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Abstract

In this paper we review and we extend the reduced basis approximation and a

posteriori error estimation for steady Stokes flows in affinely parametrized geome-
tries, focusing on the role played by the Brezzi’s and Babuška’s stability con-
stants. The crucial ingredients of the methodology are a Galerkin projection onto
a low-dimensional space of basis functions properly selected, an affine parametric
dependence enabling to perform competitive Offline-Online splitting in the com-
putational procedure and a rigorous a posteriori error estimation on field variables.
The combination of these three factors yields substantial computational savings
which are at the basis of an efficient model order reduction, ideally suited for
real-time simulation and many-query contexts (e.g. optimization, control or pa-
rameter identification). In particular, in this work we focus on i) the stability of
the reduced basis approximation based on the Brezzi’s saddle point theory and
the introduction of a supremizer operator on the pressure terms, ii) a rigorous
a posteriori error estimation procedure for velocity and pressure fields based on
the Babuška’s inf-sup constant (including residuals calculations), iii) the compu-
tation of a lower bound of the stability constant, and iv) different options for the
reduced basis spaces construction. We present some illustrative results for both
interior and external steady Stokes flows in parametrized geometries representing
two parametrized classical Poiseuille and Couette flows, a channel contraction and
a simple flow control problem around a curved obstacle.
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1 Introduction

A large set of engineering problems involve the solution of partial differential equa-
tions (PDEs), or the evaluation of some outputs of interest depending on a PDE
solution. When a significant reduction of the marginal computational time for a
single solution or output evaluation is needed, some model reduction techniques
have to be taken into account; this requirement can arise both in a many-query
(e.g. optimal control, parameter estimation, shape optimization) framework or in
a real-time simulation context. The reduced basis (RB) method is ideally suited
for the rapid and reliable solution of parametrized PDEs, i.e. PDEs depending
on a set of input parameters which identify a given configuration of the system
representing physical properties or geometrical variables.
The basic ingredients of the RB method are i) a rapidly convergent global approx-
imation (Galerkin projection) onto a space spanned by solution of the governing
PDE at some selected parameter values; ii) rigorous a posteriori error estimation
procedures (inexpensive yet sharp bounds for the error in the RB field variables
or output approximations); iii) Offline/Online computational procedures (a split-
ting between a very extensive and parameter independent Offline stage and an
inexpensive Online calculation for each new input/output evaluation). For a very
comprehensive summary of the RB methodology developed so far for coercive
elliptic PDEs with affine parameter dependence please see [43,30].

Introduced in the late 1970s by Almroth, Stern and Brogan in the domain of
nonlinear structural analysis and further developed by Noor in the following years
[28,27], the RB method has been applied firstly to viscous fluid flow and Navier
Stokes equations in the 1990s [31,18,14], considering divergence-free spaces. In the
past few years, this methodology has been applied to a wide range of problems
including elliptic as well as parabolic and simple hyperbolic problems. More re-
cent contributions on stable Stokes flows in parametrized domains are contained
in [39,41,47,38,37,22], while a previous a posteriori error estimation framework
can be found in [36]. An example of application to the solution of shape opti-
mization problems arising in haemodynamics and dealing with Stokes flows can
be found in [23,45] and previously in [37]. The RB framework has already been
applied in thermo-fluid dynamics, such as steady Navier-Stokes [9,48,26,11,34,40]
parametrized flows dealing with physical [9,48] and geometrical parameters [11]
or heat-mass transfer problems [46]; other existing applications include potential
flows [20,42], advection-diffusion [7,44] or linear elasticity equations [25]. A combi-
nation between RB method and domain decomposition techniques is the so-called
reduced basis element method; see [22] for the Stokes case. Recently, a RB formula-
tion for variational inequalities by a saddle point scheme has been proposed in [15].

In this paper we first review the state of the art of RB approximation for parame-
trized steady Stokes flows, as a paradigm of linear elliptic noncoercive problems
and we extend a stability and a posteriori error analysis based on two inf-sup
constants introduced by Brezzi [2,3] and Babuška [1]. In particular, we focus on
approximation and algebric stability of the RB approximation [47], a rigorous a
posteriori error estimation for RB field variables, the Offline-Online computational
procedure, based on the affine parametric dependence [43,30], the computation of
reliable lower bounds for the inf-sup stability constants and on a Greedy algorithm
[43,30] for the construction of the RB spaces.
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The original contribution of this work deals with the fact that we are jointly
providing a stability study based on the role of the Brezzi’s inf-sup constant in
the RB context and an error analysis and certification of results based on the esti-
mation of the Babuška’s inf-sup constant in the framework of general noncoercive
problems. A former contribution on a posteriori error bounds for Stokes problem
in the RB context was provided by Rovas [36] using a different approach and for
divergence-free spaces. A recent approach1 has been proposed by Veroy et al. [12]
based on penalty method for flows in parametrized domains, thus reporting the
problem in the coercive case [35]. Moreover, a general error estimation for linear
outputs is presented, discussing both compliant and noncompliant outputs [43]
and introducing a suitable dual problem for the latter case.

In this work we are interested in developing error bounds for Stokes problem
as a generalized noncoercive problem in order to complete a general a posteriori
error analysis for the certification of RB methods, and with a special interest in the
solution of PDEs in parametrized domains. Our analysis proposes a unified frame-
work based on the residual calculations and on the estimation of lower bounds
for (the coercivity and) inf-sup stability constants using the so-called Successive
Constraint Method (SCM) [17] and subsequent improvements [16]. In this way the
most general noncoercive problem contains as particular cases the coercive case
[43] and the parametrically coercive case [30]. Compared with other techniques for
the calculation of lower bounds for the inf-sup constants, we have adopted and
improved (starting from [16]) the SCM technique in its natural norm formulation
to have a tool which can be considered quite versatile and handy. In this particular
case we consider general error bounds for velocity and pressure, as well as for linear
outputs depending on these variables. Quadratic outputs will be considered in [24].

The paper is organized as follows. After this introduction, in Sec. 2-3 we address
some general features on the Stokes equations and the corresponding parametrized
formulation, recalling the classical finite element approximation and the Brezzi
stability theory [2,3]. In Sec. 4 we review the relevant steps for the generation of
the rapidly convergent global RB approximation spaces and the approximation of
the solution for parametrized Stokes equations with affine parameter dependence,
focusing on the corresponding stability condition for the RB approximation, satis-
fied by introducing the so-called supremizer operator, and on its algebric stability,
obtained through a suitable Gram-Schmidt orhonormalization of the RB basis
functions. Then, in Sec. 5 we present an Offline-Online computational procedure
and a Greedy procedure for the RB spaces construction. In Sec. 6 we deal with the
a posteriori error estimation for the RB solution based on the Babuška stability
theory, while in Sec. 7 we address error bounds for a generic linear output. A short
review of Brezzi and Babuška theories is provided in the Appendix A; details about
the construction of the a posteriori error bounds are reviewed in the Appendix B.
In Sec. 8 some numerical examples are presented, while some concluding remarks
are provided in Sec. 9.

1 Other certified and quite complex approaches have been studied in the nonlinear steady
case (Navier-Stokes equations) based on the Brezzi-Rappaz-Raviart theory [4,5]. These ap-
proaches have been proposed in [26,48] and more recently in a natural norm framework [9],
focusing on physical parameters (Reynolds, Prandtl, Grashof numbers). Further developments
have combined physical and geometrical parameters [11,46], dealing also with time-dependent
Boussinesq equations [46,19].
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2 Problem Formulation

Steady Stokes equations describe the motion of an incompressible viscous flow with
constant density ρ in which the (quadratic) convective term has been neglected
[35,33]; they can be stated as follows:
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−ν∆uo + ∇po = fo in Ωo

∇ · uo = 0 in Ωo

uo = 0 on Γ o
D0

uo = gD on Γ o
Dg

−pon + ν
∂uo

∂n
= g

N on Γ o
N ,

(1)

where (uo, po) are the velocity and the pressure fields defined on the original do-
main Ωo, for some given fo, gD, gN . The first equation expresses the linear momen-
tum conservation, the second one the mass conservation; ν = µ/ρ denotes the kine-
matic viscosity, µ the dynamic viscosity, and fo = (fo

1 , f
o
2 ) a forcing term per unit

mass. In what follows, we consider a partition ∂Ωo = Γ o
D0

∪Γ o
Dg

∪Γ o
N , homogeneous

Dirichlet conditions on Γ o
D0

, non-homogeneous Dirichlet conditions on Γ o
Dg

and
Neumann conditions on Γ o

N , such that the Dirichlet portion is Γ o
D = Γ o

D0
∪Γ o

Dg
; n is

the normal unit vector to the boundary ∂Ωo. We denote with Xo and Qo the spaces
(H1

0,Γ o
D

(Ωo))
2 and L2(Ωo) respectively, where H1

0,Γ o
D

(Ωo) = {v ∈ H1(Ωo) : v|Γ o
D

=

0}. We introduce a lift function Log
D ∈ (H1(Ωo))

2 and denote ûo = uo − Log
D,

so that ûo|ΓD
= 0; for the sake of simplicity, we still denote ûo with uo, as no am-

biguity occurs. Hence, the weak formulation of (1) reads: find (uo, po) ∈ Xo × Qo

such that, for all w ∈ Xo and q ∈ Qo,

ν

Z

Ωo

∇uo : ∇w dΩo−

Z

Ωo

po ∇ · w dΩo =

Z

Ωo

f
o · w dΩo +

Z

Γ o
N

g
N · w dΓo + 〈F o

0 ,w〉,
Z

Ωo

q∇ · uo dΩo = 〈Go
0, q〉,

(2)
where F o

0 , G
o
0 are terms due to non-homogeneous Dirichlet boundary condition on

Γ o
Dg

. We assume that the physical, original domain is made up of R mutually

nonoverlapping open subdomains: {Ωr
o}

R
r=1, so that (2) can be rewritten as:



