
Reduce Information Loss in Transformers for Pluralistic Image Inpainting

Qiankun Liu1* Zhentao Tan1 Dongdong Chen2 Qi Chu1† Xiyang Dai2

Yinpeng Chen2 Mengchen Liu2 Lu Yuan2 Nenghai Yu1

1CAS Key Laboratory of Electromagnetic Space Information,
University of Science and Technology of China

2Microsoft Cloud + AI
{liuqk3, tzt}@mail.ustc.edu.cn, {qchu, ynh}@ustc.edu.cn

cddlyf@gmail.com, {xiyang.dai, yiche, mengcliu, luyuan}@microsoft.com

Abstract

Transformers have achieved great success in pluralis-
tic image inpainting recently. However, we find existing
transformer based solutions regard each pixel as a token,
thus suffer from information loss issue from two aspects:
1) They downsample the input image into much lower res-
olutions for efficiency consideration, incurring information
loss and extra misalignment for the boundaries of masked
regions. 2) They quantize 2563 RGB pixels to a small num-
ber (such as 512) of quantized pixels. The indices of quan-
tized pixels are used as tokens for the inputs and predic-
tion targets of transformer. Although an extra CNN net-
work is used to upsample and refine the low-resolution re-
sults, it is difficult to retrieve the lost information back. To
keep input information as much as possible, we propose a
new transformer based framework “PUT”. Specifically, to
avoid input downsampling while maintaining the compu-
tation efficiency, we design a patch-based auto-encoder P-
VQVAE, where the encoder converts the masked image into
non-overlapped patch tokens and the decoder recovers the
masked regions from inpainted tokens while keeping the un-
masked regions unchanged. To eliminate the information
loss caused by quantization, an Un-Quantized Transformer
(UQ-Transformer) is applied, which directly takes the fea-
tures from P-VQVAE encoder as input without quantization
and regards the quantized tokens only as prediction tar-
gets. Extensive experiments show that PUT greatly outper-
forms state-of-the-art methods on image fidelity, especially
for large masked regions and complex large-scale datasets.
Code is available at https://github.com/liuqk3/
PUT

*Work done during an internship at Microsoft
†Corresponding author

2

10 N-1N-2

Pixel-level Codebook (Quantized Pixel)

…

Transformer

D
o

w
n

sam
p

le

Quantize R
efin

em
en

t

N
etw

o
rk

Input Output

De-Tokenize

10 N-1N-2

Patch-level Codebook (Quantized Feature)

…

Input

Encoder Transformer

De-Tokenize

Output

Decoder

0 4…

3 6 1

Tokens

10 N-1N-2

Pixel-level Codebook (Quantized Pixel)

…

Transformer

D
o

w
n

sam
p

le

Quantize R
efin

em
en

t
N

etw
o

rk

Input Output

De-Tokenize

10 N-1N-2

Patch-level Codebook (Quantized Feature)

…

Input

Encoder Transformer

De-Tokenize

Output

Decoder

10 N-1N-2

Pixel-level Codebook (Quantized Pixel)

…

Transformer

D
o

w
n

sam
p

le

Q
u

an
tize

R
efin

em
en

t
N

etw
o

rk

Input Output

Tokenize De-Tokenize

Figure 1. Top: Existing transformer based methods [53]. The
output is produced by ICT [53]. Bottom: Our transformer based
method. “Tokenize” here means getting the indices of quantized
pixels or features, and “De-Tokenize” is the inverse operation.

1. Introduction

Image inpainting, which focuses on filling meaningful
and plausible contents in missing regions for the damaged
images, has always been a hot topic in computer vision ar-
eas and widely used in various applications [2, 38, 43, 46,
51, 52, 60]. Traditional methods [2, 4, 10] based on tex-
ture matching can handle simple cases very well but strug-
gle for complex natural images. In the last several years,
benefiting from development of CNNs, tremendous success
[30,32,37,58] has been achieved by learning on large-scale
datasets. However, due to the inherent properties of CNNs,
i.e., local inductive bias and spatial-invariant kernels, such
methods still do not perform well in understanding global
structure and inpainting large masked/missing regions.

Recently, transformers have demonstrated their power in
various vision tasks [5–9, 14, 17, 40, 54], thanks to their ca-
pability of modeling long-term relationship. Some recent
works [53] also attempt to apply transformers for pluralis-
tic image inpainting, and have achieved remarkable success

https://github.com/liuqk3/PUT
https://github.com/liuqk3/PUT

× 𝑛′

Lin
ear

Probability: ෝ𝐩

Tran
sfo

rm
er

B
lo

ck

487

406

123 367

445

163

504

501 323 334

132 433

Tokens: Ƹ𝐭𝐼

208 410

199 121Vector
Retrieval

Gibbs
Sampling

Un-Quantized Transformer

En
co

d
er

D
eco

d
er

So
ftm

ax

Lin
ear

Position Encoding

Vector
Tokenization

Feature Vectors: መ𝐟

Quantized Vectors: ො𝐞Output: ො𝐱𝐼

Input: ො𝐱

𝐦

× 𝑛′Lin
ear

Transformer
Block

54

47

46

13 37

45

13

51 23 34

12 43

28 40

19 11

UQ-Transformer

En
co

d
er

D
eco

d
er

So
ftm

ax

Lin
ear

መ𝐟

Output: ො𝐱𝐼Input: ො𝐱

0 1 K-1
Codebook 𝐞

…

ො𝐞𝐼

Gibbs
Sampling

ෝ𝐩

Probability

P-VQVAE

Transformer Block

Layer
Norm MSA

Layer
Norm

MLP

Linear Linear

?

Downsample if Needed

Position Encoding

Vector Quantization

Partition Mask 𝐦

Feature
Vectors

Quantized
VectorsTokens: Ƹ𝐭𝐼

Figure 2. Pipeline of PUT for pluralistic image inpainting. Note
that the pluralistic inpainting results are not shown in the figure.

in better diversity and large region inpainting quality. As
shown in the top row of Figure 1, they follow the similar
design: 1) Downsample the input image into lower resolu-
tions and quantize the pixels; 2) Use the transformer to re-
cover the masked pixels by regarding each quantized pixel
as the token; 3) Upsample and refine the low-resolution re-
sult by feeding it together with the original input image into
an extra CNN network.

In this paper, we argue that using the above pixel-based
token makes existing transformer based solutions suffer
from the information loss issue from two aspects: 1) “Low
resolution”. To avoid high computation complexity of
transformer, the input image is downsampled into much
lower resolution to reduce the input token number, which
not only incurs information loss but also introduces mis-
alignment for the boundaries of masked regions when up-
sampled back to the original resolution. 2) “Quantization”.
To constrain the prediction within a small space, the huge
amount (2563, in detail) of RGB pixels are quantized into
much less (such as 512) qunatized pixels through clustering.
The indices of quantized pixels are used as discrete tokens
both for the input and prediction target of transformer. Such
practice would further result in the information loss.

To mitigate these issues, we propose a new transformer
based framework PUT, which can reduce the information
loss as much as possible. As shown in the bottom row
of Figure 1, the original high-resolution input image is di-
rectly fed into a patch based encoder without any downsam-
pling and the transformer directly takes the features from
the encoder as input without any quantization. Specifically,
PUT contains two key designs: Patch-based Vector Quan-
tized Variational Auto-Encoder (“P-VQVAE”, Section 3.1)
and Un-Quantized Transformer(“UQ-Transformer”, Sec-
tion 3.2). P-VQVAE is a specially designed patch auto-
encoder: 1) Its encoder converts each image patch into
the latent feature in a non-overlapped way, where the
non-overlapped design is to avoid the disturbance between
masked regions and unmasked regions; 2) As the predic-
tion space of UQ-Transformer, a dual-codebook is built
for patch feature tokenization, where masked patches and
unmasked patches are separately represented by different

codebooks; 3) The decoder in P-VQVAE not only recov-
ers the masked image regions from the inpainted tokens
but also maintains unmasked regions unchanged. For UQ-
Transformer, it utilizes the quantized tokens of unmasked
patches as the prediction targets for masked patches, but
takes the un-quantized feature vectors from the encoder as
input. Compared to taking the quantized tokens as input,
this design can avoid the information loss and help UQ-
Transformer make more accurate predictions.

To demonstrate the superiority, we conduct extensive ex-
periments on FFHQ [27], Places2 [65] and ImageNet [12].
The results show that our method outperforms CNN based
pluralistic inpainting methods by a large margin on different
evaluation metrics. Benefiting from less information loss,
our method also achieves much higher fidelity than exist-
ing transformer based solutions, especially for large region
inpainting and complex large-scale datasets.

