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Abstract. In this paper we present rigorous a posteriori L2 error bounds for reduced basis

approximations of the unsteady viscous Burgers’ equation in one space dimension. The a poste-

riori error estimator, derived from standard analysis of the error–residual equation, comprises

two key ingredients — both of which admit efficient Offline–Online treatment: the first is a sum

over timesteps of the square of the dual norm of the residual; the second is an accurate upper

bound (computed by the Successive Constraint Method) for the exponential–in–time stability

factor. These error bounds serve both Offline for construction of the reduced basis space by

a new POD–Greedy procedure and Online for verification of fidelity. The a posteriori error

bounds are practicable for final times (measured in convective units) T ≈ O(1) and Reynolds

numbers ν−1 � 1; we present numerical results for a (stationary) steepening front for T = 2

and 1 ≤ ν−1 ≤ 200.
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1. Introduction

The reduced basis method and related model–reduction approaches are well developed for lin-

ear parametrized parabolic partial differential equations [10,12,15,30,34]. The reduced basis

approach — built upon an underlying “truth” finite element discretization which we wish to

accelerate — can provide both very reliable results and very rapid response in the real–time and

many–query contexts. The former (reliability) is ensured by rigorous a posteriori bounds for the

error in the reduced basis approximation relative to the truth finite element discretization: we

provide estimators for the field variable in the relevant norms as well as for any particular scalar

output(s) of interest. The latter (rapid response) is ensured by an Offline–Online computational

strategy that minimizes marginal cost: in an expensive Offline stage we prepare a very small

reduced basis “database”; in the Online stage, for each new parameter value of interest, we

rapidly evaluate both the output of interest and the associated a posteriori error bound — in

complexity independent of the dimensionality of the truth finite element approximation space.

However, in the nonlinear case there are still many open research issues. We shall focus in

this paper on the development of rigorous a posteriori error bounds for the one–dimensional

parametrized unsteady viscous Burgers’ equation; the Burgers’ equation is of interest primarily

as a model for the unsteady incompressible Navier–Stokes equations, the extension to which

is considered in subsequent papers [27,26]. There are examples of rigorous reduced basis a

posteriori error bounds for the steady Burgers’ [37] and incompressible Navier–Stokes [28,36]

equations; the new contribution of the current paper is treatment of the unsteady — parabolic —

case. Although there are many examples of reduced order models for the unsteady incompressible

Navier–Stokes equations [5,7,9,13,14,17–21], none is endowed with rigorous a posteriori error

bounds.

The unsteady viscous Burgers’ equation, like the unsteady incompressible Navier–Stokes sys-

tem, appears computationally simple: a quadratic nonlinearity that admits standard Galerkin

treatment. (Note for higher–order and non–polynomial nonlinearities more sophisticated re-
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duced basis approximations must be considered [3,6,11,32] that in turn introduce both nu-

merical and theoretical complications. The results of the current paper do not directly extend

to these more difficult cases.) However, in the interesting case of small viscosity the unsteady

viscous Burgers’ equation, like the unsteady incompressible Navier–Stokes system [8,22], is in

fact computationally difficult: exponential instability compromises a priori and a posteriori er-

ror estimates — any useful bounds are perforce limited to modest (final) times and modest

Reynolds numbers. (More precisely, stability considerations will limit the product of the final

time and the Reynolds number.)

The approach developed in this paper does not eliminate the exponential growth in time.

(In some cases [22] it may be possible to demonstrate algebraic growth in time; however, more

generally — most simply, linearly unstable flows — we must admit exponential sensitivity

to disturbances.) Rather we develop a procedure, within the reduced basis context, for the

calculation of a more accurate estimate for the stability factor which reflects the full spatial and

temporal structure of the solution. The resulting error bounds, though certainly still pessimistic,

are practicable for final times (measured in convective units) T ≈ O(1) and Reynolds numbers

ν−1 � 1; we demonstrate the relevance of our bounds to fluid dynamically interesting contexts

— response - to - disturbance and bifurcation analyses — in [27,26]. The error bounds serve

not only for certification, but also for efficient construction of rapidly convergent reduced basis

approximations.

In Section 2 we introduce the reduced basis (RB) approximation for the unsteady viscous

Burgers’ equation. In Section 3.1 we develop the associated a posteriori error bounds; in Section

3.2 we describe the formulation and calculation of the stability growth factor by the Successive

Constraint Method (SCM). In Section 4.1 we summarize the Offline–Online (or “Construction-

Evaluation”) computational strategy for efficient evaluation of the reduced basis prediction

and associated a posteriori error bound; in Sections 4.2 and 4.3 we describe POD–GreedyRB

and GreedySCM sampling approaches for construction of the reduced basis space and the SCM
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parameter sample, respectively. Finally, in Section 5 we present numerical results — which are

particularly important in the present context since the stability factors, and hence the utility

of the bounds, can only be determined in situ.

As already indicated, in this paper we address for the first time rigorous reduced basis a

posteriori error bounds for the unsteady viscous Burgers’ equation: our emphasis is on the req-

uisite theoretical and computational innovations. This new material includes the development

of the error bound for quadratically nonlinear parabolic equations; the adaptation of the Succes-

sive Constraint Method (SCM) procedure to the calculation of solution– and time–dependent

stability factors; a new POD–Greedy procedure, based on an earlier proposal in [15], for time-

parameter sampling; and finally numerical results that demonstrate the practical relevance of

the proposed approach. Note, however, that for completeness we do include in this paper a

summary of some earlier work: a brief description of the Offline–Online approach to evaluation

of the dual norm of the residual [28,36]; and a short summary of the Successive Constraint

Method (SCM) [16,35].

2. Reduced Basis Approximation

To begin, we introduce the domain Ω =]0, 1[ and the space X = H1
0 (Ω), where H1

0 (Ω) = {v ∈

H1(Ω) | v(0) = v(1) = 0},H1(Ω) = {v ∈ L2(Ω) | vx ∈ L2(Ω)}, and L2(Ω) = {vmeasurable |
∫
Ω v

2 <

∞}. We further define the X inner product and norm as (w, v)X =
∫
Ω wxvx and ‖w‖X =√

(w,w)X , respectively, and the L2(Ω) inner product and norm as (w, v) ≡
∫
Ω wv and ‖w‖ ≡√

(w, v), respectively. Finally, we introduce the closed parameter (viscosity) domain D ≡

[νmin, νmax] with 0 < νmin < νmax.

We next introduce L2(Ω)–continuous linear functionals f and `. Then, given ν ∈ D, U(ν) ∈

L2(0, T ;X) ∩ C0([0, T ];L2(Ω)) [33] satisfies

d

dt
(U(t; ν), v) + c(U(t; ν),U(t; ν), v) + νa(U(t; ν), v) = f(v), ∀v ∈ X, (1)

4



with initial condition U(t = 0; ν) = 0. We subsequently evaluate our “output of interest”: for

all times t ∈ [0, T ],

S(t; ν) = `(U(t; ν)). (2)

Here T is the final time, C0(I) is the space of continuous functions over the interval I, ν denotes

the viscosity — we shall sometimes refer to ν−1 as the Reynolds number — and

c(w, z, v) = −1
2

∫
Ω
wzvx,

a(w, v) =
∫
Ω
wxvx,

(3)

are the convective trilinear and viscous bilinear forms, respectively. Equations (1) and (3) rep-

resent the standard unsteady viscous Burgers’ equation in one space dimension [25]; in our

numerical experiments we shall choose f(v) = `(v) =
∫
Ω v, as we discuss in greater detail in

Section 5.