Ao(uo,w) + Bo(po,w) = 〈F o,w〉 ∀w ∈ Xo

Bo(q,uo) = 〈Go, q〉 ∀q ∈ Qo,
(3)

where

Ao(v,w) =
R
X

r=1

Z

Ωr
o

νo
ij
∂v

∂xo
i

·
∂w

∂xo
j

dΩo, Bo(q,w) = −
R
X

r=1

Z

Ωr
o

q∇ · w dΩo,

being 1 ≤ i, j ≤ 2, νo
ij = νδij and δij the Kronecker symbol (summation over i, j is

understood). The right-hand side is given by 〈F o,w〉 = 〈F o
s ,w〉 + 〈F o

0 ,w〉, with

〈F o
s ,w〉 =

R
X

r=1

Z

Ωr
o

f
o · w dΩo +

R
X

r=1

Z

Γ o,r

N

g
N · w dΓo,

〈F o
0 ,w〉 = −Ao(Log

D,w), 〈Go, q〉 = −Bo(q, Log
D〉,

where Γ o,r
N = ∂Ωr

o ∩ Γ o
N .
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2.1 Affine geometrical parametrization

We assume that the original domain Ωo = Ωo(µ) depends on a set of P ≥ 1
geometrical parameters µ = (µ1, . . . , µP ) ∈ D ⊂ R

P , and is obtained as the im-
age of a reference domain Ω = Ωo(µref ) through piecewise affine transformations

over the coarse triangulation {Ωr}R
r=1; the more general case of both affine and

nonaffine mappings is discussed in [41]. Let us suppose that original and refer-
ence subdomains can be linked via a mapping T (·;µ) : Ωr → Ωr

o(µ), such that
Ωr

o(µ) = T r(Ωr;µ), 1 ≤ r ≤ R; these mappings must be individually bijective and
collectively continuous, i.e. they have to fulfill the following interface condition:
T r(x;µ) = T r′

(x;µ), for all x ∈ Ωr ∩ Ωr′

, 1 ≤ r < r′ ≤ R. In the affine case, for
the rth subdomain the transformation is then given by

T r
i (x,µ) = C r

i (µ) +
2
X

j=1

G r
ij(µ)xj , 1 ≤ i ≤ 2, (4)

for any µ ∈ D, x ∈ Ωr, for given translation vectors C r : D → R
2 and linear

transformation matrices G r : D → R
2×2, 1 ≤ r ≤ R. The linear transformation

matrices can effect rotation, scaling and/or shear and have to be invertible. The
associated Jacobians can be defined as J r(µ) = |det (G r(µ))|, 1 ≤ r ≤ R; for
invertible mappings they are strictly positive. The domain decomposition which
allows to trace back the problem on a reference domain shall be built on (standard)
triangles, elliptical triangles and general “curvy” triangles [43,45]. They admit
symbolic, numerical automation and are therefore the building blocks in the rbMIT
software package rbMIT [21] that we use for the RB computations in this work.

2.2 Parametrized Formulation of the Stokes problem

By tracing (3) back on the reference domain Ω, the problem can be written as a
system of parametrized PDEs. Denoting X = (H1

0,ΓD
(Ω))2, Q = L2(Ω), ‖ · ‖X =

(·, ·)
1/2
X , ‖ · ‖Q = (·, ·)

1/2
Q , where (v,w)X = (∇v,∇w)(L2(Ω))2 , we have the following

parametrized formulation: find (u(µ), p(µ)) ∈ X ×Q such that



A(u(µ),w;µ) + B(p(µ),w;µ) = 〈F,w〉 ∀w ∈ X

B(q,u(µ);µ) = 〈G, q〉 ∀q ∈ Q,
(5)

where

A(v,w;µ) =
R
X

r=1

Z

Ωr

∂v

∂xi
νr
ij(µ)

∂w

∂xj
dΩ, B(q,w;µ) = −

R
X

r=1

Z

Ωr

qχr
ij(µ)

∂wj

∂xi
dΩ,

and 〈F,w〉 = 〈Fs,w〉 + 〈F0,w〉, with

〈Fs,w〉 =
R
X

r=1

Z

Ωr

f · w J r(µ)dΩ +
R
X

r=1

Z

Γ r
N

g
N · w K r(µ) dΓ,

〈F0,w〉 = −A(Lg
D,w;µ), 〈G, q〉 = −B(q, Lg

D;µ);

K r(µ) = |G r(µ)t|, r is an index related to the r-th subdomain, t is the tangential
unit vector to the boundary and Γ r

N = ∂Ωr ∩ ΓN . The transformation tensors for
the bilinear viscous terms are defined as follows:
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νr
ij(µ) = (Gr(µ))−1

ii′ ν
o
i′j′(Gr(µ))−1

jj′J
r(µ), 1 ≤ i, i′, j, j′ ≤ 2, r = 1, ..., R, (6)

while the tensors for pressure and divergence forms are:

χr
ij(µ) = (Gr(µ))−1

ij J
r(µ), 1 ≤ i, j ≤ 2, r = 1, ..., R. (7)

Since we are considering geometrical trasformations involving stretching and/or
dilatation where the normal unit vector at the inflow and at the outflow is not
changing direction, and we are lifting the Dirichlet boundary conditions under a
non-zero divergence condition, we may omit the use of the Piola transformation and
rely on a simpler change of variable [41]. More involved geometrical parametriza-
tions managed with the Piola transformation have been considered for example in
[22,10]. The latter should be used when dealing with rotations, for example.
We suppose that the bilinear form A(·, ·;µ) is continuous over X:

γa(µ) = sup
v∈X

sup
w∈X

A(v,w;µ)

‖v‖X‖w‖X
< +∞, ∀ µ ∈ D (8)

and coercive over X:

∃ α0 > 0 : α(µ) = inf
v∈X

A(v,v;µ)

‖v‖2
X

≥ α0, ∀ µ ∈ D, (9)

and that the bilinear form B(·, ·;µ) is continuous:

γb(µ) = sup
q∈Q

sup
w∈X

B(q,w;µ)

‖w‖X‖q‖Q
< +∞, ∀ µ ∈ D (10)

and inf-sup stable over X ×Q, i.e.

∃ β0 > 0 : β(µ) = inf
q∈Q

sup
w∈X

B(q,w;µ)

‖w‖X‖q‖Q
≥ β0, ∀ µ ∈ D. (11)

Furthermore, if the transformation mappings are affine in the sense of (4), the
bilinear forms are affinely parametrized, i.e.

A(µ;v,w) =
Qa
X

q=1

Θq
a(µ)Aq(v,w), B(µ; q,w) =

Qb
X

q=1

Θq
b (µ)Bq(q,w); (12)

for some integers Qa (which may be as large as d × d × d × R) and Qb (as large
as d × d × R), where q and s are condensed indexes of i, j, r quantities and, for
1 ≤ r ≤ R, 1 ≤ i, j ≤ 2,

Θ
q(i,j,r)
a (µ) = νr

ij(µ), Aq(i,j,r)(v,w) =

Z

Ωr

∂v

∂xi

∂w

∂xj
dΩ, (13)

Θ
q(i,j,r)
b (µ) = χr

ij(µ), Bq(i,j,r)(q,w) = −

Z

Ωr

q
∂wi

∂xj
dΩ. (14)

This splitting of the operators into a part which is parameter-dependent and into a
part parameter-independent (defined and computed once in the reference domain)
is crucial for the computational efficiency of the method.



RB approximation for Stokes flows: roles of the inf-sup stability constants 7

Finally, we introduce two linear bounded functionals lu : X → R and lp : Q →
R. We may then introduce our (well-posed) continuous problem: given µ ∈ D,
evaluate the scalar output of interest

s(µ) = l(u(µ), p(µ);µ) = lu(u(µ);µ) + lp(p(µ);µ) (15)

where (u(µ), p(µ)) ∈ X ×Q are solution of (5).

2.3 Stability for the numerical approximation

In the numerical approximation the Stokes problem has been solved by the Galerkin-
Finite Element (FE) Method; we use here P2 − P1 Taylor-Hood finite elements
[13]. With the superscript N we indicate discretized quantities (N is the total
number of degrees of freedom and a measure of the computational complexity in
the Offline stage) and finite dimensional subspaces like XN ⊂ X and QN ⊂ Q

for velocity (uN (µ)) and pressure (pN (µ)), respectively. Here XN ⊂ X, QN ⊂ Q

are two sequences of (conforming) FE approximation spaces of global dimension
N = NX + NQ. The dimension of the FE spaces is thus taken large enough in

order to neglect the differences ‖uN (µ)−u(µ)‖X and ‖pN (µ)− p(µ)‖Q, so that it
can be effectively considered as a“truth” approximation. Moreover, if N is chosen
sufficiently large, A(·, ·;µ) remains continuous and coercive over XN [33]:

γNa (µ) = sup
v∈XN

sup
w∈XN

A(v,w;µ)

‖v‖X‖w‖X
≤ γa(µ) < +∞, ∀ µ ∈ D

∃ α0 > 0 : αN (µ) = inf
v∈XN

A(v,v;µ)

‖v‖2
X

≥ α(µ) ≥ α0, ∀ µ ∈ D, (16)

and B(·, ·;µ) remains continuous, i.e.

γNb (µ) = sup
q∈QN

sup
w∈XN

B(q,w;µ)

‖w‖X‖q‖Q
≤ γb(µ) < +∞ ∀ µ ∈ D

and inf-sup stable over XN × QN , i.e. we require that the FE spaces are chosen
so that the following Brezzi inf-sup condition holds: [2,3]:

∃ β0 > 0 : βN (µ) = inf
q∈QN

sup
w∈XN

B(q,w;µ)

‖w‖X‖q‖Q
≥ β(µ) ≥ β0, ∀ µ ∈ D. (17)

In our case XN ×QN is the space of Taylor-Hood P2−P1 elements for velocity
and pressure [3,13]; however, this choice is not restrictive, the whole construction
keeps holding for other spaces combinations as well.

