individual atoms), so we must

use the specific intensity (or brightness temperature) to infer the

source density, e.g. in the optically thin/high Ts limit, according

to equation (14) above. If the conditions of low optical depth and

high spin temperature are not satisfied, however, equation (14) no

longer applies. In that case, the luminosity emitted per atom then

depends upon the unknown spin temperature, and the received inten-

sity is also no longer linear in the optical depth. In order to interpret

redshift-space-distorted 21-cm maps, in general, therefore, we can-

not simply borrow the analogy of the galaxy redshift surveys. We

discuss the details of this in Section 5.
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5 E F F E C T S O F PE C U L I A R V E L O C I T Y O N

T H E O B S E RV E D 2 1 - C M BAC K G RO U N D

Given density, velocity and ionization information in real space,

peculiar velocities can affect the observed 21-cm signal through

two effects: (1) the observed 21-cm brightness temperature can be

modified by the gradient of radial peculiar velocity of the gas along

the LOS, and (2) the apparent location of the gas can be shifted

from its real-space location because of the Doppler shift due to its

peculiar velocity. We will address the first effect in Section 5.1, and

then combine both effects to form a self-consistent picture of 21-cm

redshift space distortion in Sections 5.2 and 5.3.

5.1 The transfer of 21-cm radiation through

the intergalactic medium

The effect of peculiar velocity gradients on observed 21-cm bright-

ness temperature was first addressed in Bharadwaj et al. (2001)

and subsequently in Bharadwaj & Ali (2004) and Barkana & Loeb

(2005). Bharadwaj et al. (2001) and Bharadwaj & Ali (2004) only

explored the simpler limit of high spin temperature (Ts ≫ TCMB) and

optically thin radiative transfer, and implicitly assumed that the ve-

locity gradient is small so that the factor 1/(1 + (1/aH(a))(dv‖/dr‖))

can be linearized. Barkana & Loeb (2005) attributed this velocity

gradient correction to the effect of the fixed thermal width of the

21-cm scattering cross-section, without showing the details of the

derivation. Since we aim to understand peculiar velocity thoroughly,

it is worthwhile to re-derive this effect from first principle, i.e. solv-

ing the radiative transfer equation, and keeping all contributions of

peculiar velocity to linear order v/c. In this section we show that it

is the peculiar velocity of the bulk motion, not the thermal broaden-

ing, that is responsible for making its correction in 21-cm brightness

temperature. We check the validity of the optically thin approxima-

tion and show that it can break down in certain conditions, although

it is mostly valid in the IGM. We find also that, in addition to the

well-known velocity gradient correction, the contribution of spin

temperature to 21-cm brightness temperature can be modified by a

term of order O(v/c).

5.1.1 The formal solution

Consider a light ray with comoving specific intensity Iν
10 passing

through a gas element. In an expanding universe, in which ν ∝
1/a, the radiative transfer equation reads (Gnedin & Ostriker 1997;

Zhang, Hui & Haiman 2007; Wise & Abel 2011)

∂Iν

c a ∂η
+

n̂

a
· ∇Iν −

H (a)

c

∂Iν

∂ ln ν
= −κνIν + jν, (15)

where Iν is a function of conformal time η, comoving coordinates

r , frequency ν and direction n̂. Here a is the cosmic scale factor

and H(a) is the Hubble constant at a. The ray path can be labelled

by the proper distance along it, dξ = c dt, where t is the physical

time. The radiative transfer equation can be rewritten in terms of

the Lagrangian total derivative:

dIν

dξ
= −κνIν + jν . (16)

10 It is sometimes customary to use the proper specific intensity I
(p)
ν , which

is related to the comoving specific intensity by Iν = I
(p)
ν a3.

Here κν and jν are the absorption coefficient and the comoving

spontaneous emission coefficient at the frequency ν in FRW space,

respectively.

We label νobs to be the frequency observed today, ν ′ = νobs/a the

frequency at some proper distance ξ ′ along the ray path in FRW

space and ν ′
RF = ν ′(1 − (v‖/c))−1 the frequency in emitter space,

where v‖ is the radial proper peculiar velocity of the gas. Hereafter,

the subscript or superscript ‘RF’ stands for ‘rest frame’.

By defining the optical depth τ ν forward along the ray path as

dτ ′
ν′ ≡ κν′ dξ ′, (17)

the radiative transfer equation has the formal solution for the specific

intensity observed today at frequency νobs:

Iνobs
= ICMB

νobs
e−τνobs +

∫ τνobs

0

Sν′ (ξ ′) e−(τνobs
−τ ′

ν′ )dτ ′
ν′ . (18)

Here we assume that the ray has the same comoving specific inten-

sity as the CMB (ICMB
νobs

) when the ray was on the far side of the gas

element from the observer. Sν′ (ξ ′) = jν′/κν′ is the comoving source

function at the frequency ν ′ seen in FRW space at the proper dis-

tance ξ ′ on the ray path. τνobs
is the integrated optical depth through

the gas.

5.1.2 Optical depth

In emitter space, the absorption coefficient is

κRF
ν =

1

c
hν0(n0B01 − n1B10)φ(ν ′

RF), (19)

where B01 and B10 are the Einstein probability coefficients for in-

duced upward and downward transitions, respectively, between the

lower state with density n0 and higher state with density n1. The spin

temperature is defined to be the excitation temperature between the

hyperfine states, i.e.

n1

n0

≡
g1

g0

e−T⋆/Ts = 3 e−T⋆/Ts , (20)

where g0 = 1 and g1 = 3 are the statistical weights. T⋆ ≡ hν0/kB

= 0.068 K is the temperature corresponding to the rest-frame fre-

quency ν0. For 21-cm transitions, all astrophysical applications sat-

isfy Ts ≫ T⋆, so n0 = nH I/4, where nH I is the proper number

density of neutral hydrogen.11 It is straightforward to show that

κRF
ν =

3c2A10T⋆nH Iφ(ν ′
RF)

32πν2
0Ts

, (21)

using the identities g1B10 = g0B01 = c3g1A10/8πhν3
0 .

Now we transform our calculation to FRW space. The absorption

coefficient transforms as ν−1 (see e.g. Mihalas 1978), so in FRW

space

κν′ = κRF
ν (ν ′

RF/ν
′) = κRF

ν

(
1 −

v‖

c

)−1

. (22)

Therefore the optical depth is

τνobs
=
∫

κν′ dξ ′ =
∫

3c2A10T⋆nH I

32πν2
0Ts(1 − (v‖/c))

φ(ν ′
RF) dξ ′. (23)

11 Note that strictly speaking, nH I is the number density in emitter space.

However the number densities in emitter space and in FRW space only

differ in the relativistic limit, i.e. nRF/ncos = dVcos/dVRF = dtRF/dt =
1/
√

1 − v2/c2, so we can ignore the difference to linear order v/c.

C© 2012 The Authors, MNRAS 422, 926–954

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at U
n
iv

ersity
 o

f S
u
ssex

 o
n
 Ju

n
e 9

, 2
0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


934 Y. Mao et al.

For the 21-cm line transition, in the idealized case of no thermal

broadening, the line profile is φ(ν ′
RF) = δ(ν ′

RF − ν0). Integrating

a δ-function picks up the integrand evaluated at the peak which

physically corresponds to the location on the ray path where the

transition actually takes place, its proper distance labelled as ξ r

(hereafter in this section, the subscript ‘r’ stands for ‘radiation’).

We assume that each ray with a given observed frequency only

experiences one 21-cm transition event along the ray path. (We

discuss the multitransition case in Section 5.1.7.) The line profile

can be rewritten as

φ(ν ′
RF) =

δ(ξ ′ − ξr)∣∣dν ′
RF/dξ ′

∣∣
ξr

. (24)

Here we assume the non-singular case, i.e.
(
dν ′

RF/dξ ′)
ξr

�= 0. (We

discuss the singular case in Section 5.1.5.) We use the relation

ν ′
RF = νobsa

−1(1 − (v‖/c))−1 to take the derivative dν ′
RF/dξ ′, and

then evaluate it at ξ r where ν ′
RF = ν0. It is straightforward to show

that
(

dν ′
RF

dξ ′

)

ξr

=
ν0

ar c

∂V‖

∂r‖
, (25)

where V‖ = a r‖H(a) + v‖ is the proper velocity along the LOS and

∂V‖

∂r‖
= aH (a) +

dv‖

dr‖
, (26)

with r‖ the comoving LOS distance. Therefore the optical depth is

τνobs
=

3c3A10T⋆arnH I(ξr)

32πν3
0Ts(ξr)

∣∣∂V‖/∂r‖
∣∣
ξr

(1 − (v‖(ξr)/c))
. (27)

5.1.3 Observed brightness temperature

Now we simplify the formal solution of radiative transfer

equation. Since dτ ′
ν′ ∝ δ(ξ ′ − ξr) dξ ′, the integral in equa-

tion (18) takes non-zero contribution only from ξ ′ = ξ r, there-

fore
∫ τνobs

0 Sν′ (ξ ′)e−(τνobs
−τ ′

ν′ )dτ ′
ν′ = Sν′ (ξr)

∫ τνobs
0 e−(τνobs

−τ ′
ν′ )dτ ′

ν′ =
Sν′ (ξr)(1 − e−τνobs ).12

In emitter space, SRF
ν0

= 2kBν2
0Ts(ξr)/c

2, i.e. the Planck function

evaluated with the spin temperature Ts at ξ r. The source function

transforms as ν3 (see e.g. Mihalas 1978), so the comoving source

function in FRW space is

Sν′ (ξr) = a3
r

(
ν ′

ν0

)3

SRF
ν0

=
2kBν2

obs

c2
Ts(ξr)ar

(
1 −

v‖

c

)
, (28)

where a3
r accounts for the comoving factor.

Suppose the ray has the frequency νp = νobs/ap with some scale

factor ap < ar (i.e. when it is on the far side of the gas ele-

ment from the observer) and is in equilibrium with the CMB of

temperature TCMB,p = TCMB,0/ap. In the absence of intervening

atoms, the comoving specific intensity observed today would be

ICMB
νobs

= a3
p2kBν2

pTCMB,p/c2 = 2kBν2
obsTCMB,0/c

2.

12 The factor e
−(τνobs

−τ ′
ν′ )

is a step function at ξ ′ = ξ r, so more rigor-

ously, the integral yields
∫ τνobs

0 Sν′ (ξ ′)e−(τνobs
−τ ′

ν′ )
dτ ′

ν′ = Sν′ (ξr)τνobs
[1 −

(1 − e−τνobs )η(0)]. The unit step function η(x) at x = 0 is undefined

in general, but using an identity intrinsic in this problem 1 − e−τνobs =∫ τνobs
0 e

−(τνobs
−τ ′

ν′ )
dτ ′

ν′ = τνobs
[1 − (1 − e−τνobs )η(0)], we can regulate η(0)

and obtain the same result.

The 21-cm brightness temperature at the observed frequency νobs

is defined by

Iνobs
≡

2kBν2
obs

c2
Tb(νobs). (29)

From equation (18) it is straightforward to show that

Tb(νobs) = TCMB,0 e−τνobs + Ts(ξr)ar

(
1 −

v‖

c

)
(1 − e−τνobs ). (30)

The 21-cm line is generally optically thin to the IGM, i.e. τνobs
≪ 1.

(We discuss the validity of this approximation in Section 5.1.6.) In

this limit, the differential brightness temperature is

δTb(νobs) ≡ Tb(νobs) − TCMB,0 (31)

= arτνobs

[
Ts(ξr)(1 − v‖/c) − TCMB(ar )

]
(32)

or

δTb(νobs) =
3c3A10T⋆nH I(r)ar

32πν3
0H (ar )

∣∣1 + (aH )−1(dv‖/dr‖)(r)
∣∣

×
[

1 −
TCMB(ar )

T eff
s (r)

]
, (33)

where r is the real-space location of 21-cm transition corresponding

to the proper distance ξ r on the ray path. TCMB(ar) = TCMB,0/ar is the

CMB temperature at the time of 21-cm transition. Here we define

the effective spin temperature

T eff
s (r) ≡ Ts(r)

[
1 −

v‖(r)

c

]
. (34)

Note that equation (34) only infers that the spin temperature man-

ifests itself to 21-cm brightness temperature and optical depth in

a manner modified by the peculiar velocity, but this effect does

not modify the level population of hydrogen hyperfine states, nor

the spin temperature. The level population can in fact be modified

by peculiar velocity through an effect pointed out by Chuzhoy &

Shapiro (2006). This is however a different effect from the one in

equation (34) which is based on a given spin temperature.

Equation (33) is in agreement with the well-known equation

in Barkana & Loeb (2005) except for the appearance of effective

spin temperature T eff
s . However, this modification is actually not

important for two reasons. First, it is of order O(v/c) and the bulk

motion of gas is mostly non-relativistic. Secondly, many research

papers focus on the epoch during reionization when TCMB/Ts ≪ 1,

when the spin temperature has a negligible effect on the brightness

temperature.

For convenience, we define the mean13 brightness temperature in

the limit Ts ≫ TCMB as

δ̂T b(zcos) ≡
3c3A10T⋆n̄H I(zcos)

32πν3
0 (1 + zcos)H (zcos)

= 23.88

(

bh

2

0.02

)√
0.15


Mh2

1 + zcos

10
x̄H I,m(zcos) mK,

(35)

where the cosmological redshift is defined by 1 + zcos ≡ 1/ar,

n̄H I(zcos) is the mean neutral hydrogen number density at zcos,

x̄H I,m(zcos) is the mean mass-weighted neutral fraction at zcos. Then

we can rewrite equation (33) in terms of fluctuations:

δTb(νobs) = δ̂T b(zcos)
1 + δρH I

(r)∣∣1 + δ∂r v(r)
∣∣

[
1 −

TCMB(ar )

T eff
s (r)

]
, (36)

13 This is not a volume-weighted mean, but essentially a mean in the redshift

space. See Footnote 24.
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where δρH I
(r) = [nH I(r) − n̄H I(zcos)]/n̄H I(zcos) is the neutral hydro-

gen density fluctuation, and δ∂r v(r) is defined in equation (2).