We next introduce the time–discrete Burgers’ equation. Towards that end, we first divide

the time interval [0, T ] into K subintervals of equal length ∆t = T/K; we then define tk ≡ k∆t,

0 ≤ k ≤ K. Given ν ∈ D, we now look for uk(ν) ∈ X, 0 ≤ k ≤ K, such that u0(ν) = 0 and

1
∆t

(uk(ν)− uk−1(ν), v) + c(uk(ν), uk(ν), v) + νa(uk(ν), v) = f(v), ∀v ∈ X, (4)

for 1 ≤ k ≤ K. We then evaluate the associated output: for 0 ≤ k ≤ K,

sk(ν) = `(uk(ν)). (5)

We shall sometimes denote uk(ν) as u(tk; ν) and sk(ν) as s(tk; ν) to more clearly identify the

discrete time levels. Equation (4) – Euler Backward discretization of (1) — shall be our point

of departure: we shall presume that ∆t is chosen sufficiently small that uk(ν) = u(tk; ν) and

sk(ν) = s(tk; ν) are effectively indistinguishable from U(tk; ν) and S(tk; ν), respectively. For

our purposes, the timestep ∆t is fixed; we do not consider ∆t → 0. (The development readily
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extends to Crank-Nicolson discretization; for purposes of exposition, we consider the simple

Euler Backward approach.)

We next introduce a Galerkin finite element “truth” spatial discretization of our (already

time–discrete) equation (4). We denote by XN the standard conforming linear finite element

space over a uniform “triangulation” of Ω comprising N + 1 elements each of length 1/(N + 1);

note that XN is of dimension N . Then, given ν ∈ D, we look for uN k(ν) ∈ XN , 0 ≤ k ≤ K,

such that uN 0(ν) = 0 and

1
∆t

(uN k(ν)− uN k−1(ν), v) + c(uN k(ν), uN k(ν), v) + νa(uN k(ν), v) = f(v), ∀v ∈ XN , (6)

for 1 ≤ k ≤ K. We then evaluate the associated output: for 0 ≤ k ≤ K,

sN k(ν) = `(uN k(ν)). (7)

We shall build our reduced basis approximation upon the “truth” discretization (6), and we

shall measure the error in our reduced basis prediction relative to uN k(ν) ≡ uN (tk; ν) and

sN k(ν) ≡ sN (tk; ν). (As we shall observe, the Online cost (and stability) of the reduced basis

evaluations shall be independent of N : we may thus choose N conservatively.)

Finally, we introduce the reduced basis approximation. Given a set of mutually (·, ·)X–

orthogonal basis functions ξn ∈ XN , 1 ≤ n ≤ Nmax, the hierarchical reduced basis spaces are

given by

XN ≡ span {ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax. (8)

The reduced basis approximation to uN k(ν) ∈ XN , ukN (ν) ∈ XN , shall be expressed as

ukN (ν) =
N∑
n=1

ωkN n(ν)ξn. (9)

The spaces XN ∈ XN , 1 ≤ N ≤ Nmax, and basis functions ξn, 1 ≤ N ≤ Nmax, will be generated

by a POD–GreedyRB sampling procedure which combines spatial snapshots in time and viscosity
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— uN k(ν) — in an optimal fashion. The POD–GreedyRB will normalize the basis functions such

that ‖ξn‖X → 0 exponentially fast as n increases; we shall observe ωkN n(ν) ∼ O(1), 1 ≤ n ≤ N

— consistent with rapid convergence of the reduced basis approximation.

We now introduce the Galerkin reduced basis approximation. Given ν ∈ D, we look for

ukN (ν) ∈ XN , 0 ≤ k ≤ K, such that u0
N (ν) = 0 and

1
∆t

(ukN (ν)− uk−1
N (ν), v) + c(ukN (ν), ukN (ν), v) + νa(ukN (ν), v) = f(v), ∀v ∈ XN , (10)

for 1 ≤ k ≤ K. We then evaluate the associated output: for 0 ≤ k ≤ K,

skN (ν) = `(ukN (ν)). (11)

(In Section 4, we shall develop the algebraic equations associated with (10)-(11).) We shall

sometimes denote ukN (ν) as uN (tk; ν) and skN (ν) as sN (tk; ν) to more clearly identify the discrete

time levels. In fact all the reduced basis quantities should bear a N — XNN , u
N k
N (ν), sN k

N (ν) —

since the reduced basis approximation is defined in terms of a particular truth discretization:

for clarity of exposition, we shall typically suppress the “truth” superscript; however, we shall

insist upon stability/uniformity of our reduced basis approximation as N →∞.

The goal of the reduced basis approximation is simple: dimension reduction — N � N —

and associated computational economies. (Note however that there is no “reduction in time”: the

reduced basis approximation inherits the fixed ∆t of the truth approximation.) Obviously, for

the Burgers’ equation in one space dimension, there is not much room for significant economies;

however, in higher spatial dimensions, (Online) reduced basis evaluation is typically several

orders of magnitude less expensive than the classical finite element approach [31,35,27,26].
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3. A Posteriori Error Bound

3.1. L2 Error Bound

In this section we aim to develop an a posteriori bound ∆k
N (ν) ≡ ∆N (tk; ν), 1 ≤ k ≤ K, for the

L2 error in the solution such that

‖uN k(ν)− ukN (ν)‖ ≤ ∆k
N (ν), 1 ≤ k ≤ K, ∀ν ∈ D, (12)

for any N = 1, . . . , Nmax. (We note that L2 estimates for the linear parabolic case are considered

in [15].) Since the linear output functional ` is in L2(Ω), the error in the output satisfies

|sN k(ν)− skN (ν)| ≤ ∆s k
N (ν), 1 ≤ k ≤ K, ∀ν ∈ D, (13)

where ∆s k
N (ν), which we shall denote the “output error bound,” is given by

∆s k
N (ν) =

(
sup
v∈XN

`(v)
‖v‖

)
∆k
N (ν). (14)

We introduce the effectivities associated with these error estimates as

ηN (tk; ν) =
∆k
N (ν)

‖uNk(ν)− ukN (ν)‖
and ηsN (tk; ν) =

∆s k
N (ν)

|sN k(ν)− skN (ν)|
. (15)

Clearly, the effectivities are a measure of the quality of the proposed estimator: for rigor, we shall

insist upon effectivities ≥ 1; for sharpness, we desire effectivities as close to unity as possible.

There are two main components to our error bounds. The first component is the dual norm

of the residual

εN (tk; ν) = sup
v∈XN

rN (v; tk; ν)
‖v‖X

, 1 ≤ k ≤ K, (16)
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where rN (v; tk; ν) is the residual associated with the reduced basis approximation (10)

rN (v; tk; ν) = f(v)− 1
∆t

(
ukN (ν)− uk−1

N (ν), v
)

− c
(
ukN (ν), ukN (ν), v

)
− νa

(
ukN (ν), v

)
, ∀v ∈ XN , 1 ≤ k ≤ K. (17)

Note the dual norm is defined over XN , and not X, since we measure our reduced basis error

relative to the truth finite element discretization.

The second component is a lower bound

ρLB
N (tk; ν) ≤ ρN (tk; ν), 1 ≤ k ≤ K, ∀ν ∈ D, (18)

for the stability constant ρN (tk; ν) defined as

ρN (tk; ν) = inf
v∈XN

4c
(
ukN (ν), v, v

)
+ νa(v, v)

‖v‖2
, 1 ≤ k ≤ K, ∀ν ∈ D; (19)

efficient calculation of ρLB
N (tk; ν) is the topic of section 3.2. The stability constant (19) —

negative values shall result in growth — is closely related to the absolute (monotonic decay)

criterion of hydrodynamic stability theory [23].