Hence, the truth FE approximation reads as follows: given µ ∈ D, evaluate
the scalar output of interest s(µ) = l(u(µ), p(µ);µ) = lu(uN (µ);µ)+ lp(p

N (µ);µ)
where (uN (µ), pN (µ)) ∈ XN ×QN are such that

(

A(uN (µ),w;µ) + B(pN (µ),w;µ) = 〈F,w〉 ∀w ∈ XN

B(q,uN (µ);µ) = 〈G, q〉 ∀q ∈ QN .
(18)

Our RB approximation will be built upon, and the error in our RB approximation
will be measured with respect to, the truth FE approximation. In order to verify
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the Brezzi inf-sup condition (17) let us introduce the following (inner, pressure)
supremizer operator Tµ

p : QN → XN defined as follows2:

(Tµ

p q,w)X = B(q,w;µ), ∀ w ∈ XN . (19)

From this definition it is straightforward to prove that

Tµ

p q = arg sup
w∈XN

B(q,w;µ)

‖w‖X
(20)

and, furthermore3

(βN (µ))2 = inf
q∈QN

(Tµ

p q, T
µ

p q)X

‖q‖2
Q

. (21)

Note from our affine assumption it follows that, for any ϕ ∈ QN , the (inner,
pressure) supremizer operator can be expressed as

Tµ

p ϕ =
Qb
X

q=1

Θq
b (µ)T q

pϕ, (22)

where (T q
pϕ,v)X = Bq(ϕ,v), ∀v ∈ XN , 1 ≤ q ≤ Qb.

3 Reduced basis approximation: formulation and main features

The RB method efficiently computes an approximation of (uN (µ), pN (µ)) by using
global approximation spaces made up of well-chosen solutions of (18), i.e. corre-
sponding to specific choices of the parameter values. The basic assumption is that
the solution to (5) depends smoothly on the parameters, whence the parametric
manifold of solutions in X×Q is smooth too and can be approximated by selecting,
among classical FE solutions, some “snapshot” solutions. Let us take a relatively
small set of parameter values SN = {µ1, . . . ,µN} and consider the corresponding
FE solutions (uN (µ1), pN (µ1)), . . . , (uN (µN ), pN (µN )), where typically N ≪ N .

We define the reduced basis pressure space QN
N ⊂ QN as

QN
N = span{ξn := pN (µn), n = 1, . . . , N}.

The reduced basis velocity space XN , µ

N ⊂ XN can be built as

XN , µ

N = span{ζn := u
N (µn), Tµ

p ξn, n = 1, . . . , N}. (23)

2 The pedix p stands for pressure to underline on which term the supremizer operator is
acting on [41,47].

3 In fact, (19), gives ‖T µ

p q‖2
X = (T µ

p q, T µ

p q)X = B(q, T µq; µ); moreover, for any w ∈ XN

B(q,w; µ)

‖w‖X

=
(T µ

p q,w)X

‖w‖X

≤
‖T µ

p q‖X‖w‖X

‖w‖X

≤ ‖T µ

p q‖X

by Cauchy-Schwarz inequality, so that the following relationship holds:

βN (µ) = inf
q∈QN

 

1

‖q‖Q

 

sup
w∈XN

B(q,w; µ)

‖w‖X

!!

w=T µ

p q

= inf
q∈QN

‖T µ

p q‖X

‖q‖Q

,

or, equivalently, (20).
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By using Galerkin projection onto XN , µ

N × QN
N we obtain the following reduced

basis approximation: find (uN
N (µ), pNN (µ)) ∈ XN , µ

N ×QN
N such that



A(uN
N (µ),w;µ) + B(pNN (µ),w;µ) = 〈F,w〉 ∀ w ∈ XN , µ

N

B(q,uN
N (µ);µ) = 〈G, q〉 ∀ q ∈ QN

N ;
(24)

consequently, our output of interest can be evaluated as

sN (µ) = lu(uN
N (µ);µ) + lp(p

N
N (µ);µ); (25)

suitable corrections to (25) in order to improve accuracy will be considered in
Sec. 7. Problem (24) is subject to an equivalent Brezzi reduced basis inf-sup con-
dition [2,3]. By defining

βN (µ) = inf
q∈QN

N

sup
w∈XN , µ

N

B(q,w;µ)

‖w‖X‖q‖Q
(26)

the following inequalities hold:

βN (µ) ≥ βN (µ) ≥ β0 > 0, ∀µ ∈ D, (27)

where βN (µ) and β0 are the same constants as in (11) and (17). In fact, recalling
[39,47], we have that

βN (µ) = inf
q∈QN

sup
w∈XN

B(q,w;µ)

‖w‖X‖q‖Q
≤ inf

q∈QN
N

sup
w∈XN

B(q,w;µ)

‖w‖X‖q‖Q
=

inf
q∈QN

N

B(q, Tµ

p q;µ)

‖Tµ

p q‖X‖q‖Q
≤ inf

q∈QN
N

sup
w∈XN , µ

N

B(q,w;µ)

‖w‖X‖q‖Q
= βN (µ),

where we have applied the fact that QN
N ⊂ QN , the definition of the (inner, pres-

sure) supremizer operator and the fact that the RB velocity space XN , µ

N is en-
riched by supremizers, respectively. We investigate in details the construction of
the (inner, pressure) supremizer operator in next Sec. 4.

In order to express the problem (24) under the usual form of a saddle-point

problem, we rewrite the RB velocity space XN , µ

N for computational convenience
using the affine dependence of B(·, ·;µ) on the parameter and the relation (22):

XN , µ

N = span {

Q
b

X

k=1

Θk
b (µ)σkn, n = 1, . . . , 2N}, (28)

where Q
b

= Qb + 1, ΘQ
b

b = 1 and, for n = 1, . . . , N ,

σkn = 0, k = 1, . . . , Qb; σ
Q

b
n

= ζn = u
N (µn), (29)

while, for n = N+1, . . . , 2N (in order to take account of the supremizer operator),

(σkn,w)X = Bk(ξn−N ,w), ∀w ∈ XN , k = 1, . . . , Qb; σ
Q

b
n

= 0. (30)

Hence, for a new parameter value µ, the RB solution can be written as a combi-
nation of previously computed stored solutions as basis functions:

uN (µ) =
2N
X

j=1

uNj(µ)
“

Q
b

X

k=1

Θk
b (µ)σkj

”

, pN (µ) =
N
X

l=1

pNl(µ)ξl,
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whose weights uNj and pNl are given by the following RB linear system (in this
case summation over i and j is no more understood):

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2N
X

j=1

Qa
X

q=1

Θq
a(µ)Aq

ij(µ)uNj(µ) +
N
X

l=1

Qb
X

q=1

Θq
b (µ)Bq

il(µ)pNl(µ) = Fi(µ),

2N
X

j=1

Qb
X

q=1

Θq
b (µ)Bq

jl(µ)uNj(µ) = Gl(µ)

(31)

for 1 ≤ i, j ≤ 2N , 1 ≤ l ≤ N , where

Aq
ij(µ) =

Q
b

X

k′=1

Q
b

X

k′′=1

Θk′

b (µ)Θk′′

b (µ)Aq(σk′i,σk′′j), B
q
il(µ) =

Q
b

X

k′=1

Θk′

b (µ)Bq(ξl,σk′i),

Fi(µ) =
Q

b

X

k′=1

Θk′

b (µ)〈F,σk′i〉, 1 ≤ i ≤ 2N ; Gl(µ) = 〈G0, ξl〉, 1 ≤ l ≤ N.

Finally, problem (31) can be written in compact form as
„

A B

BT 0

«„

uN

pN

«

=

„

F

G

«

; (32)

this linear system, whose unknowns are the coefficients of the linear combination
of previously computed Offline solutions, has the same saddle-point structure of
a FE approximation of a Stokes problem [33,35]. Hence, using reduced basis we
deal with a matrix of considerably smaller dimension (of order of N ≪ N ) but
with full matrices (instead of sparse ones).

An important remark is related with the inner product and the norm matrix
we are using in this problem: i.e. (∇w,∇v)L2 +λ(w,v)L2 +(p, q)L2 , where w and v

are related with velocity functions and q and p are related with pressure functions.
The λ is the minimum eigenvalue of the Rayleigh quotient (∇w,∇v)L2/(w,v)L2 .
Finally, in order to exploit a suitable Offline/Online computational procedure for
decoupling the generation and projection stages of the RB approximation, we need
to express the velocity RB space XN , µ

N defined by (28) in a more viable way. In
fact, we want to completely assemble/store the basis functions only once during the
Offline stage, while for each new Online evaluation, given a parameter value µ, we
want to compute only the parameter-dependent coefficients, and not assembling
the supremizer solution as combination of previously computed solutions. Since
the definition of the RB velocity space (28) still depends on µ (because of the
definition of the supremizer Tµ

p ), we need a different way to express it. We address
some possible, alternative constructions in the forthcoming section.

4 On algebraic and approximation stability

To keep under control the condition number of the reduced basis matrix we have
applied the Gram-Schmidt (GS) orthogonalization procedure to velocity and pres-
sure basis functions [30]. In particular, the orthonormalization procedure has been
applied, separately, to our set of velocity snaphots, of supremizer snapshots and to
our set of pressure snapshots, with respect to the X = (H1(Ω))2 norm for velocity
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(and supremizers) and L2(Ω) for pressure. For velocity and pressure snapshots
the procedure is standard, whereas it becomes more involved for the supremizer
(computed) snapshots. In fact, referring to (30), we have for n = N + 1, . . . , 2N :

(σn,v)X =
Qb

X

q=1

Θq
b (µ)(σqn,v)X =

Qb

X

q=1

Θq
b (µ)Bq(ξn−N ,v) ∀v ∈ (H1

0,ΓD
(Ω))2.