5.1.4 Line profile revisited: velocity versus thermal broadening

In general, the line profile can include thermal broadening, as well

as velocity broadening due to bulk motion. The velocity broadening

is naturally included by taking the δ-function-shaped line profile

peaked at the rest-frame frequency which is shifted both cosmo-

logically and by Doppler effect. Our calculation (equations 27 and

36) shows that the velocity gradient correction is due to the bulk

motion of neutral atoms. However, in their original paper, Barkana

& Loeb (2005) explained the inclusion of the velocity gradient

compactly, without showing details, as ‘The velocity gradient term

arises because the 21 cm scattering cross section has a fixed thermal

width, which translates through the redshift factor (1 + vr/c) to

a fixed interval in velocity’. This seems to mean that the thermal

broadening is responsible for the velocity gradient correction. In

this subsection, we will clarify that in the non-singular case, the

contribution of thermal broadening is always subdominant to the

velocity broadening.

Basically, the thermal velocity of hydrogen atoms can contribute

an additional Doppler shift of the line frequency. For a given

νobs, neutral atoms can in principle have a possibility, given by

the Maxwellian distribution, of seeing the radiation in the 21-cm

rest-frame frequency ν0, even if ν ′
RF (with Doppler shifted due to

bulk motion) �= ν0. This is described by the Gaussian line profile,

replacing equation (10),

φ(ν ′
RF) =

1

�νth

√
π

exp

[
−

(ν ′
RF − ν0)2

�ν2
th

]
, (37)

where

�νth =
ν0

c

√
2kBTk

mH

(38)

is the thermal Doppler shift corresponding to a gas kinetic temper-

ature Tk.

In the non-singular case, i.e. (dν ′
RF/dξ ′)ξr �= 0, we can change

the integration variable in equation (23),

dξ ′ =
dν ′

RF∣∣dν ′
RF/dξ ′

∣∣ , (39)

and rewrite the optical depth with thermal broadening as

τT
νobs

=
∫ ∞

−∞
T
(
ξ ′(ν ′

RF)
)
φ(ν ′

RF) dν ′
RF, (40)

where T(ξ ′) is the function in equation (27) with ξ r replaced by ξ ′

corresponding to ν ′
RF, so by definition T(ξr) ≡ τNT

νobs
is the optical

depth without thermal broadening for the observed frequency νobs.

Suppose the rest-frame frequency finds ν ′
RF = ν0 at ξ ′ = ξ r. The

thermal width is small compared to ν0, since �ν th/ν0 ∼ 10−5 if

Tk ∼ 104 K. Therefore the integrand is non-zero only near ν ′
RF =

ν0. So we can Taylor expand the integrand at ν0 to subleading

order in O(ν ′
RF − ν0)2, since the first order ∝

∫ ∞
−∞ dν ′

RF(ν ′
RF −

ν0) exp [−(ν ′
RF − ν0)2/�ν2

th] = 0. It is straightforward to show that

the result is

τT
νobs

= τNT
νobs

[
1 + �τT

νobs

]
, (41)

where the fractional correction due to thermal broadening is

�τT
νobs

=
1

4τNT
νobs

d2T(ξ ′(ν ′
RF))

dν ′
RF

2

∣∣∣∣∣
ν0

�ν2
th ∼ O

(
�νth

ν0

)2

∼ 10−9. (42)

Here we assume the gas temperature is about 104 K, which is close

to the maximum temperature attainable by neutral hydrogen before

collisional ionization becomes important. Therefore, the contribu-

tion of thermal broadening is always negligible compared to the

bulk motion.

5.1.5 Observed brightness temperature: optically thick limit

Our results for optical depth and brightness temperature seem to

diverge for δ∂r v = −1 (see equations 27 and 36). We discuss this

singularity behaviour in this subsection, and find that the divergence

in optical depth can be relaxed by including thermal broadening,

and the divergence in brightness temperature can be removed by

dropping the optically thin approximation.

We should first note that the singularity at δ∂r v = −1 corresponds

to
(
dν ′

RF/dξ ′)
ξr

= 0. In this case, the regular changing variable tech-

nique (equation 39) is invalid. Instead, one should Taylor expand

ν ′
RF(ξ ′) near ξ r to second order, ν ′

RF = ν0 + (1/2)β(ξ ′ − ξr)
2, where

β = (d2ν ′
RF/dξ

′ 2)|ξr , and find that

dξ ′ = sgn(ξ ′ − ξr) sgn(β)
dν ′

RF√
2β(ν ′

RF − ν0)
. (43)

Then the optical depth becomes

τνobs
= 2

∫ sgn(β) ∞

ν0

dν ′
RF sgn(β)

3c2A10T⋆nH I

32πν2
0Ts(1 − (v‖/c))

×
φ(ν ′

RF)√
2β(ν ′

RF − ν0)
. (44)

If there is no thermal broadening, the line profile is a δ-function

peaked at ν ′
RF = ν0, and the optical depth is still divergent due to the

1/
√

ν ′
RF − ν0 factor. However, thermal broadening can remove this

divergence. To see this, we can move the ξ ′-dependent factors (nH I,

Ts and v‖) out of the integral, evaluated at ξ r, since the evaluation

is concentrated near ξ r. When applying the thermal line profile

(equation 37), we find that the optical depth in the singular case

(δ∂r v = −1) becomes

τνobs
=

3c2A10T⋆nH I(ξr)

32πν2
0Ts(ξr)(1 − (v‖(ξr))/c)

1.446
√

|β|�νth

. (45)

Here the factor 1.446 is an approximation of
√

2/π × 2 Ŵ(5/4).

Since τνobs
∝ 1/

√
�νth, the optical depth can be large when δ∂r v is

close to −1. We evaluate β when δ∂r v = −1,

β = −
ν0H (ar )2

c2

[
2 +

arH
′(ar )

H (ar )
−

c

(arH (ar ))2

d2v‖

d r2
‖

∣∣∣∣∣
ξr

]
, (46)

where H′(a) = dH/da.

There are two astrophysical cases that can generate δ∂r v = −1.

One is the virialized halo and the other is the spherical collapse at

the turn-around point (pre-virialization). In both cases, the proper

velocity is V‖ = a r‖H(a) + v‖ = 0 (seen from the halo centre), so

dv‖/dr‖ = −aH(a). Near the singular point, the optical depth can

become large, thus invalidating the optically thin approximation.

As a result, one cannot apply the popular equation (equation 33)

to evaluate the brightness temperature, but should instead use the

exact solution

δTb(νobs) = ar

[
Ts(ξr)

(
1 −

v‖

c

)
− TCMB(ar )

]
[1 − e−τνobs ], (47)

where τνobs
is given by equation (45) when τνobs

� 1 or equation (27)

when τνobs
< 1 but not too small. The exact value of τνobs

is not

important as long as τνobs
≫ 1, since the τ -dependent term should
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saturate 1 − exp (−τνobs
) ≈ 1 for large τνobs

, in which case the

brightness temperature is still finite, i.e.

δTb(νobs) ≈ ar

[
Ts(ξr)

(
1 −

v‖

c

)
− TCMB(ar )

]
(48)

instead of infinite as it would be using the popular equation (33).

5.1.6 How good is the optically thin approximation

during the EOR?

It is often assumed that 21-cm line is optically thin, fundamen-

tally because 21-cm hyperfine transition is highly forbidden with

an extremely small probability of A10 = 2.85 × 10−15 s−1. How-

ever, peculiar velocity gradients can enhance the optical depth in

overdense regions.14 To see this, we rewrite the optical depth in

equation (27) as

τνobs
=

δ̂T b(zcos)

TCMB,0

1 + δρH I

α
∣∣1 + δ∂r v

∣∣ (1 − (v‖/c))

= 0.00438

(

bh

2

0.02

)√
0.15


Mh2

1 + zcos

10

x̄H I,m(zcos)

0.5

×
1 + δρH I

α
∣∣1 + δ∂r v

∣∣ (1 − (v‖/c))
,

(49)

where α ≡ Ts(r)/TCMB(zcos). For example in our reionization simu-

lation at z ∼ 9 when x̄H I,m ∼ 0.5, and with reasonable assumptions

such as non-relativistic bulk motion v ≪ c and small fluctuation

1 + δρH I
∼ 1, the optical depth can become of order unity when the

velocity gradient is very negative, such that |1 + δ∂r v| � 0.004/α,

as can happen in some overdense regions. This condition on the

velocity gradient widens when 21-cm occurs in absorption (Ts <

TCMB) and becomes narrower when it occurs in emission (Ts >

TCMB).

Fig. 3 shows the PDF of the τνobs
distribution of the IGM from our

simulation data (see simulation details in Section 6.3). We smooth

the N-body particle mass in the IGM on to a regular 2563 grid,

compute the cell’s velocity gradient using the smoothed particle hy-

drodynamics (SPH)-like smoothing method described in Appendix

A3, and compute the optical depth of the IGM. For simplicity, we

drop the 1 − v/c factor in the optical depth calculation by assuming

non-relativistic bulk motions. Fig. 3(a) shows the extent by which

velocity gradients alone can enhance the optical depth, by assuming

δρH I
= δρH

. The PDF at large optical depth increases by roughly

an order of magnitude when we decrease the spin temperature by

an order of magnitude. In the pessimistic case (Ts/TCMB = 0.1), as

many as 0.1 per cent of the total cells have an optical depth of order

unity.

In Fig. 3(b), we plot the same PDF for the actual δρH I
from the

reionization simulation. Because of the ‘inside-out’ character of

reionization, the overdense regions that can have velocity gradients

close to −1 ionize first and one can expect the effect to be much

less. Fig. 3(b) shows that for the case Ts/TCMB = 0.1, only a fraction

of up to 10−4 of the total number cells approach an optical depth

of 1. For the case Ts/TCMB = 100 this fraction becomes as low as

10−7. We therefore conclude that we can safely use the optically

thin approximation when calculating the 21-cm radiation from the

IGM.

14 Iliev et al. (2002) showed that the 21-cm line can become optically thick

inside dense minihaloes, but this is a different effect from the enhancement

due to velocity gradients we consider here.

However, we should note that the optically thin approximation

may break down to a larger extent in one of the two following

scenarios.

(i) 21-cm radiation from a halo or in spherical collapse at the

turn-around point may be mostly optically thick, because δ∂r v ∼ −1

there. The breakdown of the optically thin approximation may be

more prominent when the 21-cm line is in absorption against the

CMB.

(ii) When the 21-cm radiation is computed directly from high-

resolution particle data (and not from gridded data as above), a

larger fraction of particles can be optically thick, since the particle

density is higher in overdense regions.

The breakdown of the optically thin approximation merits more

investigation beyond the scope of this paper where we focus on

21-cm radiation from the IGM and this approximation is mostly

valid. We defer further analysis to future work.

5.1.7 When the mapping from frequency to position along

LOS is multivalued

In the case of multiple 21-cm transitions along the ray path, we

label the transition events by i = 1, . . ., N in sequence along the

forward ray path. The optical depth starts from τ 0 ≡ 0 (on the

far side of the gas element) to τ i (after the ray passes through

event i), and to τN = τνobs
. We define the differential optical depth

�τi ≡ τi − τi−1 =
∫

across i
κν′ dξ ′ which can be evaluated us-

ing equation (27) with the transition location ξ r → ξ i. To carry

out the integration in equation (18), we split the integral into a

sum of N subintegrals each over only one transition event, i.e.∫ τνobs
0 · · · dτ ′

ν′ =
∑N

i=1

∫ τi

τi−1
· · · dτ ′

ν′ . Using the same trick as in Sec-

tion 5.1.3, we find
∫ τνobs

0 Sν′ (ξ ′)e−(τνobs
−τ ′

ν′ )dτ ′
ν′ =

∑N

i=1 Sν′ (ξi)�τi

in the optically thin limit. Using the fact that τνobs
=

∑N

i=1 �τi ,

we find that δTb(νobs) =
∑N

i=1 δTb(νobs)|ξi
, i.e. the observed dif-

ferential brightness temperature is the sum of contributions from

all transitions, where each contribution can be evaluated using the

equation for a single transition (equation 33) with r the position of

each transition.

5.2 The distortion of apparent location and brightness

temperature by peculiar velocity

In Section 5.1 we derived the equation for the observed 21-cm

brightness temperature, evaluating physical properties at the ac-

tual location r of the emitting neutral hydrogen atoms. However,

observers can only determine the position of the source from the

observed 21-cm line frequency, i.e. in observer redshift space. To

make theoretical predictions, it is therefore necessary to express the

observed 21-cm brightness temperature in observer redshift-space

coordinates. This subsection deals with solving this issue.

5.2.1 Distinguishing the two distortion effects by peculiar velocity

We should emphasize first that, although the effects of peculiar

velocity on observed 21-cm brightness temperature and on apparent

location of sources are both due to the Doppler shift of the line

frequency, the underlying mechanisms do differ. For the former,

peculiar velocity distinguishes the emitter space from the FRW

space, both of which are physical reference frames, and translates

the difference between these two frames, through the transformation

of the line profile, to the optical depth that affects the brightness

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 937

Figure 3. PDF of 21-cm optical depth τνobs
from our simulation data at z = 9.457 (50 per cent ionized). The simulation is in an 114 Mpc h−1 box with IGM

particle data smoothed on to a 2563 grid. PDF shows the probability of finding τνobs
in intervals of �τνobs

= 0.1. We assume Ts/TCMB = 0.1 (solid, black), 1

(long-dashed, red), 10 (dotted, blue) and 100 (short-dashed, green). Left-hand panel: assuming a fully neutral universe (xH I = 1). Right-hand panel: using the

actual ionization pattern from the simulation.

temperature measured by observers today in FRW space. It is a

‘real’ effect in the sense that peculiar velocities change the observed

brightness temperature, regardless of how observers interpret the

location of source.

For the latter, the observer redshift-space coordinates are simply

an artificial coordinate system that could be replaced by the observer

real-space coordinates if observers could measure the peculiar ve-

locities of sources and reconstruct the brightness temperature map

in the sources’ actual location. This is ‘artificial’ in the sense that it

is due to the observers’ incomplete information on the location of

the sources.

The observed brightness temperature we derived in equation (36)

is evaluated in terms of quantities measured in real space. We can

rewrite equation (36) as

δT r
b (r) = δ̂T b(zcos)

1 + δr
ρH I

(r)∣∣1 + δr
∂r v

(r)
∣∣

[
1 −

TCMB(ar )

T
r,eff

s (r)

]
, (50)

using the superscript ‘r’ for real space explicitly. (See our conven-

tion of superscripts ‘r’ and ‘s’ in Section 3.1.) By definition, the

brightness temperature calculated from redshift-space quantities,

δT s
b (s), is equal to δT r

b (r). So in principle, we can combine the two

effects of peculiar velocity and find an expression for the brightness

temperature using redshift-space quantities from

δT s
b (s) = δT r

b (r(s)), (51)

where r(s) is the inverse of the real-to-redshift-space mapping

r → s = r + [(1 + zobs)/H (zobs)]v‖(r) r̂ . We show below that

this relation can be simplified for the 21-cm brightness tempera-

ture. We restrict the discussion to calculating the 21-cm brightness

temperature in the optically thin approximation here, since this is

mostly valid in the IGM.

