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In this paper we present reduced basis approximations and associated rigorous a

posteriori error bounds for the parametrized unsteady Boussinesq equations. The essen-
tial ingredients are Galerkin projection onto a low-dimensional space associated with a
smooth parametric manifold — to provide dimension reduction; an efficient POD-Greedy

sampling method for identification of optimal and numerically stable approximations —
to yield rapid convergence; accurate (Online) calculation of the solution-dependent sta-

bility factor by the Successive Constraint Method — to quantify the growth of perturba-
tions/residuals in time; rigorous a posteriori bounds for the errors in the reduced basis
approximation and associated outputs — to provide certainty in our predictions; and an
Offline-Online computational decomposition strategy for our reduced basis approxima-
tion and associated error bound — to minimize marginal cost and hence achieve high
performance in the real-time and many-query contexts. The method is applied to a tran-
sient natural convection problem in a two-dimensional “complex” enclosure — a square
with a small rectangle cut-out — parametrized by Grashof number and orientation with
respect to gravity. Numerical results indicate that the reduced basis approximation con-
verges rapidly and that furthermore the (inexpensive) rigorous a posteriori error bounds
remain practicable for parameter domains and final times of physical interest.
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mation; a posteriori error estimation; error bounds; POD-Greedy sampling; offline-online
procedure; successive constraint method; real-time computation

1. Introduction

The analysis of unsteady natural convection heat transfer and fluid flow governed

by the Boussinesq equations (obtained from the Boussinesq approximation of the

Navier-Stokes and energy equations) has received considerable attention for many

years [25, 30, 57]. Natural convection flows are relevant in many engineering appli-

cations including thermal insulation, solar energy systems, reactor cooling systems,

ground-water pollution, ocean modeling, and materials processing. In these, and

many other applications, it is crucial to understand the unsteady flow and trans-

port over a range of (dimensionless) parameters such as the Grashof number or

Rayleigh number, the Prandtl number, and (say) gravity orientation — typically

a very computationally intensive prospect [4, 19, 38]. In this paper, we explore one

fashion in which to accelerate parameter-space exploration in the many-query and

also real-time contexts — reduced order models.

It has been observed for many nonlinear partial differential equations that the

solution manifold is of low dimension; in the natural convection context, the Lorenz

model [42] is the classical reference. This feature can be exploited in a reduced order

model. The reduced order model can often capture the system behavior accurately;

examples from fluid dynamics include [10, 12, 13, 24, 27, 31–33, 35]. Furthermore,

at least for systems with only quadratic nonlinearities — such as the Boussinesq

equations — the reduced order model can be significantly less costly than classical

discretization techniques such as the finite element method. However, none of the

earlier examples of reduced order models for the unsteady incompressible Navier-

Stokes and Boussinesq equations [7,10,13,23,24,31–34] is endowed with practicable

and rigorous error bounds.

The certified reduced basis method — which yields reduced order models

equipped with rigorous error bounds — is well developed for linear parametrized

parabolic partial differential equations [20,22,26,52]. However in the nonlinear case

many open research issues remain. We shall focus in this paper on the development

of rigorous a posteriori error bounds and rapidly and uniformly convergent re-

duced basis approximations for the unsteady Boussinesq equations. a To the extent

that the unsteady Boussinesq system is a superset of the unsteady incompressible

Navier–Stokes equations and (non–passive) scalar convection–diffusion equations

the methods of this paper are in fact broadly applicable to many problems in fluid

mechanics and transport. From a computational point of view the unsteady Navier-

Stokes/Boussinesq equations are quite simple: a quadratic nonlinearity that admits

aEarlier work has established reduced basis approximations and associated rigorous a posteriori

error bounds for nonsingular solution branches of the steady Burgers [55] and steady incompressible
Navier-Stokes and Boussinesq equations [9, 14,45,54]; we focus here on the unsteady case.
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standard Galerkin treatment.b However, from the theoretical point of view the un-

steady Navier-Stokes/Boussinesq equations are very difficult [11, 36]: exponential

instability seriously compromises a priori and a posteriori error estimates.

Our approach confronts but does not eliminate exponential instability in time;

although in some cases [36] it may be possible to demonstrate only algebraic growth

of perturbations, more generally — most simply, linearly unstable flows — we must

admit exponential sensitivity to disturbances. Nevertheless, we shall demonstrate

that, with careful treatment of the stability growth rate, our rigorous error bounds

remain practicable for parameter domains and finite final times of physical and

engineering interest. Equally conclusively we shall also demonstrate that rigorous

error estimation remains beyond our reach for very high (say) Grashof number and

large (asymptotic) final times. Note the error bounds are not only crucial for certi-

fication, but also for the efficient construction of rapidly and uniformly convergent

reduced basis approximations over extended parameter domains.

Our development here is based upon our previous work on the unsteady vis-

cous Burgers’ equation [44]. Extension to incompressible Navier-Stokes equations

and more generally the Boussinesq approximation introduces many new challenges:

the higher spatial dimension requires greater attention to Offline cost; efficiency

demands a higher order temporal discretization (here, Crank-Nicolson); the cou-

pled momentum-energy equations for the velocity/temperature vector field require

proper/balanced scaling; the incompressibility “constraint” must be accommodated

in the stability eigenproblems and dual norm calculations; and greater intrinsic in-

stability imposes additional limitations on parameter ranges and final time. More-

over, our previous work on the Burgers’ equation considered only a single parameter;

in the current paper we consider two parameters — Grashof number and direction

of gravity (and of course time) — which places further stress on the POD-Greedy

sampling procedure.

The paper is organized as follows. In Section 2 we introduce a particular natural

convection problem and we formulate the unsteady Boussinesq equations in an

appropriately scaled weak form. We also indicate the broader range of problems

to which the methods of this paper are applicable. In Section 3 we describe our

reduced basis (RB) approach for the unsteady Boussinesq equations with particular

emphasis on rigorous a posteriori error bounds for the RB fields and associated RB

outputs. In Section 4 we present numerical results illustrating RB convergence, RB

error bound effectivity, and RB computational savings.

2. Problem Formulation

We now introduce a specific natural convection problem so that we may be precise

in our notation and scalings and provide concrete discussion and demonstration of

bNote for higher-order and non-polynomial nonlinearities more sophisticated reduced basis approx-
imations must be considered [6, 8, 21, 50] which in turn introduce both numerical and theoretical
complications.
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physical relevance. It should be emphasized, however, that our methods apply to a

broad class of problems modeled by the Boussinesq superset; we discuss this further

below.

2.1. Strong Statement

We consider flow in the two-dimensional enclosure Ω̃ ≡]0, 5H̃[2\P̃, where P̃ is the

pillar (or fin) ]2.5H̃ − 0.1H̃, 2.5H̃ + 0.1H̃[×]0, H̃[; the geometry is shown in Fig-

ure 1(a).c The “roof” of the cavity is maintained at a constant temperature T̃w, the

sides and base of the cavity are perfectly thermally insulated, and the top and sides

of the pillar are subjected to a uniform heat flux q̃w; we impose no-slip velocity con-

ditions on all walls. We denote the Cartesian spatial coordinate by x̃ = (x̃1, x̃2) and

time by t̃. We further introduce the fluid properties kinematic viscosity ν̃, density

ρ̃, thermal conductivity k̃, thermal diffusivity κ̃, and thermal expansion coefficient

β̃. Finally, the acceleration of gravity is given by g̃ (sinφ, cosφ).

We shall shortly introduce the governing equations for the velocity field Ṽ =

(Ṽ1, Ṽ2), pressure P̃ , and temperature T̃ . We first define the dimensionless variables

x = x̃
H̃
, t = t̃ν̃

H̃2
, V =

√
Ra Ṽ H̃

ν̃ , P = P̃ H̃2

ρ̃ν̃2 , T = Gr k̃(T̃−T̃w)

q̃wH̃
for length, time, velocity,

pressure, and temperature, respectively; here the (flux-based) Grashof number Gr

is given by Gr = g̃β̃q̃wH̃
4/k̃ν̃2, where we recall that g̃ is the magnitude of the

acceleration of gravity. We shall set the Prandtl number Pr = ν̃/κ̃ to 0.71 (air).