At this point we have two possibilities (referring to n − th supremizer σn, n =
N + 1, . . . , 2N) in applying orthonormalization:

a) a GS orthonormalization on σn done Online (since σn is dependent on µ) to
obtain σ⊥

n as new element (basis function) to enrich the RB velocity space:

σ
⊥
n =

P⊥
n σn

||P⊥
n σn||

=
P⊥

n (
PQb

q=1Θ
q
b (µ)σqn)

||P⊥
n (
PQb

q=1Θ
q
b (µ)σqn)||

,

where P⊥
n = I − Ln−1L

T
n−1 and Li = {σ⊥

1 , ...,σ
⊥
i };

b) a GS orthonormalization on components σqn made Offline once and for all,
since σqn are not depending on µ, to get σ⊥∗

qn :

σ
⊥∗
qn =

P⊥
qnσqn

||P⊥
qnσqn||

,

where P⊥
qn = I − Lq(n−1)L

T
q(n−1) and Lqi = {σ⊥∗

q1 , ...,σ
⊥∗
qi }.

We recall that, after orthonormalization (to achieve algebraic stability), we
have to satisfy the approximation stability condition (27). But if we apply the
approach (a) to RB spaces assembled as proposed in Section 3 – and in particular
to supremizer solutions – a priori we may loose the guarantee of the approximation
stability (heuristically we do not have any guarantee to fulfill (26)). In order to
overcome this drawback, we decide to orthonormalize just using method (a) the
pressure ξ and the velocity ζ basis functions and not the supremizer σn and use
the approach (b) to orthogonalize the supremizer on its component σkn (before
summation) to preserve approximation stability. To simplify this operation, we
decide to build the RB velocity space in a slightly different way, as follows:

XN , µ

N = span {σn =
Q

b

X

k=1

Θk
b (µn)σkn, n = 1, . . . , 2N}, (33)

where Q
b

= Qb + 1, ΘQ
b

b = 1 and, for n = 1, . . . , N ,

σkn = 0, for k = 1, . . . , Qb, σ
Q

b
n

= ζn = u(µn),

while for n = N + 1, . . . , 2N

(σkn,w)X = Bk(ξn−N ,w) ∀ w ∈ Y, for k = 1, . . . , Qb, σ
Q

b
n

= 0.

This approach is based on the idea that the supremizers are built upon summation
using the same µj values used to store velocity ζj(µ

j) and pressure solutions
ξj(µ

j). The reduced basis solution is thus given by

uN (µ) =
2N
X

j=1

uNj(µ)
“

Q
b

X

k=1

Θk
b (µj)σkj

”

, pN (µ) =
N
X

l=1

pNl(µ)ξl,
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and is obtained by solving the following system:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2N
X

j=1

Qa

X

q=1

Θq
a(µ)Aq

ij uNj(µ) +
N
X

l=1

Qb

X

q=1

Θq
b (µ)Bq

il pNl(µ) = Fi, 1 ≤ i ≤ 2N,

2N
X

j=1

Qb

X

q=1

Θq
b (µ)Bq

jl uNj(µ) = Gl, 1 ≤ l ≤ N,

(34)

where, for 1 ≤ i, j ≤ 2N , 1 ≤ l ≤ N :

(Aq)ij = Aq(σi,σj) =
Q

b

X

k′=1

Q
b

X

k′′=1

Θk′

b (µi)Θk′′

b (µj)Aq(σk′i,σk′′j);

Bq
il = Bq(ξl,σi) =

Q
b

X

k′=1

Θk′

b (µi)Bq(ξl,σk′i);

Fi = 〈F, σi〉 =
Q

b

X

k′=1

Θk′

b (µi)〈F,σk′i〉, Gl = 〈G0, ξl〉.

Note that all these quantities are now independent of µ, compared to those ap-
pearing in (31). This option is also competitive as regards the computational costs

dealing with 3N×3N reduced basis matrices (32) instead of (Q
b
+1)N×(Q

b
+1)N

matrix (usually (Q
b

+ 1) ≫ 3). We thus have the following computational costs
to build the RB matrices, given also the supremizer components in the velocity
space: O(Qa4N2) for sub-matrix A, O(Qb2N2) for B, O(N) for F and O(27N3)
for the inversion of the full RB matrix (32). Using this option we cannot rig-
orously demonstrate that the approximation stability is preserved (even without
orthonormalization); nevertheless, after several numerical tests, we can safely ar-
gue that this option is very efficient and reasonably stable. Certified a posteriori
error bounds are another proof of guaranteed stability using this approach com-
bined with orthonormalization. In the following we are going to use this “global

supremizer” option and indicate the RB velocity space as XN
N ≡ XN , µ

N for the
sake of simplicity. Numerical tests and comparisons about the different suprem-
izer options4 have been reported in previous works [41,47] for Stokes and [34,40]
for Navier-Stokes equations.

5 Offline-Online computational procedure

The linear system (32) has normally a very small size (and a full structure) com-
pared to the system that arises from standard FE discretization of (18), since
(following the option (ii) discussed above) it consists of a set of 3N linear alge-
braic equations in 3N unknowns, while the FE discretization would lead to a set

4 A different “splitted supremizer” option might be introduced as well (see e.g. [41,47]):
this approach has the big advantage to preserve the approximation stability, to let us ap-
ply orthonormalization (method (ii)) and to preserve stability also after orthonormalization.
Nevertheless, the cost for assembling and inverting the global RB matrix would still depend
on the parametric complexity Qa, Qb of the problem, which can be rather high, above all in
nonaffinely parametrized problems, where the empirical interpolation method has to be used
in order to recover the affine parametric dependence.
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of N equations in N unkowns. Nevertheless, the elements of XN
N and QN

N are as-
sociated with the underlying FE space and thus are depending on N .
A suitable Offline/Online decomposition strategy, based on the affine parameter
dependence, enables to decouple the generation and projection stages of the RB
approximation and thus to eliminate the N dependence. In this way, a very expen-
sive (parameter independent) pre-processing Offline stage, performed only once,
prepares the way for subsequent very inexpensive Online calculations, performed
for (many) new PDEs solution or input-output evaluation afterwards.

In the Offline stage - performed only once - we first compute and store the basis
functions {σn}

2N
n=1, {ξl}

N
l=1, and form the matrices Aq, Bq, and the vectors F , G.

This requires O(Qa4N2) for the sub-matrices Aq, O(Qb2N2) for the sub-matrices
Bq and O(N) for the vectors F and G. In the Online stage - performed many times,
for each new value of µ - we use the precomputed matrices Aq, Bq to assemble the
(full) 3N × 3N stiffness matrix appearing in (32), with

A =
Qa
X

q=1

Θq
a(µ)Aq, B =

Qb
X

q=1

Θq
a(µ)Bq; (35)

we then solve (34) to obtain the uNj
(µ), 1 ≤ j ≤ 2N , pNl

(µ), 1 ≤ l ≤ N and
evaluate the output approximation. The operation count for the Online stage is
then O((Qa +Qb)N

2) to assemble and O(27N3) to invert the full stiffness matrix,
and O(N) to evaluate the inner product for the output computation.

The crucial point is that our Online computational costs are dependent on Qa

and N , but independent of N . Since N ≪ N , we can expect significant (orders
of magnitude) speedup in the Online stage compared to the pure FE approach.
This implies also that we may choose N very large in order to eliminate the error
between the exact solution and the FE predictions without affecting the RB Online
efficiency. In fact, the bigger the underlying FE system and thus N is chosen, the
bigger the speedup by the use of the RB method in the Online stage will be.
However, we should keep in mind that the Offline phase is still N -dependent (a
parallel Offline computation was proposed in [11]).

5.1 Sampling Strategy: a “Greedy” Algorithm

Let us introduce the product space Y = X ×Q and denote with U ∈ Y the couple
of velocity and pressure fields U = (u, p); clearly

‖U‖Y := (‖u‖2
X + ‖p‖2

Q)1/2, for all U = (u, p) ∈ Y = X ×Q

is a norm on the product space Y , induced by the scalar product

(V,W)Y := (v,w)X + (p, q)Q, for all U = (u, p),V = (v, q) ∈ Y = X ×Q.

In the same way, we indicate as UN = (uN (µ), pN (µ)) ∈ Y N = XN × QN and
UN

N = (uN
N (µ), pNN (µ)) ∈ Y N

N = XN
N ×QN

N an element in the product of FE and RB
spaces, respectively. The question we deal with in this section is how to choose the
sample points µn, 1 ≤ n ≤ N for a given N such that the accuracy of the resulting
RB approximation is maximized. The key ingredient is a rigourous, sharp and
inexpensive a posteriori error bound ∆N

N (µ) such that, for all µ ∈ D and for all N ,

‖UN (µ) − U
N
N (µ)‖Y = (‖uN (µ) − u

N
N (µ)‖2

X + ‖pN (µ) − pNN (µ)‖2
Q)1/2 ≤ ∆N

N (µ).
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We discuss the construction and properties of such an error estimator in detail in
Sec. 6. We will now proceed to the “greedy” procedure which makes use of this
a posteriori error estimate to construct hierarchical Lagrange RB approximation
spaces [30,43,49]. Given a maximum RB dimension Nmax, a tolerance εRB

tol and
a training sample Ξtrain ⊂ D (a sufficiently rich finite training sample of ntrain

parameter points chosen using, for example, a uniform distribution on D), we
then choose at random µ1 ∈ Ξtrain, the first sample point to be added to the
Lagrange parameter samples S1 = {µ1}, and set QN

1 = span{ξ1 := pN (µ1)},

XN
1 = span{ζ1 := uN (µ1), Tµ

1

p ξ1}. The algorithm proceeds as follows:

for N = 2 : Nmax

µ
N = arg max

µ∈Ξtrain

∆N
N−1(µ);

ǫN−1 = ∆N
N−1(µ

N );

if ǫN−1 ≤ εRB
tol

Nmax = N − 1;

end;

SN = SN−1 ∪ µN ;

QN
N = QN

N−1 + span{ξN := pN (µN )};

XN , µ

N = XN
N−1 + span{ζN := u

N (µN ), Tµ
N

p ξN};

end.