5.2.2 21-cm brightness temperature in observer redshift space:

mathematical approach

We present the derivation of the equation for the 21-cm brightness

temperature in terms of redshift-space quantities in two ways. First

in this subsection in a mathematical way, and in the next subsection

in a more heuristic physical way. To simplify matters, we for now

assume that Ts ≫ TCMB and generalize our result to an arbitrary Ts

in Section 5.2.4.

Analogous to redshift-space distortion in galaxy surveys, where

the number of galaxies is preserved between real- and red-

shift space, the number of emitting neutral hydrogen atoms is

preserved in the 21-cm signal, i.e. ns
H I

(s)δV s(s)(1 + zcos)
−3 =

nr
H I

(r)δV r(r)(1 + zcos)
−3. From the real-to-redshift-space mapping,

s = r + [(1 + zobs)/H (zobs)]v‖(r) r̂ , it is easy to find the rela-

tion between comoving volume elements in both frames δV s(s) =
δV r(r)|1 + δr

∂r v
(r)|. Therefore, the number density measured in

redshift space is

ns
H I

(s) =
nr

H I
(r)∣∣1 + δr
∂r v

(r)
∣∣ . (52)

The mean number density must be preserved too, when averaged

over a volume large enough to contain all gas of interest. In terms

of fluctuations δs
ρH I

(s) = [ns
H I

(s) − n̄H I(zcos)]/n̄H I(zcos), where n̄H I

is the mean (physical) HI number density, we have 1 + δs
ρH I

(s) =
[1 + δr

ρH I
(r)]/

∣∣1 + δr
∂r v

(r)
∣∣, and hence in the Ts ≫ TCMB limit,

δT s
b (s) =

δ̂T b(zcos)

n̄H I(zcos)
ns

H I
(s) = δ̂T b(zcos)

[
1 + δs

ρH I
(s)
]
. (53)

This means that in the high Ts limit, the observed 21-cm brightness

temperature is directly proportional to the number density of neutral

hydrogen atoms measured in observer redshift space. In other words,

21-cm tomography maps exactly the neutral hydrogen distribution

in redshift space. This is the result we already found in Section 4,

but now more rigorously derived.

In the case of multiple transitions along the ray path, the bright-

ness temperature is the sum of contributions from all transition

C© 2012 The Authors, MNRAS 422, 926–954
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events, as discussed in Section 5.1.7. Since these transitions cor-

respond to the same observed frequency and therefore the same

redshift-space location, equation (53) still holds for the multitransi-

tion case, since by definition the H I density in redshift space is the

linear addition of H I mass from all such transition spots per unit

redshift-space volume.

5.2.3 21-cm brightness temperature in observer redshift space:

physical approach

Now we rederive equation (53) by considering the physical mean-

ing of brightness temperature. The 21-cm brightness temperature

is simply proportional to the specific intensity, i.e. δTb(νobs) =
[c2/(2kBν2

obs)]δIνobs
, where δIν is the differential specific inten-

sity relative to CMB, and equal to the energy received from dis-

tant gas per unit observation time per unit transverse collection

area per solid angle spanned by sources per unit observed fre-

quency interval. The solid angle is proportional to the transverse

area of the source, the observed frequency interval is proportional

to the LOS distance interval in redshift space, and hence the en-

ergy received from a patch of sky near νobs per unit time per

unit collection area is proportional to the brightness temperature

times the redshift-space volume element, i.e. d2
 = dAs
⊥/d2

A(zobs),

dνobs = |ds‖|/y(zobs) and dE/dt dAcoll = C(zobs) δTb(νobs)δVs, where

dA(zobs) is the comoving angular diameter distance,15 y(zobs) =
λ0(1 + zobs)

2/H(zobs), dAs
⊥ is the comoving transverse area in red-

shift space, ds‖ is the comoving radial interval in redshift space,

C(zobs) ≡ 2kBν2
obs/c

2d2
A(zobs)y(zobs) and δV s = dAs

⊥ |ds‖| is the

comoving redshift-space volume element.

Consider a small region (e.g. a cell or a pixel) of the sky

at the telescope’s resolution scale. The detector simply smears

subcell brightness temperature information by summing ener-

gies received from all unresolved subcells. For each subcell,

δTb δV s = [δ̂T b(zcos)]/[n̄H I(zcos)][nH I(r)]/
∣∣1 + δr

∂r v
(r)
∣∣ ×

δV r(r)
∣∣1 + δr

∂r v
(r)
∣∣ = (1 + zcos)

3[δ̂T b(zcos)]/[n̄H I(zcos)]δNH I,

where δNH I(r) = (1 + zcos)
−3 nH I(r) δV r(r) is the num-

ber of emitting neutral hydrogen atoms from the subcell at

r . Ignoring the difference of observed frequency and red-

shift between the subcells, the brightness temperature of the

cell is δTb(νobs) = 1/[C(zobs)�V s]
∑

[dE/(dt dAcoll)]sub =
(1/�V s)

∑
[δTb δV s]sub = δ̂T b(zcos)(n

s
H I,cell)/n̄H I =

δ̂T b(zcos) [1 + δs
ρH I

(s)] (i.e. equation 53), where �Vs

is the total redshift-space volume of the cell, and

ns
H I,cell = (1 + zcos)

3
(∑

δNH I,sub

)
/�V s = (1 + zcos)

3�NH I/�V s

is the cell-wise (physical) H I number density in redshift space.

5.2.4 Spin temperature reloaded

In this subsection we generalize our calculation to the case of

arbitrary spin temperature. Following the same algebra as in

Section 5.2.3, for each unresolved subcell, δTb δV s = (1 +
zcos)

3 [δ̂T b(zcos)/n̄H I(zcos)]δNH I[1 − (TCMB(zcos))/(T r,eff
s (r))]. Then

15 Here dA(z) ≡ (c/H0)|
k |−1/2S[|
k |1/2
∫ z

0 dz′/E(z′)], where E(z) ≡
H(z)/H0 is the relative cosmic expansion rate, and the function S(x) equals

sin (x) if 
k < 0, x if 
k = 0 and sinh x if 
k > 0. Strictly speaking, it

should be dA(zcos) that differs from dA(zobs) by v‖(1 + zobs)/H(zobs). Since

dA is large at high redshift, this difference is negligible.

the brightness temperature of a cell is

δTb(νobs) =
δ̂T b(zcos)

n̄H I(zcos)

〈
nH I

[
1 −

TCMB

T eff
s

]〉s

cell

, (54)

where
〈

nH I

[
1 −

TCMB

T eff
s

]〉s

cell

=
1

�V s

∑

subcells

{
ns

H I
(s)

×
[

1 −
TCMB(zcos)

T
s,eff

s (s)

]
δV s

}

sub (55)

is the redshift-space-volume-weighted cell-wise average of

nH I

[
1 − (TCMB/T eff

s )
]
, or in other words, the cell-wise total of

δNH I

[
1 − (TCMB/T eff

s )
]

per unit proper redshift-space volume.

Here we implicitly assume that spin temperature is preserved from

real- to redshift space, i.e. T s,eff
s (s) = T r,eff

s (r).

5.2.5 Breakdown of the analogy to galaxy surveys

From our results it is clear that the analogy to galaxy redshift surveys

breaks down due to two effects: finite optical depth and finite spin

temperature, as mentioned before in Section 4.16

For the first case, when the IGM is optically thick to 21-cm radi-

ation, i.e. τνobs
� 1, the brightness temperature is not linear in τνobs

(see equation 47), and the optical depth itself is affected by pecu-

liar velocity through its dependence on spatial derivatives that are

higher order than dv‖/dr‖ (see equations 45 and 46). Consequently,

the brightness temperature is no longer proportional to the neutral

atom density in redshift space.

For the second case, e.g. at high redshifts where Ts ≫ TCMB

is not satisfied,17 neutral atoms in the same redshift-space volume

element contribute unequally to the brightness temperature due to

their spatial variation in level population, i.e. emitters can have

different luminosity. Thus the brightness temperature is no longer

proportional only to the neutral atom density in redshift space.

When the mapping from real- to redshift space is single valued,

the proportionality between observed brightness temperature and

neutral atom density in redshift space is spoiled by the spatially

varying correction factor, 1−TCMB/T r, eff
s (r), according to equations

(54) and (55). However, in the more general case in which the

mapping may be multivalued, this correction factor is an average

over the different real-space streams that contribute to the same

redshift-space element, weighted by their different redshift-space

neutral atom densities.

16 There is a third, more technical, difference between galaxy redshift sur-

veys and 21-cm surveys. In principle, the apparent location shift from real-

to redshift-space results in the difference in the comoving transverse area

and, hence, affects the redshift-space volume, in addition to the effect due

to the change in the comoving LOS distance interval. This additional effect

is non-negligible for galaxy redshift surveys at low redshifts, but small for

high-redshift 21-cm surveys (as discussed in Footnote 15). We thank Lewis

(private communication) for pointing this out to us.
17 It is generally assumed that sufficiently late after the formation of the

first stars, the spin temperature is well above the CMB temperature. This

assumes, e.g. that the IGM is heated but only weakly ionized, as by the

X-rays expected from early galaxies and miniquasars (e.g. Chen & Miralda-

Escudé 2004). It also assumes that the first stars produce a strong enough

Lyα pumping background to couple Ts to the kinetic temperature of the gas

through the Wouthuysen–Field effect (e.g. Ciardi & Madau 2003). However,

the length of the transition period from Ts � TCMB in the Dark Ages to Ts

≫ TCMB during the later stages of the EOR is an unsettled topic (see e.g.

Baek et al. 2010).
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5.3 Redshift-space distortion on 21-cm power spectrum

The 21-cm redshift-space-distorted power spectrum in the linear ap-

proximation was explored in Barkana & Loeb (2005), who showed

that the linear 21-cm power spectrum is distorted in a form analo-

gous to the linear redshift space distortion in galaxy surveys. The au-

thors computed the power spectrum of linearized peculiar-velocity-

corrected 21-cm brightness temperature, nevertheless, in real space,

i.e. they linearized gas density, neutral fraction and particularly the

velocity gradient correction 1/(1+δr
∂r v

(r)) ≈ 1−δr
∂r v

(r) by assum-

ing δr
∂r v

≪ 1, and computed the Fourier transform of the brightness

temperature evaluated in real space. The observable power spec-

trum, however, is in redshift space. Although the expression of

power spectrum derived in Barkana & Loeb (2005) can give correct

values on large scales, this approach is conceptually incomplete. In

addition, the assumption of δr
∂r v

≪ 1 may break down on small

scales. A further complication is that Barkana & Loeb (2005) as-

sume that the product of neutral fraction fluctuation and the gas

density fluctuation, δxH I
δρH

, can be neglected, which can be invalid

and cause the power spectrum to become inaccurate with a fractional

error at the 200 per cent level on small scales when the universe is

50 per cent ionized (Lidz et al. 2007).

In this section, we present a reformulation for computing the 21-

cm power spectrum in observer redshift space, taking into account

both distortions in brightness temperature and in apparent location,

and give the general equation for the linear redshift-space-distorted

power spectrum without assuming either δr
∂r v

≪ 1 or δxH I
δρH

≪ 1.

5.3.1 Fully non-linear power spectrum with finite optical depth

Consider a slice δT s
b (s) of a 3D data cube near zcos, in redshift

space. The brightness temperature in Fourier redshift space is

δ̃T s
b (k) ≡

∫
d3s e−ik·s δT s

b (s). Since predictions of power spec-

tra from theoretical modelling are made in real space, we should

relate this to real-space quantities. The redshift- and real-space co-

ordinates are related by equation (6), and so the volume elements

are related by d3 s = d3r|1 + δr
∂r v

(r)|. The observed brightness

temperature is preserved (see equation 51), and, in the general case

of finite optical depth, evaluated using equation (47) with optical

depth using equation (49). The exact Fourier transform of brightness

temperature in redshift space is

δ̃T s
b (k) =

∫
d3r e−ik·r exp

[
−i

(
1 + zcos

H (zcos)

)
k‖v‖(r)

]

× TCMB,0

∣∣1 + δ∂r v(r)
∣∣
[
α(r)

(
1 −

v‖

c

)
− 1

] [
1 − e−τνobs

]
, (56)

where k‖ = k · r̂ . Note that τνobs
is an implicit function of r , too. The

fully non-linear power spectrum can be calculated by its definition〈
δ̃T s

b

∗
(k)δ̃T s

b (k′)
〉

≡ (2π)3P s
�T (k)δ(3)(k − k

′).

5.3.2 Non-linear power spectrum in the optically

thin approximation

In the optically thin limit, we can use the approximation 1−e−τνobs =
τνobs

. As before, the velocity gradient corrections for the opti-

cal depth and the redshift-space volume element cancel in equa-

tion (56), and we find that the fully non-linear Fourier transform of

brightness temperature in redshift space in the optically thin limit

is given by

δ̃T s
b (k) = δ̂T b(zcos)

∫
d3r e−ik·r [1 + δr

ρH I
(r)
]

× exp

[
−i

(
1 + zcos

H (zcos)

)
k‖v‖(r)

][
1 −

TCMB(zcos)

T
r,eff

s (r)

]
.

(57)

5.3.3 Quasi-linear μk-decomposition scheme

We work out a ‘quasi-linear’ case in this subsection. In this we

only take the density and velocity fluctuations to be linear, but the

reionization fluctuations are allowed to be non-linear. This means

that we do not assume δxH I
δρH

≪ 1 and thus our approach is more

general than that of Barkana & Loeb (2005). We therefore choose

not to call it ‘linear theory’, but instead introduce the new name

quasi-linear μk-decomposition scheme.