Finally, we introduce the Rayleigh number Ra given by Ra = Gr× Pr.

The Boussinesq equations for the non-dimensional velocity V (x, t), temperature

T (x, t), and pressure P (x, t) are given by

∂V1
∂t

+
1

2
√
GrPr

(

Vj
∂V1
∂xj

+
∂V1Vj
∂xj

)

+
√
GrPr

∂P

∂x1
− ∂2V1
∂xj∂xj

−
√
GrPrT sinφ = 0,

∂V2
∂t

+
1

2
√
GrPr

(

Vj
∂V2
∂xj

+
∂V2Vj
∂xj

)

+
√
GrPr

∂P

∂x2
− ∂2V2
∂xj∂xj

−
√
GrPrT cosφ = 0,

∂T

∂t
+

1

2
√
GrPr

(

Vj
∂T

∂xj
+
∂VjT

∂xj

)

− 1

Pr

∂2T

∂xj∂xj
= 0, and

∂Vj
∂xj

= 0,

corresponding to momentum, energy, and continuity. The equations are satisfied for

t ∈ I ≡ (0, tf ] where tf is the final time, and over Ω, the non-dimensional domain

shown in Figure 1(b). (Note that repeated indices imply summation.) We impose

quiescent initial conditions: V (x, 0) = 0 and T (x, 0) = 0. Note that we choose the

particular “balanced” scaling of variables and equations — one of many possible

classical options for distributing the parameters — in order to obtain better a

posteriori error estimates for the subsequent reduced basis approximation. Also, we

choose skew-symmetric convection operators in our formulation to ensure certain

discrete stability properties.

cNote that˜denotes a dimensional quantity.
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Fig. 1. (a) The computational domain in dimensional form; note that Ω̃ does not include the

pillar (shaded in red). (b) The dimensionless computational domain, the “direction of gravity”
parameter φ, and the output regions D1, D2, and D3.

We denote the boundary of Ω by ∂Ω and the boundary of the pillar by ∂P
(hence ∂P ⊂ ∂Ω). We impose no-slip boundary conditions V1 = V2 = 0 on ∂Ω, zero

temperature, T = 0, on the cavity “roof” [0, 5] × {5}, zero heat flux, ∂T/∂n = 0,

on the sides and base of the enclosure ∂Ω \ (∂P ∪ [0, 5]× {5}) , and inhomogeneous

Neumann boundary conditions, ∂T/∂n = Gr, on the pillar ∂P. Here n denotes the

unit outward normal. Note that Gr in the Neumann boundary condition appears

due to our particular scaling for the temperature.

We introduce a two-tuple parameter µ ≡ (µ1, µ2) ≡ (Gr, φ) in a prescribed

(bounded) parameter domain µ ∈ D. Our goal is to study parametric dependence

of the temperature in regions at or near the top of the heated pillar in the presence

of natural convection. As such, our particular interest is not in the solution field

per se, but rather in local average-temperature “outputs of interest” sn, n = 1, 2, 3.

These outputs can be expressed as functionals of T , namely,

sn(t;µ) =
1

µ1|Dn|

∫

Dn

T (t;µ) ;

here D1 = [2.2, 2.4]× [1, 1.1], D2 = [2.4, 2.6]× [1, 1.1], and D3 = [2.6, 2.8]× [1, 1.1]

— three small rectangles above the pillar — are the subdomains over which the

temperature is averaged. These output regions are depicted in Figure 1(b). Note

that when we refer to a generic output (say, for numerical treatment) we shall often

suppress the subscript n in sn.
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2.2. Weak Statement and Truth Formulation

We now introduce several notations required for the remainder of this paper.

We first define the function spaces Q ≡ {q ∈ L2(Ω) |
∫

Ω
q = 0}, Y ≡ {v ∈

(H1(Ω))2 | v|∂Ω = 0}, and W ≡ {w ∈ H1(Ω) | w = 0 on [0, 5] × {5}}; here

H1(Ω) = {v|v ∈ L2(Ω),∇v ∈ (L2(Ω))2}, and L2(Ω) is the space of square inte-

grable functions over Ω. The velocity, pressure, and temperature fields will belong

to Y , Q, and W , respectively. Since we shall work with incompressible velocity

fields, we further introduce Z as the space of all divergence-free functions V in Y .

We then define X ≡ Z ×W ; note that for any member w of X the first two

components w1 and w2 refer to the x1 and x2 components of the velocity, respec-

tively, while the third component w3 refers to temperature. We next associate to

X the inner product (w, v)X =
∫

Ω
∂wi

∂xj

∂vi

∂xj
and induced norm ‖ · ‖X =

√

(·, ·)X for

w = (w1, w2, w3) ∈ X and v = (v1, v2, v3) ∈ X. We also define, for any members

w ∈ X, v ∈ X, the (L2(Ω))3 inner product (w, v) =
∫

Ω
wivi and induced norm

‖ · ‖ =
√

(·, ·).
We can now state the parametrized weak formulation of the governing Boussi-

nesq equations: for given µ in the parameter domain D and all times t ∈ I, the

velocity-temperature field u(t;µ) ≡ (V1(t;µ), V2(t;µ), T (t;µ)) ∈ X satisfies

(ut(t;µ), v) + a(u(t;µ), v;µ) + b(u(t;µ), v;µ)

+ c(u(t;µ), u(t;µ), v;µ) = f(v;µ), ∀ v ∈ X , (2.1)

subject to initial condition u(t = 0;µ) = 0. Note that the pressure is eliminated

thanks to our divergence-free velocity (test) space. We subsequently evaluate our

outputs of interest as

sn(t;µ) = ℓn(u(t;µ);µ), n = 1, 2, 3,

corresponding to the averaged temperatures over D1, D2 and D3.

Here our forms are given by

a(w, v;µ) =

∫

Ω

(

∂w1

∂xj

∂v1
∂xj

+
∂w2

∂xj

∂v2
∂xj

+
1

Pr

∂w3

∂xj

∂v3
∂xj

)

,

b(w, v;µ) = −
√

µ1Pr sinµ2

∫

Ω

w3v1 −
√

µ1Pr cosµ2

∫

Ω

w3v2,

c(w, z, v;µ) =
1

2
√
µ1Pr

∫

Ω

(

∂wizj
∂xj

+ zj
∂wi

∂xj

)

vi,

f(v;µ) =
µ1

Pr

∫

∂P

v3,

ℓn(v;µ) =
1

µ1|Dn|

∫

Dn

v3,

(2.2)

for w = (w1, w2, w3) ∈ X, v = (v1, v2, v3) ∈ X, and z = (z1, z2, z3) ∈ X; note that

in the above expressions i = 1, 2, 3 and j = 1, 2. Recall that µ1 = Gr and µ2 = φ.
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Note that since ℓ(·;µ) ∈ (L2(Ω))3 and u(·;µ) ∈ C0((0, tf ); (L
2(Ω))3) [51], s(t;µ) is

indeed well-defined for all t ∈ I.

We next introduce a regular triangulation of Ω, TΩ. We then denote by

Y J × QJ ⊂ Y × Q the standard conforming P2 − P1 (quadratic/linear) velocity-

pressure Taylor-Hood finite element approximation subspace over TΩ, and by WJ

the standard conforming P2 temperature finite element approximation subspace

over TΩ; we denote by J the dimension of Y J × QJ × WJ . Finally, we define

ZN ≡ {v ∈ Y J |
∫

Ω
q∇ · v = 0, ∀q ∈ QJ } and thus XN = ZN ×WJ ; we denote

by N the dimension of XN .