Hence, the greedy algorithm5 chooses at each iteration that particular candidate
snapshot which is worst approximated by the projection on the “old” RB space
XN

N−1 × QN
N−1 and appends it to the retained snapshots. The most crucial point

of this strategy is that the error is not measured by the (very expensive) “true”
error ‖UN (µ)−UN

N (µ)‖Y but by the inexpensive a posteriori error bound ∆N
N (µ).

This permits us to perform Offline a very exhaustive search for the best sample
with ntrain very large and thus get most rapidly uniformly convergent spaces Y N

N .
In fact only the winning candidate basis functions are computed and stored.

6 A posteriori error estimation for Stokes solution

In this section we deal with a posteriori error estimation in the RB context for
affinely parametrized Stokes equations. The approach we address in this work
takes advantage of the Babuška stability theory, which slightly differs from the
more common Brezzi stability theory for saddle-point problems. The latter has
been introduced for the approximation stability, while the former involves the
global Stokes operator (viscous term, plus pressure-divergence terms). An alter-
native approach for a posteriori error estimation in the Stokes case and based on
the splitting between viscous and pressure-divergence terms can be found in [36],
whereas a more recent one based on a penalty method has been proposed in [12].

5 Preliminary versions of the greedy algorithm for the Stokes problem were introduced in
[39] using an error projection for velocity and pressure [13], respectively, instead of an error
bound. More recent versions based on error bounds were described e.g. in [9,11].
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Let us define the bilinear form Ã(·, ·;µ) : Y × Y → R given by

Ã(V,W;µ) := A(v,w;µ) + B(p,w;µ) + B(q,v;µ) (36)

and the linear form
F̃ (W) := F (w) +G(q), (37)

where V = (v, p) and W = (w, q). We remark that, following the so-called Babuška
stability theory, an alternative to (16)-(17) ensuring the well posedness of (18) is
the following Babuška inf-sup stability condition:

∃ β̃NLB(µ) > 0 : β̃N (µ) = inf
V∈Y N

sup
W∈Y N

Ã(V,W;µ)

‖V‖Y ‖W‖Y
≥ β̃NLB(µ), ∀ µ ∈ D. (38)

The a posteriori error estimation used for Stokes problem is based on two
main ingredients: the dual norm of residuals and an effective lower bound of the
(parametric) stability factor, given in this case by the Babuška inf-sup constant
β̃N (µ) defined in (38). Let us define the residuals rv(· ;µ) and rp(· ;µ) by

ru(w;µ) := F (w) −A(uN
N (µ),w;µ) − B(pNN (µ),w;µ),

rp(q;µ) := G(q) − B(q,uN
N (µ);µ).

(39)

Note that

ru(w;µ) = A(eu(µ),w;µ) + B(ep(µ),w;µ) ∀ w ∈ XN ,

rp(q;µ) = B(q, eu(µ);µ) ∀ q ∈ QN ,
(40)

where eu(µ) = uN (µ) − uN
N (µ) and ep(µ) = pN (µ) − pNN (µ). Equivalently,

r̃(W;µ) = Ã(UN (µ) − U
N
N (µ),W;µ) ∀ W ∈ Y N ≡ XN ×QN , (41)

where r̃(W;µ) := ru(w;µ) + rp(q;µ). Using the inf-sup condition (38), we have

β̃N (µ)‖UN (µ) − U
N
N (µ)‖X ≤ sup

W∈Y N

A(UN (µ) − UN
N (µ),W ;µ)

‖W‖Y
,

so that the following result holds:

Proposition 1 Let us denote by UN (µ) and UN
N (µ) the truth and the RB approx-

imations, solving respectively (18) and (24). The following residual-based estimation

holds:

‖UN (µ) − U
N
N (µ)‖Y ≤

‖r̃(·;µ)‖Y ′

β̃NLB(µ)
=: ∆N

N (µ), ∀µ ∈ D, (42)

where ‖r(·;µ)‖Y ′ = supW∈Y N r(W;µ)/‖W‖Y is the dual norm of the residual and

β̃NLB(µ) is a computable lower bound for β̃N (µ).

An alternative expression of the error estimator (42) is given by

‖uN (µ)−u
N
N (µ)‖2

X+‖pN (µ)−pNN (µ)‖2
Q ≤

1

(β̃NLB(µ))2

“

‖ru(· ;µ)‖2
X′ + ‖rp(· ;µ)‖2

Q′

”

where

‖ru(· ;µ)‖X′ = sup
w∈XN

ru(w;µ)

‖v‖X
, ‖rp(· ;µ)‖Q′ = sup

q∈QN

rp(q;µ)

‖q‖Q

are the dual norms of the residuals for the velocity and the pressure variables,
respectively, such that ‖r̃(·;µ)‖2

Y ′ = ‖ru(· ;µ)‖2
X′ + ‖rp(· ;µ)‖2

Q′ .
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7 Error estimation for the linear outputs

We now build a posteriori error bounds for linear outputs of interest, making a
distinction between the compliant and the more general noncompliant case; the
quadratic case will be addressed in a forthcoming work [24].

7.1 Compliant case

Given the solution (u(µ), p(µ)) to (5), in the compliant case we have lu(·) = F (·),
lp(·) = G(·), i.e. the output of interest can be written as

s(µ) = l(u(µ), p(µ);µ) = F (u(µ)) +G(p(µ). (43)

Correspondingly, the FE approximation of the output is given by

sN (µ) = l(uN (µ), pN (µ);µ) = F (uN (µ)) +G(pN (µ)), (44)

while the RB approximation of the output, considering a suitable correction as
proposed in [32] in order to improve the output accuracy, is given by

sNN (µ) = l(uN
N (µ), pNN (µ);µ) + r̃(uN

N (µ), pNN (µ);µ), (45)

and thus sN (µ)− sNN (µ) = ru(eu(µ);µ)+ rp(ep(µ);µ). Thanks to the relationship

|sN (µ) − sNN (µ)| ≤ sup
w∈X

rv(w;µ)

‖w‖X
‖ev(µ)‖X + sup

q∈Q

rp(q;µ)

‖q‖Q
‖ep(µ)‖Q

= ‖rv(·;µ)‖X′‖ev(µ)‖X + ‖rp(·;µ)‖Q′‖ep(µ)‖Q,

and to the estimate (42) on velocity and pressure fields, the following result holds:

Proposition 2 Let us denote by sN (µ) and sNN (µ) the finite element and the reduced

basis approximation, defined by (44) and (45), respectively, of a linear output (43) in

the compliant case. Then, the following error estimation holds:

|sN (µ)−sNN (µ)| ≤ 2

 

‖rv(·;µ)‖2
X′ + ‖rp(·;µ)‖2

Q′

β̃NLB(µ)

!

:= ∆s, c
N (µ), ∀µ ∈ D, (46)

7.1.1 Non-compliant case

Let us now consider the more general case where the output of interest is

s(µ) = l(u(µ), p(µ);µ) = lu(u(µ);µ) + lp(p(µ);µ) (47)

with lu(·;µ) ∈ X ′ and lp(·;µ) ∈ Q′ for all µ ∈ D. In this case, we introduce the
dual problem associated with l(·;µ): find (ψ(µ), λ(µ)) ∈ X ×Q such that



A(w,ψ(µ);µ) + B(λ(µ),w;µ) = −lu(w;µ) ∀ w ∈ X

B(q,ψ(µ);µ) = −lp(q;µ) ∀ q ∈ Q,
(48)

where Ψ (µ) = (ψ(µ), λ(µ)) is denoted the dual (or adjoint) field. The correspond-
ing FE approximation Ψ (µ) = (ψN (µ), λN (µ)) ∈ XN (Ω) ×QN (Ω) solves

(

A(Φ,ψN (µ);µ) + B(λN (µ),Φ;µ) = −lu(Φ;µ) ∀ Φ ∈ XN

B(φ,ψN (µ);µ) = −lp(φ;µ) ∀ φ ∈ QN .
(49)
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while the FE approximation of the output is given by

sN (µ) = l(uN (µ), pN (µ);µ) = lu(uN (µ);µ) + lp(p
N (µ);µ) (50)

where (uN (µ), pN (µ)) solve (18). The adjoint problem is thus subject to the same
Brezzi inf-sup condition (17) of the primal problem. Its RB approximation is as
follows: find ΨN

M (µ) = (ψN
M (µ), λNM (µ)) ∈ XN

M ×QN
M such that

(

A(w,ψN
M (µ);µ) + B(λNM (µ),w;µ) = −lu(w;µ) ∀ w ∈ XN

M

B(q,ψN
M (µ);µ) = −lp(q;µ) ∀ q ∈ QN

M .
(51)

where the RB dual spaces XN
M , QN

M are built by means of a greedy algorithm
and the dimension M ≪ N is a priori different from the dimension N of the
primal RB spaces. Similarly to (39), given the RB approximation of the dual
fields (ψN

M , λNM )), we can introduce the errors edu
v (µ) = ψN (µ) − ψN

M (µ) and
edu
p (µ) = λN (µ) − λNM (µ) and define the residuals as follows:

rdu
u (w;µ) := −lu(w;µ) −A(w,ψN

M (µ);µ) − B(λNM (µ),w;µ),

rdu
p (q;µ) := −lp(q;µ) − B(q,ψN

M (µ);µ).
(52)