2. Related Work

Auto-Encoders. Auto-encoders [23] is a kind of artificial
neural network in semi-supervised and unsupervised learn-
ing. Among its subclasses, variational auto-encoders (VAE)
[13, 29] is widely used for image synthesis tasks [45, 47]
as a generative model. It can be trained in self-supervised
strategy and generate diverse images through decoder with
latent space sampling or autoregressive models [36, 49].
Later, vector quantized variational auto-encoder (VQ-VAE)
[48] is proposed for discrete representation learning to cir-
cumvent issues of “posterior collaps”, and further devel-
oped by VQ-VAE-2 [41]. Recently, based on the simi-
lar quantization mechanism with VQ-VAE, VAGAN [17]
and dVAE [40] are proposed for conditonal image gener-
ation through transformers [50], while PeCo [15] trains a
perceptual vision tokenizer for vision transformer BERT-
pretraining [55]. Different from previous methods, the pro-
posed “P-VQVAE”, which contains a non-overlapped patch
encoder, a dual-codebook and a multi-scale guided decoder,
is dedicated for image inpainting.

Visual Transformers. Thanks to the capability of long
range relationship modeling, transformers have been widely
used in different vision tasks, such as object detection [5,7],
image synthesis [6,17,40], object tracking [8,54] and image
inpainting [53]. Specifically, the autoregressive inference
mechanism is naturally suitable for image synthesis related
tasks, which can bring diverse results while guarantee the
quality of the synthesized images [6, 17, 40, 53]. In this pa-
per, we take full advantage of transformer and propose to
replace discrete tokens with continuous feature vectors to
avoid the information loss.

Image Inpainting. According to the diversity of inpainted
images, there are two different types of definition for im-
age inpainting task: deterministic image inpainting and plu-

M
G

A

× 𝑛

Lin
ear

Patch-based Encoder (P-Enc)

Dual-Codebook (D-Codes)

መ𝐟0,0 መ𝐟0,3

መ𝐟1,0 መ𝐟1,3

መ𝐟2,0 መ𝐟2,1 መ𝐟2,2 መ𝐟2,3

መ𝐟3,0 መ𝐟3,1 መ𝐟3,2 መ𝐟3,3

Feature Vectors: መ𝐟

መ𝐟0,1 መ𝐟0,2

መ𝐟1,1 መ𝐟1,2

× 𝑛

M
G

A

𝐞406 𝐞132

𝐞501 𝐞323

𝐞123 𝐞367

𝐞487 𝐞163

𝐞334 𝐞445

𝐞433 𝐞504

Quantized Vectors: ො𝐞

𝐞241
′

𝐞256
′ 𝐞456

′

𝐞231
′

Unmasked:𝐞 Masked:𝐞’

1…

0

𝐾

…

0

1

𝐾′

V
ecto

r
To

ken
izatio

n

𝐦⨂𝐦′

D
eco

n
v

× log2 𝑟

Output: ො𝐱𝑅

Multi-Scale Guided Decoder (MSG-Dec)

487

406

123 256 456 367

241 231

445

163

504

501 323 334

132 433

Vector Quantization

Lin
ear

R
esB

lo
ck

Lin
ear

Input: ො𝐱

Tokens: Ƹ𝐭

C
o

n
v

R
esB

lo
ck

V
ecto

r
R

etrieval

C
o

n
v

C
o

n
v

…

…

D
eco

n
v

× log2 𝑟

C
o

n
v

ො𝐱⨂𝐦′

Mask Guided addition (MGA) Elementwise Addition

Elementwise Multiplication

Partition

FlattenDownsample if Needed

𝐦⨂𝐦′

𝟏 −𝐦⨂𝐦′

𝐦′

𝐦

C
o

n
v

C
o

n
v

M
G

A

× 𝑛

Lin
ear

Patch-based Encoder (P-Enc)

Dual-Codebook (D-Codes)

መ𝐟0,0 መ𝐟0,3

መ𝐟1,0 መ𝐟1,3

መ𝐟2,0 መ𝐟2,1 መ𝐟2,2 መ𝐟2,3

መ𝐟3,0 መ𝐟3,1 መ𝐟3,2 መ𝐟3,3

Feature Vectors: መ𝐟

መ𝐟0,1 መ𝐟0,2

መ𝐟1,1 መ𝐟1,2

× 𝑛

M
G

A

𝐞46 𝐞12

𝐞51 𝐞23

𝐞13 𝐞37

𝐞47 𝐞13

𝐞34 𝐞45

𝐞43 𝐞54

Quantized Vectors: ො𝐞

𝐞21
′

𝐞26
′ 𝐞46

′

𝐞29
′

Unmasked:𝐞 Masked:𝐞’

1…

0

𝐾-1

…

0
1

𝐾′-1

V
ecto

r
To

ken
izatio

n

𝐦⨂𝐦′

D
eco

n
v

× log2 𝑟

Output: ො𝐱𝑅

Multi-Scale Guided Decoder (MSG-Dec)

47

46

13 26 46 37

21 29

45

13

54

51 23 34

12 43

Vector Quantization

Lin
ear

R
esB

lo
ck

Lin
ear

Input: ො𝐱

Tokens: Ƹ𝐭

C
o

n
v

R
esB

lo
ck

V
ecto

r
R

etrieval

C
o

n
v

C
o

n
v

…

…

D
eco

n
v

× log2 𝑟

C
o

n
v

ො𝐱⨂𝐦′

C
o

n
v

C
o

n
v

Mask Guided addition (MGA) Elementwise Addition

PartitionFlatten“Downsample” if Needed

𝐦⨂𝐦′

𝟏 −𝐦⨂𝐦′

𝐦′: for the Training of 𝐞𝐦: for the Training of 𝐞’

Elementwise Multiplication

M
G

A

M
G

A

× 𝑛

Lin
ear

Patch-based Encoder (P-Enc)

Dual-Codebook (D-Codes)

መ𝐟0,0 መ𝐟0,3

መ𝐟1,0 መ𝐟1,3

መ𝐟2,0 መ𝐟2,1 መ𝐟2,2 መ𝐟2,3

መ𝐟3,0 መ𝐟3,1 መ𝐟3,2 መ𝐟3,3

Feature Vectors: መ𝐟

መ𝐟0,1 መ𝐟0,2

መ𝐟1,1 መ𝐟1,2

× 𝑛

M
G

A

𝐞46 𝐞12

𝐞51 𝐞23

𝐞13 𝐞37

𝐞47 𝐞13

𝐞34 𝐞45

𝐞43 𝐞54

Quantized Vectors: ො𝐞

𝐞21
′

𝐞26
′ 𝐞46

′

𝐞29
′

Unmasked:𝐞 Masked:𝐞’

1…

0

𝐾-1

…

0
1

𝐾′-1

V
ecto

r
To

ken
izatio

n

𝐦⨂𝐦′

D
eco

n
v

× log2 𝑟
Output: ො𝐱𝑅

Multi-Scale Guided Decoder (MSG-Dec)

47

46

13 26 46 37

21 29

45

13

54

51 23 34

12 43

Vector Quantization

Lin
ear

R
esB

lo
ck

Lin
ear

Input: ො𝐱

Tokens: Ƹ𝐭

C
o

n
v

R
esB

lo
ck

V
ecto

r
R

etrieval

C
o

n
v

C
o

n
v

…

…
D

eco
n

v

× log2 𝑟

C
o

n
v

ො𝐱⨂𝐦′

C
o

n
v

C
o

n
v

M
G

A

Elementwise Addition Partition

Flatten

“Downsample” if NeededElementwise Multiplication

𝐦′: for the Training of 𝐞𝐦: for the Training of 𝐞’ MGA Mask Guided Addition

Figure 3. Training procedure of P-VQVAE. The detailed architecture of P-VQVAE could be found in the supplementary material.

ralistic image inpainting. Most of the traditional meth-
ods, whether diffusion-based methods [3, 16] or path-based
methods [2, 11, 20], can only generate single result for each
input and may be failed while meeting large-area of miss-
ing pixels. Later, some CNN based methods [25, 30, 32, 35,
37, 58] are proposed to ensure consistency of the semantic
content of the inpainted images, but still ignore the diver-
sity of results. To generate several diverse results for each
masked image, some CNN based [62, 64] and transformer
based [53] methods have emerged recently. Among them,
transformer based methods [53] show their merits in both
quality and diversity than CNN based methods. However,
their unreasonable design, like downsampling of input im-
age and quantization of transformer inputs, results in the
serious information loss issue. Thus, we propose a novel
framework, PUT, which maximizes the input information
to achieve better synthesis results.

3. Method

The proposed method mainly consists of a Patch-based
Vector Quantized Variational Auto-Encoder (P-VQVAE)
and an Un-Quantized transformer (UQ-Transformer). The
overview of our method is shown in Figure 2. Let x ∈
RH×W×3 be an image and m ∈ {0, 1}H×W×1 be the mask
denoting whether a region needs to be inpainted (with value
0) or not (with value 1). H and W are the spatial reso-
lution. The image x̂ = x ⊗ m is the masked image that
contains missing pixels, where ⊗ is the elementwise multi-
plication. The masked image x̂ is first fed into the encoder
of P-VQVAE to get the patch based feature vectors. Then
UQ-Transformer takes the feature vectors as input and pre-
dicts the tokens (i.e., indices) of latent vectors in a codebook
for masked regions. Finally, the retrieved latent vectors are
used as the quantized vectors for patches and fed into the
decoder of P-VQVAE to reconstruct the inpainted image.

