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were behavioral performance (reaction times, errors) and 
whole-brain activity during the EWMT. Psychophysiologi-
cal interaction analysis was used to examine amygdala con-
nectivity during emotional distraction. BPD patients after 
dissociation induction showed overall WM impairments, 
a deactivation in bilateral amygdala, and lower activity 
in left cuneus, lingual gyrus, and posterior cingulate than 
BPD_N, along with stronger left inferior frontal gyrus 
activity than HC. Furthermore, reduced amygdala FC with 
fusiform gyrus and stronger amygdala FC with right mid-
dle/superior temporal gyrus and left inferior parietal lobule 
was observed in BPD_D. Findings suggest that dissociation 
affects reactivity to emotionally salient material and WM. 
Altered activity in areas associated with emotion process-
ing, memory, and self-referential processes may contribute 
to dissociative states in BPD.

Keywords  Borderline personality disorder · Working 
memory · Memory · Neuroimaging · Stress

Abstract  Affective hyper-reactivity and impaired cognitive 
control of emotional material are core features of border-
line personality disorder (BPD). A high percentage of indi-
viduals with BPD experience stress-related dissociation, 
including emotional numbing and memory disruptions. 
So far little is known about how dissociation influences 
the neural processing of emotional material in the context 
of a working memory task in BPD. We aimed to investi-
gate whole-brain activity and amygdala functional con-
nectivity (FC) during an Emotional Working Memory Task 
(EWMT) after dissociation induction in un-medicated BPD 
patients compared to healthy controls (HC). Using script-
driven imagery, dissociation was induced in 17 patients 
(‘BPD_D’), while 12 patients (‘BPD_N’) and 18 HC were 
exposed to neutral scripts during fMRI. Afterwards, par-
ticipants performed the EWMT with neutral vs. negative 
IAPS pictures vs. no distractors. Main outcome measures 
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Introduction

Borderline personality disorder (BPD) is a severe mental 
disorder, characterized by emotion dysregulation, insta-
ble cognitions, impulsivity, interpersonal disturbances, 
and dissociation [1–6]. Previous neuroimaging studies in 
BPD suggest that a hyper-reactivity and hyper-connectiv-
ity of the amygdala may underlie disturbed emotion pro-
cessing in BPD [7, 8], although discrepant findings were 
also reported [9]. The amygdala plays a crucial role in the 
initiation of fear and stress responses [10] and might also 
be involved in stress-related dissociation [11].

Dissociation occurs in a high percentage (~75–80) of 
individuals with BPD, involving disruptions in the usu-
ally integrated functions of consciousness, perception, 
identity, memory, and affect and has been closely linked 
to psychological trauma [6, 12–17]. Dissociative symp-
toms such as depersonalization, derealization, numbing, 
and analgesia may provide a state of subjective detach-
ment from extremely stressful experiences, e.g., by damp-
ening overwhelming emotions and reducing awareness of 
pain [15, 17]. In pathological dissociation, the cost of this 
subjective detachment is a disruption of executive func-
tions that are crucial to goal-directed behavior, such as 
attention, learning, and memory. More specifically, disso-
ciation may hinder the conscious processing and integra-
tion of salient information in autobiographical memory, 
which can have detrimental effects on the development of 
identity and emotion regulation capacities. Dissociation 
may hinder the recall and learning of self-relevant infor-
mation also during therapy [13, 24] and in BPD, disso-
ciative symptoms predicted poor treatment outcome [18, 
19]. However, the precise neuropsychological mecha-
nisms underlying this relationship remain unclear.

Neurobiological models have linked dissociation to a 
dampened activity in the amygdala and increased recruit-
ment of ‘cognitive control’ regions, such as the medial pre-
frontal cortex (mPFC), anterior cingulate cortex (ACC), 
and inferior frontal gyrus [15, 20] as well as to altered 
activity in the superior temporal gyrus, precuneus, pos-
terior cingulate, which are implicated in autobiographi-
cal memory and self-referential processing [21–23]. The 
amygdala appears to be an important hub within this net-
work, sharing strong functional connections with the ACC, 
insular and orbitofrontal cortex, mPFC, parahippocampal 
gyrus, precuneus, posterior cingulate, among others [24, 
25]. In summary, it can be assumed that dissociation sub-
stantially affects activity within an ‘amygdala network’ 
involved in the processing of self-relevant emotional infor-
mation and the initiation of stress responses. In BPD, how-
ever, so far there is little empirical evidence for this.

Only few neuroimaging studies in BPD so far investi-
gated associations between self-reported dissociation and 

brain activity during experimental challenge, such as the 
presentation of aversive images or negative words [26–29].  
To the best of our knowledge, only two neuroimag-
ing studies in BPD used script-driven imagery to more 
directly investigate the effect of experimentally induced 
dissociation on brain activity [21, 29]. In this well-estab-
lished paradigm, a narrative of an autobiographical situ-
ation involving dissociative experiences (‘dissociation 
script’) is created and presented in an experimental set-
ting, e.g., during functional magnetic resonance imaging 
(fMRI). Participants are instructed to listen to this script 
and to recall their autobiographical experiences as vividly 
as possible [23], which successfully induced dissociation 
in previous research [21, 29]. When exposed to a disso-
ciation script compared to a neutral script, BPD patients 
showed significantly increased activity in the left infe-
rior frontal gyrus and diminished temporo-limbic activ-
ity, which was even more pronounced in a subgroup of 
traumatized patients [21]. We recently combined script-
driven imagery with an Emotional Stroop Task (EST), to 
investigate the effect of a dissociation induction on inter-
ference inhibition, on a behavioral and neural level [29]. 
BPD patients exposed to a dissociation script showed 
impaired accuracy and slower reaction times for negative 
words than patients exposed to a neutral script. Patients 
after dissociation induction further showed increased left 
superior frontal activity in response to negative vs. neu-
tral words [29]. However, it remains unclear how brain 
areas may interact during affective–cognitive processing 
after dissociation induction in BPD.