Note that

rdu
u (w;µ) = A(edu

u (µ),w;µ) + B(edu
p (µ),w;µ) ∀ w ∈ XN ,

rdu
p (q;µ) = B(q, edu

u (µ);µ) ∀ q ∈ QN ;
(53)

equivalently, r̃du(W;µ) = Ã(ΨN (µ) − ΨN
M (µ),W;µ) ∀ W ∈ Y N ≡ XN × QN ,

where r̃du(W;µ) := rdu
u (w;µ)+ rdu

p (q;µ). The RB approximation of the output is
thus given by

sNN (µ) = l(uN
N (µ), pNN (µ);µ) − r̃(ψN

M (µ), λNM (µ);µ) (54)

where the adjoint correction helps improving the accuracy of the approximation.
Hence, we have

sN (µ) − sNN (µ) = L(Y N (µ);µ) − L(YN (µ);µ) + r(ΨM (µ);µ)

= Lv(ev(µ);µ) + Lp(ep(µ);µ) + r(ΨM (µ);µ);

thanks to (48) and (39), this expression can be also written as

sN(µ) − sNN (µ) = − a(ev(µ),ψN (µ);µ) − b(λN (µ), ev(µ);µ) − b(ep(µ),ψN (µ);µ)

+ a(ev(µ),ψM (µ);µ) + b(λM (µ), ev(µ);µ)+ b(ep(µ),ψM (µ);µ)

= − a(ev(µ), edu
v (µ);µ) − b(edu

p (µ), ev(µ);µ) − b(ep(µ), edu
v (µ);µ)

= − rdu
v (ev(µ);µ) − rdu

p (ep(µ);µ).

Using the same procedure exploited in the compliant case, we obtain:

|sN (µ) − sNN (µ)| ≤ sup
w∈X

rdu
v (w;µ)

‖w‖X
‖ev(µ)‖X + sup

q∈Q

rdu
p (q;µ)

‖φ‖Q
‖ep(µ)‖Q

= ‖rdu
v (·;µ)‖X′‖ev(µ)‖X + ‖rdu

p (·;µ)‖Q′‖ep(µ)‖Q,

so that the error bound is given by a combination of the dual norms of the dual
residuals and the error on the primal variables. We have thus shown the following
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Proposition 3 Let us denote by sN (µ) and sNN (µ) the finite element and the reduced

basis approximation, defined by (50) and (54), respectively, of a linear output (47) in

the noncompliant case. Then, the following error estimation holds:

|sN (µ) − sNN (µ)| ≤ ∆s, n
N (µ), ∀µ ∈ D,

where

∆s, n
N (µ) := 2

 

‖rdu
v (·;µ)‖2

X′+‖rdu
p (·;µ)‖2

Q′

β̃NLB(µ)

!1/2 
‖rv(·;µ)‖2

X′ +‖rp(·;µ)‖2
Q′

β̃NLB(µ)

!1/2

.

(55)

This result is the noncompliant version of (46): in fact, it extends the estimation
obtained for the compliant case, since in the latter case, choosing V N

N ≡ V N
M and

QN
N ≡ QN

M , we have ψM (µ) ≡ −vN (µ), λM (µ) = −pN (µ) and the same expression
for primal and dual residuals.

8 Numerical Examples

Flows in pipes and channels or around bodies are of great interest in fluid me-
chanics applications [29], especially when they can be studied in a parametrized
geometrical configuration. The following examples consider low Reynolds viscous
flows described by 2D steady Stokes equations in different geometries; they can
be seen as examples for the design of parametrized fluidic devices or considered as
elements of more complex modular fluidic systems.
The computations, provided in this work as examples, have been done in five dif-
ferent geometrical configurations and deal with two classic Poiseuille and Couette
flows, a flow in a channel contraction and around a curved bluff body. The fol-
lowing subsections are devoted to the description of these problems, with results
showing the application of the proposed and revisited methodology. All numerical
details concerning the construction of RB spaces and the computation of lower
bounds β̃NLB(µ) are reported in Tables 1 and 2.

8.1 Poiseuille and Couette flows

This first example deals with two classical flows in straight pipes of uniform
cross-section, known as Hagen-Poiseuille and Couette flows [29]. In the former
a parabolic velocity profile is imposed at the inflow, while in the latter we deal
with a flow in the space between two parallels sections, one of which is moving
relative to the other.
For the Poiseuille case, we consider the physical domain Ωo(µ) shown in Figure 1
and P = 2 parameters. Here µ1 = ν is a physical parameter, while µ2 is a geometri-
cal parameter representing the lenght of the right narrow channel. The parameter
domain is given by D = [0.25, 0.75] × [1.5, 2.5]. The forcing term is f = (1, 0).
We impose the following boundary conditions (with ΓD ≡ ΓD0

= ∂Ω \ (Γ1 ∪ Γ7)):

u = 0 on ΓD

u1 = 0, u2 = 4x1(1 − x1) on Γ1

u1 = 0, −pn2 + ν
∂u2

∂x2
n2 = 0 on Γ7

(Poiseuille case)
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Fig. 1 Parametrized geometry and domain boundaries for the Poiseuille (left) and the Couette
(right) case.

where n = (n1, n2)
T denotes the normal unit vector and ν = µ1. For the Couette

case, we consider the physical domain Ωo(µ) shown in Figure 1 (right side) and
P = 1 parameter, µ1 ∈ [0.5, 2], being both the height of the channel and the
maximum value of the linear profile of inlet velocity prescribed. The forcing term is
f = (0,−1). Denoting ΓD = ∂Ω \Γ3, we impose the following boundary conditions:

u1 = y, u2 = 0 on ΓD

u2 = 0, −pn1 +
∂u1

∂x1
n1 = 0 on Γ3

(Couette case)
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Fig. 2 Poiseuille (left) and Couette (right) cases: relative errors maxµ∈Ξtrain

(∆N
N (µ)/‖UN

N (µ)‖Y ) as a function of N for the RB approximations computed during the
greedy procedure. Here Ξtrain is a uniform random sample of size ntrain = 1000 and the RB
tolerance is εRB

tol = 10−2.

We show in Figure 2 the convergence of the greedy procedure for the construction
of the RB spaces; with a fixed tolerance εRB

tol = 10−2, Nmax = 7 and Nmax = 6 basis
functions have been selected for the Poiseuille and the Couette cases, respectively.
We also plot in Figure 3 the SCM lower and upper bounds for the Babuška inf-sup
constant (e.g. for a selected value of µ1 in the Poiseuille case, using for both the
cases in the Online evaluation a uniform train sample of 1000 parameter values).
For these cases the output of interest is provided by the visualization of velocity
and pressure contour fields; two examples are reported in Figures 4 and 5.
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Fig. 3 Poiseuille (left) and Couette (right) cases: lower and upper bounds for the Babuška

inf-sup constant; here Ξtrain is a uniform sample of size ntrain = 1000: β̃N
LB(µ) (red curve)

and β̃N
UB(µ) (blue curve) as a function of µ2 for the Poiseuille case (being µ1 = 0.5 fixed) and

of µ1 for the Couette case after 27 and 15 iterations of the SCM greedy algorithm, respectively.
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Fig. 4 Poiseuille case: representative solution for pressure with streamlines (left) and velocity
(right) for µ = [0.25, 2.5].
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Fig. 5 Couette case: representative solution for pressure with streamlines (left) and velocity
(right) for µ = 0.5.

We plot in Figure 6 the errors between the “truth” FE solution and the RB
approximation, for N = 1, . . . , Nmax, and the corresponding error bounds. We
remark both the rigor and the sharpness of the error bounds, being the effectivity
ηN (µ) := ∆N (µ)/‖UN (µ) − UN

N (µ)‖Y greater than 1 (rigor) and not so far from
unity (sharpness).

8.2 A channel contraction

The problem of the change of a sectional area characterizes many engineering
problems dealing with internal flows. The physical phenomena observed in the
channel at the change of the sectional area are based on the continuity equation;
another important aspect is the calculation of flow rates at a selected section
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Fig. 6 Poiseuille (left) and Couette (right) cases: a posteriori error bounds and (minimum,
maximum and average) computed errors between the “truth” FE solution and the RB approx-
imation, for N = 1, . . . , Nmax. Here Ξtrain is a uniform sample of size ntrain = 1000.

of the channel. We consider the physical domain Ωo(µ) shown in Figure 7; we
identify the regions Rℓ, 1 ≤ ℓ ≤ 2, which represent the portions of the channel
with different sectional area. We consider P = 3 parameters; here µ1, µ2, µ3 are
geometrical parameters defined in Figure 7: µ1 is the length of the larger zone
of the channel before the contraction, µ2 is the length of the narrow zone of the
channel (just before the outflow) and µ3 is the diameter of the channel at the
inflow. The parameter domain is given by D = [3, 5] × [3, 5] × [2.5, 3]. The forcing
term is f = (0, 0). We impose the following boundary conditions:

u = 0 on Γ1, Γ2, Γ4, Γ6, Γ7, Γ8

u2 = 0, −pn1 +
∂u1

∂x1
n1 = 1 on Γ5.

u2 = 0, −pn1 +
∂u1

∂x1
n1 = −1 on Γ9, Γ10, Γ11.

Fig. 7 Parametrized geometry and domain boundaries for the channel contraction case.

The output of interest is the flowrate on Γ3 (internal boundary at the interface,
on which the continuity of velocity and stresses is assured), given by

s(µ) =

Z

Γ3

u1(µ)dΓ.