3.1. P-VQVAE

To avoid the information loss from input downsampling
while maintaining the computation efficiency for the trans-

former, we utilize the merits of auto-encoder to replace the
downsampled pixels with the features from encoder. Com-
pared to the downsampled pixels, the features from encoder
can have the same low-resolution for efficiency while con-
tains more information for reconstruction. Considering the
task of image inpainting, we specially design P-VQVAE,
which contains a patch-based encoder, a dual-codebook and
a multi-scale guided decoder.

Patch-based Encoder. Conventional CNN based en-
coders process the input image with several convolution
kernels in a sliding window manner, which are unsuitable
for image inpainting since they would introduce disturbance
between masked and unmasked regions. Thus, the encoder
of P-VQVAE (denoted as P-Enc) is designed to process in-
put image by several linear layers in a non-overlapped patch
manner. Specifically, the masked image x̂ is firstly parti-
tioned into H

r × W
r non-overlapped patches, where r is the

spatial size of patches and is set to 8 by default. For a patch,
we call it a masked patch if it contains any missing pixels,
otherwise unmasked patch. Each patch is flattened and then
mapped into a feature vector. Formally, all feature vectors
are denoted as f̂ = E(x̂) ∈ RH

r ×W
r ×C , where C (set to 256

by default) is the dimensionality of feature vectors and E(·)
is the encoder function.

Dual-Codebook for Vector Quantization. Following the
works in [17, 41, 48], the feature vectors from encoder are
quantized into discrete tokens with the latent vectors in
the learnable codebook. By contrast, we design a dual-
codebook (denote as D-Codes) for vector quantization,
which is more suitable for image inpainting. In D-Codes,
the latent vectors are divided into two parts, denoted as
e ∈ RK×C and e′ ∈ RK′×C , which are responsible for
feature vectors that mapped from unmasked and masked
patches respectively. K and K ′ are the number of latent
vectors. Let m↓ ∈ {0, 1}H

r ×W
r ×1 be the indicator mask

that indicates whether a patch is a masked (with value 0) or
unmasked (with value 1) patch. The feature vector f̂i,j is

quantized as:{
ek where k = argminl ∥ f̂i,j ⊖ el ∥2, if m↓

i,j = 1,

e′k′ where k′ = argminl ∥ f̂i,j ⊖ e′l ∥2, else,
(1)

where ⊖ denotes the operation of elementwise subtraction.
Let ê ∈ RH

r ×W
r ×C and t̂ = I(f̂ , e, e′,m↓) ∈ NH

r ×W
r

be the quantized vectors and tokens for f̂ , where I(·, ·, ·, ·)
denotes the function that gets tokens for its first argument
and it can be simply implemented by getting the indices of
all quantized vectors in ê. The dual-codebook helps P-Enc
learn more discriminative feature vectors for masked and
unmasked patches since they are quantized and represented
with different codebooks, which further disenchants trans-
former about the masked and unmasked patches to predict
more reasonable results for masked patches.

Multi-Scale Guided Decoder. For image inpainting task,
an indisputable fact is that the unmasked regions should be
kept unchanged. To this end, we design a multi-scale guided
decoder, denoted as MSG-Dec, to construct the inpainted
image x̂I by referencing the input masked image x̂. Let
t̂I be the inapinted tokens by transformer (Ref. Figure 2
and Section 3.3) and êI be the retrieved quantized vectors
from codebook based on t̂I . The construction procedure is
formulated as:

x̂I = D(êI ,m, x̂), (2)

where D(·, ·, ·) is the decoder function. The decoder con-
sists of two branches: a main branch which starts with the
quantized vectors êI and uses several deconvolution layers
to generate inpainted images and a reference branch which
extracts multi-scale feature maps (with spatial sizes H

2l
×W

2l
,

0 ≤ l ≤ log2r) from the masked image x̂. The features
from the reference branch are fused to the features with the
same scale from the main branch through a Mask Guided
Addition (MGA) module as:

êI,l−1 = Deconv((1−m↓,l)⊗ êI,l +m↓,l ⊗ f̂R,l), (3)

where êI,l and f̂R,l are the features with spatial size H
2l
× W

2l

from the main branch and the reference branch respectively.
m↓,l is the indicator mask obtained from m for correspond-
ing spatial size.

Training of P-VQVAE. To avoid the decoder learning to
reconstruct input image x̂ only from the reference image,
we get the reference image by randomly erasing some pixels
in x̂ with another mask m′ (see in Figure 3). Let x̂R =
D(ê,m ⊗m′, x̂ ⊗m′) be the reconstructed image. In our
design, the unmasked pixels in the reference image will be
utilized to recover the corresponding pixels in x̂R, while the
latent vectors in codebook e′ and e will be used to recover

the pixels in x̂R masked by m and the remaining pixels
respectively. The loss for training P-VQVAE is:

Lvae = Lrec(x̂, x̂
R)+ ∥ sg[̂f]⊖ ê ∥22 +β ∥ sg[ê]⊖ f̂ ∥22,

(4)
where sg[·] refers to a stop-gradient operation that blocks
gradients from flowing into its argument. β is the weight
for balance and is set to 0.25. Lrec(·, ·) is the function to
measure the difference between inputted and reconstructed
images, including the L1 loss between the pixel values in
two images and the gradients of two images, the adversarial
loss [19] obtained by a discriminator network, as well as the
perceptual loss [26] and the style loss [18] between the two
images. Following [41,48], the second term in Eq. (6) is re-
placed by Exponential Moving Average (EMA) to optimize
the vectors in D-Codes. More details about the training of
P-VQVAE could be found in the supplementary material.

3.2. UQ-Transformer

In existing transformers for image inpainting [53] and
synthesis [17, 40], the quantized discrete tokens are used as
both the inputs and prediction targets. Given such discrete
tokens, transformers suffer from the severe information loss
issue, which is harmful to their prediction. In contrast, to
take full advantage of feature vectors f̂ from the encoder of
P-VQVAE, our UQ-Transformer directly takes them as the
inputs and predicts the discrete tokens for masked patches.

Specifically, f̂ is firstly mapped by a linear layer and
then added with extra learnable position embeddings for
the encoding of spatial information. Finally, following [39],
the feature vectors are flattened along spatial dimension to
get the final input for the subsequent several transformer
blocks. The output of the last transformer block is further
projected to the distribution over K latent vectors in code-
book e with a linear layer and a softmax function. We for-
mulate the above procedure as p̂ = T (f̂) ∈ [0, 1]

H
r ×W

r ×K ,
where T (·) refers the UQ-Transformer function.

Training of UQ-Transformer. Given a masked image x̂,
the distribution of its corresponding inpainted tokens over
K latent vectors can be obtained with the pre-trained P-
VQVAE and UQ-Transformer p̂ = T (E(x̂)). The ground-
truth tokens for x is t = I(E(x), e, e′,O(m↓)) (Ref. Sec-
tion 3.1), where O(·) sets all values in the given argument
to 1. UQ-Transformer is trained with cross-entropy loss by
fixing P-VQVAE:

Ltrans =
−1∑

i,j 1−m↓
i,j

∑
i,j

(1−m↓
i,j)logp̂i,j,ti,j . (5)

In order to make the training stage consistent with inference
stage, where only the quantized vectors can be obtained for
masked regions, we randomly quantize the feature vectors
in E(x̂) to the latent vectors in codebook with probability
0.3 before feeding it to UQ-Transformer.

PUT (Ours) 1ICT 4 PUT (Ours) 5PUT (Ours) 4PUT (Ours) 3 PUT (Ours) 6

ICT 1 ICT 2PIC 1 PIC 2

ICT 3

ECDFv2 ICT 1PIC 2PIC 1MED ICT 2Input

ECDFv2 MEDInput

ICT 4ICT 3

ICT 1 ICT 2ECDFv2 PICInput

FF
H

Q
P

la
ce

s2
Im

ag
eN

et

PUT (Ours) 2

PUT (Ours) 1 PUT (Ours) 5PUT (Ours) 4PUT (Ours) 3 PUT (Ours) 6PUT (Ours) 2

PUT (Ours) 1 PUT (Ours) 2

Figure 4. Samples of inpainted results produced by different methods. For PUT, we set K = 50. More qualitative comparisons are
presented in the supplementary material.