Moreover, to our knowledge, no study in BPD so far 
investigated how dissociation affects the neural processing 
of emotional material in the context of a working memory 
task, which requires the conscious manipulation of task-
irrelevant stressful information. We previously used a 
modified version of the Emotional Working Memory Task 
(EWMT) in which task-irrelevant neutral vs. negative inter-
personal pictures from the International Affective Picture 
System (IAPS) [30] or only a fixation cross (i.e., no distrac-
tors) are presented during the delay interval of a Sternberg 
item recognition task [27, 28]. Participants are instructed to 
ignore distractors, focusing solely on the WM task, thereby 
voluntarily inhibiting emotion processing in favor of cog-
nitive processing. WM impairments and amygdala reactiv-
ity to negative pictures were significantly stronger in BPD 
patients, suggesting increased emotional distractibility 
compared to healthy controls (HC) [27]. During emotional 
distraction, BPD patients further showed a stronger cou-
pling of the amygdala with the hippocampus and dorsome-
dial PFC, suggesting enhanced self-referential processing 
[28].

Here, we aimed to investigate the impact of experimen-
tally induced dissociation on brain activity and amygdala 
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functional connectivity during the EWMT. Studying this 
relationship on a behavioral and neural level might help to 
shed more light on the effects of stress-related dissociation 
in BPD. Script-driven imagery was used to induce disso-
ciation. For patients exposed to a neutral script, we hypoth-
esized to replicate previous findings of amygdala hyper-
reactivity to emotional pictures, while patients exposed to 
a dissociation script were expected to show significantly 
dampened amygdala reactivity and increased activity in 
frontal areas (inferior frontal gyrus, medial prefrontal cor-
tex, anterior cingulate cortex).

Materials and methods

Sample

Sixty women aged between 18 and 45  years (40 patients 
with BPD according to DSM-IV [16] and 20 female HC) 
participated. BPD patients were recruited via advertisement 
on websites or referred from the residential treatment unit 
of the Department of Psychosomatic Medicine and Psycho-
therapy at the Central Institute of Mental Health (CIMH) 
in Mannheim, Germany. HC were recruited via newspaper 
advertisements. General exclusion criteria were serious 
somatic illnesses, traumatic brain injuries, developmental 
disorders, and MRI-related criteria (metal implants, preg-
nancy, left-handedness, claustrophobia). Exclusion criteria 
for HC were lifetime history of Axis-I/II disorders. Specific 
exclusion criteria for patients were psychotropic medica-
tion within 4 weeks prior to the study, substance depend-
ence during the last year, substance abuse within 2 months 
prior to participation, current/lifetime psychotic or bipolar-
I disorder, and life-threatening suicidal crisis.

Patients were randomly assigned to two experimen-
tal conditions: 20 patients were exposed to a dissociation 
script (‘BPD_D’), while 20 BPD patients (‘BPD_N’) and 
20 HC were exposed to a neutral script. An increase of 
≥1.5 scores on the Dissociation Stress Scale 4 (DSS-4, see 
below) [31] after script compared to baseline was defined 
as inclusion criterion for the BPD_D group (criterion was 
met by all participants assigned to this group). To ensure 
that individuals in the BPD_N group were not highly dis-
sociated, we excluded patients with DSS-4 scores of ≥3 
at baseline and/or an increase of >1.5 scores after the 
experiment (three patients had to be excluded for this rea-
son). Part of the collected data had to be discarded due to 
movement artifacts during fMRI (BPD_N: n = 2, BPD_D: 
n = 3, HC: n = 2), technical problems during script pres-
entation (BPD_N: n =  1), or inconsistent button presses 
(95–100% errors, indicated that task instructions were not 
understood correctly in 2 BPD_N). The final sample com-
prised 17 BPD_D, 12 BPD_N, and18 HC.

Clinical diagnoses were assessed by trained diagnosti-
cians using the Structured Clinical Interview for DSM-IV 
Axis-I Disorders (SCID-I) [32] and International Person-
ality Disorder Examination (IPDE) [33]. Further clinical 
assessment included questionnaires on symptom severity 
(Borderline Symptom List 23, BSL-23 [34]), childhood 
abuse/neglect (Childhood Trauma Questionnaire, CTQ 
[35]), trait dissociation (Dissociative Experiences Scale, 
DES [36]), depressive symptoms (Beck Depression Inven-
tory II, BDI-II [37]), state anxiety (State Anxiety Ques-
tionnaire, STAI [38]), and Attention-Deficit Hyperactivity 
Disorder symptoms (childhood: Wender Utah Rating Scale, 
WURS [39], adulthood: ADHD-Checklist [40]).

The groups did not differ significantly regarding age and 
years of education (Table  1A). Both BPD groups scored 
significantly higher than HC on clinical measures but did 
not differ significantly from each other; all patients reported 
at least one type of severe to extreme childhood abuse and/
or neglect. Criteria for comorbid Posttraumatic Stress Dis-
order (PTSD) were met by 7 BPD_D patients (41%) and 
5 BPD_N patients (41%), i.e., were distributed equally 
in both BPD groups. Further comorbidities and clinical 
characteristics of the two BPD groups are presented and 
compared in Table  1B. Dissociative states were induced 
using script-driven imagery and measured by the DSS-4, 
a self-rating scale with excellent internal consistency and 
reliability, high specificity, and sensitivity to change in 
symptomatology [31]. The DSS-4 consists of four items 
on current psychological (derealisation, depersonalization) 
and somatic (pain perception, hearing) dissociation and one 
item on current aversive tension (10-point Likert scales, 
0 = not at all, 9 = extremely).

Emotional Working Memory Task (EWMT)

The EWMT was a validated Sternberg item recognition 
task [41], modified by Oei and colleagues [42, 43]. Our 
adapted version [27] consisted of 48 trials, each starting 
with a set of three uppercase letters (memoranda, 1000 ms), 
followed by a delay interval (1500 ms), and a probe (thee 
uppercase letters, 2000 ms). In half of the trials, one of the 
three memoranda was present in the probe. Participants had 
to press a ‘yes’ or ‘no’ button indicating whether they had 
recognized a target or not. During the delay interval either 
no distractors (only a fixation cross) or neutral vs. negative 
distractors (interpersonal scenes from the IAPS, selected 
based on arousal and valance ratings in the general popu-
lation [30]) were presented. Negative pictures depicted 
scenes of interpersonal violence (e.g., sexual attack, physi-
cal assault, beaten/frightened child, physically mutilated 
body). Neutral pictures included interpersonal scenes with 
similar complexity (e.g., people at a market place or super-
market). Trials without distractors (only a fixation cross) 
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Table 1   Demographic variables, dissociation and arousal ratings, and clinical characteristics