We show in Figure 8 the convergence of the greedy procedure for the construction
of the primal and dual RB spaces; with a fixed tolerance εRB

tol = 10−2, Npr
max = 11
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Fig. 8 Channel contraction case: relative errors maxµ∈Ξtrain
(∆N

N (µ)/‖UN
N (µ)‖Y ) and

maxµ∈Ξtrain
(∆N

M (µ)/‖ΨN
M (µ)‖Y ) as a function of N = Npr and M = Ndu for the RB

approximations computed during the greedy procedure, for the primal (left) and the dual
(right) problem, respectively. Here Ξtrain is a uniform random sample of size ntrain = 1000
and the RB tolerance is εRB

tol = 10−2.

Fig. 9 Channel contraction case: lower (left) and upper (right) bounds for the Babuška inf-

sup constant; here Ξtrain is a uniform sample of size ntrain = 2500: β̃N
LB(µ) and β̃N

UB(µ) as
a function of µ1, µ2 (top, being µ3 = 2.75 fixed) and of µ1, µ3 (bottom, being µ2 = 4 fixed)
after 49 iterations of the SCM greedy algorithm.

and Ndu
max = 17 basis functions have been selected for the primal and the dual

problem, respectively. We also plot in Figure 9 the SCM lower and upper bounds
for the Babuška inf-sup constant, using in the Online evaluation a uniform train
sample of size ntrain = 2500.

In Figure 10 we report some representative solutions for selected values of the
parameters. In Figure 11 we plot the computed output, together with the related
error bound, as functions of µ1 and µ2, being µ3 fixed to its intermediate value.
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Fig. 10 Channel contraction case: representative solutions for pressure with streamlines (left)
and velocity (right) for µ = [3, 5, 2.5] and µ = [5, 3, 3].

We recall the quadratic effect recovered by introducing and solving the dual prob-
lem in the case of a noncompliant output.

Fig. 11 Channel contraction case: computed output (left) and related error bound (right) as
functions of µ1, µ2, with µ3 = 2.75. The average time for Online output evaluation is 0.148s.

8.3 A curved bluff body

A common problem in fluid dynamics is the drag minimization around a body
which is in relative motion in a fluid; airfoils or hull appendages in boats (at high
Reynolds number) or blunt bodies in flows (at low Reynolds numbers) are just a
couple of examples of applications. Here we consider a simplified version of the
drag minimization problem addressed in [6], in which drag forces are minimized
controlling the velocity through the body boundary. We are now interested in
computing the Stokes flow and related drag forces around a profile in relative
motion with a laminar viscous fluid, with respect to simple parametric variations.
A complete formulation in the optimal control and shape optimization framework
using RB approximation will be the object of another forthcoming work.
We consider the geometrical setting depicted in Figure 12: here µ1 ∈ [0.1, 0.25] is
a geometrical parameter representing the body lenght, while µ2 ∈ [−25, 25] is the
Neumann datum prescribed on the boundaries Γ9∪Γ11: as in [6], this corresponds to
regulate the aspiration or the blowing of the boundary layer for reducing the effects
of the vortices coming off from the rear of the body. The forcing term is f = (0, 0).
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A parabolic flow is imposed at the inlet Γ7 ∪ Γ8, while a free-stress condition is
imposed at the outflow Γ4∪Γ5. Thus, we impose the following boundary conditions:

u = 0 on Γ1, Γ2, Γ5, Γ6, Γ10, Γ12, Γ13,

u1 = α(x2 − 0.4)(x2 + 0.4), u2 = 0 on Γ7, Γ8,

u1 = 0, −pn2 +
∂u2

∂x2
n2 = µ2 on Γ9,

u1 = 0, −pn2 +
∂u2

∂x2
n2 = µ2 on Γ11,

−pn +
∂u

∂n
= 0 on Γ3, Γ4.

where α = 0.16 in order to have a maximum velocity at the inlet equal to 1.

Fig. 12 Parametrized geometry and domain boundaries for the curved bluff body case.

The output of interest is the drag force acting on the Dirichlet boundary of the
body ΓB = Γ10 ∪ Γ12 ∪ Γ13, given by

s(µ) =

Z

ΓB

„

pn −
∂u

∂n

«

· ûDdΓ,

where ûD = (1, 0) is the direction of the inflow velocity. We show in Figure 13 the
convergence of the greedy procedure for the construction of the primal and dual
RB spaces; with a fixed tolerance εRB

tol = 10−2, Npr
max = 12 and Ndu

max = 6 basis
functions have been selected for the primal and the dual problem, respectively.

We also plot in Figure 14 the SCM lower and upper bounds for the inf-sup constant;
clearly, they do not depend on µ2, which does not affect the left-hand-side of the
Stokes operator. In Figure 15 we report some representative solutions for selected
values of the parameters. We can underline a strong sensitivity of the flow with
respect to geometrical variations and, clearly, also on the aspiration/blowing of the
fluid across the body. In Figure 16 we plot the computed output, together with
the related error bound. The output behaves as a non-monotonic function w.r.t.
the two parameters. There is a different influence of the bluff body geometry (i.e.
short or long body) w.r.t. the shear layers and the separation.

We plot in Figure 17 the errors between the “truth” FE solution and the RB
approximation, for N = 1, . . . , Nmax, and the corresponding error bounds.
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Fig. 13 Curved bluff body case: relative errors maxµ∈Ξtrain
(∆N

N (µ)/‖UN
N (µ)‖Y ) and

maxµ∈Ξtrain
(∆N

M (µ)/‖ΨN
M (µ)‖Y ) as a function of N = Npr and M = Ndu for the RB

approximations computed during the greedy procedure, for the primal (left) and the dual
(right) problem, respectively. Here Ξtrain is a uniform random sample of size ntrain = 1000
and the RB tolerance is εRB

tol = 10−2.

Fig. 14 Curved bluff body case: lower and upper bounds for the Babuška inf-sup constant;
here Ξtrain is a uniform sample of size ntrain = 2500: β̃N

LB(µ) and β̃N
UB(µ) as a function of

µ1, µ2 after 10 iterations of the SCM greedy algorithm.

8.4 Summary results

We report all the details of the numerical simulations related to the discussed test
cases in Table 1. We remark the very small dimension N of the RB approxima-
tion problems with respect to the FE approximation space dimension N , which
leads to effective computational economies, necessary when dealing with numeri-
cal simulations in both real time and many query context. The reduction in linear
systems dimension is about between 200 and 400 times, depending on the test
cases, while the computational speedup is of order 102, varying from 98 to 442.
Computational time for Online evaluation is of order 10−2 seconds. The natural
norm SCM algorithm enables to contain the computational costs arising from the
computation of the lower bound of the inf-sup constant, also in the cases of larger
parameter spaces D, as for the curved bluff body case (see Table 2).
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Fig. 15 Curved bluff body case: representative solutions for pressure with streamlines (left)
and velocity (right) for µ = [0.1,−25] (top) and µ = [0.25, 25] (bottom).

Fig. 16 Curved bluff body case: computed output (left) and related error bound (right) as a
function of µ1, µ2. The average time for Online output evaluation is 0.087s.

9 Conclusions

We have investigated the role of the inf-sup constants in parametrized Stokes
equations solved by reduced basis method. The stability of the RB methodology
is guaranteed through an equivalent Brezzi’s inf-sup constant, while the certi-
fied error bounds on velocity and pressure have been proposed by considering
a parametrized Babuska’s inf-sup constant (and its lower bound computed by a
linear programming algorithm (SCM)). Several numerical tests have proved the
computational efficiency and the reliability of the proposed methodology. Further
developments will be devoted in the treatment of quadratic outputs in view of
optimal control and shape optimization problems.
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Fig. 17 Curved bluff body case: a posteriori error bounds and (minimum, maximum and
average) computed errors between the “truth” FE solution and the RB approximation, for
N = 1, . . . , Nmax. Here Ξtrain is a uniform sample of size ntrain = 500.

Approximation data Poiseuille Couette Contraction Body
Number of parameters P 2 1 3 2
Affine op. components Qa + 2Qb 5 3 8 8
Affine rhs components Qf 2 4 2 9
FE space dim. N 8354 5093 6490 13216
RB primal space dim. Npr

max 7 6 11 12
RB dual space dim. Ndu

max - - 17 6

FE evaluation tonline
FE (s) 3.987 2.005 3.464 10.483

RB evaluation tonline
RB (s) 0.0101 0.0205 0.0212 0.0237

Computational speedup 395 98 163 442

Table 1 Numerical details for the test cases presented. RB spaces have been built by means
of the greedy procedure, using a tolerance εRB

tol = 10−2 and a uniform RB greedy train sample
of size ntrain = 1000. A comparison of the computational times between the Online RB evalu-
ations and the corresponding FE simulations is reported. Here tonline

RB is the time of an Online

RB computation, while tonline
FE is the time for a FE computation, once FE matrices are built.