ImageNet

K PSNR SSIM MAE FID

1 23.435805121722055 0.8210396948444167 0.04121306166052818 32.008064792915604

10 23.476824623716688 0.8246185798328873 0.03917992487549782 26.789709389714517

20 23.346173162524867 0.820351798946021 0.039765939116477966 27.423200627038057

30 23.254606489515396 0.8177429042202292 0.04029802232980728 27.130447160197264

40 23.23256436349004 0.8169390488591363 0.04037867859005928 28.444014396042235

50 23.263548445329185 0.8176143475737365 0.040133919566869736 27.647677701278326

60 23.17599360334654 0.8149256606599898 0.04063941538333893 28.083990907639645

70 23.134550795656455 0.8137171858756559 0.04079051315784454 27.79615272025569

80 23.10097484458013 0.8128347436190221 0.04068102315068245 28.03613632394547

90 23.13403438644403 0.8125744882689776 0.04099332541227341 29.162210779722727

100 23.07048461334893 0.8108702296312548 0.04122564569115639 28.09967771401881

1.80875

2.455
1.8425

3.82625 3.695 3.85625

4.85125
4.34875

4.7925

0

1

2

3

4

5

6

FFHQ Places2 ImageNet

PIC ICT PUQ

0

20

40

60

80

FFHQ ImageNet

R
at

io
 (

%
)

Places2
PIC ICT PUT

Figure 5. The ratio of each method among the rank 1 images eval-
uated by human. Statistics are collected from 23 participants.

3.3. Sampling Strategy for Image Inpaining

For the production of diverse results, the tokens for
masked patches (m↓

i,j = 0) are iteratively sampled with
Gibbs sampling. Specifically, in each iteration, we first
select the patch with the maximum predicted probability
among the remaining masked patches. Then the token for
the selected patch is sampled from the top-K predicted ele-
ments. Finally, the corresponding latent vector for the sam-
pled token is retrieved to replace the feature vector of the
selected patch before feeding UQ-Transformer for the next
iteration. After sampling the tokens for all masked patches,
we can get all quantized vectors êI with the inpainted to-
kens t̂I , and the inpainted image can be constructed using

Eq. (2). For the production of deterministic results, the to-
kens for masked patches are sampled with the largest prob-
abilities at once.

4. Experiments
The evaluation is conducted at 256× 256 (i.e., H = 256

and W = 256) resolution on three different datasets, in-
cluding FFHQ [27], Places2 [65] and ImageNet [12]. We
use the original training and testing splits for Places2 and
ImageNet. For FFHQ, we maintain the last 1K images for
evaluation and others for training. Following ICT [53], only
1K images are randomly chosen from the test split of Ima-
geNet for evaluation and the irregular masks provided by
PConv [30] are used both for training and testing.

4.1. Implementation Details

We use P-VQVAE with the same model size and
UQ-Transformer with different model sizes for different
datasets. The number of latent vectors in dual-codebook
(i.e.,K and K

′
) both are set to 512. The detailed architec-

ture of P-VQVAE and UQ-Transformer could be found in
the supplementary material. We train P-VQVAE with batch

Dataset FFHQ [27] Places2 [65] ImageNet [12]
Mask Ratio (%) 20-40 40-60 10-60 20-40 40-60 10-60 20-40 40-60 10-60

FID ↓

DFv2 (ICCV, 2019) [59] 27.344 47.894 30.509 53.107 83.979 59.280 49.900 102.111 64.056
EC (ICCVW, 2019) [35] 12.949 26.217 16.961 20.180 34.965 23.206 27.821 63.768 39.199
MED (ECCV, 2020) [31] 13.999 26.252 17.061 28.671 46.815 32.494 40.643 93.983 54.854
ICTall (ICCV, 2021) [53] 10.442 23.946 15.363 19.309 33.510 23.331 23.889 54.327 32.624

PUTall (Ours) 11.221 19.934 13.248 19.776 38.206 24.605 19.411 43.239 26.223
PIC (CVPR, 2019) [64] 22.847 37.762 25.902 31.361 44.289 34.520 49.215 102.561 63.955

ICT50 (ICCV, 2021) [53] 13.536 23.756 16.202 20.900 33.696 24.138 25.235 55.598 34.247
PUT50(Ours) 12.784 21.382 14.554 19.617 31.485 22.121 21.272 45.153 27.648

PSNR ↑

DFv2 (ICCV, 2019) [59] 27.937 22.984 26.783 26.292 22.412 25.391 24.464 20.157 23.387
EC (ICCVW, 2019) [35] 27.484 22.574 26.181 26.536 22.755 25.975 24.703 20.459 23.596
MED (ECCV, 2020) [31] 27.117 22.499 26.111 25.401 21.543 24.510 23.730 19.560 22.752
ICTall (ICCV, 2021) [53] 29.847 23.041 26.736 25.836 22.120 24.986 24.249 20.045 23.317

PUTall (Ours) 28.356 24.125 27.473 26.580 22.945 25.749 25.721 21.551 24.726
PIC (CVPR, 2019) [64] 25.157 20.424 24.093 24.073 20.656 23.469 22.921 18.368 21.623

ICT50 (ICCV, 2021) [53] 26.462 21.816 25.515 24.947 21.126 24.373 23.252 19.025 22.123
PUT50(Ours) 26.877 22.375 25.943 25.452 21.528 24.492 24.238 19.742 23.264

SSIM↑

DFv2 (ICCV, 2019) [59] 0.945 0.850 0.912 0.878 0.741 0.831 0.876 0.719 0.819
EC (ICCVW, 2019) [35] 0.941 0.826 0.899 0.881 0.734 0.840 0.882 0.714 0.824
MED (ECCV, 2020) [31] 0.936 0.840 0.903 0.854 0.685 0.796 0.861 0.675 0.795
ICTall (ICCV, 2021) [53] 0.964 0.863 0.917 0.870 0.723 0.819 0.876 0.711 0.818

PUTall (Ours) 0.953 0.888 0.908 0.885 0.756 0.840 0.904 0.772 0.838
PIC (CVPR, 2019) [64] 0.910 0.769 0.865 0.824 0.648 0.775 0.842 0.623 0.766

ICT50 (ICCV, 2021) [53] 0.931 0.822 0.896 0.850 0.682 0.803 0.852 0.666 0.786
PUT50(Ours) 0.936 0.845 0.906 0.861 0.703 0.806 0.875 0.704 0.818

MAE↓

DFv2 (ICCV, 2019) [59] 0.0187 0.0429 0.0270 0.0230 0.0461 0.0304 0.0303 0.0638 0.0415
EC (ICCVW, 2019) [35] 0.0177 0.0430 0.0263 0.0207 0.0419 0.0261 0.0271 0.0582 0.0375
MED (ECCV, 2020) [31] 0.0200 0.0430 0.0277 0.0255 0.0505 0.0336 0.0320 0.0676 0.0434
ICTall (ICCV, 2021) [53] 0.0129 0.0368 0.0232 0.0221 0.0433 0.0289 0.0362 0.0578 0.0378

PUTall (Ours) 0.0159 0.0328 0.0213 0.0205 0.0398 0.0269 0.0233 0.0487 0.0321
PIC (CVPR, 2019) [64] 0.0251 0.0571 0.0350 0.0284 0.0544 0.0353 0.0361 0.0785 0.0509

ICT50 (ICCV, 2021) [53] 0.0196 0.0445 0.0270 0.0245 0.0487 0.0312 0.0312 0.0677 0.0440
PUT50(Ours) 0.0191 0.0417 0.0263 0.0235 0.0479 0.0317 0.0281 0.0641 0.0401

Table 1. Quantitative results of different methods. The methods are divided into deterministic and pluralistic groups. The subscript “50”
of ICT and PUT is the value of K, while the subscript “all” of ICT and PUT means all tokens are sampled at one iteration.

size 128 and train UQ-Transformer with batch size 48 for
FFHQ and 96 for Places2 and ImageNet. The learning rate
is warmed up from 0 to 2e-4 and 3e-4 in the the first 5K
iterations for P-VQVAE and UQ-Transformer, and then de-
cayed with cosine scheduler. P-VQVAE is optimized with
Adam [28] (β1 = 0, β2 = 0.9) and UQ-Transformer is op-
timized with AdamW [33] (β1 = 0.9, β2 = 0.95). All
models are trained to their convergence.

4.2. Main Results

We compare the proposed PUT with the following state-
of-the-art inpainting approaches: DeepFillv2 (DFv2) [59],
Edge-Connect (EC) [35], MED [31], PIC [64] and ICT [53].
Among them, the last two ones can generate pluralistic re-
sults for each input while the others can only produce one
deterministic result for the given input. For a fair compari-
son, we directly use the pre-trained models provided by the
authors when available, otherwise train the models by our-
selves using the codes and settings provided by the authors.

Qualitative Comparisons. We first qualitatively com-
pare the inpainted results of different methods in Figure 4.
Specifically, DFv2 and EC generally produce blurry im-

ages, while the texture of the results generated by MED
and PIC contain lots of unnatural artifacts. Compared with
ICT, PUT is more powerful in the understanding of global
context and maintaining the meaningful textures, as shown
in the last row in Figure 4. We argue that the superiority
of PUT is mainly due to: 1) high-resolution and 2) un-
quantized transformer. Both of them are vital for preserving
the information contained in the input images, which are
helpful to produce photo-realism images.