(A) BPD_D BPD_N HC

Age (years) 27.41 ± 6.20 25.17 ± 6.21 29.61 ± 8.61 F(2,44) = 1.38, p = 0.262

Years of education 10.59 ± 2.62 10.08 ± 3.03 10.72 ± 1.99 F(2,44) = 0.25, p = 0.784

DSS-4

 Dissociation ratings baseline 3.44 ± 1.99 2.30 ± 1.14 1.31 ± 0.66 F(2,42) = 11.27, p < 0.0001.
BPD_D-HC: 2.26, p < 0.0001
BPD_N-HC: 1.00, p = 0.160
BPD_D-BPD_N: 1.27, p = 0.062

 Dissociation ratings after script 6.85 ± 2.03 1.85 ± 0.84 1.19 ± 0.51 F(2,42) = 92.50, p < 0.0001
BPD_D-HC: 5.79, p < 0.0001
BPD_N-HC: 0.60, p = 0.465
BPD_D-BPD_N: 5.19, p < 0.0001

 Arousal rating baseline 4.76 ± 2.36 3.91 ± 1.97 2.72 ± 2.02 F(2,42) = 3.43, p = 0.042
BPD_D-HC: 1.90, p = 0.035
BPD_N-HC: 1.20, p = 0.325
BPD_D-BPD_N: 0.72, p = 0.672

 Arousal rating after script 7.71 ± 2.11 4.50 ± 2.65 2.17 ± 2.28 F(2,42) = 26.67 p < 0.0001
BPD_D-HC: 5.46, p < 0.0001
BPD_N-HC: 1.83, p = 0.840
BPD_D-BPD_N: 3.62, p < 0.0001

BSL-23 total score (BPD symptom 
severity)

47.12 ± 19.23 43.33 ± 13.36 1.33 ± 1.81 F(2,44) = 60.51, p < 0.0001, ƒ2 = 0.73
BPD_D-HC: 45.78, p < 0.0001
BPD_N-HC: 42.00, p < 0.0001
BPD_D-BPD_N: 3.78, p = 0.737

DES total score (trait dissociation) 31.74 ± 16.52 26.93 ± 13.50 2.68 ± 2.04 F(2,44) = 28.37, p < 0.0001, ƒ2 = 0.56
BPD_D-HC: 29.01, p < 0.0001
BPD_N-HC: 24.26, p < 0.0001
BPD_D-BPD_N: 4.81, p = 0.547

BDI-II (depressive symptoms) 24.47 ± 11.89 26.75 ± 10.68 1.67 ± 2.25 F(2,44) = 38.49, p < 0.0001, ƒ2 = 0.64
BPD_D-HC: 22.80, p < 0.0001
BPD_NHC: 25.08, p < 0.0001
BPD_D-BPD_N: 2.28, p = 0.783

STAI statea (state anxiety) 56.19 ± 10.13 52.92 ± 6.36 29.39 ± 5.41 F(2,43) = 54.90, p < 0.0001, ƒ2 = 0.74
BPD_D-HC: 26.79, p < 0.0001
BPD_ N-HC: 23.53, p < 0.0001
BPD_D-BPD_N: 2.55, p = 0.503

STAI traita (trait anxiety) 58.13 ± 7.03 60.58 ± 5.83 28.72 ± 4.66 F(2,43) = 138,83, p < 0.0001, ƒ2 = 0.87
BPD_D-HC: 29.40, p < 0.0001
BPD_N-HC: 31.86, p < 0.0001
BPD_D-BPD_N: 2.05, p = 0.522

WURS (childhood ADHD symptoms) 98.80 ± 41.16 94.42 ± 27.91 49.53 ± 27.52 F(2,39) = 9.88, p < 0.0001, ƒ2 = 0.39
BPD_D-HC: 49.27, p < 0.0001
BPD_N -HC: 44.88, p < 0.0001
BPD_D-BPD_N: 4.39, p = 0.938

ADHD checklista (adult ADHD symp-
toms)

14.94 ± 9.80 16.83 ± 8.33 3.94 ± 2.88 F(2,44) = 14.11, p < 0.0001, ƒ2 = 0.39
BPD_D-HC: 10.99, p < 0.0001
BPD_N-HC: 12.89, p < 0.0001
BPD_D-BPD_N: 1.89, p = 0.789

CTQ total sum-score (childhood abuse 
and neglect)

68.23 ± 25.12 70.58 ± 16.46 33.39 ± 11.88 F(2,44) = 20.34, p < 0.0001, ƒ2 = 0.48
BPD_D-HC: 34.91, p < 0.0001
BPD_N-HC: 37.19, p < 0.0001
BPD_D-BPD_N: 2.29, p = 0.944

(B) Clinical characteristics and comorbidities n (%) BPD_D (n = 17) BPD_N (n = 12) χ2 tests

BPD criteria fulfilled (DSM-IV)

 Fear of abandonment 1 9 (53%) 12 (100%) χ2 = 0.37, p = 0.830

 Instable relationships 2 8 (47%) 8 (67%) χ2 = 1.60, p = 0.450

 Identity disturbance 3 10 (59%) 10 (83%) χ2 = 3.53, p = 0.171
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Table 1   continued

(B) Clinical characteristics and comorbidities n (%) BPD_D (n = 17) BPD_N (n = 12) χ2 tests