We can demonstrate

Proposition 1. There exists a positive constant C independent of ν such that

ρN (tk; ν) ≥ −C
‖ukN (ν)‖4

ν3
, 1 ≤ k ≤ K, (20)

for ρN (tk; ν) defined in (19).
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Proof. We first observe that, for any v ∈ X,

|4c(ukN (ν), v, v)| =2
∥∥∥∥∫ 1

0
ukN (ν)vvxdx

∥∥∥∥
≤2 ‖ukN (ν)‖‖v‖L∞(Ω)‖v‖X

≤4 ‖ukN (ν)‖‖v‖1/2‖v‖1/2X ‖v‖X

(21)

by the L∞-H1 embedding (which perforce restricts our arguments to one space dimension), the

Cauchy-Schwarz inequality, and a Gagliardi–Nirenberg inequality. We then apply the Young

inequality twice to obtain

4 ‖v‖1/2‖v‖3/2X ‖u
k
N (ν)‖ ≤2

(
δ‖v‖+

‖v‖3X
δ

)
‖ukN (ν)‖

≤
(
κ‖v‖2‖ukN (ν)‖2 +

δ2

κ

)
+

2‖v‖3X‖ukN (ν)‖
δ

, ∀v ∈ X,
(22)

for any positive δ and κ. We now choose δ = 4‖uk
N (ν)‖‖v‖X

ν and κ = 32‖uk
N (ν)‖2
ν3 to obtain for all

v ∈ X (and hence all v ∈ XN ⊂ X)

|4c(ukN (ν), v, v)| ≤ 32
‖ukN (ν)‖4‖v‖2

ν3
+ ν‖v‖2X . (23)

Therefore, we have

ρN (tk; ν) ≥ −32
‖ukN (ν)‖4

ν3
, 1 ≤ k ≤ K, (24)

which proves the desired result for C = 32. �

(Note that ‖ukN (ν)‖ may be bounded in terms of f , ν, and T , which in turn provides a lower

bound for ρN (tk; ν) which is independent of N .) This extremely pessimistic bound is of course

of very little comfort or utility; in our actual estimation procedure for ρN (tk; ν), described in

the next section, we reflect the full temporal–spatial structure of ukN (ν), 1 ≤ k ≤ K, and obtain

more meaningful and useful lower bounds.
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We can now define our error bound ∆k
N (ν), 1 ≤ k ≤ K, in terms of the dual norm of the

residual and the lower bound for the stability constant. We first define

∆t∗N (ν) =
1

2|min(0,min1≤k≤K ρ
LB
N (tk; ν))|

. (25)

Then, for ∆t < ∆t∗N (ν), which ensures 1 + ∆tρLB
N (tk; ν) > 0, 1 ≤ k ≤ K, we define our a

posteriori error bound as

∆k
N (ν) =

√√√√ ∆t
ν

∑k
m=1

(
ε2N (tm; ν)

∏m−1
j=1

(
1 +∆tρLB

N (tj ; ν)
))

∏k
m=1

(
1 +∆tρLB

N (tm; ν)
) 1 ≤ k ≤ K. (26)

Note (26) is the Euler Backward version of the classical continuous–time exponential result.

(The particular fashion in which ρLB
N (tj ; ν) appears in our bound — in particular, as an integral

in time — is important in the generalization of Proposition 1 to the case of higher space

dimensions.)

For ν sufficiently large (Reynolds sufficiently small), ρN (tk; ν) will be uniformly positive

and hence error growth will be controlled; in this case, we can consider rather large times —

effectively reaching steady or (say) steady-periodic states. However, for smaller ν, ρN (tk; ν) will

certainly be negative and hence the error bound (26) will grow exponentially in time; in this

case, we will be practically limited to modest final times — the smaller the ν, the smaller the

practicable final time T . In fact, the actual limitations are less severe than might be anticipated:

we quantify the restrictions for a particular Burgers’ example in Section 5, and for several Navier-

Stokes examples in [27,26]. (Clearly, the ν−1/2 prefactor in the error bound (26) is also less than

welcome; future work will consider different norms to attenuate this effect.)

To close this section we prove (12) for our bound of (26) by appropriate modification of

classical procedures [33]:

Proposition 2. For given ν ∈ D, ∆t < ∆t∗N (ν) of (25), and error bound ∆k
N (ν) defined in

(26), the error estimate (12) holds for any N ∈ [1, Nmax].
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Proof. We note from (6) and (17) that the error em(ν) ≡ uN m(ν)− umN (ν) satisfies

1
∆t

(
em(ν)− em−1(ν), v

)
+ c
(
uN m(ν), uN m(ν), v

)
− c
(
umN (ν), umN (ν), v

)
+ νa

(
em(ν), v

)
= rN (v; tm; ν), ∀v ∈ XN . (27)

From trilinearity, and symmetry in the first two arguments, of the form c in (3) we can derive

the following equality

c
(
uN m(ν), uN m(ν), v

)
− c
(
umN (ν), umN (ν), v

)
= c
(
em(ν), em(ν), v

)
+ 2c

(
umN (ν), em(ν), v

)
, ∀v ∈ XN . (28)

It thus follows that

1
∆t

(
em(ν)− em−1(ν)(ν), v

)
+ c
(
em(ν), em(ν), v

)
+ 2c

(
umN (ν), em(ν), v

)
+ νa

(
em(ν), v

)
= rN (v; tm; ν), ∀v ∈ XN . (29)

We now choose v = em(ν) in (29) and invoke (16) to find

1
∆t

(
em(ν)− em−1(ν), em(ν)

)
+ c
(
em(ν), em(ν), em(ν)

)
+ 2c

(
umN (ν), em(ν), em(ν)

)
+ νa

(
em(ν), em(ν)

)
≤ εN (tm; ν)‖em(ν)‖X . (30)

Application of Young’s inequality, 2AB ≤ 1
εA

2 + εB2,∀ε > 0, yields (for ε = ν)

εN (tm; ν)‖em(ν)‖X ≤
1
2

(1
ν
ε2N (tm; ν) + ν‖em(ν)‖2X

)
=

1
2

(1
ν
ε2N (tm; ν) + νa

(
em(ν), em(ν)

))
. (31)
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We now use ‖em(ν)− em−1(ν)‖2 > 0 and the equality

c
(
em(ν), em(ν), em(ν)

)
= −1

6

∫ 1

0

∂e3(tm; ν)
∂x

= 0 (32)

to reduce (30) to

1
∆t

((
em(ν), em(ν)

)
−
(
em−1(ν), em−1(ν)

))
+ 4c

(
umN (ν), em(ν), em(ν)

)
+ νa

(
em(ν), em(ν)

)
≤ 1
ν
ε2N (tm; ν). (33)

Hence, from (33) and (18)-(19) we obtain

(
1 +∆tρLB

N (tm; ν)
)(
em(ν), em(ν)

)
−
(
em−1(ν), em−1(ν)

)
≤ ∆t

ν
ε2N (tm; ν). (34)

We now multiply by (the positive quantity, given our hypothesis on∆t)
∏m−1
j=1

(
1 +∆tρLB

N (tj ; ν)
)

on both sides of (34) to obtain

(
em(ν), em(ν)

) m∏
j=1

(
1 +∆tρLB

N (tj ; ν)
)
−
(
em−1(ν), em−1(ν)

)m−1∏
j=1

(
1 +∆tρLB

N (tj ; ν)
)
≤

∆t

ν
ε2N (tm; ν)

m−1∏
j=1

(
1 +∆tρLB

N (tj ; ν)
)

; (35)

we then sum this equation from m = 1 to k and recall e(t0; ν) = 0 to finally arrive at

(
ek(ν), ek(ν)

) k∏
m=1

(
1 +∆tρLB

N (tm; ν)
)
≤

∆t

ν

k∑
m=1

ε2N (tm; ν)
m−1∏
j=1

(
1 +∆tρLB

N (tj ; ν)
)
, 1 ≤ k ≤ K,

(36)

which is the desired result. �

13



3.2. Successive Constraint Method

As already indicated, the theory (e.g., a priori or even a posteriori finite element error analysis)

for the Navier-Stokes equations is plagued by exponential growth factors and large prefactors

[8,22]. (There are some cases in which algebraic-in-T bounds can be derived [22], however

the requisite conditions will not always be satisfied.) The simplest bounds for the exponential

growth rate involve the L∞(Ω)-norm of the gradient of the velocity — in our case, the gradient

of uN (t; ν) — which indeed will increase as ν−1 as ν decreases. We believe our formulation

(26),(19), will improve upon these theoretical estimates — not enough to permit long-time

integration at very high Reynolds numbers, but enough to permit practical and rigorous error

estimation for (applications characterized by) modest times and modest Reynolds numbers.