We can now define the “truth” Crank-Nicolson finite element approximation. We

first divide the time interval [0, tf ] into K subintervals of equal length ∆t = tf/K;

we then define tk ≡ k∆t, 0 ≤ k ≤ K. Then, given µ ∈ D, we seek uN k(µ) ∈
XN , 0 ≤ k ≤ K, such that

1

∆t
(uN k(µ)− uN k−1(µ), v) + a

(

uN k−1/2(µ), v;µ
)

+ b
(

uN k−1/2(µ), v;µ
)

+ c
(

uN k−1/2(µ), uN k−1/2(µ), v;µ
)

= f(v;µ), ∀v ∈ XN , 1 ≤ k ≤ K, (2.3)

subject to initial condition uN 0(µ) = 0; note that uN k(µ) denotes uN (tk;µ) and

uN k−1/2(µ) denotes (uN k−1(µ) + uN k(µ))/2. We then evaluate the outputs of in-

terest: for 0 ≤ k ≤ K,

sN k
n (µ) = ℓn(u

N k(µ);µ), n = 1, 2, 3, (2.4)

where sN k
n (µ) ≡ sNn (tk;µ).

We shall build our RB approximation upon the “truth” discretization (2.3), and

we shall measure the error in our RB prediction relative to uN k(µ) ≡ uN (tk;µ)

and sN k(µ) ≡ sN (tk;µ). As we shall observe, the Online cost of the reduced basis

evaluations shall be independent of (N and) J and furthermore our RB formulation

is stable as (N and) J → ∞: we may thus choose J conservatively.

We pause here to consider the more general class of fluid mechanics and transport

problems that may be directly treated by the particular methods presented in this

paper. First, an anti–generalization: we may of course consider just the incompress-

ible Navier–Stokes equations [28] or the incompressible Navier–Stokes equations

plus “forced” convection (absent buoyancy effects). Note furthermore that the fluid

and solid domains need not coincide, and hence our formulation can readily address

conjugate heat transfer problems. Second, we may consider both two–dimensional

and three–dimensional problems, and in fact the RB advantage is typically larger

in three space dimensions [41].

Third, we may admit general boundary conditions on the temperature field but

we may consider only no–slip or periodic boundary conditions — not outflow con-

ditions — on the velocity. These restrictions on the velocity boundary conditions,

in conjunction with the skew–symmetric treatment of the convection terms, en-

sures c(z, z, z) = 0, ∀z ∈ XN ; the latter is crucial in the development of our error
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bounds. Fourth, we many consider general source functions and general (L2(Ω))3

outputs functionals for the velocity and temperature, however we can not recover

the pressure — and hence we can not treat pressure outputs — due to our div–

free formulation. The latter also effectively precludes the incorporation of geometric

parameters.

Fifth, and finally, we can of course treat additional (non–geometric) parameters

— for example, Pr in the fluid, or heterogeneous–material conductivities in a solid

— so long as the affine hypothesis is honored.

3. Certified Reduced Basis Approach

3.1. Reduced Basis Approximation

We now turn to the reduced basis (RB) approximation [1, 18, 46–48]. The point of

departure for the approach is the set of hierarchical RB approximation subspaces

XN ≡ span {ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (3.1)

where ξn ∈ XN , 1 ≤ n ≤ Nmax, is a set of mutually (·, ·)X -orthonormal basis func-

tions. In actual practice (see Section 3.4), the spaces XN will be generated by a

POD-Greedy sampling procedure which combines spatial snapshots in time and

parameter — uN k(µ) — in an optimal fashion; for our present purposes, however,

XN can in fact represent any sequence of (low-dimensional) hierarchical approxi-

mation spaces [53]. We require that XN ⊂ XN , and we may hence pursue Galerkin

projection with respect to (2.3).

Given µ ∈ D, we look for ukN (µ) ∈ XN , 0 ≤ k ≤ K, such that

1

∆t
(ukN (µ)− uk−1

N (µ), v) + a
(

u
k−1/2
N (µ), v;µ

)

+ b
(

u
k−1/2
N (µ), v;µ

)

+ c
(

u
k−1/2
N (µ), u

k−1/2
N (µ), v;µ

)

= f(v;µ), ∀v ∈ XN , 1 ≤ k ≤ K, (3.2)

subject to initial condition u0N (µ) = 0. We then evaluate the associated RB outputs:

for 0 ≤ k ≤ K,

skN,n(µ) = ℓn(u
k
N (µ);µ), n = 1, 2, 3. (3.3)

Here ukN (µ) denotes uN (tk;µ), u
k−1/2
N (µ) denotes (uk−1

N (µ) + ukN (µ))/2, and skN,n(µ)

denotes sN,n(t
k;µ).

The goal of the RB approximation is simple: dimension reduction — N ≪ N —

and associated computational economies for given certified accuracy. (Online) RB

evaluation is typically several orders of magnitude less expensive than the classical

finite element approach [49,53].

3.2. A posteriori Error Estimation

3.2.1. The (L2(Ω))3 Error Bound

Rigorous, sharp, and inexpensive a posteriori error bounds are crucial to the general

area of model reduction. We aim to develop an a posteriori error bound ∆k
N (µ) ≡
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∆N (tk;µ), 1 ≤ k ≤ K, for the L2 error in the RB approximation such that

‖uN k(µ)− ukN (µ)‖ ≤ ∆k
N (µ), 1 ≤ k ≤ K, ∀µ ∈ D, (3.4)

for any N = 1, . . . , Nmax.

To construct the a posteriori RB error bound, we need two ingredients. The

first ingredient is the dual norm of the residual

εN (tk;µ) = sup
v∈XN

rN (v; tk;µ)

‖v‖X
, 1 ≤ k ≤ K, (3.5)

where rN (v; tk;µ) ∈ (XN )′ is the residual associated with the reduced basis ap-

proximation (3.2): for 1 ≤ k ≤ K,

rN (v; tk;µ) ≡ f(v;µ)− 1

∆t

(

ukN (µ)− uk−1
N (µ), v

)

− a
(

u
k−1/2
N (µ), v;µ

)

− b
(

u
k−1/2
N (µ), v;µ

)

− c
(

u
k−1/2
N (µ), u

k−1/2
N (µ), v;µ

)

, ∀v ∈ XN . (3.6)

Note the dual norm is defined over XN , and not X. It is clear from standard duality

arguments that

ε2N (tk;µ) = (êN (tk;µ), êN (tk;µ))X , (3.7)

where êN (tk;µ) ∈ XN satisfies

(êN (tk;µ), v)X = rN (v; tk;µ), ∀v ∈ XN , 1 ≤ k ≤ K; (3.8)

êN (tk;µ) is the Riesz representation for the linear functional rN (·; tk;µ).
The second ingredient is a lower bound and upper bound,

ρLBN (tk;µ) ≤ ρN (tk;µ)

ρUB
N (tk;µ) ≥ ρN (tk;µ)

, 1 ≤ k ≤ K, ∀µ ∈ D, (3.9)

respectively, for the stability constant ρN (tk;µ) defined as

ρN (tk;µ) = inf
v∈XN

2c
(

u
k−1/2
N (µ), v, v

)

+ 2b(v, v;µ) + a(v, v;µ)

‖v‖2 . (3.10)

The stability constant (3.10) is closely related to the absolute (monotonic decay)

criterion of hydrodynamic stability theory [15, 37]. We demonstrate in [44] for the

Burgers’ equation in one spatial dimension that ρN (tk;µ) is bounded from below;

an analogous result can be proven in the present context [43]. We note that for our

“proper scaling” u
k−1/2
N (µ) ≈ O(Ra) and hence the c and b terms in the numerator

of ρN are of the same order of magnitude; this balance moderates the magnitude

of the stability constant.

We can now define our error bound ∆k
N (µ), 1 ≤ k ≤ K, in terms of

the dual norm of the residual and the lower bound for the stability constant.

We first let τLBN (tk;µ) = min(0.5ρLBN (tk;µ), 0), 1 ≤ k ≤ K, and ∆t∗N (µ) =
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min(1/|min1≤k≤K τLBN (tk;µ)|, 1). Then, for ∆t < ∆t∗N (µ), the a posteriori error

bound

∆k
N (µ) =

√

√

√

√

√

√

√

∆t
∑k

ℓ=1

(

(

1−∆t τLBN (tℓ;µ)
)−1

ε2N (tℓ;µ)
∏ℓ−1

j=1
(1+∆t τLB

N
(tj ;µ))

(1−∆t τLB
N

(tj ;µ))

)

∏k
ℓ=1

(1+∆t τLB
N

(tℓ;µ))
(1−∆t τLB

N
(tℓ;µ))

,

(3.11)

satisfies (3.4) for 1 ≤ k ≤ K. Since we work within a discretely divergence-free

space, and furthermore insist upon a skew-symmetric convection formulation, the

proof of this error bound is analogous to the Burgers case [44] — though extended

here to the Crank-Nicolson temporal scheme; see Appendix B for details. Note (3.11)

is simply the Crank-Nicolson version of the standard continuous-time exponential

result.