 Impulsivity 4 7 (41%) 5 (42%) χ2 = 0.52, p = 0.773

 Non-suicidal self-injury 5 14 (82%) 8 (67%) χ2 = 1.08, p = 0.583

 Affective instability 6 17 (100%) 12 (100%) –

 Emptiness 7 12 (71%) 9 (75%) χ2 = 0.73, p = 0.695

 Anger 8 17 (100%) 8 (67%) χ2 = 2.31, p = 0.316

 Dissociation 9 17 (100%) 12 (100%) –

Self-injurious behavior (last 12 month) 15 (88%) 10 (83%) χ2 = 0.14, p = 0.706

Major depressive disorder Current 2 (12%) 0 (0%) χ2 = 1.49 p = 0.223

Lifetime 15 (88%) 8 (66%) χ2 = 2.28, p = 0.131

Dysthymia Current 0 (0%) 1 (8%) χ2 = 1.51, p = 0.219

Panic disorder Current 3 (18%) 2 (17%) χ2 = 0.01, p = 0.970

Lifetime 5 (29%) 3 (18%) χ2 = 0.05, p = 0.824

Social phobia Current 8 (47%) 2 (17%) χ2 = 2.83, p = 0.093

Lifetime 10 (59%) 4 (33%) χ2 = 1/78, p = 0.182

Specific phobia Current 3 (18%) 1 (8%) χ2 = 0.48, p = 0.488

Lifetime 3 (18%) 1 (8%) χ2 = 0.48, p = 0.488

Obsessive compulsive disorder Lifetime 4 (24%) 1 (8%) χ2 = 1.09, p = 0.296

Posttraumatic stress disorder Current 7 (41%) 5 (41%) –

Lifetime 8 (47%) 5 (41%) χ2 = 0.88, p = 0.646

Somatization disorder Lifetime 1 (6%) 0 (0%) χ2 = 0.71, p = 0.398

Eating disorders Current 1 (6%) 1 (8%) –

Lifetime 7 (41%) 3 (18%) χ2 = 0.76, p = 0.384

Drug abuse Lifetime 2 (12%) 1 (8%) χ2 = 0.15, p = 0.929

Alcohol abuse Lifetime 1 (6%) 0 (0%) χ2 = 1.52, p = 0.468

Previous medication 13 (76%) 9 (75%) χ2 = 0.008, p = 0.927

Acamprosate 0 (0%) 1 (8%)

Atypical antipsychotics 1 (6%) 1 (8%)

BZD 2 (12%) 1 (8%) χ2 = 6.21, p = 0.400

SNRI 3 (18%) 2 (17%)

SSRI 6 (35%) 1 (8%)

TCA 1 (6%) 3 (18%)

Time of last medicationb

 1 month ago 3 (18%) 1 (8%)

 ≥3 month ago 2 (12%) 1 (8%)

 ≥6 month ago 2 (12%) 6 (50%) χ2 = 4.76, p = 0.190

 ≥12 month ago 4 (24%) 1 (8%)

M mean, SD standard deviation, DSS-4 Dissociation Stress Scale 4, BPD_D patients with borderline personality disorder exposed to a disso-
ciation script, BPD_N patients with borderline personality disorder exposed to a neutral script, HC healthy controls, BSL-23 borderline, BZD 
benzodiazepine, SSRI selective serotonin reuptake inhibitor, SNRI serotonin–norepinephrine reuptake inhibitor, TCA Tricyclic antidepressant. 
Symptom List 23, DES Dissociative Experience Scale, BDI Beck Depression Inventory, STAI State Anxiety Inventory, CTQ Childhood Trauma 
Questionnaire, WURS Wender Utah Rating Scale
a  STAI scores in one BPD_D patient and WURS scores in 3 HC and 2 BPD_D patients were missing
b  Information in 2 BPD_D patients was missing
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were added, as even neutral interpersonal stimuli were 
found to be perceived as emotionally arousing in individu-
als with BPD, increasing amygdala activity [27]. In addi-
tion, participants performed 15 trials of the basic Sternberg 
paradigm without distractors (i.e., only a fixation cross) to 
assess baseline working memory. Target-present and target-
absent trials were equal in all conditions and balanced in 
a pseudo-random manner. Software Presentation (Neurobe-
havioural systems, http://www.neurobs.com/) was used to 
present stimuli and record behavioral data.

Procedure

The experiment was approved by the local ethics com-
mittee (Medical Faculty of Heidelberg University) and 
conducted at the CIMH in Mannheim, Germany. All par-
ticipants received information about the study and scanning 
procedure, signed written informed consent, and underwent 
diagnostic and clinical assessment. Then, participants pre-
pared a personalized script of 30-s length together with 
one experimenter (F.S. and D.W.). Patients assigned to 
the BPD_D group were instructed to report a non-trauma-
related autobiographical situation involving dissociation. 
BPD_N and HC were instructed to report an emotion-
ally neutral everyday situation. A person unknown to par-
ticipants read each script aloud recording it on audio tape. 
During the experiment, participants first practiced five tri-
als of the EWMT outside the scanner. Inside the scanner, 
scripts were presented via headphones. DSS-4 ratings were 
assessed before and after scripts. Then participants per-
formed the EWMT (first the 15 trials of the basic Sternberg 
paradigm, then the EWMT with and without distractors). 
Participants were instructed to focus on the middle of the 
screen, to concentrate on the task only and to ignore dis-
tractors. Event-related fMRI data were acquired during rat-
ings, script, and EWMT.

FMRI scan protocol

MRI was conducted using a 3-Tesla Siemens TRIO-Scan-
ner (Siemens, Erlangen). Head cushions and headphones 
were used to reduce head movement artifacts and scan-
ning noise. Blood oxygen level-dependent (BOLD) signal 
was measured with 36 3-mm transversal slices covering 
the entire brain using gradient echo-planar-imaging (EPI) 
[T2-weighted contrast, field of view  =  192  ×  192  mm, 
voxel size = 3 × 3 × 3 mm3, voxel matrix = 64 × 64, flip 
angle = 80°, spin-echo time = 30 ms, inter-scan repetition 
time (TR) = 2000 ms]. After fMRI, as individual template 
for functional data, a high-resolution anatomical scan was 
acquired using three-dimensional magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) [T1-weighted 
contrast, voxel size = 1 × 1 × 1 mm3].

Statistical analysis

Custom statistical software (SPSS, Chicago: SPSS Inc) 
was used for manipulation check, behavioral data analy-
sis, and follow-up (subgroup) comparisons. Normal distri-
bution was checked for all variables using the Kolmogo-
rov–Smirnov test. For repeated measurement analysis of 
variance (rmANOVA), assumptions of variance equal-
ity (Levene’s tests) and sphericity (Mauchly’s test) were 
checked (in case of violations Greenhouse–Geisser correc-
tions were applied). Significant effects were followed up 
using between-group or paired t tests (p < 0.05, two tailed).

Manipulation check

A 3  ×  2 rmANOVA with DSS4-scores before and after 
script as dependent variables (within-subject factor Time) 
and Group as between-subject factor was performed to 
check whether self-reported dissociation significantly 
changed after script.