On large scales corresponding to small enough k so that ((1 +
zcos)/H(zcos))k‖v‖ ≪ 1, we can linearize the exponential and keep the

linear term in v. We also linearize the spin-temperature-dependent

term

ηr(r) ≡
[

1 −
TCMB(zcos)

T
r,eff

s (r)

]
(58)

by defining its fluctuations as δr
η(r) = [ηr(r) − η̄(zcos)] /η̄(zcos),

where η̄(zcos) is the mean value of η. We keep only the linear terms

in velocity, neutral density fluctuations and η fluctuations, and find

˜
δT

s,qlin
b (k) = δ̂T b(zcos)η̄(zcos)[−i ((1 + zcos)/H (zcos)) k‖ṽ

r
‖(k) +

δ̃r
ρH I

(k)+ δ̃r
η(k)]. Here ãr(k) ≡

∫
d3r e−ik·rar(r) is the Fourier trans-

form of the quantity ar(r) in real space. On large scales, the velocity

field is linear, ṽr
‖(k) = i (H (zcos)/(1 + zcos)) δ̃r

ρH
(k)(μk/k), where

μk = k‖/k, k = |k|, and δ̃r
ρH

(k) is the total hydrogen density fluc-

tuation in Fourier real-space. So we find

˜
δT

s,qlin
b (k) = δ̂T b(zcos)η̄(zcos)

[
δ̃r
ρH

(k)μ2
k
+ δ̃r

ρH I
(k) + δ̃r

η(k)
]
. (59)

The power spectrum in the quasi-linear μk-decomposition

scheme in redshift space, defined as 〈 ˜
δT

s,qlin
b

∗
(k)

˜
δT

s,qlin
b (k′)〉 ≡

(2π)3P
s,qlin
�T (k)δ(3)(k − k

′), is

P
s,qlin
�T (k) = Pμ0 (k) + Pμ2 (k)μ2

k
+ Pμ4 (k)μ4

k
, (60)

where the moments of μk-polynomial expansion are

Pμ0 (k) =
(
δ̂T bη̄

)2 [
P r

δρH I
,δρH I

(k) + P r
δη,δη

(k)

+ 2P r
δρH I

,δη
(k)
]
, (61)

Pμ2 (k) = 2
(
δ̂T bη̄

)2 [
P r

δρH I
,δρH

(k) + P r
δη,δρH

(k)
]
, (62)

Pμ4 (k) =
(
δ̂T bη̄

)2

P r
δρH

,δρH
(k), (63)

where all quantities here depend implicitly on the redshift zcos. Here

P r
a,a denotes the autopower spectrum of the quantity ar(r), and P r

a,b

is the cross-power spectrum between fields ar(r) and br(r), both in

real space. Note that, strictly speaking, the power spectra involving

δη are not statistically isotropic due to the distortion by peculiar

velocity as in equation (34). Since the correction is of order v/c,

we ignore it here. When Ts ≫ TCMB, η = 1 and δη = 0, and the

power spectrum in quasi-linear μk-decomposition scheme reduces

to equation (4).
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Although we derived the scheme by assuming linear density and

velocity fluctuations, when using it on simulation data, we normally

use the non-linear density fluctuations given by the simulation.

As pointed out above, each moment of the μk-decomposition can

contain higher order auto- and cross-correlations involving density

and ionization fluctuations, because δr
ρH I

= δr
ρH

+ δr
xH I

+ δr
ρH

δr
xH I

. To

see this explicitly, for example, in the simple case Ts ≫ TCMB in

which η = 1 and δη = 0, we can rewrite the moments as follows:

Pμ0 (k) = δ̂T
2

bP
r
δρH I

,δρH I

(k)

= δ̂T
2

b

[
P r

δxH I
,δxH I

(k) + 2P r
δxH I

,δρH
(k)

+ P r
δρH

,δρH
(k) + 2P r

δxH I
δρH

,δxH I

(k)

+ 2P r
δxH I

δρH
,δρH

(k) + P r
δxH I

δρH
,δxH I

δρH
(k)
]
,

(64)

Pμ2 (k) = 2 δ̂T
2

bP
r
δρH I

,δρH
(k)

= 2 δ̂T
2

b

[
P r

δρH
,δρH

(k) + P r
δxH I

,δρH
(k)

+P r
δxH I

δρH
,δρH

(k)
]
, (65)

Pμ4 (k) = δ̂T
2

bP
r
δρH

,δρH
(k). (66)

However, the quasi-linear μk-decomposition scheme neglects the

non-linear coupling of peculiar velocity and ionization fluctuations,

which we will investigate in future work (Shapiro et al., in prepara-

tion).

5.3.4 Linear theory

Barkana & Loeb (2005) linearizes both density and ionization fluc-

tuations, and discards all three- and four-point correlations in the

expansion of moments, i.e. in the simple case Ts ≫ TCMB, equations

(64)–(66) reduce to

Pμ0 (k) = δ̂T
2

b

[
P r

δxH I
,δxH I

(k) + 2P r
δxH I

,δρH
(k)

+P r
δρH

,δρH
(k)
]
,

(67)

Pμ2 (k) = 2 δ̂T
2

b

[
P r

δρH
,δρH

(k) + P r
δxH I

,δρH
(k)
]
, (68)

Pμ4 (k) = δ̂T
2

bP
r
δρH

,δρH
(k). (69)

Lidz et al. (2007) demonstrated that, if peculiar velocity is not

taken into account, i.e. only zeroth moment is concerned, the neglect

of higher order correlations can result in significant errors in 21-cm

power spectrum. They also pointed out that, for the same reason,

21-cm redshift-space power spectrum computed using the linear

theory of Barkana & Loeb (2005) can have large errors, but they did

not provide any detail or analysis of computing the non-linear power

spectrum, nor did they propose an analytic solution that incorporates

all of the relevant higher order terms.

In our paper, in addition to investigating the fully non-linear

power spectrum, we propose the quasi-linear μk-decomposition

scheme as a solution that can as well separate the cosmological

density fluctuations from the ionization fluctuations just as the linear

theory (Barkana & Loeb 2005) does, but account for higher order

correlations due to non-linear ionization fluctuations.

6 C O M P U TAT I O NA L S C H E M E S TO P R E D I C T

BRI GHTNESS TEMPERATURE I N REDSHIFT

SPAC E

6.1 Exact steps in the case of finite optical depth

Analytical models and seminumerical or numerical simulations pro-

vide us with real-space data. In order to make predictions for the

observed 21-cm power spectrum, we need to calculate the fully

non-linear 21-cm brightness temperature accurately and efficiently

in redshift space, accounting for all effects of peculiar velocities.

As explained in Section 5.2.1, the effects of peculiar velocity can

be separated into an effect on the observed brightness temperature

and one on the apparent location of the 21-cm emission source. So

in principle, in order to compute the signal in redshift space, the

brightness temperature should (1) first be corrected by the velocity

gradient, evaluated in real space, using the exact formula of 21-

cm brightness temperature (equation 47) with finite optical depth

(equation 49), and (2) then shifted to the apparent location corre-

sponding to the Doppler frequency shift, with the volume element

re-sized according to the velocity gradient and (3) finally resampled

on to a regular grid in redshift space. Power spectra calculated this

way should be equivalent to those using equation (56). This process

is in general computationally cumbersome.

6.2 Real-to-Redshift-Space-Mapping (RRM) schemes

Since the optically thick cells are very rare in the IGM, as we have

shown in Section 5.1.6, we may evaluate brightness temperature

in the optically thin approximation (equation 36). In doing this,

although brightness temperature in an optically thick cell would be-

come artificially divergent in real space, its net contribution to the

brightness temperature in redshift space is still finite and propor-

tional to the total number of neutral atoms in that cell, because the

redshift-space volume element of this cell is compressed accord-

ingly. This has been well discussed in Section 5.2. We can exploit

the proportionality between the 21-cm brightness temperature and

the neutral atom number density both measured in redshift space. In-

spired by common wisdom in large-scale structure simulations, we

propose two computational schemes based on mapping the neutral

atom density from real- to redshift space, and then computing the

21-cm brightness temperature in redshift space using equation (53).

We also assume Ts ≫ TCMB in this section, but our schemes can be

readily generalized to the arbitrary Ts case.

Strictly speaking, these two schemes are accurate only when

the optically thick cells are rare enough, because neutral atoms in

those cells should be ‘self-shielded’ to 21-cm radiation. We will

revisit in detail the accuracy of power spectrum in the optically thin

approximation in Section 7.

6.2.1 Particle-to-Particle-to-Mesh (PPM)-RRM scheme

Most numerical simulations of reionization are processed as fol-

lows. First one runs a large-scale N-body simulation, from which

one obtains gridded density fields and the collapsed halo informa-

tion such as location and mass. The reionization simulation is then

run on these gridded density fields using the haloes as sources of

radiation. Since the RT grid resolution is typically coarser than the

N-body particle resolution, the most accurate 3D map of the neutral

atom distribution in redshift space that can be possibly achieved

from a given reionization simulation is made by taking advantage

C© 2012 The Authors, MNRAS 422, 926–954
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of the high-resolution N-body particle information. We propose the

PPM-RRM scheme as follows.

(i) We compute the bulk-flow velocity of the IGM at the position

of particles directly from N-body particle data using an adaptive-

kernel, SPH-like approach. The SPH-smoothed bulk velocity as-

signed to each particle is the smoothed momentum density divided

by the smoothed mass density, evaluated at the particle location.18

(ii) We assign each particle the neutral fraction from the RT grid

cell that it is located in.

(iii) For a given LOS direction, we Doppler shift the N-body

particles to their apparent locations according to the LOS bulk-flow

velocity, in accordance to equation (6).

(iv) We compute new smoothing kernel lengths using the new

particle positions in redshift space.

(v) We use those kernel lengths to smooth the particle data (i.e.

H I mass) on to a regular, redshift-space grid (see the discussion of

grid resolution below). In this step, we exclude particles contained

in haloes.19

(vi) From this latter, gridded density field, we compute the H I

density fluctuations in redshift space, and from this the 21-cm

brightness temperature measured in redshift space using equa-

tion (53).

Some details of the particle smoothing algorithm are discussed in

Appendix A. We use adaptive kernels rather than fixed kernels so

as to better resolve the small-scale spatial variations in overdense

regions.

The high wavenumber modes in the power spectrum can be in-

accurate due to sampling effects when calculating the power spec-

trum using the fast Fourier transform (FFT). Instead of correcting

the power spectrum using the method proposed by Jing (2005),

we partly avoid the sampling effect by gridding the particle data

on to a redshift-space grid at four times higher resolution than the

RT grid, but only keeping the modes in the power spectrum with

k ≤ π/�L (�L is the RT grid spacing), i.e. one-quarter of the

Nyquist wavenumber for a grid with the resolution �L/4. The rea-

son for this and a summary of the sampling effect are discussed in

more detail in Section 6.4.

The PPM-RRM prescription can be summarized as ‘Pr → Ps →
Ms(4×RT)’ where ‘P’ means particle data, ‘M’ means mesh data,

subscript ‘r’ means real space, ‘s’ means redshift space and ‘4×RT’

indicates that the grid resolution is four times finer than RT grid

resolution. Fig. 4 shows the flow chart for the PPM-RRM scheme.

6.2.2 Mesh-to-Mesh (MM)-RRM scheme

Manipulating N-body particle data is accurate but computationally

costly (see Table 1). Since the N-body particle data typically already

have been smoothed on to a regular, real-space grid in order to

simulate the radiative transfer, we propose an alternative scheme,

the MM-RRM scheme. Mellema et al. (2006b) were actually the first to

18 If a hydrodynamical simulation is coupled to N-body cold dark matter

(CDM) simulation, then the gas particle velocity can be directly used. How-

ever since our simulations are dark matter only, we approximate the gas

bulk-flow velocity as the SPH-smoothed velocity at the particle location

(see Appendix A). One cannot use the particle velocities directly because

those can be multistreaming. In all this we assume that the gas traces the

dark matter exactly, which is a good approximation on large scales.
19 We simulate the reionization of the IGM, and therefore compute the 21-

cm brightness temperature only from the IGM, so excluding particles in

haloes.

use the MM-RRM scheme to produce brightness temperature spectra

and maps along the LOS (their figs 4, 9 and 10), but did not provide

a detailed description of the method in their paper. This scheme

saves computational resource by using the real-space grid data such

as cell-wise mass density, velocity and ionization fraction, but gives

consistent results (depending on the grid resolution, to be tested in

Section 6.6). The MM-RRM scheme works as follows.

(i) As the preliminary step, we grid the N-body particle data in

the IGM (i.e. particles in the halo excluded) on to a regular, real-

space grid with a resolution n times finer than the RT resolution,

using our adaptive kernel SPH-like smoothing. This provides us

with cell-wise density and velocity fields.

(ii) We assign each cell the neutral fraction from the RT grid that

this fine cell belongs to.

(iii) We assume the cell-wise velocity to be the velocity at the

cell centre, and compute the LOS velocity at the boundary between

two LOS-neighbouring cells by linear interpolation.

(iv) We shift the cell boundaries to their apparent locations ac-

cording to their LOS velocity, in accordance with equation (6),

whereby the real space cell can get stretched or compressed in red-

shift space. In high-density cells the boundaries of a cell can cross

each other in redshift space, an effect known as the finger of God.

When this happens, we switch the cell’s crossing boundaries so that

the cell size is always positive.

(v) We regrid the neutral hydrogen mass from the real-space

grid on to a regular, redshift-space grid at the same resolution, by

counting the overlapping volumes; e.g. if the LOS is along the x-

axis, a real-space cell (i, j, k) with the size �x stretches to the

length �x ′
i in redshift space, with a portion of this length, �Li,i′ ,

overlapping the cell (i′, j, k) in the regridded, redshift space, mesh,

then all real-space cells (i, j, k) contribute to the neutral hydrogen

density of the redshift-space cell (i′, j, k), according to

ρs
H I

(i ′, j , k) =
∑

i

Fi,i′ ρ
r
H I

(i, j , k), (70)

where Fi,i′ is the fractional overlap of the real-space volume i with

the redshift-space volume i′, i.e. Fi,i′ = �Li,i′/�x ′
i (the indices

j and k are not relevant here because we move all cells along the

x-axis).

(vi) We compute the H I density fluctuations in redshift space, and

from this the 21-cm brightness temperature using equation (53).

This is done at n times higher resolution than the RT grid, but

when calculating the power spectrum we only keep modes with

k ≤ π/�L (�L is the RT grid spacing).

The MM-RRM scheme can be summarized as ‘[Pr → Mr(n ×RT)]→
Ms(n ×RT)’, where the operation inside the square bracket is the

prerequisite step. In Section 6.6 we will experiment with different

resolution factors n to find the optimal resolution. Fig. 5 shows the

flow chart for the MM-RRM scheme.