For Gr sufficiently small (effective Reynolds number, Re ≡
√
Ra, sufficiently

small), ρN (tk;µ) will be uniformly positive and hence error growth will be con-

trolled; in this case, we can consider rather large times. However, for moderate

Gr, ρN (tk;µ) will be negative and hence our error bound will grow exponentially

in time; in this case, our choice of tf is restricted. Nevertheless, we believe our

estimate (3.9),(3.10) will permit practical and rigorous error estimation for Re or

Gr and tf at which interesting nonlinear behavior occurs. There are two reasons

for our optimism (in addition to the numerical results reported in a later section):

(3.10) includes a viscous (H1(Ω)) stabilizing term which will somewhat constrain

the minimizer and hence moderate the minimum — a candidate field large only in

a thin destabilizing layer will also incur significant dissipation; ρN (t;µ) of (3.10)

shall be estimated (conservatively but) relatively precisely — our bounds ρLBN (t;µ)

and ρUB
N (t;µ) of (3.9) shall reflect the full temporal and spatial structure of the RB

velocity field. We discuss the bounds in greater detail in the next subsection.

3.2.2. Output Error Bounds

Finally, we introduce the error bounds for our outputs skN,n(µ), 1 ≤ k ≤ K, n =

1, 2, 3, as

∆s k
N,n(µ) ≡ ∆s

N,n(t
k;µ) =

(

sup
v∈XN

ℓn(v;µ)

‖v‖

)

∆k
N (µ), 1 ≤ k ≤ K, n = 1, 2, 3.

(3.12)

Given that ℓn(·;µ) ∈ (L2(Ω))3, it is readily demonstrated that, for µ ∈ D and

0 < ∆t < ∆t∗N (µ),

|sN k
n (µ)− skN,n(µ)| ≤ ∆s k

N,n(µ), 1 ≤ k ≤ K, n = 1, 2, 3,

for any N ∈ {1, . . . , Nmax}.
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3.3. Construction-Evaluation Decomposition

The calculation of a reduced basis output sN (tk;µ) and associated output error

bound ∆s
N (tk;µ) admits a Construction-Evaluation decomposition. The Construc-

tion stage, performed once, is very expensive — N -dependent; the Evaluation stage,

performed many times for each new desired µ ∈ D, is very inexpensive — N -

independent. Note the reduced basis approach is particularly relevant in the real-

time context and the many-query context; for the former the relevant metric is

marginal cost — the (inexpensive) Evaluation stage — while for the latter the

relevant metric is asymptotic average cost — again, the (inexpensive) Evaluation

stage.

Since we work in discretely divergence-free subspaces, most of the details of the

Construction-Evaluation decomposition can be directly imported from the Burgers

case. The primary difference is that the evaluation of êN ∈ XN in (3.8) and the

calculation of the inf over XN in (3.10) must now honor the divergence-free con-

straint: the Poisson problems in the Burgers case correspond to Stokes problems in

the Boussinesq case. Our main intention here is to recall the operation counts for

the Construction and Evaluation stages; we refer the reader to the discussion in [44]

for further details. Note that in this section we presume that the ξn, 1 ≤ n ≤ Nmax,

are known; identification of the RB space is discussed in Section 3.4.

All aspects of the Construction-Evaluation decomposition rely on the affine de-

pendence on µ of the operators. Specifically, we observe that we can write the forms

given in (2.2) as

a(w, v;µ) = Θ1
a(µ)a

1(w, v),

b(w, v;µ) = Θ1
b(µ)b

1(w, v) + Θ2
b(µ)b

2(w, v),

c(w, z, v;µ) = Θ1
c(µ)c

1(w, z, v),

f(v;µ) = Θ1
f (µ)f

1(v),

ℓn(v;µ) = Θ1
ℓ(µ)ℓ

1
n(v), n = 1, 2, 3

(3.13)

where

Θ1
a(µ) = 1, a1(w, v) =

∫

Ω

∂w1

∂xj

∂v1
∂xj

+
∂w2

∂xj

∂v2
∂xj

+
1

Pr

∂w3

∂xj

∂v3
∂xj

,

Θ1
b(µ) = −

√

µ1Pr sinµ2, b1(w, v) =

∫

Ω

w3v1,

Θ2
b(µ) = −

√

µ1Pr cosµ2, b2(w, v) =

∫

Ω

w3v2,

Θ1
c(µ) =

1√
µ1Pr

, c1(w, z, v) =
1

2

∫

Ω

(

∂wizj
∂xj

+ zj
∂wi

∂xj

)

vi,

Θ1
f (µ) =

µ1

Pr
, f1(v) =

∫

∂P

v3,

Θ1
ℓ(µ) =

1

µ1
, ℓ1n(v;µ) =

1

|Dn|

∫

Dn

v3.

It is important to note that Θa,b,c,f,ℓ are parameter-dependent , while a1, b1, b2, c1,

f1, and ℓ1n are parameter-independent . We first provide a very brief discussion of
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the Construction-Evaluation decomposition for the reduced basis approximation;

we then consider the stability factor and reduced basis error bound.

RB approximation. In the Construction stage we form and store the reduced

basis “mass” and “stiffness” matrices and load and output vectors associated with

the time-independent and parameter-independent forms in (3.13). The operation

count in the Construction stage of course depends on N : each entry of these arrays

corresponds to a quadrature over the triangulation TΩ. In the Evaluation stage,

for each Newton iteration at each time level k = 1, . . . ,K, we first combine the

Θa,b,c,f,ℓ(µ) with the stored parameter-independent RB matrices and vectors to

form the N × N RB linear system — in O(N3) operations; we then solve this

RB linear system — again in O(N3) operations (in general, we must anticipate

that the reduced basis matrices will be dense). Once the RB field is obtained —

O(nNewtonN
3K) operations in total, where nNewton is the average number of Newton

iterations per time step — we can evaluate our RB output in O(NK) operations.

The storage and operation count in the Evaluation stage is clearly independent of

N , and we can thus anticipate — presuming N ≪ N — very rapid reduced basis

response in the real-time and many-query contexts.

Stability Factor. We invoke (3.13) to express ρN (tk;µ) of (3.10) as

ρN (tk;µ) = min
v∈XN

N+3
∑

n=1

Υn(tk;µ)
dn(v, v)

‖v‖2 . (3.14)

Here Υn(tk;µ) = Θ1
c(µ)(ω

k
N n(µ) + ωk−1

N n (µ))/2, 1 ≤ n ≤ N , ΥN+1(tk;µ) = Θ1
b(µ),

ΥN+2(tk;µ) = Θ2
b(µ), and ΥN+3(tk;µ) = Θ1

a(µ) are parameter-dependent functions;

correspondingly dn(w, v) = c(ξn, w, v) + c(ξn, v, w),
d 1 ≤ n ≤ N , dN+1(w, v) =

b1(w, v) + b1(v, w), dN+2(w, v) = b2(w, v) + b2(v, w), and dN+3(w, v) = a1(w, v)

are parameter-independent bilinear forms. We then apply the Successive Constraint

Method (SCM) [29,53] to implement a Construction-Evaluation decomposition for

the lower bound ρLBN (tk;µ) and upper bound ρUB
N (tk;µ).