There are two reasons for our optimism — admittedly bolstered in hindsight by both the

numerical results reported in a later section as well as Navier-Stokes results of subsequent papers

[27,26]. First, (19) includes a viscous term that will somewhat constrain the minimizer and

hence moderate the minimum: a candidate field large only in a thin destabilizing layer will also

incur significant dissipation. Second, ρN (t; ν) of (19) shall be estimated (conservatively but)

relatively precisely: our lower bound ρLB
N (t; ν) shall reflect the detailed spatial and temporal

structure of uN (tk; ν), 1 ≤ k ≤ K. For the latter calculation we shall adapt the Successive

Constraint Method, as we now describe.

The Successive Constraint Method (SCM) introduced in [16,35] is a procedure for the con-

struction of lower bounds for the coercivity and (in the non-coercive case) inf-sup stability con-

stants that appear in reduced basis a posteriori error bounds for linear elliptic (and parabolic)

PDEs [35]. The SCM — based on an Offline-Online strategy relevant in the many-query and

real–time reduced basis context — reduces the Online (real–time/deployed) calculation to a

small Linear Program for which the operation count is independent of N . The SCM method

can in fact be applied to any generalized eigenproblem: we now consider adaptation to the

particular generalized eigenproblem of interest here — our stability constant (19); we empha-
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size that the current context is rather more difficult than earlier situations as the underlying

eigenproblem (for nonlinear problems) will depend on the reduced basis solution for the field

variable.

3.2.1. Preliminaries We first expand the reduced basis solution ukN (ν) as

ukN (ν) =
N∑
n=1

ωN n(tk; ν)ξn, (37)

where ωN (tk; ν) = [ωN 1(tk; ν), . . . , ωN N (tk; ν)]T ∈ IRN is the reduced basis coefficient vector.

We can thus write (19) as

ρN (tk; ν) = inf
v∈XN

N+1∑
n=1

ΦN n(tk; ν)
dN n(v, v)
‖v‖2

, (38)

where the symmetric bilinear forms dN n and the functions ΦN n(tk; ν) are given by

dN n(w, v) =


2c(ξn, w, v) + 2c(ξn, v, w), n = 1, . . . , N,

a(w, v), n = N + 1,
(39)

and

ΦN n(tk; ν) =


ωN n(tk; ν), n = 1, . . . , N,

ν, n = N + 1.
(40)

It is important to note that the bilinear forms are independent of time and viscosity — this

property shall be exploited in our development here.

For clarity of exposition, we introduce a time-parameter quantity µ = (tk; ν) in Dµ ≡

{t0, . . . , tK} × D (recall that D ≡ [νmin, νmax]). We then introduce an objective function J obj
N :

Dµ × RN+1 → R given by

J obj
N (µ; y) =

N+1∑
n=1

ΦN n(µ)yn, (41)
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where y = [y1, . . . , yN+1]T ∈ RN+1. We may then express our stability constant as

ρN (µ) = inf
y∈YN

J obj
N (µ; y), (42)

where the set YN ⊂ RN+1 is defined by

YN =
{
y ∈ RN+1 | ∃wy ∈ XN s.t. yn =

dN n(wy, wy)
‖wy‖2

, 1 ≤ n ≤ N + 1
}
. (43)

The equivalence between (38) and (42), (43) is readily confirmed.

To construct our lower bound we will replace YN with a set YLB
N ⊃ YN which leads to easier

computation and in particular an Offline-Online decomposition. (We shall also develop an upper

bound, which we describe subsequently.) The set YLB
N will contain two types of constraints:

“box constraints” that place limits on each element of y independently; and “stability factor

constraints” that place limits on linear combinations of the elements of y. We now describe these

constraints: in our particular context, both types of constraints are crucial to computational

performance.

The box constraints shall take the form y ∈ BNN for

BNN =
N+1∏
n=1

[
σNNn, σ

N
Nn

]
, (44)

where

σNNn = inf
w∈XN

dN n(w,w)
‖w‖2

, σNNn = sup
w∈XN

dN n(w,w)
‖w‖2

, 1 ≤ n ≤ N + 1. (45)

We note that the dN n are not bounded with respect to the L2(Ω) norm. In general, |σNNn| (and

|σNNn|) ≤ N‖ξn‖X , 1 ≤ n ≤ N , where we recall that N is the dimension of our truth finite

element approximation space. Since in fact ‖ξn‖X → 0 exponentially fast as n increases any

slight growth with N is not important or visible in practice. For n = N + 1, σNNn is of course

bounded and in fact positive as N → ∞; σNNn →∞ as N → ∞ but plays no role in (42) since

ΦN N+1 = ν > 0.
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The stability factor constraints take the form, for any given µ,

N+1∑
n=1

φN n(µ′)yn > ρN (µ′), ∀µ′ ∈ CM,µ
J . (46)

Here CM,µ
J is the set of M (≥ 1) points in CJ closest to the given µ ∈ Dµ, where

CJ ≡ {µSCM
1 ∈ Dµ, . . . , µSCM

J ∈ Dµ}. (47)

is an “SCM parameter sample” the construction of which (by a GreedySCM procedure) shall be

discussed in Section 4.3. Note that we measure proximity in a weighted norm: for µ = (tk; ν) ∈

Dµ and µ′ = (tk
′
; ν ′) ∈ CJ , the distance between µ and µ′ is defined as

dist(µ, µ′) =
√

(T (ν − ν ′))2 + (νmin(tk − tk′))2; (48)

this choice will ensure that the set CM,µ
J contains many points in time near the ν of interest.

(Note that if M > J , then we set CM,µ
J = CJ .) Finally, we denote by

RJN ≡ {ρN (µSCM
1 ), . . . , ρN (µSCM

J )} (49)

the set of stability factors for the parameter points of the SCM parameter sample CJ .

3.2.2. Lower Bound Now for given CJ , M ∈ N ≡ {1, 2, . . .}, and any µ ∈ Dµ, we define the

“lower bound” set YLB
N (µ; CJ ,M) ⊂ RN+1 as

YLB
N (µ; CJ ,M) ≡

{
y ∈ RN+1 | y ∈ BNN ,

N+1∑
n=1

ΦN n(µ′)yq ≥ ρN (µ′), ∀µ′ ∈ CM,µ
J

}
. (50)

We then define our lower bound ρLB
N (tk; ν) ≡ ρLB

N (µ = (tk; ν), CJ ,M) as

ρLB
N (µ; CJ ,M) = min

y∈YLB
N (µ;CJ ,M)

J obj
N (µ; y). (51)

We can demonstrate [16,35] that YN ⊂ YLB
N (µ; CJ ,M) and hence
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Proposition 3. Given CJ ⊂ Dµ and M ∈ N,

ρLB
N (tk; ν) ≤ ρN (tk; ν), ∀µ ≡ (tk; ν) ∈ Dµ, (52)

for ρLB
N (tk; ν) = ρLB

N (µ = (tk; ν); CJ ,M) defined in (51). �

We note that our lower bound (51) is in fact a linear optimization problem (or Linear

Program (LP)). We observe that our LP (51) contains N +1 design variables and 2(N +1)+M

(one-sided) inequality constraints. The crucial observation is that given BNN and the sets CJ ,

and RJN the operation count to evaluate µ → ρLB
N (µ; CJ ,M) is independent of N ; we discuss

the Offline–Online computational implications in the next section.