6.2.3 The redshift-space-distorted lightcone effect

Both the PPM-RRM and MM-RRM schemes deal with simulation data

from a finite volume at a fixed cosmic time, implicitly assuming that

the cosmic evolution of both neutral fractions and density perturba-

tions are negligible during the light travel time across the simulation

box, tcross. For the typical simulation volume sizes (100–200 Mpc)

one does not expect much evolution in the density field during tcross.

However, the neutral fractions may evolve much more rapidly dur-

ing some periods of the EOR. If (d ln xi/dt)δt � 1, then we must

take into account this so-called lightcone effect (Barkana & Loeb

C© 2012 The Authors, MNRAS 422, 926–954
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942 Y. Mao et al.

Figure 4. Flowchart of the PPM-RRM scheme.

2006) and couple it to peculiar velocity. This implies first time-

interpolating the particle data to the appropriate look back time and

the corresponding real-space location and then shifting the particles

to their apparent location according to its interpolated LOS peculiar

velocity, and finally mapping these time interpolated particles on to

a regular redshift-space grid on the lightcone. The full version of

the lightcone PPM-RRM scheme is beyond the scope of this paper20

and we postpone an investigation of this effect to a future paper in

this series.

6.3 Simulations

For our reionization simulation we use a new large-scale, high-

resolution N-body simulation of the �CDM universe (performed

with the CUBEP
3

M code; Iliev et al. 2008b) in a comoving volume of

Lbox = 114 Mpc h−1 on each side using 30723 (29 billion) particles.

To find the haloes, we use the spherical overdensity method and

20 Mellema et al. (2006b) did apply such a time interpolation of grid data,

both on the neutral fraction and density fields.

require them to consist of at least 20 N-body particles; this implies

a minimum halo mass of 108 M⊙.

Assuming that the gas traces the CDM particles exactly, we grid

the density on a 2563 grid using SPH-like smoothing with an adap-

tive kernel. The halo lists and density fields are then processed with

the radiative transfer code C
2

RAY (Mellema et al. 2006a). Each halo

releases f γ ionizing photons per baryon per �t = 11.5 Myr, with

f γ = 150 (f γ = 10) for haloes below 109 M⊙ (above 109 M⊙),

respectively. To incorporate feedback from reionization, haloes less

massive than 109 M⊙ located in ionized regions are not producing

any photons.

The simulations were run on the University of Texas Sun Con-

stellation Linux Cluster Ranger, one of the largest computational

resources in the world. Both codes are massively parallel, using

512 compute nodes, each with one Quad-Core 64-bit processor. We

refer the readers to Friedrich et al. (2011) and Iliev et al. (2011) for

more details of this simulation which in those papers is labelled as

‘163Mpc_g8.7_130S’.

The simulations used the following set of cosmological parame-

ters 
� = 0.73, 
M = 0.27, 
b = 0.044, h = 0.7, σ8 = 0.8, ns =
0.96, where H0 = 100 h km s−1 Mpc−1, consistent with the

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 943

Table 1. Usability, accuracy and efficiency of various computational schemes for the redshift-space brightness temperature. Our simulation is in a box with

114 Mpc h−1 on each side, has 30723 N-body particles and evolves reionization on a 2563 RT grid.

PPM-RRM MM-RRM DEMRF

Quasi-linear

μk-decomposition

1 × RT 4 × RT 1 × RT 2 × RT 4 × RT 1 × RT 2 × RT 4 × RT

Input data type N-body particle (x, v)

(30723 particles), and RT

grid xi (2563 grid size)

Cell-wise (x, v) in 2563, 5123 and 10243

grid size (1 ×, 2 × and 4 × RT,

respectively), and RT grid xi (2563 grid

size)

Cell-wise (x, v) in 2563 and

5123 grids (1 × and 2 ×,

respectively), and RT grid xi

(2563 grid)

Cell-wise (x, v) in

10243 grid size,

and RT grid xi

(2563 grid size), or

real-space power

spectra directly

Output data type H I density in redshift-space

grid in 2563 and 10243 grid

size (1 × and 4 × RT,

respectively)

H I density in redshift-space grid in 2563,

5123 and 10243 grid size (1 ×, 2 × and 4

× RT, respectively)

Power spectrum onlya Power spectrum

only

Usability Numerical simulations Numerical or seminumerical simulations Numerical or seminumerical

simulations

Analytical

modelling (no

realization),

numerical or

seminumerical

simulations

Well defined Yes Inaccurate assumptions on small scales Unable to use on a grid too

fine (see Section 6.5.3)

Yes

Errorb in

1D

At k ≤
2 h Mpc−1

�2 per cent Benchmark �4 per cent �2 per cent 0 per cent �1 per cent 0 per cent �10 per cent

Power

spectrum

At 2 < k <

7 h Mpc−1

� 20 per cent Benchmark �40 per cent �20 per cent �1 per cent �14 per cent �5 per cent �10 per cent

SUs Preliminaryc 0 0 350 358 375 350 358 375

(=cores Processing 2048 2127 0.1 0.7 8.5 52 887 5.3

× hours) Total 2048 2127 350 359 384 402 1245 380

aIn principle, a brightness temperature data cube in redshift space can be constructed by taking the inverse Fourier transform of the k-space brightness

temperature evaluated using equations (57) and (59) for the DEMRF scheme and quasi-linear μk-decomposition scheme, respectively. However, aliasing effects

from multiple forward and backward FFTs can introduce errors. It is beyond the scope of this paper to test these effects.
bAll errors here are with respect to the results from the PPM-RRM (4 × RT) scheme, which is the most accurate.
cPreliminary SUs for the MM-RRM scheme, quasi-linear μk-decomposition scheme, and DEMRF scheme refers to the SUs used to smooth particle density and

velocity data on to a regular, real-space grid.

Wilkinson Microwave Anisotropy Probe (WMAP) 7-year results

(Komatsu et al. 2011).

6.4 Sampling effects

Measuring power spectra using a FFT of gridded data suffers from

the so-called sampling effect. This effect is due to the mass as-

signment of particle data or continuous fields to a chosen grid. In

cosmology, it was first extensively discussed for power spectrum

measurements of density fields in large-scale structure (see e.g. Jing

2005, Cui et al. 2008, and references therein). The mass assignment

is equivalent to convolving the true density field with a window

function and sampling this convolved density field with a finite

number of grid points. The power spectrum of the convolved field

is a biased one, i.e. (Jing 2005)

P f(k) =
∑

n

∣∣W̃ (k + 2kNn)
∣∣2 P (k + 2kNn) + Pshot, (71)

where P f(k) and P (k) are power spectra of the convolved and true

field, respectively, W̃ (k) is the Fourier transform of the window

function, Pshot is the shot noise and the summation is over all three-

dimensional integer vectors n. The sampling effects include three

aspects that can affect the true power spectrum measurement (Cui

et al. 2008).

(i) Smoothing effect: the Fourier window function |W̃ (k)|2 falls

off sharply from |W̃ (0)|2 = 1, e.g. for a Cloud-In-Cell (CIC) win-

dow function, |W̃ |2 = 0.90 at k = kN/4, but |W̃ |2 = 0.66 at k =
kN/2, where kN = π/a is the Nyquist wavenumber for some grid

spacing a.

(ii) Anisotropy effect: the Fourier window function is not

isotropic for a given k, and the anisotropy is significant for k ∼
kN.

(iii) Aliasing effect: higher wavenumber modes (n �= 0) con-

taminate the true mode at k, preventing us from relating P f(k) and

P (k) straightforwardly. For a FFT, (−kN, kN) is the range in k-space

that a finite resolution grid can probe. Thus those high-wavenumber

modes that contaminate are due to modes of the unresolved field

below the grid resolution.

The smoothing effect and anisotropy effect can easily be cor-

rected for, e.g. by just deconvolving P f(k) with the normalization

|W̃ (k)|2. Correcting the aliasing effect is more difficult, and may be

done using the iterative method proposed and tested for the density

power spectrum by Jing (2005). Instead, we can be less ambitious

C© 2012 The Authors, MNRAS 422, 926–954
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944 Y. Mao et al.

Figure 5. Flowchart of the MM-RRM scheme.

and define a ‘comfort’ zone (k ≤ some critical value) where the FFT

power spectrum has negligible errors. This can be done because at

low enough k, all these sampling effects should be insignificant.

The test problems in both Jing (2005) and Cui et al. (2008) seem

to agree that the raw density power spectra for different window

functions agree at k � kN/4. Here we test this on the 21-cm power

spectrum. In Fig. 6 we compare two power spectra, both calculated

with the PPM-RRM scheme but differing in the resolution chosen for

gridding the redshift-space particle data, 2563 and 10243, respec-

tively. As can be seen in the figure, both power spectra agree for

k � k
(256)
N /4, where k

(256)
N is the Nyquist wavenumber of the 2563

grid. We therefore conclude that if we use the 2563 grid, we can

trust the results for k ≤ k
(256)
N /4.

However, this comparison also shows that we can use our high-

resolution N-body data to try to capture the modes between k =
k

(256)
N /4 and k = k

(256)
N . By sampling the Doppler-redshifted particle

data on to a grid with a resolution of 4×RT = 10243 we can minimize

the smoothing and anisotropy effects. We also minimize the aliasing

effect due to the gridded density and velocity data. The aliasing

effect due to the finite resolution of the ionization fraction field

obviously cannot be corrected for this way. However, this effect

may be quite small due to the nature of the ionization fraction

field. Recall that the aliasing effect is due to the contamination

from high-wavenumber modes unresolved by the grid resolution.

For blackbody type sources, the edges of ionized regions are sharp,

i.e. the ionization fraction is very close to 1 inside and very nearly 0

outside ionized regions. Therefore only cells that contain boundaries

of ionized regions have unresolved subcell information. The fraction

of boundary cells for an ionized region of N cells in each dimension

is ∼N2/N3 = 1/N. The peak of the H II bubble size distribution can

be ∼10 Mpc, corresponding to ∼22 RT cells across a bubble (see

e.g. Friedrich et al. 2011). For such bubbles only ∼4 per cent of

the cells contribute to the aliasing effect. Only if there are many

small bubbles of size less than an RT cell, would the ionization field

introduce a substantial aliasing effect.

Given this argument it would seem prudent to choose the

smoothed grid resolution to be four times smaller than the RT reso-

lution, as this minimizes the sampling effects for the 21-cm power

spectra. We therefore adopt this approach. The modes between kN/4

and kN (where kN here corresponds to RT grid resolution) may still

be affected by the aliasing effect due to the finite RT grid resolution,

but we expect this to be a minor effect.

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 945

Figure 6. Aliasing effect in the PPM-RRM scheme: 21-cm redshift-space 1D

power spectrum at z = 9.457 (50 per cent ionized), when the particle data

are smoothed on to a regular, redshift space, grid with the RT grid resolution

(2563, long dashed, blue), or four times finer (10243, solid, black). The

vertical lines are at k = k
(256)
N /4 = 1.75 h Mpc−1 (thin long dashed) and

k = k
(1024)
N /4 = k

(256)
N = 7 h Mpc−1 (thick dot–long dashed), respectively.

The fractional error plotted in the inset is with respect to the power from the

10243 grid.

6.5 Tests of PPM-RRM scheme

Since the PPM-RRM (4×RT) scheme retains the particle data the

longest by mapping them directly into redshift space, it can be

expected to be more accurate than the MM-RRM scheme. We therefore

first present tests for the PPM-RRM scheme in this section and in the

next section compare the results of the two schemes.

6.5.1 Conservation of mass

The mean total (and neutral) hydrogen density is conserved between

real- and redshift space, because (i) the total (and neutral) hydrogen

atom number is conserved, and (ii) the total space is conserved for a

volume large enough (peculiar velocity vanishes for large distances)

or a periodic box, since
∫

δV rδr
∂r v

(r) is a total derivative.

For the simulation box, the total volume is automatically con-

served. We can therefore check whether our schemes conserve

mass by checking the conservation of mean hydrogen density and

H I density. Conservation of the mean density could be violated

if a scheme would undercount particles after shifting particles to

redshift space.21

21 To parallel-process N-body particle data using Message Passing Interface

(MPI) software, the simulation volume is divided into cubic partitions and

particles are assigned to the partition within which they are located. Each

partition is processed independently by a given node in the parallel computer.

The mapping described here of particle locations from real- to redshift space

can move a particle out of its original (real space) partition into another,

even to one which is not a neighbour partition. In that case, the number of

partition pairs that must share particle data, to exchange particles, can be

large and, hence, computationally inefficient. Fortunately, we find that the

size of each partition in our N-body simulations (which we also use for our

real- to redshift-space mapping) is larger than the maximum Doppler shift

Our code passes this test by showing that the fractional differ-

ences of the mean total (and neutral) hydrogen density between real

space and redshift spaces with three distinct LOS directions are

zero, i.e. smaller than machine error.

6.5.2 Large-scale test

As shown in Section 5.3, the fully non-linear power spectrum

reduces to the quasi-linear μk-decomposition power spectrum

at large scales. We use this here to test the PPM-RRM scheme.

Fig. 7 (top panels) shows the 1D dimensionless22 power spectrum

�2
21-cm(k) = k3P s

�T (k)/2π
2 calculated with the PPM-RRM scheme. In

order to minimize noise, we averaged the power spectra for three

distinct LOS directions (namely, along x-, y- and z-axes). Plotted

in the same figure is the 1D quasi-linear μk-decomposition power

spectrum calculated directly from the real-space ionization fraction

(on the 2563 grid) and density and velocity data (on the 10243 grid),

using equations (60)–(63). We choose the 50 per cent ionized epoch

for this comparison. Note that even though we use the quasi-linear

μk-decomposition scheme equations to evaluate the power spec-

trum, we use the fully non-linear density and ionization fraction

fields from the simulation.

The comparison shows that the non-linear power spectrum com-

puted from the PPM-RRM scheme agrees with the quasi-linear μk-

decomposition power spectrum at large scales (k � 0.3 h Mpc−1)

within 5 per cent. This confirms that the 21-cm brightness tem-

perature data cube constructed by the PPM-RRM scheme captures

the correct large-scale fluctuations in redshift space as dictated by

the quasi-linear μk-decomposition scheme. The non-linear power

spectrum deviates from the quasi-linear μk-decomposition power

spectrum at intermediate scales (0.3 � k � 2 h Mpc−1) at the level

of ∼10 per cent, and even larger deviations can be found at smaller

scales. In the second paper of this series (Shapiro et al., in prepa-

ration), we will investigate in detail the cause of this departure

from linearity and how it affects the use of 21-cm observations for

cosmology.