The SCM is a general Construction-Evaluation procedure for the calculation of

a rigorous lower bound and upper bound for the minimum of a Rayleigh quotient,

such as (3.14), associated with a parametrically affine operator: the Offline stage

requires solution of eigenproblems related to (3.14); the Online stage is a very

small Linear Program (complexity independent of N ). The SCM methodology for

the Burgers equation [44] carries over directly to the Boussinesq case except that

the truth eigenvalue problems for (3.14) must be performed on our constrained

“div-free” space. In order to effect the latter we consider generalized (indefinite)

Stokes-type problems, the numerical treatment of which is described in Appendix

A.

dA theoretical subtlety due to our minimal regularity assumption is that the dn(·, ·) are not
necessarily bounded as N → ∞. In actual practice this poses no difficulty for N finite and even
N very large since the growth is modest and furthermore moderated by the coefficients Υn,
1 ≤ n ≤ N , of our expansion (3.14).
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RB Error Bounds. We now turn to the error bounds ∆s k
N,n(µ), n = 1, 2, 3.

It is clear from (3.12) that these output error bounds ∆s k
N,n(µ), n = 1, 2, 3, can be

directly evaluated in terms of the dual norm of ℓ1n — which we can readily compute

in the Construction stage — and the L2(Ω) error bound, ∆k
N (µ); we thus focus on

the L2(Ω) error bound, ∆k
N (µ). It is furthermore clear from (3.11) that there are two

components to the calculation of ∆k
N (µ): evaluation of ρLBN (tk;µ) by the Successive

Constraint Method (as discussed above), and computation of the dual norm of the

residual, εN (tk;µ) of (3.5); hence we now summarize the Construction-Evaluation

decomposition for εN (tk;µ).

The Construction-Evaluation decomposition of εN (tk;µ) relies on the develop-

ment of the Riesz representation ê(tk;µ) as a sum of (1 + 3Nmax + N2
max) terms

each of which is the product of a parameter-independent function and a parameter-

dependent member of XN (a “Riesz piece”). In the Construction stage, we must

first solve 1+3Nmax+N
2
max Stokes problem over Y J ×QJ ×WJ to obtain the Riesz

pieces and then form the associated (1 + 3Nmax +N2
max)

2 (·, ·)X inner products —

both steps are clearly expensive N -dependent operations. In the Evaluation stage

we perform a weighted summation of the stored inner products — O(N4) opera-

tions per time step and hence O(N4K) operations in total. The operation count for

the Evaluation stage is indeed independent of N . However, the quartic scaling with

N is obviously very unwelcome, and in actual practice except for modest N the

cost to evaluate ∆N (tk;µ) will dominate the cost to evaluate s(tk;µ). We discuss

palliatives at the conclusion of the paper.

3.4. Offline Stage

As discussed in the previous section, the Construction stage is performed Offline;

the Evaluation stage is invoked Online — for each new µ of interest in the real-time

or many-query contexts. However, there are several other components to the Offline

stage as we now discuss.

In particular, there are two key “train” components to the Offline stage. First, we

must identify a good (rapidly convergent) reduced basis space and associated basis

functions ξi, 1 ≤ i ≤ Nmax. Our procedure in fact relies heavily on the Construction-

Evaluation decomposition: we perform (inexpensive) error bound calculations over

an RB train sample in D in order to greatly reduce the requisite number of (candi-

date) truth finite element calculations. Second, we must construct our SCM “con-

straint sample” — a pre-computed set of ρN (tk;µ) — by a procedure described

in [29,53]. In fact, this process also relies on the Construction-Evaluation decompo-

sition: we perform (inexpensive) stability factor lower and upper bound calculations

over an SCM train sample in D in order to greatly reduce the requisite number of

truth eigenproblem calculations. We now briefly elaborate upon the first compo-

nent, the construction of the reduced basis space, in order to introduce terminology

required in our discussion of the numerical results.

We apply the POD-Greedy procedure first proposed in [26]: we combine the
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POD (Proper Orthogonal Decomposition) in tk — to capture the causality associ-

ated with our evolution equation — with the Greedy procedure in µ [22, 53, 56] —

to treat efficiently the higher dimensions and more extensive ranges of parameter

variation. In short, in the mth cycle of the outer Greedy iteration, we first identify

that parameter value µm
∗ in an extensive RB train sample Ξtrain ⊂ D at which the

RB error bound (3.11) (at the final time) is largest; we then construct the POD for

uN (tk;µm
∗ )−ΠXN

uN (tk;µm
∗ ), 1 ≤ k ≤ K, where ΠXN

refers to the (·, ·)X projection

on the current reduced basis space XN ; finally, we append to our current RB space

XN (the first) ∆N PODmodes in order to obtainXN+∆N . The set of parameter val-

ues selected by the Greedy algorithm shall be denoted S∗ = {µ1
∗, µ

2
∗, . . . , µ

nGreedy

∗ },
where nGreedy = N/∆N is the number of Greedy cycles; note that a particular

parameter value can appear in S∗ more than once.

We refer the reader to the papers [26,40] for a detailed discussion of this POD-

Greedy algorithm. We do, however, note here one important modification required in

the present nonlinear context [44]. We can not compute ∆k
N (µ) in the POD-Greedy

procedure since we can not yet evaluate ρN (tk;µ) — the latter requires the RB space

“under construction.” Hence, in the POD-Greedy procedure we replace ∆k
N (µ) with

a simpler estimator ∆∗
N (tk;µ) in which ρN (tk;µ) is approximated by an inexpensive

surrogate, ρ∗N — typically a constant or a linear function of µ. Once the reduced

basis spaces are defined we can then construct our SCM lower bound for the stability

factor. If we find that the actual lower bound ρLBN (tk;µ) is in fact very different from,

and in particular much more negative than, our nominal value ρ∗N we may wish to

return to the POD-Greedy algorithm in order to ensure a sufficiently accurate and

sufficiently uniform reduced basis approximation. However, we typically choose ρ∗N
and our error tolerance conservatively and hence such a “restart” is not normally

required. Note that in any event in the Online stage our stability factor, and hence

our a posteriori error bound, is rigorous.

4. Numerical Results

In this section we present numerical results for the natural convection pillar problem

described in Section 2. In order to illustrate our methodology, we consider two

versions of the problem. In the first case, we fix φ = 0 (gravity in the −x2-direction)
so that the Grashof number is our sole parameter; we consider Gr ≡ µ = µ1 ∈ D ≡
[100, 6000] and tf = 0.2. In the second (more difficult) case, we consider both

Gr ≡ µ1 and φ ≡ µ2 as parameters; we choose D ≡ [4000, 6000] × [0, 0.2] and

tf = 0.16. In each case our final time is sufficiently large to observe a plume of hot

air rising from the pillar. We will also observe non-monotonicity of our outputs in

time — an obvious consequence of nonlinear natural convection.

We consider a Crank-Nicolson scheme with constant time step ∆t corresponding

to K = 100 time levels. For the truth spatial discretization we take a classical

P2 − P1 (quadratic/linear) Taylor-Hood discretization [23] with a total of J =

10, 161 velocity, pressure, and temperature degrees of freedom. All computational
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results were obtained via rbOOmit [41], a plugin for the open-source finite element

library libMesh [39] which provides the extra functionality required for the certified

RB method. We first present some truth discretization results to broadly illustrate

the nature of this Boussinesq problem.

Figure 2(a) and 2(b) show the truth velocity and temperature for (Gr, φ) =

(6000, 0) at tk = 0.1 and tk = 0.2 — for this value of Grashof number we observe a

plume of hot air rising from the pillar. In Figure 3(a), we display the finite element

truth output sN2 (tk;µ) (the “middle” output) as a function of tk for (Gr, φ) =

(6000, 0) and (Gr, φ) = (100, 0); the Gr = 100 case corresponds closely to pure

conduction and therefore is a convenient baseline for comparison. We note that the

Gr = 6000 output initially rises above the Gr = 100 output but then at tk ≈ 0.13

the Gr = 6000 output begins to decrease and ultimately descends below the Gr =

100 output. This non–monotonicity can be explained in terms of the flowfield of

Figure 2(a) and 2(b): for early times (hot) air is brought to D2 from the (heated)

base of the pillar; for later times the circulation pattern shifts upwards and now

(cool) air is brought to D2 from the (unheated) enclosure side walls.