3.2.3. Upper Bound As we shall see in Section 4.3, we also require an upper bound for the

stability constant for the (effective) construction of a good SCM parameter sample CJ . For given

CJ , M ∈ N, and any µ ∈ Dµ, we introduce our “upper bound” set YUB
N (µ; CJ ,M) as

YUB
N (µ; CJ ,M) =

{
y∗(µ′) | µ′ ∈ CM,µ

J

}
, (53)

where

y∗(µ) = arg inf
y∈YN

J obj
N (µ; y)

(in the event of non-uniqueness, any selection criterion suffices). We can then define our upper

bound as

ρUB
N (µ; CJ ,M) = min

y∈YUB
N (µ;CJ ,M)

J obj
N (µ; y). (54)

It directly follows from (53) that YUB
N (µ; CJ ,M) ⊂ YN and hence, for given CJ and M ∈ N,

ρUB
N (µ; CJ ,M) ≥ ρN (µ), ∀ µ ∈ Dµ.

We note that the upper bound (54) is a simple enumeration: given the set {y∗(µ′) | µ′ ∈ CJ},

the operation count to evaluate µ → ρUB
N (µ; CJ ,M) is independent of N . We return to the

computational implications shortly.
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4. Offline–Online Computational Approach

4.1. Construction–Evaluation Decomposition

The calculation of the reduced basis output sN (tk; ν) and output error bound ∆s
N (tk; ν) admits

a Construction–Evaluation decomposition.1 The expensive — N–dependent — Construction

stage, performed once, enables the subsequent very inexpensive —N–independent — Evaluation

stage, performed many times for each new desired ν ∈ D. Note the reduced basis approach is

particularly relevant in the real–time context and the many–query context; for the former the

relevant metric is marginal cost — the (inexpensive) Evaluation stage — since the Construction

stage is deemed not important; for the latter the relevant metric is asymptotic average cost

— again, the (inexpensive) Evaluation stage — since the Construction stage is negligible. We

first discuss the Construction–Evaluation approach for sN (tk; ν), 1 ≤ k ≤ K; we subsequently

discuss the Construction–Evaluation approach for the output error bound ∆s
N (tk; ν).

In order to compute sN (tk; ν) we expand uN (tk; ν), 1 ≤ k ≤ K, as

uN (tk; ν) =
N∑
j=1

ωkN j(ν)ξj , (55)

where we recall that the ξj , 1 ≤ j ≤ N, are the basis functions for our reduced basis space XN .

We may then evaluate the reduced basis output as

sN (tk; ν) =
N∑
j=1

ωkN j(ν)`(ξj), 1 ≤ k ≤ K. (56)

It remains to obtain the ωkN j(ν), 1 ≤ j ≤ N, 1 ≤ k ≤ K.

1 This Construction–Evaluation decomposition is essentially the Offline–Online strategy described (in gen-
eral terms) in the Introduction. However, in the Offline POD-GreedyRB and GreedySCM sampling procedures
(described in the next section) we already invoke the Construction–Evaluation decomposition in order to inex-
pensively evaluate the error bound and stability factor bound, respectively. Hence we use the more precise term
Construction–Evaluation — used both in the Offline and Online stages — to describe the procedure by which
we can decouple the N–dependent and N–independent components of the basic reduced basis calculations (for
the reduced basis coefficients, reduced basis output prediction, stability factor, and a posteriori error bounds).
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At any given time level tk, we find uN (tk; ν) from Newton iteration applied to (10): if we

denote the current Newton iterate as uN (tk; ν) then the Newton increment δuN (tk; ν) satisfies

1
∆t

(δuN (tk; ν), v) + 2c(uN (tk; ν), δuN (tk; ν), v) + νa(δuN (tk; ν), v) = rN (v; tk; ν), ∀v ∈ XN ,

(57)

where for all v ∈ XN (or XN ) the Newton residual is given by

rN (v; tk; ν) ≡ f(v)− 1
∆t

(uN (tk; ν)− uN (tk−1; ν), v)

− c(uN (tk; ν), uN (tk; ν), v)− νa(uN (tk; ν), v).

(58)

The next iterate is then given by uN (tk; ν) + δuN (tk; ν); we continue until convergence. We now

express the crucial computational kernel — (57) and (58) — in algebraic form.

Towards that end, we first expand the current Newton iterate and the Newton increment as

uN (tk; ν) =
N∑
j=1

ωkN j(ν)ξj , (59)

δuN (tk; ν) =
N∑
j=1

δωkN j(ν)ξj , (60)

respectively. It then follows from (57) and (58) that the δωkN j(ν), 1 ≤ j ≤ N, satisfy the

equations

N∑
j=1

[
MN ij

∆t
+ 2

N∑
n=1

ωkN n(ν)FN nij + νAN ij

]
δωkN j(ν) = rN (ξi; tk; ν), 1 ≤ i ≤ N, (61)

with

rN (ξi; tk; ν) = f(ξi)−
N∑
j=1

MN ij

∆t
(ωkN j(ν)− ωk−1

N j (ν))

−
N∑
n=1

N∑
j=1

FN nijω
k
N n(ν)ωkN j(ν)− ν

N∑
j=1

AN ijω
k
N j(ν),

(62)
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for 1 ≤ i ≤ N. Here the

MN ij = (ξj , ξi), FN nij = c(ξn, ξj , ξi), AN ij = a(ξj , ξi), 1 ≤ i, j, n ≤ N, (63)

are parameter–independent arrays. We can now readily identify the Construction–Evaluation

decomposition.

In the Construction stage we first form and store the time–independent and ν–independent

arrays MNmax ij , FNmax nij ,ANmax ij , f(ξi), and `(ξi), 1 ≤ n, i, j ≤ Nmax. The operation count in

the Construction stage of course depends on N — even once the ξi, 1 ≤ i ≤ Nmax, are known

(obtained by the GreedyRB sampling procedure of the next section), it remains to compute

O(N3
max) finite element quadratures over the triangulation. Note that, thanks to the hierarchi-

cal nature of the reduced basis spaces, the stiffness matrices/vectorsMN ij ,FN nij ,AN ij , f(ξi),

and `(ξi), 1 ≤ n, i, j ≤ N, for any N ≤ Nmax can be extracted as principal subarrays of the cor-

responding Nmax quantities. (For non-hierarchical reduced basis spaces the storage requirements

are much higher.)

In the Evaluation stage, for each Newton iteration at each time level k = 1, . . . ,K: we

first form the left–hand side of (61) and the residual of (62) — in O(N3) operations; we then

solve the resulting N × N system of linear equations for δωkN j , 1 ≤ j ≤ N — again in O(N3)

operations (in general, we must anticipate that the reduced basis matrices will be dense). Once

the ωkN j , 1 ≤ j ≤ N, 1 ≤ k ≤ K, are obtained — O(N3K) operations in total — we evaluate our

output from (56) — in O(NK) operations. The storage and operation count in the Evaluation

stage is clearly independent of N , and we can thus anticipate — presuming N � N — very

rapid reduced basis response in the real–time and many–query contexts. For problems in higher

dimensions the computational savings can be very significant.