User Study. For the evaluation of subjective quality, the
user study is further conducted. Only pluralistic meth-
ods are evaluated, including PIC [64], ICT [53]] and PUT.
Specifically, we randomly sample 20 pairs of image and
mask from the test set of each dataset. For each pair, we
generate two inpainted results using each method, and ask
the participants to rank these six images according to their
photo-realism from high to low. We calculate the ratio of
each method among the rank 1 images. Results are shown
in Figure 5. Our method takes up at least 60% of the rank 1
images, demonstrating its superiority.

10 20 30 40 50
Mask Ratio (%)

10
15
20
25
30
35

FI
D

PICFID
ICTFID
PUTFID(Ours)

(a) FID on FFHQ [27]

10 20 30 40 50
Mask Ratio (%)

0.02

0.06

0.10

0.14

0.18

LP
IP

S

PICLPIPS
ICTLPIPS
PUTLPIPS(Ours)

(b) LPIPS on FFHQ [27]

10 20 30 40 50
Mask Ratio (%)

10
15
20
25
30
35
40

FI
D

PICFID
ICTFID
PUTFID(Ours)

(c) FID on Places2 [65]

10 20 30 40 50
Mask Ratio (%)

0.02

0.07

0.12

0.17

0.22
LP

IP
S

PICLPIPS
ICTLPIPS
PUTLPIPS(Ours)

(d) LPIPS on Places2 [65]

10 20 30 40 50
Mask Ratio (%)

10

30

50

70

90

110

FI
D

PICFID
ICTFID
PUTFID(Ours)

(e) FID on ImageNet [12]

10 20 30 40 50
Mask Ratio (%)

0.05

0.10

0.15

0.20

0.25

LP
IP

S

PICLPIPS
ICTLPIPS
PUTLPIPS(Ours)

(f) LPIPS on ImageNet [12]

Figure 6. LPIPS and FID curves with respect to mask ratio on
different datasets. For PUT and ICT, K = 50.

Quantitative Comparisons. We further demonstrate the
superiority of PUT in diversity and fidelity with other plu-
ralistic methods. Specifically, the mean LPIPS distance [61]
between pairs of randomly generated results for the same
input image is calculated. Following ICT [53], five pairs
per input image are generated. Meanwhile, the Fréchet In-
ception Distance (FID) [22] is also computed between the
inpainted images and ground-truth images to reveal the fi-
delity of generated results. The curves of LPIPS and FID
are shown in Figure 6. It can be seen that among the three
pluralistic methods, PUT achieves the best fidelity (lowest
FID) on all datasets, especially for large area of masked
regions and complex scenes (ImageNet [12]). Although
PUT and ICT both are implemented with transformers, PUT
presents a higher diversity, we owe this to the feeding of
original continuous feature vectors without quantization to
transformer, which has no information loss issue.

In Table 1, we compare all methods in terms of several
metrics, including the peak signal-to-noise (PSNR), struc-
tural similarity index (SSIM), relative L1 (MAE) and FID.
Only one recovered output is produced for each input. Over-
all, for pluralistic methods, PUT50 performs the best in al-
most all metrics on all datasets. Specifically, the FID score
of PUT50 on ImageNet with mask ratio 40%-60% is 10.44
lower than that of ICT50. For deterministic methods, PUTall

also achieves almost the best performance. However, the
metrics are suitable for the comparison between pluralistic

Dataset Metric PUTall (Ours)CoModGAN [63] LaMa [44]
FFHQ [27] PSNR ↑ / FID ↓24.245/21.351 22.430/17.914 -/-
Places2 [65]PSNR ↑ / FID ↓22.589/38.472 20.962/32.559 22.694/31.160

Table 2. Performance of different methods on FFHQ [27] and
Places2 [65] with mask ratio 40%-60% and resolution 512× 512.

Dataset FFHQ [27] Places2 [65]
Mask Ratio (%) 20-40 40-60 10-60 20-40 40-60 10-60

FID↓

PUTconv 163.610 226.437 173.351 178.057 216.235 179.294
PUTone 12.112 20.298 13.960 26.015 38.011 28.634

PUTno ref 15.014 22.736 16.469 22.821 32.281 25.084
PUTtok 22.824 38.384 26.098 58.643 120.482 75.625

PUTqua0 43.621 96.648 54.879 35.127 71.629 44.588
PUT 12.784 21.382 14.554 19.617 31.485 22.121

PSNR↑

PUTconv 12.783 9.735 12.360 12.207 9.347 11.799
PUTone 26.887 22.335 25.903 24.507 20.571 23.600

PUTno ref 26.487 22.249 25.547 25.053 21.398 24.185
PUTtok 23.916 18.936 22.879 20.940 14.685 19.429

PUTqua0 24.188 19.564 23.174 24.340 20.239 23.353
PUT 26.877 22.375 25.943 25.452 21.528 24.492

SSIM↑

PUTconv 0.495 0.266 0.445 0.417 0.212 0.373
PUTone 0.937 0.844 0.906 0.836 0.660 0.776

PUTno ref 0.932 0.841 0.901 0.851 0.695 0.798
PUTtok 0.893 0.745 0.843 0.742 0.453 0.652

PUTqua0 0.879 0.704 0.820 0.831 0.637 0.763
PUT 0.945 0.857 0.914 0.861 0.703 0.806

MAE↓

PUTconv 0.1420 0.3017 0.1912 0.1447 0.2995 0.1941
PUTone 0.0191 0.0418 0.0264 0.0256 0.0526 0.0345

PUTno ref 0.0202 0.0426 0.0274 0.0249 0.0488 0.0329
PUTtok 0.0289 0.0689 0.0418 0.0467 0.1337 0.0779

PUTqua0 0.0281 0.0627 0.0393 0.0269 0.0562 0.0367
PUT 0.0191 0.0417 0.0263 0.0235 0.0479 0.0317

Table 3. Quantitative results of different methods. All the results
are tested with K = 50.

and deterministic methods since diverse and meaningful re-
sults can be generated by pluralistic methods.

In Table 2, we further compare PUTall with LaMa [44]
and CoModGAN [63], both of which are recently proposed
methods for image inpainting with resolution 512×512. For
PUTall, an upsample network used in ICT [53] is trained to
upsample the results from 256 × 256 to 512 × 512. As
we can see, PUTall achieves a much better PSNR than Co-
ModGAN, and it is also comparable with LaMa.

4.3. Discussions

Effectiveness of different components. To show the ef-
fectinesess of the patch-based encoder, dual-codebook,
multi-scale guided decoder and un-quantized transformer,
several methods are designed: 1) PUTconv means that the
patch-based encoder is replaced with a normal CNN en-
coder, which is implemented with convolution layers; 2)
PUTone refers that there is only one codebook for vector
quantization; 3) PUTno ref means that there is no reference
branch in the decoder; and 4) PUTtok denotes that the trans-
former takes the quantized vectors as input rather than the
original feature vectors from encoder. In order to show

PUT 1

Input PUTconv PUTone

PUTtok PUTqua0 PUT 2 PUT 3

502
852

083
724

782124 284

292 380 791667

PUTno_ref

Input

Artifacts

PUT 1 PUT 2GT

Figure 7. Inpainted results of different models on Places2 [65].

the effectiveness of random quantization of feature vectors
while training UQ-Transformer, we further design the fifth
model, PUTqua0, that trains UQ-Transformer without ran-
dom quantization. For all models, except the modifications
mentioned, others remain the same with our default model
PUT. Results are shown in Table 3 and Figure 7.

Among all models, PUTconv performs the worst in
all metrics, demonstrating the effectiveness of the non-
overlapping patch partition design. Within CNN based en-
coder, the input images are processed in a sliding window
manner, introducing the interaction between masked and
unmasked regions, which is fatal to transformer for the pre-
diction of masked regions.

Comparing PUTone to PUT, the only difference is the
training of P-VQVAE with one or two codebooks since the
codebook e′ is not used in the inference stage. P-VQVAE
can learn more discriminative features for masked and un-
masked patches with the help of dual-codebook. Interest-
ingly, PUT indeed performs better than PUTone except the
FID score on FFHQ. We speculate that face generation is
much easier because all faces share a similar structure. Be-
sides, the facial structure is related with the position in the
image since most of the images in FFHQ contain faces in
their near-center locations. As we can see in Figure 7,
PUTone sometimes predicts black patches, which is simi-
lar to those patches containing missing pixels. Nonetheless,
PUT achieves overall better performance than PUTone.

Compared with PUT, PUTno ref constructs the inpainted
image without referencing to the input masked image,
which leads to a inferior performance in terms of all met-
rics. For PUT, some useful textures can be recovered with
the help of the guidance from the unmasked regions in ref-
erence image. As we can see in Figure 7, the result of
PUTno ref is over smoothed, which is unnatural.