In Figure 2(c) and 2(d) we show the truth field variables for (Gr, φ) = (6000, 0.2)

at tk = 0.1 and tk = 0.2. In this case the plume of hot air rises slightly to the right

due to the off-vertical direction of gravity. In Figure 3(b) we display the “left” and

“right” truth outputs — sN1 (tk;µ) and sN3 (tk;µ), respectively — as functions of

tk for (Gr, φ) = (6000, 0.2), (Gr, φ) = (5000, 0.1), and (Gr, φ) = (4000, 0.05); we

observe that the output maxima change in magnitude and shift in time as Gr is

varied, and that the difference between the “left” and “right” outputs depends on

φ in the anticipated way.

We shall now present reduced basis results for the two subproblems introduced

above.

One-Parameter Case: D ≡ [100, 6000], tf = 0.2. We choose a uniformly

distributed sample Ξtrain ⊂ D of size ntrain = 20 and pursue the POD-Greedy

sampling procedure. In order to (coarsely) reflect the dependence of ρ on µ, we set

ρ∗N to be a linear function of Gr such that ρ∗N (100) = 0 and ρ∗N (6000) = −60. We set

∆N = 3 and generate a reduced basis space withNmax = 66. The optimal parameter

sample S∗ is shown in Figure 4(a). We observe that the parameter points are spread

throughout D but that most of the POD-Greedy sample points are clustered at or

near µ = Grmax; this clustering is due primarily to the biasing effect of our ρ∗N ,

but also to the more complicated flow dynamics at higher Gr. We also present,

in Figure 4(b), ǫ∗N,max,rel ≡ maxµ∈Ξtrain

∆∗
N (tK ;µ)

‖uN (tK ;µ)‖ as a function of N . Clearly, the

error indicator ǫ∗N,max,rel decreases very rapidly; we shall subsequently confirm that

the rigorous error bound, and hence the true error, also decreases very rapidly with

N .

We now turn to the stability factor. We perform the SCM procedure to construct

the lower bound for the stability factor. We show in Figure 5 the stability factor

ρN (tk;µ) as a function of tk for N = 66 and two different values of µ; we also



September 22, 2010 11:50 WSPC/INSTRUCTION FILE
KNP˙Boussinesq˙revised˙extended

16 D. J. Knezevic, N. C. Nguyen, A. T. Patera

present the stability factor lower bound ρLBN (tk;µ) and corresponding upper bound

ρUB
N (tk;µ). As already indicated, ρN (tk;µ) reflects viscous stabilization effects as

well as the detailed spatial and temporal structure of the RB velocity field. For

Gr = 100, ρN (tk;µ) is small in magnitude and relatively constant in time; for

Gr = 6000, ρN (tk;µ) is already much more negative at tk = 0 and decreases further

with increasing time tk. The SCM lower bound is of sufficient accuracy for our

purposes. The SCM upper bound (significantly less complicated and less costly

than a standard RB Rayleigh-Ritz approximation) is very sharp; unfortunately, if

we replace in our error bounds the less accurate ρLBN (tk;µ) with the more accurate

ρUB
N (tk;µ) we can no longer provide rigorous guarantees.

We present in Figure 6 the output error |sN2 (tk;µ) − sN,2(t
k;µ)| and the error

bound ∆s
N,2(t

k;µ) for this “middle” output as a function of tk for (a) N = 33, and

(b) N = 66, in each case for two different values of the Grashof number. First, we see

that the RB error and RB error bound decrease rapidly as N increases; furthermore,

thanks to the POD-Greedy sampling procedure, the error bound is roughly uniform

over the parameter domain D. Second, we observe that the (exponential growth of)

the error bound is pessimistic: the residual clearly does not excite the most unstable

“modes” in the actual error. Nevertheless, we obtain meaningful and rigorous (and,

as we shall see shortly, inexpensive) error bounds.

We now turn to a more realistic “real-time” context. We show in Figure 7 the

RB output sN,2(t
k;µ) and associated output bounds s±N,2(t

k;µ) = sN,2(t
k;µ) ±

∆s
N,2(t

k;µ) as functions of tk for N = 33 and N = 66 for three different param-

eter values. Note that sN2 (tk;µ) ∈ [s−N,2(t
k;µ), s+N,2(t

k;µ)], k = 1, . . . ,K, for any

µ ∈ D and any N ∈ {1, . . . ,Nmax}. As before, we observe good convergence and

meaningful/useful error bounds. We note that N = 33 is insufficient to certifiably

distinguish the outputs for different Grashof numbers: although the RB outputs are

quite accurate, the error bounds are not sufficiently tight. However, with N = 66

we accurately and rigorously capture the truth output behavior shown in Figure 3.

Absent error bounds we could not rigorously discriminate between the different

behaviors observed at different Gr.

We further note that, even for N = 66, Online calculation of the RB out-

put skN,2(µ) (respectively, the RB output error bound ∆s k
N,2(µ)), 1 ≤ k ≤ K,

is roughly 140× faster (respectively, 50× faster) than direct evaluation of the

FE output sNk
2 (µ), 1 ≤ k ≤ K. More quantitatively, the (Online) RB calcula-

tion µ → skN,2(µ),∆
s k
N,2(µ), 1 ≤ k ≤ K, and the truth finite element calculation

µ → sN2 (tk;µ), 1 ≤ k ≤ K, require roughly 10 seconds and 350 seconds, respec-

tively, on an AMD Opteron 248 processor. As indicated earlier, the Online time to

evaluate ∆s,k
N (µ) will dominate the Online time to evaluate skN (µ), especially for

N large, due to the O(N4) complexity of the former compared to the O(N3) com-

plexity of the latter. We note that for natural convection problems in three space

dimensions the RB savings will be even more significant [41].

Two-Parameter Case: D ≡ [4000, 6000]× [0, 0.2], tf = 0.16. In this case, the
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dimension reduction problem is significantly more challenging: as can be seen from

Figure 2, even small changes in φ can lead to pronounced changes in the temperature

and velocity fields.

In the POD-Greedy scheme we now choose a uniformly distributed sample Ξtrain

of size ntrain = 100. We take ρ∗N to be a linear function of Gr only — ρ is quite

insensitive to changes in φ hence it is unnecessary to introduce parametric depen-

dence of ρ∗N on φ — through the points ρ∗N (4000, ·) = −45, ρ∗N (6000, ·) = −60. We

choose ∆N = 3 and generate a reduced basis space with Nmax = 75 basis functions.

The optimal parameter sample S∗ is shown in Figure 8(a); as in Figure 4(a), the

majority of sample points are at large Gr — although of course in the two-parameter

case the sample points are also distributed in φ. The rapid convergence of ǫ∗N,max,rel

for the two-parameter problem is illustrated in Figure 8(b).

We close this section by discussing the two-parameter results for the RB outputs

and RB error bounds — relevant in a “real-time” context — shown in Figure 9. As

in the one-parameter case, the error bounds converge rapidly with increasing N and

are roughly uniform over D. For µ = (6000, 0.2) the flow asymmetry is significant;

the RB error bounds for N = 75 allow us to rigorously distinguish the “left” and

“right” outputs. However, for µ = (4000, 0.05) the flow asymmetry is much more

modest; we would need to increase N slightly beyond 75 in order to discriminate

the now very similar “left” and “right” outputs. The Online computation time for

the RB outputs skN=75(µ) (respectively, the RB output error bounds ∆s k
N=75(µ)),

1 ≤ k ≤ K is roughly 90× faster (respectively, 30× faster) than direct evaluation

of the FE outputs sNk(µ), 1 ≤ k ≤ K.

We do observe here the deleterious effect of the N4 complexity associated with

the Online error bound calculation. We expect that multi-parameter-domain hp

RB approximations [2, 3, 17] will reduce the effective Nmax and hence mitigate the

effect of the O(N4) Online complexity of the RB error bound. This, in turn, should

allow more efficient treatment of more parameters and more extensive parameter

domains. Initial hp results are reported in [16].
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Appendix A. Stokes Eigenvalue Problem for the Stability Factor

We first note from (3.14) that the stability factor ρN (tk;µ) = λN1 (tk;µ), where

λN1 (tk;µ) is the smallest eigenvaluee of the following generalized eigenvalue problem:

given (tk;µ) ∈ [0, tf ]×D, find (χN (tk;µ), λN (tk;µ)) ∈ XN × R such that

N+3
∑

n=1

Υn(tk;µ)dn(χN , ψ) = λN (χN , ψ), ∀ψ ∈ XN , (A.1)

and ‖χN (tk;µ)‖ = 1. Note that this eigenvalue problem is symmetric but (for

sufficiently large Gr) indefinite. Moreover, (A.1) is a constrained problem as it is

posed over the space XN .