We now turn to the error bound ∆s
N (tk; ν). It is clear from (14) that the output error

bound ∆s
N (tk; ν) can be directly evaluated in terms of the dual norm of ` — which we can

readily compute in the Construction stage — and the L2(Ω) error bound, ∆k
N (ν); we thus
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focus on the L2(Ω) error bound, ∆k
N (ν). It is furthermore clear from (26) that there are two

components to the calculation of ∆k
N (ν): evaluation of ρLB

N (tk; ν) by the Successive Constraint

Method, and computation of the dual norm of the residual, εN (tk; ν) of (16). We first briefly

discuss the Construction–Evaluation decomposition for the former; we then consider the latter

(computation of the dual norm for quadratic nonlinearities is described in detail in [36,28], and

we thus provide here only a brief summary).

In the Construction stage of the SCM we form the sets BNN and CJ ,RJN for the lower

bound and the set {y∗(µ′) | µ′ ∈ CJ} for the upper bound. Clearly, the operation count for

this Construction stage is dependent on N and quite intensive: we must compute many finite

element minimum (and maximum) eigenvalues and associated eigenvectors. In the Evaluation

stage of the SCM, both the lower bound and upper bound calculations are quite simple, as

already described in Section 3: the lower bound is a small Linear Program; the upper bound

is an enumeration/comparison. (In both cases, we must first find the M closest points to µ in

CJ — from (48) — to form CM,µ
J : this is readily effected by a simple sort.) The storage and

operation count in the Evaluation stage is independent of N , and in fact typically quite small

relative to other components.

We now turn to the dual norm of the residual. We first note from duality that εN (tk; ν) can

be expressed as

ε2N (tk; ν) = ‖êN (tk; ν)‖2X , 1 ≤ k ≤ K, (64)

where êN (tk; ν) is the Riesz representation of the residual,

(êN (tk; ν), v)X = rN (v; tk; ν), ∀v ∈ XN . (65)
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Here rN (v; tk; ν) is the residual defined in (17), which we may further write — exploiting the

reduced basis representation — as

rN (v; tk; ν) = f(v)− 1
∆t

N∑
j=1

(ωkN j(ν)− ωk−1
N j (ν))(ξj , v)

−
N∑
n=1

N∑
j=1

ωkN n(ν)ωkN j(ν)c(ξn, ξj , v)− ν
N∑
j=1

ωkN j(ν)a(ξj , v),

(66)

for 1 ≤ k ≤ K.

It now follows directly from (65) and (66) that

êN (tk; ν) =
(N+1)2∑
m=1

ΥmN (tk; ν)ΓmN , 1 ≤ k ≤ K, (67)

where the ΥmN (tk; ν) depend on timestep and viscosity ν explicitly but also through ω(tk; ν)

and ω(tk−1; ν), and the ΓmN are solutions to time–independent and ν–independent “Poisson”

problems of the form

(ΓmN , v)X = gmN (v), ∀v ∈ XN . (68)

The ΥmN (tk; ν), gmN , 1 ≤ m ≤ (N + 1)2, are given (for a particular ordering) by

Υ 1
N (tk; ν) = 1, Υ 2

N (tk; ν) = −
(ωkN 1 − ω

k−1
N 1 )

∆t
, . . . ,

ΥN+2
N (tk; ν) = −ωkN 1(ν)ωkN 1(ν), . . . , ΥN

2+2N+1
N (tk; ν) = −ν

(69)

corresponding to

g1
N (v) = f(v), g2

N = (ξ1, v), . . . , gN+2
N (v) = c(ξ1, ξ1, v) . . . , gN

2+2N+1
N (v) = a(ξN , v). (70)

It then follows from (64) that

ε2N (tk; ν) =
(N+1)2∑
i=1

(N+1)2∑
j=1

Υ iN (tk; ν)Υ jN (tk; ν)(Γ iN , Γ
j
N )X , 1 ≤ k ≤ K. (71)

The Construction–Evaluation decomposition is now clear.
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In the Construction stage, we find the ΓmNmax
, 1 ≤ m ≤ (Nmax + 1)2, and form the inner

products (Γ iNmax
, Γ jNmax

)X , 1 ≤ i, j ≤ (Nmax + 1)2. The operation count for the Construction

stage clearly depends onN — (Nmax+1)2 finite element “Poisson” problems (68) and (Nmax+1)4

finite element quadratures over the triangulation. (The temporary storage associated with the

latter can be excessive for higher–dimensional problems: it is simple to develop procedures that

balance temporary storage and re–computation.) Note that, thanks to the hierarchical nature of

the reduced basis spaces, the inner products (Γ iN , Γ
j
N )X , 1 ≤ i, j ≤ (N + 1)2, for any N ≤ Nmax

can be directly extracted from the corresponding Nmax quantities. (As already noted, for non-

hierarchical reduced basis spaces the storage requirements will be considerably higher.)

In the Evaluation stage, given the reduced basis coefficients ωN j(tk; ν), 1 ≤ j ≤ N, 1 ≤ k ≤

K: we can readily compute the coefficient functions Υ jN (tk; ν), 1 ≤ j ≤ (N + 1)2, 1 ≤ k ≤ K; we

then simply perform the sum (71) from the stored inner products — O((N + 1)4) operations

per time step and hence O((N + 1)4K) operations in total. As desired, the operation count for

the Evaluation stage is indeed independent of N . The quartic scaling with N is obviously less

than welcome; however, in actual practice, for modest N the cost to evaluate s(tk; ν) and the

cost to evaluate ∆N (tk; ν) are often not too incommensurate — the many O(N3) operations of

the former typically balance the (N + 1)4 operations of the latter. Multi-domain (in parameter)

approaches can also reduce the deleterious effect of the N4 scaling.

This concludes the discussion of the Construction–Evaluation decomposition. The Construc-

tion stage is performed Offline; the Evaluation stage is invoked Online — for each new ν of

interest in the real–time or many–query contexts. However, there are two other components to

the Offline stage. First, we must construct a good (rapidly convergent) reduced basis space and

associated basis functions ξi, 1 ≤ i ≤ Nmax, by a POD-GreedyRB procedure: this sampling pro-

cess in fact relies on the Construction–Evaluation decomposition to greatly reduce the requisite

number of (expensive) “candidate” finite element calculations over an (extensive) GreedyRB

training sample, Ξtrain,RB. And second, we must construct our SCM parameter sample CJ by a
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GreedySCM procedure; this sampling process also relies on the Construction–Evaluation decom-

position in particular to greatly reduce the number of (expensive) stability factor calculations

over an (extensive) GreedySCM training sample, Ξtrain,SCM.

4.2. POD-GreedyRB Sampling Strategy

We address here the generation of our reduced basis space XN . Our sampling procedure com-

bines, as first proposed in [15], the POD (Proper Orthogonal Decomposition) in tk — to capture

the causality associated with our evolution equation — with a Greedy procedure [12,38,35] in ν

— to treat efficiently the higher dimensions and more extensive ranges of parameter variation.

(For an alternative “interpolation” approach to reduced order time-parameter spaces see [1,2].)

To begin, we summarize the well-known optimality property of the POD [24]. Given L

elements of XN , wj ∈ XN , 1 ≤ j ≤ L, and any positive integer P ≤ N , POD({w1, . . . , wL}, P )

returns P (·, ·)X -orthogonal functions {χp, 1 ≤ p ≤ P} such that the space VP = span{χp, 1 ≤

p ≤ P} is optimal in the sense that

VP = arg inf
YP⊂span{wj ,1≤j≤L}

(
1
L

L∑
j=1

inf
v∈YP

‖wj − v‖2X
)1/2

,

where YP denotes a P -dimensional linear space. We also recall that to find the χp we first form

the correlation matrix C with entries Cij = (wi, wj)X , 1 ≤ i, j ≤ L; we then find the largest

P eigenvalues λp, 1 ≤ p ≤ P, and associated eigenvectors vp ∈ RL, 1 ≤ p ≤ P, of the system

Cvp = λpvp with normalization (vp)T vp = 1; finally we form χp =
∑L

j=1 v
p
jwj , 1 ≤ p ≤ P . Note

that the χp thus satisfy the orthogonality condition (χm, χn)X = λmδmn, 1 ≤ m,n ≤ P .