Behavioral (WM) data

WM data were checked for outliers. Errors were scored 
as incorrect, too early responses, and misses (omissions) 
separately. Percentage of incorrect responses as well as 
reaction times (RTs) for correct trials were analyzed using 
two separate 3 ×  3 rmANOVAs with Group as between-
subjects factor and Condition (no distraction vs. neutral 
vs. negative distractors) as within-subject factor. Differ-
ences in specific error types (wrong responses, too early 
responses, misses) were evaluated using a multivariate 
ANOVA (MANOVA) with Group as fixed factor. Basic 
working memory performance (errors, RTs) of trials with-
out distraction was compared between groups using two 
separate ANOVAs.

Fmri data

Functional imaging data were analyzed using standard pro-
cedures implemented in the Statistical Parametric Mapping 
package (SPM8, Neurobehavioral systems, Berkeley, CA; 
http://www.fil.ion.ucl.ac.uk/spm/). EPI time series were 
preprocessed according to common standards, including 
slice time correction, spatial realignment, and unwarping to 
correct for head motion, co-registration onto participants’ 
high-resolution T1 scan, normalization to the standard 
brain of the Montreal Neurological Institute (MNI) space, 
and smoothing using a Gaussian kernel with a full width 
at half maximum (FWHM) of 9  mm. Statistical analyses 
of our event-related design relied upon the general linear 
model (GLM) to estimate effects of interest [44].

http://www.neurobs.com/
http://www.fil.ion.ucl.ac.uk/spm/
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Region of interest (ROI) and whole‑brain (WB) analysis

Single subject level For each participant, task-related activity 
was identified by convolving a vector of the onset times of the 
following seven experimental events of interest with a canoni-
cal hemodynamic response: memoranda, delay intervals (no, 
neutral, negative distractors), and probes after no, neutral, and 
negative distractors, respectively. The GLM further included 
nuisance variables to control for movement artifacts.

Group level To test our a priori hypothesis of decreased 
amygdala activity in BPD_D, a ROI analysis was conducted 
using an anatomical mask of the bilateral amygdala (cre-
ated by the Automated Anatomical Labeling software, AAL 
[45]), smoothed with a cube of voxels of size (FWHM) of 
9 mm. Values of percent signal change in this region dur-
ing delay intervals (no vs. neutral vs. negative distractors) 
were extracted for each participant using the rfxplot tool-
box [46] and exported to SPSS. Equivalent to the analysis 
of behavioral data, a 3 ×  3 rmANOVA (between-subject 
factor: Group, within-subject factor: Condition) was then 
performed in SPSS. To ensure that group differences were 
not confounded by basic differences in arousal or WM, we 
repeated the analysis with arousal ratings as well as WM 
errors as covariate, using two separate rmANCOVAs.

WB analysis Consistent with our previous studies [27, 28],  
a full factorial design was used to model effects of group 
and experimental task. Within this model, we tested for 
overall group differences (F contrast) during negative dis-
tractors relative to no distractors (as a more neutral control 
condition [47–49]). Gaussianized F/T statistic images were 
determined using a significance threshold of p < 0.05, Fam-
ily-wise error (FWE) corrected for multiple comparisons 
on the voxel-wise WB level. Based on our a priori hypoth-
eses, small volume corrections (SVC) with pre-defined 
anatomical masks of the inferior frontal gyrus, mPFC, 
and ACC (regions of interest) were applied. To follow-up 
significant WB group effects in subgroup comparisons, 
parameter estimates were exported to SPSS, and analyzed 
using between-group t tests (p < 0.05).

Psychophysiological interaction analysis (PPI) analysis

The generalized PPI (gPPI) toolbox by McLaren [50] was 
applied to analyze changes in the correlation of time series of 
the amygdala (seed region) with time series of regions across 
the whole brain, dependent on our experimental manipula-
tion [51, 52]. For the amygdala seed, the same anatomical 
mask of bilateral amygdala and the same contrast (negative 
vs. no distractors) as in the above-mentioned ROI analyses 
were used. For each participant, mean time series of activ-
ity from voxels falling within this anatomical mask were 
extracted and first-level contrasts for the EWMT conditions 
were computed. Since PPI analysis of event-related designs 

lacks power [52], increasing the probability of false-negative 
results (Type-II-error), we decided to apply a more lenient 
initial clustering threshold of p < 0.001, uncorrected on the 
voxel-wise level (cluster size k > 10, Z > 3.5). However, only 
clusters FWE corrected for multiple comparisons (p < 0.05) 
at the cluster level are discussed. PPI beta estimates of sig-
nificant clusters for negative vs. no distractors (F contrast) 
were extracted and exported to SPSS. Overall group differ-
ences were then evaluated with a MANOVA and followed up 
using post hoc t tests. To ensure that group differences were 
not confounded by basic differences in WM, we repeated the 
analysis with WM errors as covariate (MANCOVA).

Results

Dissociation induction

Means with standard deviation of DSS-4 scores are 
reported in Table 1A. Main effects of Time (F(1,43) = 23.01, 
p < 0.0001, η2 = 0.35) and Group (F(2,43) = 48.57, p < 0.0001, 
η2  =  0.69) and the interaction effect (F(2,43)  =  43.79, 
p  <  0.0001, η2 =  0.67) were significant with higher scores 
after script than baseline in BPD_D (t(16) = 7.57, p < 0.0001) 
but not in the other groups (p > 0.05).

Behavioral data

There were no significant group differences in basic WM 
(without distractors, p > 0.05, data not shown). Figure 1 shows 
means ± standard errors of the mean (SEM) for percentage of 
incorrect responses (Fig. 1a) and RTs of correct trials (Fig. 1b) 
during the EWMT in BPD_D, BPD_N, and HC.

Errors during the EWMT

The rmANOVA revealed a significant Group effect 
(F(2,43)  =  4.43, p  =  0.018, η2  =  0.17) with an overall 
higher percentage of incorrect responses in BPD_D than in 
BPD_N (p = 0.012) and in HC (p = 0.019) (see Fig. 1a). 
The MANOVA further indicated that there were significant 
group differences in the number of misses (F(2,43) = 6.86, 
p = 0.003, η2 = 0.24), due to more misses in BPD_D than 
in BPD_N (p = 0.001) and HC (p = 0.011), as shown in 
Supplemental Figure S1.