A recent paper by Baker & Lehoucq [5] discusses general iterative strategies for

solution of constrained eigenvalue problems. However, we pursue a simpler approach

for this class of problem since we are only interested in λN1 (tk;µ). Consider the

following parabolic equation on Ω
(

∂z

∂τ
, ψ

)

+
N+3
∑

n=1

Υn(t;µ)dn(z, ψ) = 0, ∀ψ ∈ XN , (A.2)

with z(x, 0) = g(x) on Ω. It follows straightforwardly that

z(x, τ) =

∞
∑

m=1

gm exp(−λNm(tk;µ) τ)χN
m(x; tk;µ), (A.3)

where gm = (g, χN
m(tk;µ)). Assuming g1 6= 0, the exponential behavior in (A.3)

implies that χN
1 (tk;µ) will be the dominant component of z for large t — therefore,

analogously to a power method, it is possible to approximate λN1 (tk;µ) by a simple

time-stepping approach.

The argument above is written formally in terms of the constrained space XN ,

where XN = ZN ×WJ and ZN ≡ {ψ ∈ Y J |
∫

Ω
q∇ · ψ = 0, ∀q ∈ QJ }; however,

in practice we impose the divergence-free constraint through a standard “pressure”

Lagrange multipler. We also apply a backward Euler scheme to discretize (A.2) in

time. This yields the following fully discrete parabolic Stokes-type problem
[

(M +∆τA(tk;µ)) P

PT 0

] [

z(τ j)

p(τ j)

]

=

[

M 0

0 0

] [

z(τ j−1)

p(τ j−1)

]

, (A.4)

for j ≥ 1. Here M , A and P are the truth mass, stiffness, and gradient matrices

associated with the bilinear forms
N+3
∑

n=1

Υn(tk;µ)dn(w, v), (w, v),

∫

Ω

qJ∇ · w, (A.5)

respectively.

We then apply the restarted “pseudo-Lanczos” time-stepping algorithm given in

Algorithm 1 to approximate λN1 (tk;µ). According to (A.3), steps 2–5 of Algorithm 1

eWe adopt the convention that λN
1
(tk;µ) ≤ λN

2
(tk;µ) ≤ . . . ≤ λN

N
(tk;µ).
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Algorithm 1 Pseudo-Lanczos time-stepping scheme

1: Choose ∆τ and nrestart, initialize z(τ
0) ∈ XN randomly and set λ∗min = ∞;

2: for j = 1, . . . , nrestart do

3: Solve (A.4) and set the jth column of Z to u(τ j);

4: end for

5: Orthonormalize Z with respect to M ;

6: Solve the reduced eigenvalue problem Z
TAZxri = λrix

r
i , i = 1, . . . , nrestart;

7: if |λr1 − λ∗min| < TOL then

8: Set λN1 (tk;µ) = λr1, χ
N
1 (tk;µ) = Zxr1 and terminate;

9: else

10: Set z(τ0) = Zxr1, λ
∗
min = λr1 and return to 2;

11: end if

will yield a basis — the columns of Z — that is strongly biased towards χN
1 (tk;µ),

and hence in step 6 the minimum eigenvalue of the reduced eigenvalue problem will

well approximate λN1 (tk;µ). We perform a restart in steps 7–11 in order to (i) limit

τ j and hence avoid numerical overflow issues, (ii) accelerate eigenvalue/eigenvector

convergence, and (iii) limit the size of the dense reduced eigenvalue problem.

Finally, note that the choice of ∆τ in Algorithm 1 can be important. Suppose

that z(τ j) =
∑

m αj
mχ

N
m ; then the backward Euler time-stepping scheme scales the

mth coefficient as

αj
m = αj−1

m /(1 + λNm∆τ).

Therefore, the mode for which |1+λNm∆τ | is minimized will be most strongly ampli-

fied. For λN1 < 0, it is possible for 1+λN1 ∆τ to be negative and in particular greater

than unity in modulus, in which case an internal eigenmode may be amplified most

strongly and we risk convergence to the wrong eigenvalue. To ensure convergence

to the correct mode, ∆τ should be chosen sufficiently small such that |λN1 ∆τ | < 1.

Algorithm 1 has been verified by confirmation of the critical Reynolds number

for the plane Poiseuille flow monotonic decay criterion [15,37].

Appendix B. Proof of Proposition 3.1

We note from (2.3) and (3.6) that the errors eℓ−1(µ) ≡ uN ℓ−1(µ) − uℓ−1
N (µ) and

eℓ(µ) ≡ uN ℓ(µ)− uℓN (µ) satisfy

1

∆t

(

eℓ(µ)− eℓ−1(µ), v
)

+ c
(

uN ℓ−1/2(µ), uN ℓ−1/2(µ), v;µ
)

− c
(

u
ℓ−1/2
N (µ), u

ℓ−1/2
N (µ), v;µ

)

+ a
(

eℓ−1/2(µ), v;µ
)

+ b
(

eℓ−1/2(µ), v;µ
)

= rN (v; tℓ;µ), ∀v ∈ XN . (B.1)
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From the definition of the trilinear form c in (2.2) we can derive the following

equality

c
(

uN ℓ−1/2(µ), uN ℓ−1/2(µ), v;µ
)

− c
(

u
ℓ−1/2
N (µ), u

ℓ−1/2
N (µ), v;µ

)

=

c
(

eℓ−1/2(µ), eℓ−1/2(µ), v;µ
)

+ c
(

u
ℓ−1/2
N (µ), eℓ−1/2(µ), v;µ

)

+ c
(

eℓ−1/2(µ), u
ℓ−1/2
N (µ), v;µ

)

, ∀v ∈ XN . (B.2)

It thus follows from (B.1) and (B.2) and from choosing v = eℓ−1/2(µ) that

1

∆t

(

eℓ(µ)− eℓ−1(µ), eℓ−1/2(µ)
)

+ c
(

eℓ−1/2(µ), eℓ−1/2(µ), eℓ−1/2(µ);µ
)

+ c
(

u
ℓ−1/2
N (µ), eℓ−1/2(µ), eℓ−1/2(µ);µ

)

+ c
(

eℓ−1/2(µ), u
ℓ−1/2
N (µ), eℓ−1/2(µ);µ

)

+ a
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

+ b
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

= rN (eℓ−1/2(µ); tℓ;µ), (B.3)

which can be rewritten as

1

∆t

(

eℓ(µ)− eℓ−1(µ), eℓ−1/2(µ)
)

+ c
(

u
ℓ−1/2
N (µ), eℓ−1/2(µ), eℓ−1/2(µ);µ

)

+ a
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

+ b
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

= rN (eℓ−1/2(µ); tℓ;µ),

(B.4)

since

c
(

eℓ−1/2(µ), eℓ−1/2(µ), eℓ−1/2(µ);µ
)

=
1

2
√
µ1Pr

∫

Ω

(

∂e
ℓ−1/2
i e

ℓ−1/2
j

∂xj
+ e

ℓ−1/2
j

∂e
ℓ−1/2
i

∂xj

)

e
ℓ−1/2
i

=
1

2
√
µ1Pr

∫

Ω

(

∂(e
ℓ−1/2
i )2e

ℓ−1/2
j

∂xj

)

=
1

2
√
µ1Pr

∫

∂Ω

(

(e
ℓ−1/2
i )2e

ℓ−1/2
j

)

nj

= 0, (B.5)

and

c
(

eℓ−1/2(µ), u
ℓ−1/2
N (µ), eℓ−1/2(µ);µ

)

=
1

2
√
µ1Pr

∫

Ω

(

∂e
ℓ−1/2
i u

ℓ−1/2
N j

∂xj
+ u

ℓ−1/2
N j

∂e
ℓ−1/2
i

∂xj

)

e
ℓ−1/2
i

=
1

2
√
µ1Pr

∫

Ω

(

∂(e
ℓ−1/2
i )2u

ℓ−1/2
N j

∂xj

)

=
1

2
√
µ1Pr

∫

∂Ω

(

(e
ℓ−1/2
i )2u

ℓ−1/2
N j

)

nj

= 0, (B.6)
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due to the non-slip boundary conditions.