To initiate the POD-GreedyRB sampling procedure we must specify a very large (exhaustive)

“training” sample of ntrain,RB points in D, Ξtrain,RB, and an initial (say, random) RB parameter

sample S∗ = {ν∗0}. Moreover, we shall require a nominal value ρ∗N for the lower bound of the

stability constant: for the purposes of the POD-Greedy sampling only, we replace our SCM

lower bound with ρLB
N (tk; ν) = ρ∗N , 1 ≤ k ≤ K,∀ν ∈ D; we then define ∆∗N (tk; ν) to be our usual
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a posteriori L2 error bound (26) but now with ρLB
N (tk; ν) replaced by the “nominal” stability

factor ρ∗N — hence ∆∗N (tk; ν) is not in fact a true error bound but rather just an indicator. (We

return to this point at the conclusion of this section.)

The algorithm is then given by

Set Z = ∅;

Set ν∗ = ν∗0 ;

While N ≤ Nmax

{χp, 1 ≤ p ≤ P1} = POD({uN (tk; ν∗), 1 ≤ k ≤ K}, P1) ;

Z ← {Z, {χp, 1 ≤ p ≤ P1}} ;

N ← N + P2 ;

{ξn, 1 ≤ n ≤ N} = POD(Z, N) ;

XN = span{ξn, 1 ≤ n ≤ N} ;

ν∗ = arg maxν∈Ξtrain,RB
∆∗N (tK = T ; ν)

S∗ ← {S∗, ν∗} ;

end.

Set XN = span{ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

In actual practice, we typically exit the POD-Greedy sampling procedure at N = Nmax ≤ Nmax,0

for which a prescribed error tolerance is satisfied: to wit, we define

ε∗N,max = max
ν∈Ξtrain,RB

∆∗N (tK ; ν),

and terminate when ε∗N,max ≤ ε∗tol. Note by virtue of the final re–definition the POD-Greedy

generates hierarchical spaces XN , 1 ≤ N ≤ Nmax, which is computationally very advantageous.
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There are two “tuning” variables in the POD-GreedyRB procedure, P1 and P2. We choose

P1 to satisfy an internal POD error criterion based on the usual sum of eigenvalues; we choose

P2 ≤ P1 to minimize duplication in the reduced basis space — though typically we prefer P2 > 1

in order to reduce the number of GreedyRB iterations and hence Offline cost. We make three

observations. First, the POD–GreedyRB method readily accommodates a repeat ν∗ in successive

GreedyRB cycles — new information will always be available and old information rejected; in

contrast, a pure GreedyRB approach in both t and ν [12], though often generating good spaces,

can “stall.” Second, thanks to the POD normalization (χm, χn)X = λmδmn, 1 ≤ m,n ≤ P1,

the modes generated in the first POD at any parameter value ν∗ are automatically scaled by

their respective importance in representing u(tk; ν∗), 1 ≤ k ≤ K; the second POD (of Z) is thus

correctly weighted to accommodate POD modes from different parameter values. Third, our

POD normalization but now in the second POD yields ‖ξn‖X =
√
λn, 1 ≤ n ≤ Nmax, where the

λn are the eigenvalues of the correlation matrix associated to Z (of the last GreedyRB iteration);

we thus motivate our earlier claims that ‖ξn‖X → 0 rapidly as n increases (presuming a rapidly

convergent RB approximation) and ωkNn(ν) ≈ O(1), 1 ≤ n ≤ N . The latter are in fact confirmed

by our numerical experiments of the next section.

The procedure remains computationally feasible even for large parameter domains and very

extensive training samples (and in particular in higher parameter dimensions): the POD is con-

ducted in only one (time) dimension and the GreedyRB addresses the remaining (parameter)

dimensions. The crucial point to note is that the operation count for the POD-GreedyRB algo-

rithm is additive and not multiplicative in ntrain,RB and N : in searching for the next parameter

value ν∗, we invoke the Construction–Evaluation decomposition to inexpensively calculate the

a posteriori error bound at the ntrain,RB candidate parameter values; in contrast, in a pure

POD approach, we would need to evaluate the finite element “truth” solution at the ntrain,RB

candidate parameter values. (Of course, much of the computational economies are due not to

the GreedyRB per se, but rather to the accommodation within the GreedyRB of the inexpensive
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error bounds.) As a result, in the POD-GreedyRB approach we can take ntrain,RB relatively large:

we can thus anticipate reduced basis spaces and approximations that provide rapid convergence

uniformly over the entire parameter domain. (Note that more sophisticated and hence efficient

search algorithms can be exploited in the GreedyRB context, for example [4].)

Once the reduced basis spaces are defined we can then construct our SCM parameter sample,

as described in the next section. If we find that the true lower bound is in fact very different

from — much more negative than — our nominal value ρ∗N we may wish to, or need to, return to

the POD–GreedyRB algorithm in order to ensure a sufficiently accurate reduced basis approxi-

mation. Typically if we choose ρ∗N and ε∗tol conservatively such a “restart” is not required. It is

imperative to note that, in actual Online calculations — evaluations µ → sN (tk; ν), ∆s k
N (µ) in

many–query and real–time applications such as optimization, control, and parameter estimation

— we rely on the true stability factor lower bound such that Propositions 2 and 3 are rigorously

valid.

4.3. GreedySCM Sampling Strategy

We now present the construction of the SCM parameter sample CJ by a GreedySCM algorithm.

We shall require an SCM training sample Ξtrain,SCM of ntrain,SCM points in Dµ. We also require a

tolerance εSCM of the order of unity which shall control the error in the lower bound prediction.

We first set J = 1 and choose C1 = {µSCM
1 } “arbitrarily.” We then perform

While max
µ∈Ξtrain,SCM

[
exp(T ρUB

Nmax
(µ;CJ ,M))−exp(T ρLB

Nmax
(µ;CJ ,M))

exp(T ρLB
Nmax

(µ;CJ ,M))

]
> εSCM :

µSCM
J+1 = arg max

µ∈Ξtrain,SCM

[
exp(T ρUB

Nmax
(µ;CJ ,M))−exp(T ρLB

Nmax
(µ;CJ ,M))

exp(T ρLB
Nmax

(µ;CJ ,M))

]
;

CJ+1 = CJ ∪ µSCM
J+1 ;

J ← J + 1 ;

end.
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Note we control not the gap between the upper bound and the lower bound but rather the

gap between the exponential of the upper bound and the exponential of the lower bound: this

heuristic better reflects the effect of the stability parameter on the ultimate L2 a posteriori error

bound. We typically choose εSCM = Tνmax.

We denote by Jmax(εSCM) the value of J upon exit — the value of J for which our toler-

ance is satisfied: our lower bound for N = Nmax is thus given by ρLB
Nmax

(tk; ν) = ρLB
Nmax

(µ =

(tk; ν); CJmax ,M). It is important to note that our GreedySCM algorithm is performed for

N = Nmax. Then, once the SCM parameter sample has been constructed, we compute the

ρN (µSCM
j ), 1 ≤ j ≤ Jmax — the RJmaxN — for all N = 1, . . . , Nmax − 1. (Note that the

ρNmax(µSCM
j ), 1 ≤ j ≤ Jmax — theRJmaxNmax — are already calculated as part of the GreedySCM

procedure.) We can thus evaluate ρLB
N (µ) = ρLB

N (µ; CJmax ,M) from (51) — and Proposition 3

remains valid — for any N ∈ [1, Nmax] and any µ ∈ Dµ. Of course, our tolerance εSCM may

not be precisely satisfied for all N , and in particular smaller N ; however, for the larger N of

interest, the greedy selection ensures a sufficiently good lower bound.