Compared with PUTtok, PUT performs much better in
all metrics. Without quantizing feature vectors to discrete
representations, no information contained in the feature will
be lost. Such practice helps transformer to understand com-
plex content and maintain the inherit meaningful textures in
the input image. However, the training of UQ-Transformer

PUT(Ours) 2PUT(Ours) 1

Low-res. mask

High-res. mask High-res. input

Low-res. input ICT 1 ICT 2

PUT(Ours) 2PUT(Ours) 1

Low-res. mask

High-res. mask High-res. input

Low-res. input ICT 1 ICT 2

69055

69102

PUT(Ours) 2PUT(Ours) 1

Low-res. mask

High-res. mask High-res. input

Low-res. input ICT 1 ICT 2

Figure 8. Misalignment between the high and low resolutions. The
mask and input image in low-resolution are zoomed in for a better
comparison.

should be carefully designed by randomly quantizing the
input feature vectors since only quantized vectors can be
obtained for masked regions at the inference stage. The ef-
fectiveness of such random quantization during training is
obvious while comparing PUT with PUTqua0.

Misalignment between high and low resolutions. Exist-
ing transformer based methods [53] involves high and low
resolutions. The images and masks in high and low resolu-
tions are misaligned, especially the borders of masked re-
gions. For real applications, where the masked regions are
often with arbitrary shapes and sizes, such misalignment is
non-negligible. In Figure 8, we show one case that with
irregular masked regions. We can see that the results of
ICT [53] contain lots of artifacts near the misaligned bor-
ders. For PUT, the generated results are natural and smooth
even though the provided mask is irregular.

5. Conclusions and Limitations

In this paper, we present a novel method, PUT, for plu-
ralistic image inpainting. PUT consists of two main compo-
nents: 1) patch-based auto-encoder (P-VQVAE) and 2) un-
quantized transformer (UQ-Transformer). With the help of
P-VQVAE and UQ-Transformer, PUT processes the origi-
nal high-resolution image without quantization. Such prac-
tice preserves the information contained in the input image
as much as possible. The main limitation of PUT is the in-
ference speed for the production of diverse results. How-
ever, it is a common issue of existing transformer based
auto-regressive methods [17, 40, 50, 53]. Two solutions
could be adopted to alleviate this limitation: 1) replacing
the used transformer block with more efficient ones [24,56]
and 2) sampling tokens for several patches at each iteration.
In addition, PUT may be used for editing the contents of
images to achieve illicit goals, which can be mitigated us-
ing existing synthesized image detectors [57]. Experimental
results demonstrate the superiority of PUT, including the fi-

delity and diversity, especially for large masked regions and
complex scenes (such as ImageNet [12]).

Acknowledgement. This work is supported by the National
Natural Science Foundation of China (No. 62002336, No.
U20B2047) and the Exploration Fund Project of University
of Science and Technology of China (YD3480002001).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 14

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans.
Graph., 28(3):24, 2009. 1, 3

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and
Coloma Ballester. Image inpainting. In Proceedings of the
27th annual conference on Computer graphics and interac-
tive techniques, pages 417–424, 2000. 3

[4] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, and
Stanley Osher. Simultaneous structure and texture im-
age inpainting. IEEE transactions on image processing,
12(8):882–889, 2003. 1

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020. 1,
2

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning, pages 1691–1703. PMLR, 2020. 1, 2

[7] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Ge-
offrey Hinton. Pix2seq: A language modeling framework for
object detection. arXiv preprint arXiv:2109.10852, 2021. 1,
2

[8] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8126–8135, 2021. 1, 2

[9] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR
2022), 2022. 1

[10] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama.
Region filling and object removal by exemplar-based im-
age inpainting. IEEE Transactions on image processing,
13(9):1200–1212, 2004. 1

[11] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B
Goldman, and Pradeep Sen. Image melding: Combining in-
consistent images using patch-based synthesis. ACM Trans-
actions on graphics (TOG), 31(4):1–10, 2012. 3

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 5, 6, 7, 9,
13, 14, 17, 18

[13] Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016. 2

[14] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Bain-
ing Guo. Cswin transformer: A general vision trans-
former backbone with cross-shaped windows. arXiv preprint
arXiv:2107.00652, 2021. 1

[15] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen,
Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, and
Nenghai Yu. Peco: Perceptual codebook for bert pre-training
of vision transformers. arXiv preprint arXiv:2111.12710,
2021. 2

[16] Alexei A Efros and William T Freeman. Image quilting for
texture synthesis and transfer. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 341–346, 2001. 3

[17] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12873–12883, 2021. 1, 2, 3,
4, 8, 13, 14

[18] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 4, 12

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 4, 12

[20] James Hays and Alexei A Efros. Scene completion using
millions of photographs. ACM Transactions on Graphics
(ToG), 26(3):4–es, 2007. 3

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 13

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 7

[23] Geoffrey E Hinton and Richard S Zemel. Autoencoders,
minimum description length, and helmholtz free energy. Ad-
vances in neural information processing systems, 6:3–10,
1994. 2

[24] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim
Salimans. Axial attention in multidimensional transformers.
arXiv preprint arXiv:1912.12180, 2019. 8

[25] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and locally consistent image completion. ACM
Transactions on Graphics (ToG), 36(4):1–14, 2017. 3

[26] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 4, 12

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4401–4410, 2019. 2, 5,
6, 7, 13, 14, 15

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[29] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[30] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for
irregular holes using partial convolutions. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 85–100, 2018. 1, 3, 5

[31] Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, and Chao
Yang. Rethinking image inpainting via a mutual encoder-
decoder with feature equalizations. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part II 16, pages 725–741.
Springer, 2020. 6

[32] Hongyu Liu, Bin Jiang, Yi Xiao, and Chao Yang. Coher-
ent semantic attention for image inpainting. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4170–4179, 2019. 1, 3

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[34] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010. 13

[35] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. Edgeconnect: Structure guided image
inpainting using edge prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019. 3, 6, 12, 13

[36] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Condi-
tional image generation with pixelcnn decoders. In Proceed-
ings of the 30th International Conference on Neural Infor-
mation Processing Systems, pages 4797–4805, 2016. 2

[37] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 1, 3

[38] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan,
Honglak Lee, and Bo Li. Semanticadv: Generating ad-
versarial examples via attribute-conditioned image editing.
In European Conference on Computer Vision, pages 19–37.
Springer, 2020. 1

[39] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 4,
13

[40] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021. 1, 2, 4, 8, 13, 14

[41] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vq-vae-2. In Advances
in neural information processing systems, pages 14866–
14876, 2019. 2, 3, 4, 12

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 13

[43] Yujing Sun, Yizhou Yu, and Wenping Wang. Moiré
photo restoration using multiresolution convolutional neu-
ral networks. IEEE Transactions on Image Processing,
27(8):4160–4172, 2018. 1

[44] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
2149–2159, 2022. 7

[45] Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi
Chu, Bin Liu, Gang Hua, and Nenghai Yu. Diverse seman-
tic image synthesis via probability distribution modeling. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7962–7971, 2021. 2

[46] Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi
Chu, Lu Yuan, Sergey Tulyakov, and Nenghai Yu. Michigan:
multi-input-conditioned hair image generation for portrait
editing. ACM Transactions on Graphics (TOG), 39(4):95–
1, 2020. 1

[47] Zhentao Tan, Dongdong Chen, Qi Chu, Menglei Chai, Jing
Liao, Mingming He, Lu Yuan, Gang Hua, and Nenghai Yu.
Efficient semantic image synthesis via class-adaptive nor-
malization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021. 2

[48] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6309–6318,
2017. 2, 3, 4, 12

[49] Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In In-
ternational Conference on Machine Learning, pages
1747–1756. PMLR, 2016. 2

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
8, 14

[51] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong
Chen, Jing Liao, and Fang Wen. Bringing old photos back
to life. In proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2747–2757,
2020. 1

[52] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong
Chen, Jing Liao, and Fang Wen. Old photo restoration via
deep latent space translation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. 1

[53] Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao.
High-fidelity pluralistic image completion with transform-

ers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4692–4701, 2021. 1, 2, 3,
4, 5, 6, 7, 8, 14

[54] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1571–1580, 2021. 1, 2

[55] Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen,
Xiyang Dai, Mengchen Liu, Yu-Gang Jiang, Luowei Zhou,
and Lu Yuan. Bevt: Bert pretraining of video transformers.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2022), 2022. 2

[56] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 8

[57] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are
surprisingly easy to spot... for now. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8695–8704, 2020. 8

[58] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5505–5514,
2018. 1, 3

[59] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated
convolution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4471–4480, 2019. 6

[60] Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua
Lin, and Chen Change Loy. Self-supervised scene de-
occlusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3784–
3792, 2020. 1

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 7

[62] Lei Zhao, Qihang Mo, Sihuan Lin, Zhizhong Wang, Zhiwen
Zuo, Haibo Chen, Wei Xing, and Dongming Lu. Uctgan:
Diverse image inpainting based on unsupervised cross-space
translation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5741–
5750, 2020. 3

[63] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao
Liang, Eric I Chang, and Yan Xu. Large scale image comple-
tion via co-modulated generative adversarial networks. In In-
ternational Conference on Learning Representations (ICLR),
2021. 7

[64] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic
image completion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1438–1447, 2019. 3, 6

[65] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6):1452–1464, 2017. 2, 5, 6, 7,
8, 13, 14, 16

Supplementary

A. Overview
In this supplementary material, we provide more imple-

mentation details, experimental results and analysis, includ-
ing:

• training of P-VQVAE (Section B).