The right-hand side of (B.4) can be bounded as

rN (eℓ−1/2(µ); tℓ;µ) ≤ εN (tℓ;µ)‖eℓ−1/2(µ)‖X
≤ 1

2

(

ε2N (tℓ;µ) + ‖eℓ−1/2(µ)‖2X
)

≤ 1

2

(

ε2N (tℓ;µ) + a
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

)

, (B.7)

where we use (3.5) in the first inequality, the Young’s inequality, AB ≤ (A2+B2)/2,

in the second inequality, and (recalling that we consider Pr = 0.71) a(w,w;µ) ≥
‖w‖2X , ∀µ ∈ D, in the third inequality. It thus follows from (B.4) and (B.7) that

1

∆t

((

eℓ(µ), eℓ(µ)
)

−
(

eℓ−1(µ), eℓ−1(µ)
))

+ 2c
(

u
ℓ−1/2
N (µ), eℓ−1/2(µ), eℓ−1/2(µ);µ

)

+ a
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

+ 2b
(

eℓ−1/2(µ), eℓ−1/2(µ);µ
)

≤ ε2N (tℓ;µ). (B.8)

Hence, from (B.8) and (3.9)-(3.10) we obtain
(

eℓ(µ), eℓ(µ)
)

−
(

eℓ−1(µ), eℓ−1(µ)
)

+∆tρLBN (tℓ;µ)
(

eℓ−1/2(µ), eℓ−1/2(µ)
)

≤ ∆tε2N (tℓ;µ).

We note that if ρLBN (tℓ;µ) ≥ 0, then the last term on the left-hand side is non-

negative and can be neglected. On the other hand, if ρLBN (tℓ;µ) < 0 we apply the

Cauchy-Schwarz inequality and Young’s inequality to obtain

1

2
ρLBN (tℓ;µ)

((

eℓ−1(µ), eℓ−1(µ)
)

+
(

eℓ(µ), eℓ(µ)
))

≤ ρLBN (tℓ;µ)
(

eℓ−1/2(µ), eℓ−1/2(µ)
)

.

Hence, appealing to the definition of τLBN , we get
(

eℓ(µ), eℓ(µ)
)

−
(

eℓ−1(µ), eℓ−1(µ)
)

+∆tτLBN (tℓ;µ)
((

eℓ−1(µ), eℓ−1(µ)
)

+
(

eℓ(µ), eℓ(µ)
))

≤ ∆tε2N (tℓ;µ),

which after rearranging the terms yields

(1 + ∆tτLBN (tℓ;µ))
(

eℓ(µ), eℓ(µ)
)

− (1−∆tτLBN (tℓ;µ))
(

eℓ−1(µ), eℓ−1(µ)
)

≤ ∆tε2N (tℓ;µ).

We multiply
(

1−∆t τLBN (tℓ;µ)
)−1∏ℓ−1

j=1

(

1 + ∆t τLBN (tj ;µ)
) (

1−∆t τLBN (tj ;µ)
)−1

on both sides of the above equation to obtain

(

eℓ(µ), eℓ(µ)
)

ℓ
∏

j=1

(

1 + ∆t τLBN (tj ;µ)
)

(

1−∆t τLBN (tj ;µ)
)

−
(

eℓ−1(µ), eℓ−1(µ)
)

ℓ−1
∏

j=1

(

1 + ∆t τLBN (tj ;µ)
)

(

1−∆t τLBN (tj ;µ)
) ≤

∆t ε2N (tℓ;µ)
(

1−∆t τLBN (tℓ;µ)
)−1

ℓ−1
∏

j=1

(

1 + ∆t τLBN (tj ;µ)
)

(

1−∆t τLBN (tj ;µ)
) . (B.9)



September 22, 2010 11:50 WSPC/INSTRUCTION FILE
KNP˙Boussinesq˙revised˙extended

Reduced basis approximation for the unsteady Boussinesq equations 25

Summing this equation from ℓ = 1 to k and recalling e(t0;µ) = 0, we arrive at

(

ek(µ), ek(µ)
)

k
∏

ℓ=1

(

1 + ∆t τLBN (tℓ;µ)
)

(

1−∆t τLBN (tℓ;µ)
) ≤

∆t
k
∑

ℓ=1

ε2N (tℓ;µ)
ℓ−1
∏

j=1

(

1−∆t τLBN (tℓ;µ)
)−1

(

1 + ∆t τLBN (tj ;µ)
)

(

1−∆t τLBN (tj ;µ)
) , (B.10)

for k = 1, . . . ,K. This gives the desired result.

(a) (b)

(c) (d)

Fig. 2. The finite element “truth” temperature field and velocity streamlines for (Gr, φ) = (6000, 0)
at (a) tk = 0.10, (b) tk = 0.20, and for (Gr, φ) = (6000, 0.2) at (c) tk = 0.10, (d) tk = 0.20.
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(a) (b)

Fig. 3. (a) Truth output sN
2
(tk;µ) as a function of tk for (Gr, φ) = (6000, 0) (black), (Gr, φ) =

(3000, 0) (red), and (Gr, φ) = (100, 0) (blue). (b) Truth outputs sN
1
(tk;µ) (dash-dot line) and

sN
3
(tk;µ) (solid line) for (Gr, φ) = (6000, 0.2) (black), (Gr, φ) = (5000, 0.1) (blue), and (Gr, φ) =

(4000, 0.05) (red).

(a) (b)

Fig. 4. Results of the POD-Greedy sampling procedure for the one-parameter problem: (a) the
optimal parameter sample S∗ — the frequency of a parameter value’s occurence in S∗ is propor-
tional to the radius of the corresponding circle marker; (b) the convergence history of the maximum

relative error ǫ∗
N,max,rel

.
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(a) (b)

Fig. 5. Stability factor ρN (tk;µ) as well as ρLB

N
(tk;µ), and ρUB

N
(tk;µ) — the SCM lower and upper

bounds, respectively — as functions of tk for N = 66: (a) Gr = 100, and (b) Gr = 6000.

(a) N = 33 (b) N = 66

Fig. 6. The output error |sN
2
(tk;µ)− sN,2(t

k;µ)| (solid line) and error bound ∆s
N,2

(tk;µ) (dashed

line) for this “middle” output as a function of tk for (a) N = 33, and (b) N = 66: Gr = 100 (top
row) and Gr = 6000 (bottom row).
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(a) N = 33 (b) N = 66

Fig. 7. The RB output sN,2(t
k;µ) (solid lines) and corresponding error bounds sN,2(t

k;µ) ±
∆s

N,2
(tk;µ) (dashed lines) as functions of tk for (a) N = 33, and (b) N = 66: Gr = 100 (blue),

Gr = 3000 (red), and Gr = 6000 (black).

(a) (b)

Fig. 8. Results of the POD-Greedy sampling procedure for the two-parameter problem: (a) the
optimal parameter sample S∗ — the frequency of a parameter value’s occurence in S∗ is propor-

tional to the radius of the corresponding circle marker; (b) the convergence history of the maximum
relative error ǫ∗

N,max,rel
.
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(a) N = 36 (b) N = 75

Fig. 9. The RB outputs sN,1(t
k;µ) (blue, solid line) and sN,3(t

k;µ) (red, solid line) and corre-
sponding output bounds sN,1(t

k;µ)±∆s
N,1

(tk;µ) (blue, dashed lines) and sN,3(t
k;µ)±∆s

N,3
(tk;µ)

(red, dashed lines) as functions of tk for (a) N = 36, and (b) N = 75: (Gr, φ) = (4000, 0.05) (top

row) and (Gr, φ) = (6000, 0.2) (bottom row).