Reaction times during the EWMT

The rmANOVA revealed a significant Condition effect 
(F(2,42) = 4.17, p = 0.022, η2 = 0.17) with longer RTs dur-
ing neutral (p = 0.019) and negative distractors (p = 0.003) 
than during no distractors, but no significant Group effect 
or interaction effect (both p > 0.05) (see Fig. 1b).
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FMRI data

ROI analysis

Figure  2 depicts mean ±  SEM of percent signal change 
in the bilateral amygdala. The rmANOVA revealed a sig-
nificant main effect for Group (F(2,44) =  5.36, p =  0.008, 
ƒ2 = 0.20) with higher amygdala activity in BPD_N than 
in BPD_D (p = 0.002) and in HC (p = 0.023) (no signifi-
cant differences between BPD_D and HC, p > 0.05). Fur-
thermore, there was a trend for a main effect of Condition 
(F(2,87) =  3.21, p =  0.050, ƒ2 =  0.13) (interaction effect: 
p > 0.05).

When including self-reported aversive tension (DSS-4 
item) as covariate, group differences remained significant 
(F(2,44) = 4.89, p = 0.012, ƒ2 = 0.19). Likewise, the rmAN-
COVA with WM errors as covariate still revealed a sig-
nificant Group effect (F(2,42) = 3.43, p = 0.042, ƒ2 = 0.14) 
with higher amygdala activity in BPD_N than in BPD_D 
(p = 0.015) and HC (p = 0.043).

Whole‑brain analysis

As a main effect of task (F contrast), there were significant 
changes in brain activity in the bilateral amygdala, hip-
pocampus, insula, cingulate gyrus, dorsomedial, dorsolat-
eral, ventrolateral prefrontal, occipital, parietal, temporal, 
and subcortical regions (see Table  2). Significant group 

Fig. 1   Working memory performance during the Emotional Work-
ing Memory Task (after no distraction, after neutral distractors, 
after negative distractors) in patients with borderline personal-
ity disorder (BPD) after dissociation induction (BPD_D) and after 
the neutral script (BPD_N) as well as in healthy controls (HC). a 
Means  ±  standard errors of the mean of percentage of errors. b 
Means ± standard errors of the mean of reaction times in correct tri-
als

Fig. 2   Percent signal change in the bilateral amygdala (region of 
interest analysis) during the Emotional Working Memory Task (no 
distraction, neutral distractors, negative distractors) in patients with 
borderline personality disorder (BPD) after dissociation induction 

(BPD_D) and after the neutral script (BPD_N) as well as in healthy 
controls (HC). Clusters in the bilateral amygdala, detected by the 
main effect of task (p < 0.05, FWE corrected on the voxel-wise level) 
are depicted on the left
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Table 2   Results of the full factorial model of brain activity during the Emotional Working Memory Task

F Contrast Brain region: label 
(Brodmann area)

Lobe Cluster size Peak voxel coor-
dinates (MNI: X, 
Y, Z)

F value Z value p value

Main effect of 
condition

Fusiform gyrus Occipital Lobe N.A. 6225 30 −58 −14 31.67 Inf p(FWE) < 0.001

Fusiform gyrus Temporal Lobe BA 20 6225 36 −43 −20 29.10 Inf p(FWE) < 0.001

Fusiform gyrus Temporal Lobe BA 37 6225 42 −49 −17 28.92 Inf p(FWE) < 0.001

Postcentral gyrus Parietal Lobe BA 3 246 −39 −22 52 16.36 7.45 p(FWE) < 0.001

Middle frontal gyrus Frontal Lobe BA 6 246 −24 −4 52 12.14 6.31 p(FWE) < 0.001

Cingulate gyrus Limbic Lobe BA 32 390 −6 11 46 16.11 7.39 p(FWE) < 0.001

Medial Frontal Gyrus Frontal Lobe BA 6 390 −6 −4 55 12.61 6.45 p(FWE) < 0.001

Middle Frontal Gyrus Frontal Lobe BA 32 390 9 11 49 12.14 6.32 p(FWE) < 0.001

Insula Sub-lobar BA 13 99 −30 23 4 14.92 7.09 p(FWE) < 0.001

Inferior Frontal Gyrus Frontal Lobe BA9 173 −54 8 31 13.44 6.69 p(FWE) < 0.001

Inferior Frontal Gyrus Frontal Lobe BA9 173 −45 5 31 12.51 6.42 p(FWE) < 0.001

Middle Frontal Gyrus Frontal Lobe BA46 173 −48 23 25 7.48 4.68 p(FWE) = 0.029

Insula Sub-lobar BA 13 110 36 20 7 12.22 6.34 p(FWE) < 0.001

Dorsolateral prefron-
tal cortex

? BA 9 104 45 5 31 12.18 6.33 p(FWE) < 0.001

Putamen Sub-lobar Putamen 68 −18 8 −2 12.04 6.29 p(FWE) < 0.001

Amygdala Limbic Lobe Amygdala 68 −27 2 −17 8.63 5.14 p(FWE) = 0.004

Middle Frontal Gyrus Frontal Lobe BA 6 58 30 −4 52 11.06 5.98 p(FWE) < 0.001

Inferior Parietal 
Lobule

Parietal Lobe BA 40 91 −48 −64 40 11.05 5.98 p(FWE) < 0.001

Putamen Sub-lobar Putamen 40 21 8 4 10.83 5.91 p(FWE) < 0.001

Inferior Frontal Gyrus Frontal Lobe BA 47 85 −42 26 −14 10.57 5.82 p(FWE) < 0.001

Amygdala Limbic Lobe Amygdala 65 21 −7 −14 9.56 5.48 p(FWE) = 0.001

Hippocampus Sub-lobar Hippocampus 65 30 −10 −17 9.02 5.28 p(FWE) = 0.002

Superior temporal 
gyrus

Temporal Lobe BA 22 8 63 −4 4 8.27 5.00 p(FWE) = 0.007

Precuneus Parietal Lobe BA 7 20 −24 −58 49 8.21 4.98 p(FWE) = 0.008

Medial frontal gyrus Frontal Lobe BA 10 9 −3 50 −5 7.89 4.85 p(FWE) = 0.014

Inferior frontal gyrus Frontal Lobe BA 46 6 −45 29 16 7.79 4.81 p(FWE) = 0.016

Superior temporal 
gyrus

Temporal Lobe BA 38 5 45 20 −23 7.79 4.81 p(FWE) = 0.016

Hippocampus Limbic Lobe Hippocampus 5 −30 −16 −17 7.47 4.68 p(FWE) = 0.029

Main effect 
of Group 
(F contrast) 
negative 
distractors 
relative to no 
distraction