Approximation data Poiseuille Couette Contraction Body
Number of selected µ̄ 2 3 1 1
Number of selected µ̂ (∀µ̄) 22; 5 7; 5; 3 49 10
Number of eigenproblems 39 24 66 27

Table 2 Numerical details for the test cases presented. The lower and upper bounds of the
Babuška inf-sup constants have been computed by means of the natural norm SCM algorithm
detailed in [16], using a tolerance εSCM

tol = 0.85 and a uniform train sample of size ntrain =
1000. SCM requires the solution of #µ̄ + #µ̂ + 2(Qa + 2Qb) eigenproblems.
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Appendix A: On the relationship between Brezzi and Babuška theories

In this short section we report some observations on the two inf-sup stability the-
ories formulated by Babuška [1] and Brezzi [2], briefly discussing the relationship
between the two theories and underlining the motivations on which we have based
and developed the previous analysis. Some recent contributions, on which this sec-
tion is based, can be found in the works by Xu and Zikatanov [50] and Demkowicz
[8]. Considering a continuous bilinear form Φ(·, ·) : U ×V → R, the Babuška theory
states that the problem6

find y ∈ U : Φ(y, z) = 〈f, z〉 ∀ z ∈ V

is well posed if and only inf the following (Babuška) inf-sup condition holds:

inf
y∈U

sup
z∈V

Φ(y, z)

‖y‖U‖z‖V
= inf

z∈V
sup
y∈U

Φ(y, z)

‖y‖U‖z‖V
= βBA > 0, (56)

and the unique solution of (36) satisfies

‖y‖U ≤
‖f‖V ∗

βBA
. (57)

In this way, the Babuška theory can be seen as a generalization to the Petrov-
Galerkin case of the Lax-Milgram result for the Galerkin-type formulation; its
application to the Stokes problem is just a possible use. Our interest is to create
a general framework to compute error bounds for noncoercive problems solved by
reduced basis. On the other hand, the Brezzi theory applies to mixed variational
problems under the form



a(u, v) + b(p, v) = 〈f, v〉 ∀ v ∈ V,

b(q, u) = 〈g, q〉 ∀ q ∈ Q,
(58)

where a(·, ·) : V × V → R and b(·, ·) : Q× V → R are continuous bilinear forms, i.e.

a(u, v) ≤ γa‖u‖V ‖v‖V ∀ u, v ∈ V, b(q, v) ≤ γb‖q‖Q‖v‖V ∀ q ∈ Q, ∀ v ∈ V,

and f ∈ V ∗, g ∈ Q∗. Such a variational problem is well posed if and only if the
following (Brezzi) inf-sup conditions hold:

inf
u∈V0

sup
v∈V0

a(u, v)

‖u‖V ‖v‖V
= inf

v∈V0

sup
u∈V0

a(u, v)

‖u‖V ‖v‖V
= α > 0, (59)

6 Throughout this section we use a notation which is as simple as possible and independent
of the other sections for the sake of simplicity. We indicate as V ∗ the space of continuous and
linar functionals on V , 〈·, ·〉 the usual duality pairing between V and V ∗ and consider f ∈ V ∗.
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where V0 = {v ∈ V : b(q, v) = 0, ∀q ∈ Q}, and

inf
q∈Q

sup
v∈V

b(q, v)

‖q‖Q‖v‖V
= βBR > 0. (60)

Furthermore, under conditions (59)-(60) the unique solution (u, p) ∈ V ×Q satisfies

‖(u, p)‖V ×Q ≤ KBR(α−1, β−1
BR, γa)‖(f, g)‖V ∗×Q∗ . (61)

Moreover, it is also possible to derive the following estimates for the two variables
distinctly:

‖u‖X ≤
1

α

»

‖f‖X∗ +
α+ γa

βBR
‖g‖Q∗

–

,

‖p‖Q ≤
1

βBR

»

“

1 +
γa

α

”

‖f‖X∗ +
γa(α+ γa)

α+ βBR
‖g‖Q∗

–

.

(62)

The relationship between the Brezzi theory and the Babuška theory in the case
of a Stokes problem is based on the identifications (36)-(37): in this way, we can
recast the mixed variational problem (58) into the Babuška framework; the error
estimation (42) derived in Sec. 6 is the Babuška estimate (57) for (41). In the same
way, using the estimations (62) on (40) it is possible to derive analogous error
estimates for the velocity and the pressure errors, separately. The development of
separated error bounds is ongoing. Moreover, it is possible to show that the main
constants derived from these two theories are related7 by [50]

βBA ≥
1

KBR(α−1, β−1
BR, γa)

(63)

Thus, considering aggregate error estimates for both RB velocity and pressure
of type (57) or (61), we have that the Babuška-based estimate is sharper than
the Brezzi-based one since the “safety factor” βBA is in any case greater than
1/KBR. Moreover, the advantage of the Babuška-based error estimator is that
only a (lower bound of a) stability constant needs to be evaluated to get the error
bound. Instead, the Brezzi-based error estimator would require the evaluation of
the coercivity/continuity constants of a(·, ·) and the Brezzi inf-sup constant of
b(·, ·). We remark that all the approximation stability for the Stokes RB problem
is based on Brezzi theory.

Appendix B: Offline-Online procedure for error bounds construction

In order to be computed in a very rapid and efficient way, the error estimation (42)
has to be based on the Offline/Online procedure already used for the RB approx-
imation. To reach this goal, it is important to introduce the Riesz representation
of ru(· ;µ) and rp(· ;µ): êu(µ) ∈ XN and êp(µ) ∈ QN satisfy

(êu(µ),w)X = ru(w;µ), ∀w ∈ XN , (êp(µ), q)Q = rp(q;µ), ∀q ∈ QN . (64)

7 Following [8], it is also possible to show that βBR ≥ βBA and α ≥ βBA.
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This allows us to write (40) as

A(eu(µ),w;µ) + B(ep(µ),w;µ) = (êu(µ),w)X ∀ w ∈ XN ,

B(q, eu(µ);µ) = (êp(µ), q)Q ∀ q ∈ QN

and it follows that the dual norm of the residual can be evaluated through the
Riesz representation:

‖ru(· ;µ)‖X′ = sup
w∈XN

ru(w;µ)

‖w‖X
= ‖êu(µ)‖X , (65)

‖rp(· ;µ)‖Q′ = sup
q∈QN

rp(q;µ)

‖q‖Q
= ‖êp(µ)‖Q. (66)

Hence, the error bounds developed in the previous section are only useful if
they allow for an efficient Offline/Online computational procedure that leads to an
Online complexity independent of N . The Offline/Online decomposition presented
in the following is mainly based on the dual norm of the residual. First of all, from
the affine decomposition of bilinear forms (12) we can write, equivalently,

Ã(V,W;µ) =
Qa+2Qb
X

q=1

Θ̃q(µ)Ãq(V,W), (67)

where
Θ̃q(µ) = Θq

a, q = 1, . . . , Qa,

Θ̃q+Qa(µ) = Θ̃q+Qa+Qb(µ) = Θq
b (µ), q = 1, . . . , Qb,

and
Ãq(V,W) = Aq(v,w) q = 1, . . . , Qa,

Ãq(V,W) = Bq(p,w) q = Qa + 1, . . . , Qa +Qb,

Ãq(V,W) = Bq(q,v) q = Qa +Qb + 1, . . . , Qa + 2Qb.

In this way, denoting as UN (µ) = (uN (µ), pN (µ)) ∈ R
3N the global vector of the

RB components and recalling the expansion already used in (34), the residual can
be expressed, considering the “global supremizer” option of Sec. 4.2, as

r̃(W;µ) = F̃ (W)−Ã(UN
N (µ),W;µ) = F̃ (W)−

3N
X

n=1

UN n(µ)
Q̃
X

q=1

Θ̃q(µ)Ãq(Φn,W),

where Q̃ = Qa + 2Qb and Φn = (σn, 0) for n = 1, . . . , 2N , Φn = (0, ξn) for n =
2N + 1, . . . , 3N . Together with (64) and linear superposition, this gives us

(ê(µ),W)Y = (êu(µ),w)X + (êp(µ), q)Q =

F̃ (W) −
3N
X

n=1

UN n(µ)
Q̃
X

q=1

Θ̃q(µ)Ãq(Φn,W)

where ê(µ) = (êu(µ), êp(µ)) ∈ Y N . We thus may write ê(µ) ∈ Y N as

ê(µ) = F̃ +
Q̃
X

q=1

3N
X

n=1

Θ̃q(µ)UN n(µ)Ãq
n,
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where F̃ ∈ Y N and Ãq
n ∈ Y N (called FE “pseudo”-solutions) satisfy

(F̃ ,W)Y = F̃ (W), ∀ W ∈ Y N , (68)

(Ãq
n,W)Y = −Ãq(Φn,W), ∀ W ∈ Y N , 1 ≤ n ≤ 3N, 1 ≤ q ≤ Q̃. (69)

We note that (68) and (69) are simple parameter-independent problems and thus
can be solved once in the Offline stage. It then follows that:

‖ê(µ)‖2
Y =

0

@F̃ +
Q̃
X

q=1

3N
X

n=1

Θ̃q(µ)UNn(µ)Ãq
n, F̃ +

Q̃
X

q′=1

3N
X

n′=1

Θ̃q′

(µ)UNn′(µ)Ãq′

n′

1

A

Y

=

(F ,F)Y +
Q̃
X

q=1

3N
X

n=1

Θ̃q(µ)UNn(µ)

8

<

:

2(F̃ , Ãq
n)Y +

Qa
X

q′=1

N
X

n′=1

Θ̃q′

(µ)UNn′(µ)(Ãq
n, Ã

q′

n′)Y

9

=

;

.

(70)

This expression can be related to the requested dual norm of the residual through
(65)-(66). It is the sum of products of parameter-dependent known functions and
parameter independent inner products, formed of more complicated but precom-
putable quantities. The Offline/Online decomposition is thus clear:

(i) in the Offline stage we first solve (68), (69) for the parameter-independent
FE “pseudo”-solutions F̃ and Ãq

n, 1 ≤ n ≤ 3N, 1 ≤ q ≤ Q̃ and form/store the

parameter-independent inner products (F̃ , F̃)Y , (F̃ , Ãq
n)Y and (Ãq

n, Ã
q′

n′)Y , 1 ≤

n, n′ ≤ 3N, 1 ≤ q, q′ ≤ Q̃. The Offline operation count depends on N , Q̃ and N ;
(ii) in the Online stage - performed for each new value of µ - we simply evaluate

the sum (70) in terms of the Θ̃q(µ), 1 ≤ q ≤ Q̃ and UN n(µ), 1 ≤ n ≤ 3N
(already computed for the output evaluation) and the precomputed and stored
(parameter-independent) (·, ·)Y inner products. The Online operation count,
and hence the marginal and asymptotic average cost, is only O(Q̃29N2), and
thus the crucial point - the independence of N - is achieved again.
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