6.5.3 Test down to small scales

Similar to the quasi-linear μk-decomposition scheme test that em-

ploys the real-space grid data to compute the redshift-space statis-

tics, we can compute the redshift-space power spectrum at all

scales, in principle, by evaluating the integral in equation (57).

The integration can be carried out by a FFT of the data cube

F (r) = exp [−i ((1 + zcos)/H (zcos)) k‖v‖(r)] · [1+ δr
ρH I

(r)] (assum-

ing Ts ≫ TCMB) for any given k‖, and then picking up only those

modes with the LOS component k‖, i.e. δ̃T s
b (k) = δ̂T b(zcos) F̃ (k)

only if k · n̂ = k‖. We can construct the whole Fourier data cube by

making such FFT evaluation for each k-space plane of constant k‖ ≥
0, exploiting the symmetry δ̃T s

b (−k) = δ̃T s
b

∗
(k), with k‖ discretized

in units of 2π/Lbox.

Note that in order for the discrete Fourier transform to

be a good approximation to the continuous Fourier trans-

form, the particle data should in principle be smoothed to

compute the cell-wise average 〈F (r)〉cell and in particular

of particles in comoving coordinates, so only neighbouring partitions need

exchange particle data.
22 It still has the unit mK2. It is dimensionless with regard to Fourier space

units.
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946 Y. Mao et al.

Figure 7. Tests of the PPM-RRM scheme for the 21-cm redshift-space 1D power spectrum at z = 9.457 (50 per cent ionized). Top panels: large-scale test of the

PPM-RRM scheme (solid, black) against the quasi-linear μk-decomposition scheme (long dashed, red), both computed from a 10243 grid, and Fourier modes

kept only at k ≤ k
(1024)
N /4 = k

(256)
N = 7 h Mpc−1 (the thick vertical lines). The fractional error is that of the quasi-linear μk-decomposition scheme result

with respect to the PPM-RRM result. Bottom panels: small-scale test of the PPM-RRM scheme computed from 10243 grid (solid, black) against the DEMRF scheme,

computed on a 2563 grid (dotted, green) and on a 5123 grid (dot–short dashed, blue), respectively. We only keep modes k ≤ k
(256)
N = 7 h Mpc−1. The black

and blue curves are almost indistinguishable until at the very large k in the left bottom panel. The fractional errors are with respect to the PPM-RRM result. The

vertical lines at k = k
(256)
N /4 = 1.75 h Mpc−1 (thin long dashed) and k = k

(512)
N /4 = 3.5 h Mpc−1 (thick dot–long dashed) delimit the comfort zone for the

DEMRF result computed on a 2563 and 5123 grid, respectively.

〈exp [−i ((1 + zcos)/H (zcos)) k‖v‖(r)]〉cell directly. However, to take

advantage of existing cell-wise density and velocity data on

the grid, we evaluate 〈exp [−i((1 + zcos)/H (zcos))k‖v‖(r)]〉cell →
exp [−i((1 + zcos)/H (zcos))k‖〈v‖(r)〉cell]. We compute the 1D power

spectrum from the Fourier modes, averaged over three independent

LOS directions. We name this method of evaluating the power spec-

trum the DEMRF scheme.

Obviously, the DEMRF scheme is accurate only when the cell size

is not too small so that 〈vn
‖ (r)〉cell ≈ 〈v‖(r)〉ncell for any n > 1 in the

Taylor expansion of 〈exp [−i((1 + zcos)/H (zcos))k‖v‖(r)]〉cell. On

the other hand, if the grid is too coarse, the high-k powers are subject

to the sampling effect and become inaccurate. We experiment on

the trade-off by trying out the DEMRF scheme on grid data with

different resolutions (2563, 5123 and 10243), and find that for a

box of size 114 Mpc h−1, the 10243 grid is too fine and fails to

make sensible results due to the subcell non-linearity. We plot the

DEMRF result computed from 2563 and 5123 grids in Fig. 7 (bottom

panels), and find that within the comfort zone for each grid (1.75

and 3.5 Mpc h−1, respectively), the PPM-RRM result agrees with the

DEMRF results within 1 per cent.

The three tests presented thus show that the PPM-RRM (4×RT)

scheme is accurate on both large and small scales. We can now use

this to test our other scheme.

6.6 Test of MM-RRM scheme

The MM-RRM scheme is expected to be less accurate than the PPM-

RRM scheme since it grids the particle data before moving to redshift

space and inevitably small-scale information is lost in the process.

For example, the gas density within an RT cell is assumed to be uni-

form, so that the resized cell in redshift space can be uniformly

regridded by counting overlapping volumes. This assumption

C© 2012 The Authors, MNRAS 422, 926–954
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Figure 8. Test of the MM-RRM scheme: 21-cm redshift-space 1D power

spectrum at z = 9.457 (50 per cent ionized). We experiment with grids of

the RT grid resolution (short dashed, green), two times (long dashed, blue)

and four times higher resolution (dot–short dashed, cyan). The benchmark

is the result from the PPM-RRM (4 × RT) scheme (solid, black). The power

spectra of the MM-RRM (4 × RT) scheme and the PPM-RRM (4 × RT) scheme

are indistinguishable on all scales shown. The fractional errors of the MM-RRM

results with respect to the PPM-RRM result are shown in the inset.

obviously ignores the subcell clumpiness. Secondly, the scheme

treats the velocity of cell boundary as the linear interpolation be-

tween cell-wise velocities of two neighbouring cells and thus ig-

nores small-scale velocity fluctuations at the intercell scale. Thirdly,

the treatment of cell boundary crossing is approximate and a careful

treatment should require particle data to mimic the finger of God ef-

fect. However, the scales that are affected depend on the resolution

chosen, and if one can choose a grid with fine enough resolution,

there is a hope that the MM-RRM scheme can yield as accurate power

spectra at k ≤ kN (corresponding to RT grid resolution) as the PPM-

RRM scheme does.

We experiment with the resolution of the MM-RRM scheme by

choosing n = 1, 2 or 4 in the pipeline ‘[Pr → Mr(n ×RT)]→ Ms(n

×RT)’ (where n ×RT means the grid resolution n times finer than

RT grid resolution). We compute the 21-cm power spectrum for each

of these three resolutions and plot them for the modes k ≤ k
(256)
N in

Fig. 8 . As above we average over three LOS directions. We use the

PPM-RRM(4 × RT) result as a benchmark. All MM-RRM results agree

with the PPM-RRM result down to the scale k � 1 h Mpc−1, while at

high k the MM-RRM(1 × RT) and (2 × RT) results deviate from the

benchmark by up to 40 and 20 per cent, respectively. Fortunately,

the MM-RRM(4 × RT) result agrees with the benchmark within 1 per

cent error on all scales down to k ≤ k
(256)
N . We therefore conclude

that MM-RRM(4 × RT) gives as accurate results as the PPM-RRM(4 ×
RT) scheme for k ≤ kN.

6.7 Computational accuracy and efficiency

So far we have discussed four viable schemes to compute 21-cm

brightness temperatures in redshift space: the PPM-RRM scheme (Sec-

tion 6.2.1), the MM-RRM scheme (Section 6.2.2), the quasi-linear

μk-decomposition scheme (Section 5.3.3) and the DEMRF scheme

(Section 6.5.3). To facilitate the usage of these schemes, we com-

pare their usability, accuracy and efficiency in Table 1.

With N-body particle data (numerical simulation), the PPM-RRM

scheme has no ambiguity in finding new particle locations in redshift

space. When particle data is re-smoothed on to a redshift-space grid

four times finer than RT grid resolution, PPM-RRM (4 × RT) can

accurately compute the power spectrum down to the RT resolution

scale. However, the scheme is very computationally expensive and

difficult to code, so we recommend to use it only as a development

tool and for benchmarking, not for production work.

The MM-RRM (4 × RT) scheme is the perfect tool for production

work. It requires only 1/6 of total computational effort of the PPM-

RRM (4 × RT) scheme (including preliminary calculations), and the

results are just as accurate. Using the fine (4 × RT), instead of coarse

(RT) grid does not really add to the total computational effort. Note

also that it can be directly used for seminumerical simulations that

evolve density on grids and do not use particles.

The DEMRF scheme is a nicely posed scheme since it is just a

mathematical integration. However, in practise if we wish to substi-

tute the cell-wise average 〈exp [−i((1 + zcos)/H (zcos))k‖v‖(r)]〉cell

with exp [−i((1 + zcos)/H (zcos))k‖〈v‖(r)〉cell] using cell-wise ve-

locity, this scheme loses accuracy at the cell size ∼114/1024 ≈
0.11 Mpc h−1. Moreover, the DEMRF (2 × RT) scheme is neither the

most accurate nor the most efficient, so it is not to be recommended

for production work. However, it is useful for validating the results

from the PPM-RRM and MM-RRM schemes.

In the case of no realization, one can employ the quasi-linear

μk-decomposition scheme which yields the redshift-space power

spectrum with moderate accuracy and the least computational effort.

It also has as a useful feature that it can proceed with only real-

space statistics as input, making it an ideal tool for pure analytical

modelling.

The upshot is that we recommend the MM-RRM (4 × RT) scheme

for practical usage, and the PPM-RRM (4 × RT) for development.

7 H OW M U C H D O R A R E O P T I C A L LY T H I C K

C E L L S A F F E C T T H E AC C U R AC Y O F T H E

P OW E R SP E C T RU M IN T H E O P T I C A L LY T H I N

APPROX I MATI ON?

In the optically thin limit, computation of 21-cm redshift-space

brightness temperature can be simplified by taking advantage of the

proportionality of brightness temperature and neutral atom density,

both in redshift space. However, we have shown in Fig. 3 that there

is a non-zero, albeit small, chance to find large 21-cm optical depth

in the IGM. So in principle, the observed 21-cm power spectrum in

the redshift space that takes the finite optical depth into account can

be different from the result in the optically thin approximation. The

difference depends on the population of optically thick cells. In this

section, we revisit the accuracy of the optically thin approximation

with regard to the 21-cm power spectrum.

We use the DEMRF method to calculate two power spectra in

redshift space: one with finite optical depth in equation (56), and

one in the optically thin approximation in equation (57). We have

demonstrated in Section 6.5.3 that, in the optically thin limit, the

power spectrum using the DEMRF scheme agrees with the PPM-RRM

result in the comfort zone (k ≤ kN/4). Here, we smooth the density,

velocity and velocity gradient fields on the fine (5123) grid with two

times better resolution than RT grid (2563), and focus on the region

k ≤ k
(512)
N /4 = 3.5 Mpc h−1. We use SPH-like smoothing of our

N-body particle data to compute the velocity gradient on the grid.

Details of this technique are discussed in Appendix A.
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948 Y. Mao et al.

Figure 9. Power spectra of 21-cm brightness temperature in redshift space calculated in the optically thin approximation (dotted, blue), and the results that

take finite optical depth into account (long dashed, red), both using the DEMRF scheme on a grid (5123) two times finer than the RT grid. Left: when Ts is

high, i.e. α = Ts/TCMB = 100 (thin lines) and 10 (thick lines). In each set, two curves (finite optical depth versus optically thin approximation) overlap almost

exactly. Right: when Ts is low, i.e. α = 0.1. All results use the RT simulation data at 50 per cent ionized epoch (z = 9.457). The fractional errors of the optically

thin approximation are with respect to the results with finite optical depth. The vertical lines at k = k
(512)
N /4 = 3.5 h Mpc−1 delimit the comfort zone for the

DEMRF results computed on the 5123 grid.

The 21-cm optical depth depends on the spin temperature which,

however, is beyond the scope of our cosmological radiative transfer

simulations. For the purpose of demonstration, we assume α =
Ts/TCMB(zcos) is a spatial constant, and investigate the cases α =
100, 10 and 0.1 (the α = 1 case has no 21-cm radiation contrast to

CMB). In the optically thin approximation, the power spectrum with

finite (but constant) spin temperature is just the power spectrum with

high spin temperature (Ts ≫ TCMB), i.e. the result in Section 6.5.3,

scaled by the factor (1 − (1/α))2.

In Fig. 9 (left-hand panel), we find that the power spectra in

the optically thin approximation are so highly accurate, in the

α = 100 and 10 cases, that the two curves (finite optical depth

versus optically thin approximation) are almost indistinguishable.

However, Fig. 9 (right-hand panel) shows that, in the low Ts case

(α = 0.1), the optically thin approximation can result in an error of

∼10 per cent in the power spectrum on large scales, and �30 per

cent on small scales. The large-scale error is due to the offset in the

global mean signal, because the optically thin approximation over-

estimates the brightness temperature (i.e. δTb ∝ τ ν) in the optically

thick cells, which should otherwise be suppressed in the exact form

δTb ∝ [1 − exp (−τ ν)] when optical depth is large. This decreases

the small-scale power spectrum, too, because the 21-cm brightness

temperature in these overdense regions (where τ ν � 1) fails to

encode the complete statistical information of density and ioniza-

tion fluctuations.

Is the optically thin approximation accurate with regard to the

21-cm power spectrum? The answer depends on the spin temper-

ature, because 21-cm optical depth is inversely proportional to Ts.

As Fig. 3 shows, the low Ts case has much higher chance to find

optically thick cells than the high Ts case, i.e. roughly an order of

magnitude smaller in Ts, an order of magnitude larger in the proba-

bility of τ ν � 1. This is consistent with our results that the optically

thick cells are too rare to virtually affect the power spectrum when

Ts/TCMB ≥ 10, but they are non-negligible when Ts is lower than

TCMB.

The upshot is that the power spectrum in the redshift space cal-

culated in the optically thin approximation, e.g. using the PPM-RRM

or MM-RRM scheme, is accurate with respect to the result that takes

finite optical depth into account, only when Ts is high (Ts/TCMB ≥
10). The low Ts case merits further careful investigation which we

defer to future work.