Cuneus Occipital Lobe BA18 247 −3 −79 22 13.88 4.63 p(FWE) = 0.031

Lingual Gyrus Occipital Lobe BA19 −15 −61 −5 10.65 3.97

Posterior Cingulate Limbic Lobe BA30 −15 −64 4 9.34 3.67

Inferior Frontal Gyrus Frontal Lobe BA9 102 −48 5 28 12.08 4.27 p(FWE) = 0.010*

Inferior Frontal Gyrus Frontal Lobe BA44 −54 8 19 11.08 4.07

Insula Sub-Lobar BA13 −42 11 19 7.92 3.32

All z values were determined by an initial cluster-forming threshold of p < 0.05 family-wise error (FWE) corrected on a whole-brain voxel-wise 

level. Clusters detected after small volume correction (SVC) (p < 0.05) are indicated by an asterisk (*)
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differences for brain activity during negative vs. no dis-
tractors were found for a cluster comprising left cuneus, 
lingual gyrus, and posterior cingulate (whole-brain, FWE-
corrected p  <  0.05) and in the left inferior frontal gyrus 
(BA44) and insula (BA13) (after SVC with the IFC mask). 
Activity in both clusters was significantly stronger in 
BPD_N than in HC. Activity in left cuneus, lingual gyrus, 
and posterior cingulate was also significantly stronger in 
BPD_N than in BPD_D. In BPD_D, there was signifi-
cantly stronger activity in left inferior frontal gyrus than in 
HC (Table 2).

PPI analysis

Significant group differences were observed for amyg-
dala FC with clusters comprising bilateral fusiform gyrus, 
culmen, superior/medial frontal gyrus and middle fron-
tal gyrus, right superior/middle temporal gyrus (insular 
cortex) and cingulate gyrus, left inferior parietal lobule 
(insular cortex) and anterior insula (p < 0.05, FWE-clus-
ter-corrected), right middle occipital gyrus, and left claus-
trum (at p < 0.001, uncorrected) (see Supplemental Table 
S1). HC showed (marginally) negative amygdala FC, 
while BPD groups showed positive amygdala FC with 
all of these regions. BPD_D differed from HC across all 
regions. BPD_N differed from HC regarding all regions 
except from middle occipital gyrus and superior temporal 
gyrus.

Compared to BPD_N, BPD_D showed reduced FC 
with left fusiform gyrus (t = 2.07, p = 0.048, see Fig. 3a), 
while showing a stronger coupling between amygdala and 
left inferior parietal lobule (t =  2.48, p =  0.020), right 
superior/middle temporal gyrus (t = 2.20, p = 0.036), and 
right middle occipital gyrus (t =  2.39, p =  0.024) (see 
Fig. 3b–d).

The MANCOVA with WM errors as covariate 
revealed similar results: compared to BPD_N, BPD_D 
showed a significantly stronger coupling between amyg-
dala and left inferior parietal lobule (F(1,26)  =  5.96, 
p  =  0.022), right superior/middle temporal gyrus 
(F(1,26)  =  2.54, p  =  0.046), and right middle occipital 
gyrus (F(1,26) = 4.86, p = 0.034), albeit group differences 
in amygdala FC with left fusiform gyrus were at a trend 
level (F(1,26) = 2.25, p = 0.063)

Discussion

The aim of our study was to investigate the impact of dis-
sociation on brain activity and amygdala functional con-
nectivity (FC) during emotional distraction in the context 
of a delay-response WM task in un-medicated patients 

with BPD. Using script-driven imagery, dissociation was 
induced in 17 BPD patients (‘BPD_D’), while 12 patients 
(‘BPD_N’) and 18 HC were exposed to neutral scripts. 
Afterwards, participants performed an Emotional Work-
ing Memory Task (EWMT) with negative vs. neutral 
interpersonal images versus no distractors. Main findings 
were:

•	 Behavioral performance Overall WM impairments 
(more incorrect responses and misses) in BPD_D 
compared to the other groups.

•	 Overall deactivation in the bilateral amygdala and 
diminished activity in the left cuneus, lingual gyrus, 
and posterior cingulate during emotional distraction 
in BPD_D compared to BPD_N; stronger left inferior 
frontal gyrus activity in BPD_D than in HC.

•	 Amygdala FC during negative vs. no distractors 
Increased amygdala connectivity with left inferior 
parietal lobule and right middle/superior temporal 
gyrus, but diminished amygdala FC with fusiform 
gyrus in BPD_D compared to the other groups.

The finding of impaired WM in BPD_D is consistent 
with previous research, pointing to detrimental effects 
of pathological dissociation on neuropsychological pro-
cesses, such as learning, memory, attention, and interfer-
ence inhibition [13, 53–55]. Since dissociation seems to 
influence neuropsychological functioning in BPD, disso-
ciative symptoms should be taken into account in future 
experimental studies on affective–cognitive processing in 
BPD, even when it is not the major focus of research.

Consistent with our previous studies [27, 28], the pres-
entation of distractors in the EWMT elicited significant 
activity in brain regions implicated in emotion process-
ing, attention, WM, and interference inhibition [10, 56]. 
During negative vs. no distractors, the two BPD groups 
showed different patterns of brain activity compared to 
HC: BPD_N patients exhibited increased activity in amyg-
dala and insula as well as a hyper-connectivity of the 
amygdala, resembling previous neuroimaging findings in 
BPD [6–8].

Of note, BPD patients after dissociation induction did 
not differ significantly from HC, while showing signifi-
cantly less amygdala activity compared to BPD_N. As 
BPD groups were comparable regarding symptom severity, 
childhood trauma, PTSD comorbidity, anxiety, depressive 
mood, and basic working memory performance, findings 
point to a dampening effect of dissociation on amygdala 
reactivity, as proposed in current conceptualizations [15] 
[20].

During negative vs. no distractors, BPD_D further 
showed significantly lower activity in left cuneus, precu-
neus, and posterior cingulate—areas of the default mode 
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network that have been implicated in self-referential pro-
cessing (e.g., autobiographical memory, rumination) 
[57–59]. Decreased activity in these regions may sug-
gest reduced processing of task-irrelevant—but probably 

self-relevant—negative social material (reminders of inter-
personal violence) in patients after dissociation induction.