Finally, we close by noting that SCM calculation of the nonlinear Burgers’ stability factor is

particularly demanding: the number of terms in the affine expansion of the objective function

increases with N , the dimension of the reduced basis approximation space. (In contrast, for

linear problems, the coercivity and inf–sup stability factors depend only on the parametric form

of the associated PDE operator.) However, it is important to note that the σNNn, σ
N
Nn, 1 ≤ n ≤ N,

tend to zero very rapidly as n increases and furthermore ΦN n = ωkNn(ν) ≈ O(1), 1 ≤ n ≤ N ;

the variations in, and contributions of, the higher modes are thus tightly controlled — largely

mitigating the nominal high dimensionality. As a result, and as we shall observe in Section 5,

Jmax is relatively small in particular compared to ntrain,SCM.
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Fig. 1. Solution of the Burgers’ equation uN (x, tk; ν) as a function of x and tk: (a) ν = 0.005, (b) ν = 0.01, (c)
ν = 0.1, and (d) ν = 1.

5. Numerical Results

We consider the time interval [0, T ] with T = 2 and viscosity range D = [νmin, νmax] with

νmin = 0.005 and νmax = 1. For the truth approximation we consider a regular mesh of N = 201

degrees of freedom and a constant timestep ∆t = 0.02 corresponding to K = 100 timesteps.

We present in Figure 1 the truth solution of the time-dependent viscous Burger problem as a

function of space and time for ν = 1, ν = 0.1, ν = 0.01, and ν = 0.005: the field evolves to a

steady state with outer solution ∼
√

2x and inner boundary layer (at x = 1) of thickness ν.

(We have confirmed that the results presented in this section are largely insensitive to further

increases in N .)
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There are of course initial conditions and Burgers’ solutions that are more challenging from a

reduced basis approximation perspective: in particular, reduced basis spaces are not particularly

well suited to the approximation of solutions that exhibit sharp propagating fronts. However,

we recall that our analysis of the Burgers’ equation is motivated by the incompressible Navier–

Stokes equations — for which the “developing boundary layer” Burgers’ solution presented here

is in fact a more appropriate model problem than a “traveling near shock.” In [27,26] we apply

the techniques developed in the current paper to fluid flows which exhibit significant boundary

layer structure as well as traveling (but incompressible) waves.

We next choose a log uniformly distributed training sample Ξtrain,RB of size ntrain,RB = 50

and pursue the POD-GreedyRB sampling procedure with ρ∗N = 0, ν∗0 = 0.005, and ε∗tol = 10−3.

The POD-GreedyRB sampling procedure terminates after 6 POD–Greedy iterations — one

iteration is defined as one pass through the While loop — and yields Nmax = 17 and the optimal

RB parameter sample

S∗ = [0.0050, 0.0365, 0.0107, 0.1424, 0.0057, 0.0065, 0.0074].

We observe, not surprisingly, that most of the POD–GreedyRB sample points are close to νmin =

0.005. We present in Figure 2 ε∗N,max as a function of POD-GreedyRB iteration number (and N).

Clearly, the error indicator ε∗N,max decreases very rapidly with N ; we shall subsequently confirm

that the rigorous error bound, and hence also the true error, also decreases very rapidly with

N .

We now turn to the stability factor. Given the GreedySCM training sample Ξtrain,SCM =

{t2, t4, . . . , tK} × Ξtrain,RB we perform the GreedySCM procedure of Section 4.3 to construct

the lower bound for the stability factor. We present in Figure 3 the SCM parameter sample

CJ for J = Jmax = 80; we observe that most of the sample points are close to νmin = 0.005,

and that many sample points correspond to the final time T = 2. Note that Jmax is much less

than ntrain,SCM and hence the SCM is clearly providing substantial approximation in (discrete)
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corresponds to a point in Ξtrain,RB.

time and (continuous) parameter. The (POD–GreedyRB) reduced basis approximation uN (tk; ν)

will converge much more rapidly to uN (tk; ν) in N than the (GreedySCM) SCM approximation

ρLBN (tk; ν) will converge to ρN (tk; ν) in J : the reduced basis projection exploits smoothness

in parameter and Galerkin optimality, whereas the SCM construction — focused on a lower

bound — enlists only rather weak constraints and (implicitly) low–order interpolation. Fortu-

nately, whereas we require a highly accurate reduced basis approximation, we are content with

a relatively crude stability factor; note also that whereas the reduced basis Online operation

count depends on N , the SCM Online operation count depends on M — here M = 16 — and

not Jmax.
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We now present in Figure 4 the stability factor ρN (tk; ν) as a function of tk for ν = 1, 0.1, 0.01,

and 0.005 for N = 17; we also present the stability factor lower bound ρLB
N (tk; ν) as well as

the corresponding upper bound ρUB
N (tk; ν). As already indicated, ρN (tk; ν) reflects the detailed

spatial and temporal structure of ukN (ν), 1 ≤ k ≤ K, as well as viscous stabilization effects. As a

result, even for ν = 0.005 — clearly a convectively–dominated highly nonlinear flow — ρN (tk; ν)

is still mostly positive (stable): in our particular example, ukN (ν) is “dangerous” only within the

boundary layer. It should also be noted that the SCM yields a very good upper bound for the

stability factor (this SCM upper bound is also significantly less complicated and less costly than

a standard reduced basis Rayleigh–Ritz aproximation): the difference between ρUB
N (tk; ν) and

ρN (tk; ν) is indeed very small. (If we replace ρLB
N (tk; ν) with ρUB

N (tk; ν) in (26) we will certainly

obtain better error bounds — but we can no longer provide rigorous guarantees.)

Finally, we present in Figure 5 the actual L2(Ω) error, ‖uN (·, tk; ν) − uN (·, tk; ν)‖, and

the error bound, ∆N (tk; ν), as a function of discrete time tk for N = 5, 10, and 15 and for

ν = 0.005, 0.01, 0.1, and 1. Figure 6 provides the output error, |sN (tk; ν) − sN (tk; ν)|, and the

output error bound, ∆s
N (tk; ν), for the same values of N and ν. We observe that the reduced

basis approximation converges quite rapidly, and that furthermore the a posteriori error bound

∆N (tk; ν) is (rigorous, but also) reasonably sharp; indeed, even for ν = 0.005, the numerical

approximation and associated a posteriori error estimators are both still quite good for times

of order unity. However, the output error bound ∆s
N (tk; ν) is not as sharp as the L2 error

bound ∆N (tk; ν): the output effectivity ηsN (tk; ν) can be as large as O(1000), whereas the L2

effectivity ηN (tk; ν) is only O(10); we believe that the sharpness of the output error bound can

be significantly improved by introduction of adjoint techniques [22,29] — this development will

be pursued in future work.

In summary, for ν very small — Reynolds number very large — and for large final times T

our a posteriori error bounds will certainly no longer be useful. However, our initial calculations

for the full incompressible Navier–Stokes equations [27,26] indicate that our methods can in fact
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Fig. 4. Stability factors ρN (tk; ν), ρLB
N (tk; ν), and ρUB

N (tk; ν) as a function of tk for N = 17: (a) ν = 0.005, (b)
ν = 0.01, (c) ν = 0.1, and (d) ν = 1.

treat problems relevant to engineering and science — for example, complex flow bifurcations:

we obtain certified accuracies of 1%–5% at greatly reduced (Online) cost relative to classical

finite element approaches.
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N (ν)‖ (solid line), and the L2 error bound, ∆k
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