8 H OW AC C U R AT E I S L I N E A R T H E O RY ?

The linear theory formula for 21-cm redshift-space power spec-

trum (Barkana & Loeb 2005) has been widely employed in the

literature (e.g. Santos & Cooray 2006; Zahn et al. 2007; Mao

et al. 2008; Adshead et al. 2011), but it is derived under two as-

sumptions that may both break down. First, the ionization fluc-

tuations are assumed to be linear. This is only valid on scales

much larger than the size of the H II region which can be rather

large (∼10 Mpc, see e.g. Friedrich et al. 2011). Secondly, the mat-

ter density and velocity fluctuations are assumed to be linear, i.e.

the velocity is dictated by the density through the linear relation,

ṽr
‖(k) = i (H (zcos)/(1 + zcos)) δ̃r

ρH
(k)(μk/k). This relation is also in-

accurate on small scales. Is linear theory spoiled by the breakdown

of these approximations? For simplicity, we restrict our discussion

in this section to the simple case Ts ≫ TCMB.

We compute the 21-cm redshift-space 1D power spectrum in the

linear theory by angle-averaging equation (60) with moments in

equations (67)–(69) (McQuinn et al. 2006; Lidz et al. 2007; Zahn

et al. 2007):

P
s,lin,1D
�T (k) = δ̂T

2

b

[
P r

δxH I
,δxH I

(k) +
8

3
P r

δxH I
,δρH

(k)

+
28

15
P r

δρH
,δρH

(k)

]
. (72)

We compare it with the angle-averaged fully non-linear power spec-

trum in redshift space, computed using the PPM-RRM (4 × RT)

scheme. In Fig. 10, we find that the linear theory power spectrum

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 949

Figure 10. Test of the linear theory: 21-cm redshift-space 1D power spec-

trum at z = 9.457 (50 per cent ionized), calculated using the linear theory

of Barkana & Loeb (2005) (dot–short dashed, blue), the quasi-linear μk-

decomposition scheme (long dashed, red) and the PPM-RRM (4 × RT) scheme

(solid, black), respectively.

departs from the fully non-linear result with �30 per cent error in

the intermediate range of k ∼ 0.1–1 h Mpc−1, at the 50 per cent

ionized epoch. It crosses the non-linear result at k ∼ 1 h Mpc−1, and

deviates more from the latter at smaller scales. This is in qualitative

agreement23 with a similar comparison in Lidz et al. (2007) (their

fig. 10, but they did not provide any detail of how they computed

the non-linear power spectrum in redshift space).

Lidz et al. (2007) pointed out that such a large error in linear

theory may result from the neglect of higher order auto- and cross-

correlations involving density and ionization fluctuations, i.e. the

breakdown of the first assumption we mentioned above, but they

did not provide a solution that incorporates all of relevant higher

order terms in redshift-space power spectrum. Here we propose in

Section 5.3.3 the quasi-linear μk-decomposition scheme as such a

solution that not only incorporates these higher order corrections,

but can decompose 21-cm redshift-space power spectrum in poly-

nomials of μk, just as the linear theory does. How accurate is this

new scheme? Fig. 10 also shows that the angle-average power spec-

trum of the quasi-linear μk-decomposition scheme (calculated using

equation 5) agrees with the fully non-linear result to ∼10 per cent

accuracy at k ∼ 0.3–2 h Mpc−1, but with increasing errors at smaller

scales. We will defer the detailed investigation of the errors in this

scheme associated with the neglect of additional non-linearity to

Shapiro et al. (in preparation).

The large errors in the linear theory for redshift-space distortion

suggest that it is a simple, but by no means accurate, tool to predict

21-cm power spectrum. One should either employ the quasi-linear

23 The deviation increases monotonically at k > 1 h Mpc−1 in Lidz et al.

(2007), while there seems to be a turnaround at large k in our Fig. 10.

This turnaround is not real because it is the resolution effect. We are forced

to compute the linear theory power spectrum on the RT grid (the grid for

ionization fraction fields). The aliasing effect suppresses the linear theory

result at k > k
(256)
N /4 = 1.76 h Mpc−1 in our simulation, while Lidz et al.

(2007) result is free of aliasing effect at k � 10 h Mpc−1 by adopting an RT

grid of much higher resolution.

μk-decomposition scheme for improved (but not perfect) accuracy,

or follow the numerical schemes we proposed above (PPM-RRM and

MM-RRM) to obtain fully non-linear results.

9 H OW AC C U R AT E I S T H E ‘∇υ-LI MI TED’

PRESCRI PTI ON?

9.1 The ‘∇v-limited’ prescription versus the avoidance

of the divergence problem in observer space

Santos et al. (2010) treated the effects of peculiar velocity on the

21-cm brightness temperature by evaluating an equation equivalent

to our equation (36) at each point in a real-space grid at a given time.

They found that the 21-cm brightness temperature diverges in some

overdense regions where δ∂r v → −1. As such, the power spectrum

computed from the Fourier transform of this 21-cm brightness tem-

perature evaluated in real-space diverges, too. They deal with this

divergence problem by replacing the actual value calculated for δ∂r v

from their real-space grid data whenever it is close to −1, by a fixed

minimum value larger than −1 (e.g. −0.7 in their paper), so as to

cap the divergence and obtain finite results for both brightness tem-

perature and its power spectrum. This approach was also adopted

by the 21cmFAST code (Mesinger et al. 2011) (with the cap −0.5).

Before analysing the accuracy of the ∇v-limited prescription, we

would like to explain why the divergence encountered for δ∂r v →
−1 is a mathematical, but not a physical one. As we shall show,

the appearance of the divergence is avoided naturally for physical

observables in observer redshift space.

The first part of this explanation was already considered in Sec-

tion 5.1.5. Equation (36) was derived under the assumption of low

optical depth. However, the locations at which δ∂rv approaches −1

are not optically thin. The 21-cm brightness temperature must be

evaluated using equation (47), instead, at these locations, to take

finite optical depth into account. When this is done, the brightness

temperature does not diverge for δ∂r v → −1.

However, even in the optically thin approximation, it is unneces-

sary to apply a cap to the velocity gradient in order to prevent diver-

gence in the physical observables, as long as we account properly

for redshift-space distortion. The approach in which equation (36) is

applied to real-space grid data does not fully account for the remap-

ping of real- to redshift-space locations of 21-cm sources. While

this remapping cannot remove the divergence of 21-cm brightness

temperature at those locations at which δ∂r v → −1, the power

spectrum in redshift space is guaranteed to be finite. The reason is

simply that real-space regions for which δ∂r v → −1 become in-

finitesimally small in redshift space, since d3s = d3r|1 + δr
∂r v

(r)|.
The Fourier transform of brightness temperature in redshift space,

δ̃T s
b (k) ≡

∫
d3s e−ik·s δT s

b (s), is a finite integration, and so is the

power spectrum computed from it, because the divergent factor in

δT s
b (s) = δT r

b (r) ∝ 1/|1 + δr
∂r v

| is exactly cancelled by its inverse

in the volume element d3s. In addition, in the optically thin approx-

imation, while, strictly speaking, the 21-cm brightness temperature

still diverges at those locations at which δ∂rv approaches −1, it,

too, becomes finite when smoothed over finite band- and beam-

width in observer redshift space (see also Section 5.2.3). This, of

course, makes perfect sense since the 21-cm emitted photons pro-

duced by a finite region of space, in the optically thin limit, are

proportional to the number of neutral hydrogen atoms in that re-

gion, which is always finite and is conserved by the mapping from

real- to redshift space. Since what observers actually measure are

this pixelized brightness temperature and the power spectrum, full
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account of redshift-space distortion gives a physical result for these

observables without resorting to artificial caps.

9.2 Evaluating the accuracy of the ‘∇v-limited’ prescription

Although based on a conceptual artefact (truncation of an unphys-

ical divergence) and providing an incomplete fix (calculating the

power spectrum in real- instead of redshift space), the ‘∇v-limited’

prescription may still provide a practical solution to the problem of

the diverging brightness temperature. Santos et al. (2010) argued

that although an ad hoc solution, imposing this limit only affects

a very small number of cells, and thus has no influence on global

statistics such as the power spectrum. Since our methods avoid the

divergence problem, we are now able to test this assertion. Further-

more, to be a practical solution to the problem, the results should

not depend too much on the choice for the cap on the velocity gra-

dient. Here we test these two issues by comparing the results of

the ∇v-limited prescription to those from our PPM-RRM (4 × RT)

scheme. For simplicity, we restrict our discussion in this section to

the simple case Ts ≫ TCMB.

In order to find gridded values for the velocity gradient, we use

SPH-like smoothing of our N-body particle data to compute the

velocity gradient. Details of this technique are discussed in Ap-

pendix A. We implement the ∇v-limited prescription by replacing

the actual value of 〈δ∂r v〉cell by the cap value of −λ whenever〈
δ∂r v

〉
cell

< −λ, for a range of cap values λ = 0.1, 0.3, 0.5, 0.7

and 0.9, evaluating and Fourier transforming the brightness temper-

ature in real space. We then average the power spectra over three

LOS directions. In this section, we assume the limit of high spin

temperature, Ts ≫ TCMB.

To most clearly show the effects of the ∇v-limited prescription

we first take our volume to be fully neutral, by setting xH I = 1

everywhere. Fig. 11 (top left-hand panel) shows the power spectra

from the ∇v-limited prescription for five different values of the

upper limit λ as well as the power spectrum calculated with the

PPM-RRM scheme. Here we use the smoothed velocity gradient field

on the RT grid resolution. We find that different values for λ yield

rather different power spectra even on large scales, and none of the

previously proposed values of caps (λ = 0.5 or 0.7) is consistent

with the PPM-RRM result.

This is of course the most extreme case since in a fully neutral

medium all locations with δ∂r v → −1 contribute. Since these re-

gions are preferably located in high-density areas, which typically

reionize earlier, one can expect that the effect is much less severe

when considering a neutral fraction distribution obtained from a

reionization calculation. Fig. 11 (top right-hand panel) shows this

indeed to be case. On large scales, different limits in the ∇v-limited

prescription yield converging power spectra which, however, have

an offset of ∼20 per cent from the power spectrum of the PPM-RRM

scheme. This offset is due to the enhancement in the mean brightness

temperature averaged in real space, i.e. although the distribution of

δ∂r v(r) has zero mean, the distribution of (1+δρH I
(r))/|1+δ∂r v(r)|

does not have the (volume-weighted) mean of unity24 due to the non-

linear function 1/|1+δ∂r v|. Although converged on large scales, on

small scales the results of the ∇v-limited prescription still depend

24 This can be compared to the mean in redshift space, where the averaging

is over redshift-space volume elements d3s = d3r |1 + δr
∂r v

(r)|, equivalent

to averaging in real-space weighted by |1 + δr
∂r v

(r)|, and therefore the

distribution of (1 + δρH I
(r))/|1 + δ∂r v(r)| has 1 as the mean in redshift

space.

on the cap value chosen and can have inaccuracy as large as �40

per cent for λ = 0.5, or �50 per cent for λ = 0.7, both at k �

2 h Mpc−1, and more divergent for larger caps (as exemplified by λ

= 0.9). However, these inaccuracies are substantially smaller than

the ones found for the fully neutral case.

These inaccuracies, of course, depend on the grid resolution of

the velocity gradient field. We redo the above analyses, using a fine

grid (four times finer than the RT grid), as shown in Fig. 11 (bottom

panels). We find that the errors in the results of the ∇v-limited

prescription are significantly amplified. This is because the velocity

and its gradient become more non-linear on smaller scales. Hence,

a larger population of cells are ‘clipped’ on fine grids than on coarse

grids.

The reasons why the ∇v-limited prescription does not work well

are twofold. First, this prescription deals with data cubes in real-

space coordinates. Consequently, their Fourier transform and power

spectra are real-space quantities, unlike in the redshift space as this

prescription claimed to do. Secondly, even though the ∇v-limited

prescription was invented to circumvent the unphysical divergence

in 21-cm brightness temperature in real-space regions that are opti-

cally thick to 21-cm radiation, the cells that are affected by imposing

a cap on velocity gradient are actually much more numerous than

the optically thick cells; e.g. at 50 per cent ionized epoch in our sim-

ulation, we find that only a fraction of ∼10−7 amongst all cells are

optically thick in the best case (Ts/TCMB = 100), or ∼0.01 per cent

in the worst case (Ts/TCMB = 0.1) (see Section 5.1.6), but the ∇v-

limited prescription affects all those cells for which
∣∣δ∂r v

∣∣ exceeds

the cap, which can be a much larger fraction of the cells than that

of the optically thick cells. A fraction ∼1 per cent of the cells have

δ∂r v ≤ −0.7, while ∼3 per cent have δ∂r v ≤ −0.5. (These specific

fractions can depend on the grid resolution of the simulation. The

numbers here are counted using velocity gradient field on RT grid

resolution.) In other words, the ∇v-limited prescription affects a lot

more cells than necessary.

Even though the ∇v-limited prescription cannot provide the most

accurate treatment of the effect of peculiar velocity, it still serves as

a simple and useful tool to estimate the 21-cm power spectrum, if a

smaller cap is chosen than those previously proposed. We optimize

this prescription by comparing its results using λ = 0.1 and 0.3

with our PPM-RRM result, and find that with the actual reionization

fluctuations, the ∇v-limited prescription with λ = 0.1 approximates

the PPM-RRM result with the least errors �20 per cent, while, if we

assume a fully neutral universe, λ = 0.3 is the optimal cap, with

errors �10 per cent. The optimal value of the cap depends on the grid

resolution, and perhaps on the redshift and the ionization fraction,

as well.

1 0 C O N C L U S I O N S

(i) We have demonstrated that the neglect of peculiar velocity intro-

duces a substantial error in 21-cm brightness temperature spectra

from the EOR and noticeable anisotropy in the 21-cm power spec-

trum. We did this in three different ways: first, we compared the

3D power spectra computed uncorrected for peculiar velocity (UPV

scheme), from the quasi-linear μk-decomposition scheme, and from

a particle-based numerical scheme (PPM-RRM); secondly, we com-

pared the 21-cm brightness temperature spectra computed from the

UPV scheme and the PPM-RRM scheme, along five different sight-

lines; lastly, we compared the angle-averaged 21-cm power spectra

computed from the quasi-linear μk-decomposition scheme and the

UPV scheme, respectively. The non-trivial difference between re-

sults with and without peculiar velocity correction motivates our

C© 2012 The Authors, MNRAS 422, 926–954
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21-cm redshift-space distortion 951

Figure 11. Power spectra of 21-cm brightness temperature at 50 per cent ionized epoch (z = 9.457). We show the results of the ∇v-limited prescription with

the cap 〈δ∂r v〉cell ≥ −λ at λ =0.1 (dotted, red), 0.3 (short dashed, brown), 0.5 (long dashed, blue), 0.7 (dot–short dashed, cyan) and 0.9 (dot–long dashed,

magenta), compared to the results of the PPM-RRM (4 × RT) scheme (solid, black). The fractional errors of the ∇v-limited prescription are with respect to the

PPM-RRM (4 × RT) result, plotted in the inset. Upper panels: using velocity gradient field smoothed on the RT grid resolution; lower panels: using velocity

gradient field smoothed on the fine grid (four times finer than RT grid resolution). Left-hand panels: assuming a fully neutral universe (xH I = 1); right-hand

panels: using the actual reionization fluctuations from the simulation.

thorough investigation of the effect of peculiar velocity on 21-cm

signal as well as a more careful treatment of this effect on reioniza-

tion simulation data than previously made.