Consistent with previous script-driven imagery studies 
[21, 29] and largely in line with our hypothesis, BPD_D 

Fig. 3   Results of the psy-
chophysiological interaction 
analysis for functional con-
nectivity (FC) of the bilateral 
amygdala (seed region of inter-
est, depicted in green) during 
negative distractors versus no 
distraction in the context of the 
Emotional Working Memory 
Task in patients with borderline 
personality disorder (BPD) after 
dissociation induction (BPD_D) 
and after the neutral script 
(BPD_N) as well as in healthy 
controls (HC). The figure shows 
means ± standard errors of the 
mean of parameter estimates 
for bilateral amygdala FC with 
a left fusiform gyrus, b left 
inferior parietal lobule, c right 
superior temporal gyrus, and d 
right middle occipital gyrus
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patients showed stronger left inferior frontal gyrus activ-
ity than HC. However, no differences in mPFC and ACC 
were found and increased inferior frontal gyrus activity 
was not specific to BPD_D (i.e., also present in BPD_N). 
As BPD_N did not differ significantly from HC in WM, 
stronger recruitment of the inferior frontal gyrus in this 
group may reflect compensatory efforts to prevent the 
occurrence of interference disinhibition on a behavioral 
level [60, 61].

Extending previous research, we investigated how bilat-
eral amygdala activity was correlated to activity in other 
brain areas during negative vs. no distractors. Both BPD 
groups differed significantly from HC in amygdala FC with 
frontal, temporal, occipital, and parietal areas. HC showed 
negative amygdala connectivity with these regions, resem-
bling findings of previous fMRI studies using the EWMT or 
similar tasks [28, 62, 63], while BPD patients showed posi-
tive amygdala FC with these areas. Amygdala hyper-connec-
tivity with frontal regions, including the ACC and mPFC, 
was also observed in previous research and may reflect dis-
turbed emotion processing in patients with BPD [64–69].

Importantly, we observed significant differences in 
amygdala connectivity between the two BPD groups, 
dependent on our experimental manipulation. Compared 
to the other groups, BPD patients exposed to the disso-
ciation script showed diminished amygdala connectivity 
with left fusiform gyrus, which has been associated with 
encoding/processing of negative social material [70, 71]. 
BPD_D patients further showed a stronger coupling of the 
amygdala with clusters comprising right middle/superior 
temporal gyrus and left inferior parietal lobule. The supe-
rior temporal gyrus has previously been implicated in dep-
ersonalization and derealization [22–24] and is considered 
an important structure in a pathway including the amyg-
dala and PFC, implicated in processing of language, social 
information, and self-perception [72]. In previous studies, 
higher self-reported dissociation was correlated to reduced 
gray matter volume [73] and increased activity in the mid-
dle/superior temporal gyrus [21] in BPD. The inferior pari-
etal lobule has been implicated in emotion regulation and 
working memory—an increased information exchange of 
the amygdala with these areas may underlie altered emo-
tional and self-referential processing during dissociation 
[74–78].

In summary, our neuroimaging findings suggest that a 
deactivation of the amygdala and altered interactions of 
this region with areas implicated in self-referential process-
ing, cognitive control, visual perception, and sensory gat-
ing may contribute to dissociative states in BPD, while the 
precise mechanisms underlying stress-related dissociation 
remain elusive. More research is needed to clarify whether 
the neural patterns, observed in this study, reflect enhanced 
attempts to modulate states of arousal, as suggested by 

previous neuroimaging research in the dissociative subtype 
of PTSD [15] and models proposing that dissociation is a 
protective regulatory strategy in extremely stressful situa-
tions [17]. Dissociative responses may be an adaptive pro-
cess when ‘fight or flight’ [83] is impossible [15, 17, 80], 
possibly stemming from an evolutionary older ‘freezing 
system’ [79–82]. However, the present findings provide fur-
ther evidence that dissociation can become maladaptive by 
hindering a coherent processing of salient sensory, affec-
tive, and cognitive information in memory, which is cru-
cial to a flexible adaptation to stressful situations [76–78].  
Moreover, dissociation might not only dampen negative emo-
tions but also positive emotions, which can have detrimental 
consequences for the quality of life and the maintenance of 
close relationships. Given these detrimental effects and pre-
vious findings of poor treatment outcome in BPD patients 
with pathological dissociative symptoms [18, 19, 84],  
our findings highlight the importance of taking dissociative 
symptoms into account when treating individuals with BPD.

To our knowledge, this is the first study in BPD 
revealing a significant impact of a dissociation induction 
on amygdala activity and functional connectivity dur-
ing emotional distraction in the context of the EWMT. 
Present findings may shed a new light on stress-related 
dissociation in BPD, as affective–cognitive processing 
was studied both on a behavioral and neural level in an 
experimental setting which requires conscious manipu-
lation of stressful (trauma-related) material in WM. 
Patient groups were matched regarding psychopathol-
ogy and basic working memory and it was ensured that 
BPD_N patients were not dissociated. However, this 
led to a relatively small sample size and only female 
patients with a history of childhood abuse/neglect were 
included. We did not apply additional drug tests to 
rule out this possibility of false self-reports of our par-
ticipants. Furthermore, it is likely that present findings 
may not be specific to BPD but also observable in other 
clinical populations with dissociative features, being 
a trans-diagnostic phenomenon [15, 75]. This means, 
more research with larger sample sizes, clinical control 
groups, and extended medical checks is needed to clarify 
whether the reported neural patterns can be replicated in 
other samples of BPD patients or are confounded by the 
afore-mentioned sample characteristics. As we used PPI, 
findings are restricted to our seed region and causality 
of interactions remains unknown [51, 52]. Tension rat-
ings were significantly higher in BPD_D than BPD_N. 
Nevertheless, group differences in amygdala reactivity 
remained significant after including aversive tension as 
covariate.

All in all, our findings suggest a dampening effect of dis-
sociation on activity in brain areas implicated in the process-
ing of disturbing (trauma-related) information in BPD and 
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an impairing effect on working memory, which plays a cru-
cial role in goal-directed behavior. More research is needed 
to understand the impact of dissociation on other aspects of 
emotion regulation, cognition and identity in BPD and to 
gain more insight into this complex phenomenon.
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