• sampling strategy for image inpainting (Section C).

• network architecture of different models (Section D).

• more results on different datasets (Section E).

• more discussions on PUT (Section F), including the
inference speed of PUT and some artifacts in inpainted
results.

B. Training of P-VQVAE
Given an image x and two different masks m and m′,

the input of P-VQVAE is x̂ = x ⊗m. The overall loss for
the training of P-VQVAE is:

Lvae = Lrec(x̂, x̂
R)+ ∥ sg[̂f]⊖ ê ∥22 +β ∥ sg[ê]⊖ f̂ ∥22,

(6)
where f̂ = E(x̂) denotes the feature vectors extracted by the
encoder and ê is quantized vectors for f̂ . x̂R = D(ê,m ⊗
m′, x̂⊗m′) is the reconstructed image and sg[·] refers to a
stop-gradient operation that blocks gradients from flowing
into its argument.

The last term in Eq. (6) is the so-called commitment
loss [48] with weighting factor β = 0.25. It is responsible
for passing gradient information from decoder to encoder.
The second term in Eq. (6) is the codebook loss for the
optimization of latent vectors. Following previous works
in [41,48], we replace the second term with the Exponential
Moving Average (EMA) to optimize e and e′. Specifically,
at each iteration t, the latent vector ek is updated as:

nt
k = nt−1

k ∗ γ + nk ∗ (1− γ),

ētk = ēt−1
k ∗ γ +

nk∑
j

(f̂k)j ∗ (1− γ),

etk =
ēt
k

nt
k
,

(7)

where f̂k denotes the set of feature vectors in f̂ that assigned
to ek and nk is the number of feature vectors in f̂k. γ is the
decay parameter with the value between 0 and 1. We set
γ = 0.99 in all our experiments.

The first term in Eq. (6) is the reconstruction loss and
Lrec(·, ·) is the function to get the difference between the

Algorithm 1: Sampling Strategy for Pluralistic Im-
age Inpainting

Input : x̂ ∈ RH×W×3: masked image needs to be inpainted
m ∈ {0, 1}H×W×3: the mask indicating whether a
pixel is masked/missing or not
K: top-K for Gibbs sampling

Output: x̂I ∈ RH×W×3: the inpainted image
1 Step1: get indicator mask, feature vectors, quantized tokens

2 m↓ ∈ {0, 1}
H
r
×W

r
×1: calculated from m

3 f̂ ∈ R
H
r
×W

r
×C ← E(x̂)

4 t̂ ∈ N
H
r
×W

r ← I(f̂ , e, e′,m↓) // Sec. 3.1 in the paper
5 t̂I ← t̂
6 Step2: sample tokens for masked patches
7 while

∑
i,j m

↓
i,j < HW

r2
do

8 p̂ ∈ [0, 1]
H
r
×W

r
×K ← T (f̂) // probabilities, Sec. 3.2 in

the paper
9 // select the patch with maximum probability

10 i′, j′ ← argmaxi,j(1−m↓
i,j) ·max p̂i,j,:

11 // sample the token from the top-K elements in p̂i′,j′,:

12 k ← GIBBSSAMPLING(p̂i′,j′,:,K)
13 // update some variables
14 t̂I

i′,j′ ← k, m↓
i′,j′ ← 1, f̂i′,j′ ← ek

15 Step3: reconstruct the image
16 êI ∈← VECTORRETRIEVAL(̂tI , e)

17 x̂I ← D(êI ,m, x̂)

18 Return x̂I

inputted and reconstructed images. It consists of five parts,
including L1 loss between the pixel values in two images
(denoted as Lpixel) and the gradients of two images (de-
noted as Lgrad), the adversarial loss [19] Ladv , as well as
the perceptual loss [26] Lperc and style loss [18] Lstyle be-
tween the two images. The design of the last three losses are
inspired by the work in [35]. In the following, we describe
the aforementioned losses in detail. Among them:

Lpixel = M(|x̂⊖ x̂R|), (8)

Lgrad = M(|grad[x̂]⊖ grad[x̂R]|), (9)

where M(·) refers to a mean-value operation, grad[·] is the
function calculating the gradient of the given image.

The adversarial loss Ladv is computed with the help of a
discriminator network Dadv(·):

Ladv = −M(log[1⊖Dadv(x̂
R)])−M(log[Dadv(x̂)]),

(10)
where log[·] denotes element-wise logarithm operation. The

Module Layer Parameter size / Stride Output size

P-Enc

Linear 192× 256 32× 32× 256
Linear

ResBlock

(
256× 128
128× 256

)
× 8 32× 32× 256

Linear 256× 256 32× 32× 256

D-Codes e 512× 256 -
e′ 512× 256 -

MSG-Dec

Conv 256× 3× 3× 256/1 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Deconv
(Conv)

256× 4× 4× 256/2
(256× 4× 4× 256/2)

64× 64× 256
(32× 32× 256)

Deconv
(Conv)

256× 4× 4× 128/2
(128× 4× 4× 256/2)

128× 128× 128
(64× 64× 256)

Deconv
(Conv)

128× 4× 4× 64/2
(64× 4× 4× 128/2)

256× 256× 64
(128× 128× 128)

Conv†

(Conv)
64× 3× 3× 3/1

(3× 3× 3× 64/1)
256× 256× 3

(256× 256× 64)

Table 4. Architecture of P-VQVAE. For MSG-Dec, the brack-
eted layers in the bottom four rows denotes the layers in reference
branch. Except the convolution layer marked by †, all the other
layers are followed by a ReLU [34] activation function. The struc-
ture of Linear and Conv ResBlocks are shown in Figure 9.

Module Layer Parameter size / Stride Output size

Conv-Enc

Conv 3× 4× 4× 64/2 128× 128× 64
Conv 64× 4× 4× 128/2 64× 64× 128
Conv 128× 4× 4× 256/2 32× 32× 256
Conv

ResBlock

(
256× 3× 3× 128/1
128× 3× 3× 256/1

)
× 8 32× 32× 256

Conv 256× 3× 3× 256 32× 32× 256

Table 5. Architecture of the encoder in P-VQVAEconv. The learn-
able codebook and decoder are the same with those in P-VQVAE
in Table 4. All layers are followed by a ReLU [34] activation func-
tion.

architecture of the discriminator network is the same with
that in [35].

The conceptual loss Lperc and style loss Lstyle are com-
puted based on the activation maps from VGG-19 [42]:

Lperc =

Lperc∑
l

M(|ϕl(x̂)⊖ ϕl(x̂
R)|) (11)

Lstyle =

Lstyle∑
l

M(|G(ϕl(x̂))⊖ G(ϕl(x̂
R))|) (12)

where ϕl(·) corresponds to different layers in VGG-19
[42], G(·) denotes the function that gets the Gram matrix
of its argument. For Lperc and Lstyle, we set Lperc =
{relu1 1, relu2 1, relu3 1, relu4 1, relu5 1} and Lperc =
{relu2 2, relu3 4, relu4 4, relu5 2}. The overall recon-
struction loss is:

Lrec = Lpixel + λgLgrad + λaLadv

+ λpLperc + λsLstyle

(13)

× 𝑛

Lin
ear

Patch-based Encoder (P-Enc)

Dual-Codebook (D-Codes)

መ𝐟0,0 መ𝐟0,3

መ𝐟1,0 መ𝐟1,3

መ𝐟2,0 መ𝐟2,1 መ𝐟2,2 መ𝐟2,3

መ𝐟3,0 መ𝐟3,1 መ𝐟3,2 መ𝐟3,3

መ𝐟

መ𝐟0,1 መ𝐟0,2

መ𝐟1,1 መ𝐟1,2

× 𝑛

M
G

A

𝐞406 𝐞132

𝐞501 𝐞323

𝐞123 𝐞367

𝐞487 𝐞163

𝐞334 𝐞445

𝐞433 𝐞504

ො𝐞

𝐞241
′

𝐞256
′ 𝐞456

′

𝐞231
′

C
o

n
v

𝐞 𝐞′

1

…

0

𝐾

…

0

1

𝐾′

V
ecto

r
To

ken
izatio

n

𝐦′

C
o

n
v

C
o

n
v

D
eco

n
v

𝐦𝐱

× log2 𝑟

𝐱

ො𝐱R

C
o

n
v

𝐦

Multi-Scale Guided Decoder (MSG-Dec)

𝐻/𝑟 ×𝑊/𝑟 × 𝐶 𝐻/𝑟 ×𝑊/𝑟 × 𝐶

𝐻 ×𝑊 × 3 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 1 𝐻 ×𝑊 × 3

487

406

123 256 456 367

241 231

445

163

504

501 323 334

132 433

Vector Quantization

Lin
ear

R
esB

lo
ck

Lin
ear

ො𝐱

1

Mask Guided Addition (MGA)Linear ResBlock

Lin
ear

Lin
ear

Conv ResBlock

C
o

n
v

C
o

n
v

Elementwise Subtraction Elementwise AdditionElementwise MultiplicationPartition Downsample if NeededFlatten

Ƹ𝐭

C
o

n
v

R
esB

lo
ck

V
ecto

r
R

etrieval

Transformer Block

Layer
Norm MSA

Layer
Norm

MLP

Linear Linear

Transformer Block

Layer

Norm
MSA

Linear
Layer

Norm
Linear

MLP

Linear ResBlock

Linear Linear

Conv ResBlock

Conv Conv

(a) (b)

(c)

Figure 9. Architecture of different blocks. For Linear and Conv
ResBlocks, each layer is followed by a ReLU [34] activation func-
tion. For transformer block, there is a GELU [21] activation
function between the two linear layers. MSA: Multi-head Self-
Attention. MLP: Multi-Layer Perceptron.