(ii) We clarify that peculiar velocity distorts the mapping of 21-

cm brightness temperature not only by shifting the apparent loca-

tion in redshift space but also by modifying the brightness tem-

perature itself in real space. We show that the combined effect,

which we call ‘21-cm redshift-space distortion’, establishes, in the

limit of low optical depth and high spin temperature, the exact pro-

portionality between observed 21-cm brightness temperature and

the neutral hydrogen density as measured in redshift space. This

proportionality makes it possible to infer the three-dimensional

distribution of neutral hydrogen density using 21-cm brightness

temperature measurements.

(iii) We show that this proportionality between 21-cm observed

brightness temperature and the redshift-space neutral hydrogen

density, however, can break down when τ21-cm � 1 and/or Ts

� TCMB. For the first case, we check the optically thin approxi-

mation, and demonstrate that this widely assumed approximation

is mostly valid in the IGM, but it can be invalid in some cases,

e.g. in virialized haloes where the peculiar velocity gradient can

be large enough to cancel the Hubble flow. For the second case,

C© 2012 The Authors, MNRAS 422, 926–954
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we show that the proportionality mentioned above is spoiled by

the spatially varying Ts-dependent factor 1 − TCMB/T r, eff
s (r). This

T r, eff
s (r) includes a correction to Ts of the order v/c due to peculiar

velocity.

(iv) The unphysical divergence in 21-cm brightness temperature

results from the neglect of finite optical depth, which eliminates the

divergence. We show that, in the optically thick limit, the optical

depth can depend upon higher order spatial derivatives of peculiar

velocity than dv‖/dr‖.

(v) We derive the fully non-linear Fourier transform of 21-cm

brightness temperature fluctuations, with finite optical depth, as

measured in redshift space, in terms of the density, velocity and

its gradient, ionization fraction and spin temperature fields in real

space, following the combined effect of 21-cm redshift-space dis-

tortion. We further simplify it in the optically thin approximation.

We further show that, when redshift-space distortion is properly

accounted for, however, the observed power spectrum in redshift

space remains finite even in the optically thin approximation.

(vi) We investigate the effect of finite 21-cm optical depth. The

21-cm power spectrum in redshift space calculated in the optically

thin approximation is accurate with respect to the results which take

finite optical depth into account, only when spin temperature is high

relative to the CMB temperature (Ts/TCMB ≥ 10).

(vii) We clarify that it is the bulk velocity of the gas but not the

thermal velocity that is responsible for the velocity correction to the

optical depth and 21-cm brightness temperature. This is done by

showing that the latter constitutes only a negligible contribution to

the correction, compared to the former, when τ21-cm � 1.

(viii) To make a careful treatment of the peculiar velocity effect

on 21-cm brightness temperature when using reionization simula-

tion data, we propose and test two numerical schemes that compute

the 21-cm brightness temperature as measured in a redshift-space

grid from real-space simulation data, in the limit of high spin tem-

perature. Both schemes take advantage of the mapping from real-

to redshift space, one particle based (PPM-RRM), and one grid based

(MM-RRM). We show that the MM-RRM scheme can be optimized to

achieve the same high accuracy in the angle-averaged power spec-

trum as the PPM-RRM scheme, while being much more computation-

ally efficient than the latter. If the RT grid resolution (on a mesh

with Nyquist wavenumber kN,RT, the mesh on which the ionization

fluctuation field is determined) is coarser than the resolution of the

density and peculiar velocity fields, we optimize the grid-based MM-

RRM resolution by including all modes with k ≤ kN,RT in a grid with

Nyquist wavenumber 4kN,RT which uses the finer resolution den-

sity and velocity data, together with the coarser resolution ionized

fractions. This reduces the aliasing errors which would otherwise

spoil the results for k > kN,RT/4 if all data were coarsened to the

RT-grid resolution. We show that this optimized MM-RRM scheme

can compute the angle-averaged 21-cm power spectrum within

�1 per cent error with respect to the PPM-RRM(4 × RT) results,

for all modes k ≤ kN,RT.

(ix) We examine the linear theory formula widely employed

to compute the 21-cm redshift-space power spectrum (Barkana &

Loeb 2005), and find large inaccuracy (∼30 per cent) at the inter-

mediate range k ∼ 0.1–1 h Mpc−1 at the 50 per cent ionized epoch,

in the high spin temperature regime. This suggests that linear the-

ory cannot work as an accurate tool to predict the 21-cm power

spectrum in redshift space.

(x) We develop the ‘quasi-linear μk-decomposition scheme’

which can decompose 21-cm power spectrum in polynomials of

μk, just as the linear theory does, but it incorporates relevant higher

order correlations of ionization and density fluctuations. We find

that the fully non-linear 21-cm 1D power spectrum deviates from

the prediction of quasi-linear μk-decomposition scheme by roughly

10 per cent at the 50 per cent ionized epoch (see Section 6.5.2). The

non-linearity may introduce larger deviations when the 3D power

spectrum is decomposed to extract only the Pμ4 (k) for cosmology.

It is important to understand the nature of this non-linear effect,

and estimate its impact on 21-cm cosmology. We will address these

issues in the second paper of this series (Shapiro et al., in prepara-

tion).

(xi) Our careful treatment of brightness temperature fluctuations

in redshift space avoids the divergences that appear in the real-

space evaluation when peculiar-velocity gradients are large. Such

large gradients are a natural result of non-linear structure forma-

tion on small scales. We find that previous attempts to escape these

divergences by numerically ‘clipping’ the velocity gradients when-

ever they exceed some threshold (referred to here as the ‘∇v-limited

prescription’) introduce a non-negligible inaccuracy in the 21-cm

power spectra on all scales, including scales much larger than that

of the non-linearity. We show that the errors associated with this

prescription, however, can be reduced if the value of the cap is

properly chosen (e.g. λ ∼ 0.1 yields an error ∼15 per cent at k ∼
0.1 h Mpc−1), but this error grows with increasing spatial resolution

of the grid, and may depend on redshifts and ionization fraction,

too.

(xii) The upshot is that we provide an integrated understanding

of how peculiar velocity affects 21-cm tomography, and also an

accurate and efficient numerical algorithm (MM-RRM) for practical

numerical application.
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tributed to the research results reported within this paper. This work

was supported in part by Swiss National Science Foundation grant

200021-116696/1, NSF grants AST-0708176 and AST-1009799,

NASA grants NNX07AH09G, NNG04G177G and NNX11AE09G,

Chandra grant SAO TM8-9009X and Swedish Research Council

grant 2009-4088. ITI was supported by The Southeast Physics Net-

work (SEPNet) and the Science and Technology Facilities Council

grant numbers ST/F002858/1 and ST/I000976/1. KA is supported

in part by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of

Education, Science and Technology (MEST; 2009-0068141,2009-

0076868) and by KICOS through K20702020016-07E0200-01610

funded by MOST.

25 http://www.tacc.utexas.edu

C© 2012 The Authors, MNRAS 422, 926–954

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at U
n
iv

ersity
 o

f S
u
ssex

 o
n
 Ju

n
e 9

, 2
0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


21-cm redshift-space distortion 953

R E F E R E N C E S

Adshead P., Easther R., Pritchard J., Loeb A., 2011, J. Cosmol. Astropart.

Phys., 2, 21

Alvarez M. A., Busha M., Abel T., Wechsler R. H., 2009, ApJ, 703, L167

Baek S., Semelin B., Di Matteo P., Revaz Y., Combes F., 2010, A&A, 523,

A4

Barger V., Gao Y., Mao Y., Marfatia D., 2009, Phys. Lett. B, 673, 173

Barkana R., Loeb A., 2005, ApJ, 624, L65

Barkana R., Loeb A., 2006, MNRAS, 372, L43

Bharadwaj S., Ali S., 2004, MNRAS, 352, 142

Bharadwaj S., Nath B. B., Sethi S. K., 2001, JA&A, 22, 21

Bowman J. D., Morales M. F., Hewitt J. N., 2008, ApJ, 661, 1

Brandenberger R. H., Danos R. J., Hernández O. F., Holder G. P., 2010, J.

Cosmol. Astropart. Phys., 12, 028

Chen X., Miralda-Escudé J., 2004, ApJ, 602, 1
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A P P E N D I X A : SP H - L I K E SM O OT H I N G W I T H

A DA P T I V E K E R N E L

In this section, we briefly describe the SPH-like technique to smooth

N-body particle data on to a grid. We refer readers to Shapiro et al.

(1996) for a comprehensive discussion of SPH with an adaptive

kernel.

Assume that the continuous density and velocity fields are rep-

resented by Np particles with mass mi, location r i and velocity vi

(i = 1, . . ., Np). We define a particle’s kernel hi to be the distance

between the particle i and its 32nd nearest neighbour particle. We

take the ‘scatter’ approach to smooth particle data (see fig. 2 of

Shapiro et al. 1996 for an illustration of the scatter versus gather

approaches), i.e. a field point at r is influenced by a particle i if this

particle’s own influence zone covers this field point (e.g. in the case

of isotropic kernel, |r − r i | ≤ hi).

We employ the triangular kernel function with adaptive kernel

size h, W (r; h) = fh(x)fh(y)fh(z), centred at the particle location

to smooth its data. The function f h(x) is in triangular shape with

width 2h, i.e.

fh(x) =

⎧
⎪⎪⎨
⎪⎪⎩

− x

h2 + 1
h
, 0 ≤ x ≤ h,

x

h2 + 1
h
, −h ≤ x < 0,

0, otherwise.

(A1)

A1 Smoothed fields at a point

The smoothed mass density and momentum density fields are de-

fined, respectively, by

ρ(r) =
∑

i

miW (r − r i ; hi), (A2)

P(r) =
∑

i

miviW (r − r i ; hi). (A3)

To preserve momentum, the continuous velocity field is defined by

v(r) = P(r)/ρ(r). (A4)

We identify the bulk-flow velocity of the IGM at a particle’s position

r i to be the smooth field v(r i) evaluated at r i .
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Figure A1. Cartoon of computing 〈dv‖/dr‖〉cell for a cubical cell of size �L

on each side. In this cartoon, we assume the LOS along the x3-axis, then the

‘+ plane’ (‘− plane’) is the x1–x2 plane with x3 = �L (x = 0).

A2 Smoothed fields of a cell

To smooth particle data on to a regular grid, we use the following

approach to compute the cell-wise mass density:

〈ρ〉cell =
1

Vcell

∫

cell

ρ(r) d3r

=
1

Vcell

∑

i

mi

∫

cell

W (r − r i ; hi) d3r, (A5)

where the integral
∫

cell
W (r − r i ; hi) d3r can be evaluated analyti-

cally, and is only a function of hi and the relative location between

the particle i and the cell boundaries. Similarly, the cell-wise mo-

mentum density is

〈P〉cell =
1

Vcell

∫

cell

P(r) d3r

=
1

Vcell

∑

i

mivi

∫

cell

W (r − r i ; hi) d3r. (A6)

The cell-wise velocity is defined in a momentum-preserving way,

〈v〉cell = 〈P〉cell / 〈ρ〉cell . (A7)

A3 dv‖/dr‖ of a cell

We compute the cell-wise velocity gradient 〈dv‖/dr‖〉cell in the fol-

lowing way (assuming the LOS is along one of the principal axes

of a cubical cell),

〈
dv‖/dr‖

〉
cell

=
1

Vcell

∫

cell

dv‖

dr‖
(r) d3r

=
1

�L

[〈
v‖
〉

+ plane
−
〈
v‖
〉

− plane

]
, (A8)

where �L is the size of the cubical cell, ‘+ plane’ (‘− plane’) is the

cell wall perpendicular to the LOS with larger (smaller) location

along the r‖-axis, and
〈
v‖
〉

+ plane
is the velocity mean on the ‘+’

cell wall, i.e. 〈v‖〉+ plane = 1/(�L)2
∫

+ plane
d2r⊥ v‖(S⊥,+ plane).

(This configuration is illustrated in Fig. A1.) Unfortunately, we

cannot apply the same smoothing as in equation (A5) to compute

the velocity average, because the velocity defined in equation (A4)

involves a summation in the denominator.

To circumvent this, we approximate the smoothed velocity aver-

aging on a cell wall by the momentum-preserving velocity, i.e.

〈v‖〉plane → 〈P‖〉plane/ 〈ρ〉plane , (A9)

where the right-hand side is the centre-of-mass velocity of a thin

layer on the cell wall. The surface mass density of the cell wall is

〈ρ〉plane =
1

(�L)2

∫

plane

ρ(r) d2r⊥

=
1

(�L)2

∑

i

mi

∫

plane

W (r − r i ; hi) d2r⊥, (A10)

where the integral can be evaluated analytically,

∫

plane

W (r − r i ; hi) d2r⊥ =

[∫ x1,c+�L/2

x1,c−�L/2

fhi
(x1 − x1,i) dx1

]

×

[∫ x2,c+�L/2

x2,c−�L/2

fhi
(x2 − x2,i) dx2

]
× fhi

(x3,plane − x3,i). (A11)

Here we take x1 and x2 to be axes in the cell wall perpendicular to

the LOS axis x3, x3,plane is the LOS coordinate of the cell wall, x1,c

and x2,c are the transverse coordinates of the centre of the cell and

xi are the three-dimensional coordinates of the particle i.

Similarly, we use

〈
P‖
〉

plane
=

1

(�L)2

∫

plane

P‖(r) d2r⊥

=
1

(�L)2

∑

i

mivi,‖

∫

plane

W (r − r i ; hi) d2r⊥.
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