Dataset n′ h D D′ Param.
FFHQ [27] 30 8 512 64 95.0M
Places2 [65] 35 8 512 64 110.7M

ImageNet [12] 35 8 1024 128 441.7M

Table 6. UQ-Transformer with different model sizes for different
datasets. n′ and h are the number of transformer block and atten-
tion head. D is the dimensionality of feature vectors that before
and after each transformer block. D′ is the dimensionality of fea-
ture vector in each attention head.

In our implementation, we set λg = 5, λa = 0.1, λp = 0.1
and λs = 250.

C. Sampling Strategy for Image Inpainting
The overall procedure can be divided into three steps:

1) get the feature vectors f̂ from the masked image x̂ us-
ing encoder and get the tokens t̂ by quantizing f̂ with latent
vectors in dual-codebook. The tokens for masked patches
are not required; 2) get the tokens for masked patches us-
ing transformer. Note that the tokens are iteratively sam-
pled with Gibbs sampling following previous transformer-
based works [17, 39, 40]; 3) retrieve quantized vectors êI

from codebook e based on the tokens and reconstruct the
inpainted image x̂I using decoder by referencing to masked
image x̂. The detailed sampling strategy is shown in Algo-
rithm 1.

D. Network Architecture
D.1. Auto-Encoder

For different datasets, we use P-VQVAE with the same
model size, and the architecture of our default P-VQVAE is
shown in Table 4. The structure of Linear and Conv Res-
Blocks are shown in Figure 9 (a) and (b). In the paper,
Section 4.3, several models are designed to show the effec-

tiveness of different components in our method, including
PUTconv, PUTone, PUTno ref , PUTqua0 and PUTtok. The
auto-encoders in the last two models are the same with our
default P-VQVAE. However, the auto-encoders in PUTconv

, PUTone and PUTno ref are different. For the auto-encoder
in PUTconv (denoted as P-VQVAEconv), all the linear layers
in the encoder are replaced with convolution layers, and the
input image is processed in a sliding window manner. Other
modules in P-VQVAEconv are the same with those in P-
VQVAE. The architecture of encoder in P-VQVAEconv (de-
noted as Conv-Enc) is shown in Table 5. The architecture
of the auto-encoder in PUTone is the same with P-VQVAE,
except only one codebook e is used for training and testing.
While for the auto-encdoer in PUTno ref , it can be obtained
from P-VQVAE by removing the reference branch in de-
coder.

D.2. Transformer

The architecture of transformer block is depicted in Fig-
ure 9 (c). There are several (denoted as n′) successive trans-
former blocks in UQ-Transformer. Within each transformer
block, the input features will be enhanced by self-attention.
Formally, let f̄ ∈ R

HW
r2

×D be the input of transformer
block. At the b-th transformer block, the feature vectors
are processed as:

f̃ b−1 = f̄ b−1 +MSA(LN(f̄b−1)),

f̄ b = f̃ b−1 +MLP(LN(f̃ b−1)),
(14)

where LN(·), MLP(·), MSA(·) denote layer normalization
[1], multi-layer perceptron and multi-head self-attention re-
spectively. More specifically, given input f ∈ R

HW
r2

×D,
MSA(·) could be formated as:

hj = softmax(
(fwj

q)(fw
j
k)

T

√
D′

)(fwj
v),

MSA(f) = [h0;h1; ...;hh−1]wo,

(15)

where h is the number of head, wj
q,w

j
k,w

j
v ∈ RD×D′

,
wo ∈ RhD′×D are the learnable parameters. [·; ...; ·] is the
operation that concatenates the given arguments along the
last dimension. By changing the values of h,D,D′ and n′,
we can easily scale the size of UQ-Transformer.

We use UQ-Transformer with different model sizes for
different datasets, which are shown in Table 6. As a re-
minder, the configuration of transformers are the same with
those in ICT [53].

E. More Results
We show more qualitative comparisons for FFHQ [27]

(Figure 11), Places2 [65] (Figure 12) and ImageNet [12]
(Figure 13 and Figure 14).

Models
Datasets

FFHQ [27] Places2 [65] ImageNet [12]

UQ-Transformer
(# tokens/second) 37.138 32.048 17.186

P-VQVAE
(# images/second) 62.949

Table 7. Inference speed of different models. Tested on RTX 3090.
The time consumption of P-VQVAE includes extracting feature
vectors from image, quantizing feature vectors to latent vectors,
and reconstructing the input image.

PUT 1

Input PUTconv PUTone

PUTtok PUTqua0 PUT 2 PUT 3

502 852083 724

782124 284

292 380 791667

PUTno_ref

Input

Artifacts

PUT 1 PUT 2GT

Figure 10. Results with artifacts. Top: color distortion. Bottom:
black regions. Please pay attention to the contents in yellow rect-
angles.

F. More Discussions
Inference speed. As mentioned in Section 5 in the paper,
the main limitation of PUT is the inference speed, which
is also a common issue of existing transformer-based auto-
regressive methods [17, 40, 50, 53]. Here we present the
inference speed of PUT in Table 7. Note that the time con-
sumption of inpainting a masked image depends on the area
of masked regions.

Artifacts. We experimentally find that there sometimes
contain some artifacts in the generated results of PUT, as
shown in Figure 10. These artifacts can be divided into two
categories. 1) Color distortion: the color of generated con-
tents my not be consistent with the color of provided con-
tents in the image. 2) Black region: PUT may produce black
regions if the provided masked image contain lots of black
pixels.

69110

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1

MEDECDFv2

69119

PUT (Ours) 1ICT 3

PIC 3PIC 1 PIC 2

GT

Input

69126

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

69659

69152

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3

69039, mr0.4_0.6

GT

Figure 11. Qualitative comparisons between different methods on FFHQ [27].

Places365_val_00002990

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1

MEDECDFv2

PUT (Ours) 1ICT 3

PIC 3PIC 1 PIC 2

GT

Input

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

MEDECDFv2 PIC 3PIC 1 PIC 2Input

PUT (Ours) 3PUT (Ours) 2ICT 2ICT 1 PUT (Ours) 1ICT 3GT

Places365_val_00002353

Places365_val_00024117

Places365_val_00021240

Figure 12. Qualitative comparisons between different methods on Places2 [65].

D
Fv

2
ILSVRC2012_val_00001290

G
T

In
p

u
t

P
U

T
(O

u
rs

)
1

IC
T

2
EC

M
ED

P
IC

P

U
T

(O
u

rs
)

2
IC

T
1

ILSVRC2012_val_00024017 ILSVRC2012_val_00027367

ILSVRC2012_val_00036474

ILSVRC2012_val_00008364
ILSVRC2012_val_00002758

ILSVRC2012_val_00001568
ILSVRC2012_val_00026068

Figure 13. Qualitative comparisons between different methods on ImageNet [12].

In
p

u
t

EC

ILSVRC2012_val_00030569
ILSVRC2012_val_0006183ILSVRC2012_val_00043718

ILSVRC2012_val_00045052
ILSVRC2012_val_00049085

ILSVRC2012_val_00030878 ILSVRC2012_val_0028823
D

Fv
2

G
T

P
U

T
(O

u
rs

)
1

IC
T

2
M

ED
P

IC

P
U

T
(O

u
rs

)
2

IC
T

1
ILSVRC2012_val_00039893

Figure 14. Qualitative comparisons between different methods on ImageNet [12].

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . P-VQVAE
	3.2 . UQ-Transformer
	3.3 . Sampling Strategy for Image Inpaining

	4 . Experiments
	4.1 . Implementation Details
	4.2 . Main Results
	4.3 . Discussions

	5 . Conclusions and Limitations
	A . Overview
	B . Training of P-VQVAE
	C . Sampling Strategy for Image Inpainting
	D . Network Architecture
	D.1 . Auto-Encoder
	D.2 . Transformer

	E . More Results
	F . More Discussions

