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REDUCED BASIS GREEDY SELECTION USING RANDOM TRAINING SETS

Albert Cohen1,*, Wolfgang Dahmen2, Ronald DeVore3 and James Nichols1

Abstract. Reduced bases have been introduced for the approximation of parametrized PDEs in
applications where many online queries are required. Their numerical efficiency for such problems
has been theoretically confirmed in Binev et al. (SIAM J. Math. Anal. 43 (2011) 1457–1472) and
DeVore et al. (Constructive Approximation 37 (2013) 455–466), where it is shown that the reduced
basis space Vn of dimension n, constructed by a certain greedy strategy, has approximation error
similar to that of the optimal space associated to the Kolmogorov n-width of the solution manifold.
The greedy construction of the reduced basis space is performed in an offline stage which requires at
each step a maximization of the current error over the parameter space. For the purpose of numerical
computation, this maximization is performed over a finite training set obtained through a discretization
of the parameter domain. To guarantee a final approximation error ε for the space generated by the
greedy algorithm requires in principle that the snapshots associated to this training set constitute an
approximation net for the solution manifold with accuracy of order ε. Hence, the size of the training set
is the ε covering number forM and this covering number typically behaves like exp(Cε

−1/s) for some
C > 0 when the solution manifold has n-width decay O(n−s). Thus, the shear size of the training set
prohibits implementation of the algorithm when ε is small. The main result of this paper shows that, if
one is willing to accept results which hold with high probability, rather than with certainty, then for a
large class of relevant problems one may replace the fine discretization by a random training set of size
polynomial in ε

−1. Our proof of this fact is established by using inverse inequalities for polynomials in
high dimensions.
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1. Introduction

Complex systems are frequently described by parametrized PDEs that take the general form

𝒫(𝑢, 𝑦) = 0. (1.1)

Here 𝑦 = (𝑦𝑗)𝑗=1,...,𝑑 is a vector of parameters ranging over some domain 𝑌 ⊂ R
𝑑 and 𝑢 = 𝑢(𝑦) is the

corresponding solution which is assumed to be uniquely defined in some Hilbert space 𝑉 for every 𝑦 ∈ 𝑌 .
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Throughout this paper, we denote by ‖ · ‖ and ⟨·, ·⟩ the norm and inner product of 𝑉 . In what follows, we
assume that the parameters have been rescaled so that 𝑌 = [−1, 1]𝑑. Here 𝑑 is typically large and in some cases
𝑑 = ∞. We seek results that are immune to the size of 𝑑, i.e., are dimension independent.

Various reduced modeling approaches have been developed for the purpose of efficiently approximating the
solution 𝑢(𝑦) in the context of applications where the solution map

𝑦 ↦→ 𝑢(𝑦), (1.2)

needs to be queried for a large number of parameter values 𝑦 ∈ 𝑌 . This need occurs for example in optimal design
or inverse problems where such parameters need to be optimized. The strategy consists in first constructing in
some offline stage a linear space 𝑉𝑛 of hopefully low dimension 𝑛, that provides a reduced map

𝑦 ↦→ 𝑢𝑛(𝑦) ∈ 𝑉𝑛, (1.3)

that approximates the solution map to the required target accuracy 𝜀 for all queries of 𝑢(𝑦). The reduced map
is then implemented in the online stage with greatly reduced computational cost, typically polynomial in 𝑛.

As opposed to standard approximation spaces such as finite elements, the spaces 𝑉𝑛 are specifically designed
to approximate the image of 𝑢, i.e., the elements in the parametrized family

ℳ := {𝑢(𝑦) : 𝑦 ∈ 𝑌 }, (1.4)

which is called the solution manifold. The optimal 𝑛-dimensional linear approximation space for this manifold
is the one that achieves the minimum in the definition of the Kolmogorov 𝑛-width

𝑑𝑛 = 𝑑𝑛(ℳ)𝑉 := inf
dim(𝐸)=𝑛

sup
𝑢∈ℳ

‖𝑢− 𝑃𝐸𝑢‖. (1.5)

This optimal space is computationally out of reach and the above quantity should be viewed as a benchmark
for more practical methods. Here 𝑃𝐸 denotes again the 𝑉 -orthogonal projection onto 𝐸 for any subspace 𝐸 of
𝑉 .

One approach for constructing a reduced space 𝑉𝑛, which comes with substantial theoretical footing and will
be instrumental in our discussion, consists in proving that the solution map is analytic in the parameters 𝑦 and
has a Taylor expansion

𝑢(𝑦) =
∑︁

𝜈∈ℱ

𝑡𝜈𝑦
𝜈 , (1.6)

where 𝑦𝜈 :=
∏︀𝑑

𝑗=1 𝑦
𝜈j

𝑗 and ℱ := {𝜈 ∈ N
𝑑}. In the case of countably many parameters, ℱ is the set of finitely

supported sequences 𝜈 = (𝜈𝑗)𝑗≥1 with 𝜈𝑗 ∈ N. One then proves that the sequence (𝑡𝜈)𝜈∈ℱ of Taylor coefficients
has some decay property. Two prototypical examples of results on decay are given in [1,7] for the elliptic equation

−div(𝑎∇𝑢) = 𝑓, (1.7)

where the diffusion coefficient function has the parametrized form

𝑎 = 𝑎(𝑦) = 𝑎+
∑︁

𝑗≥1

𝑦𝑗𝜓𝑗 , (1.8)

for some given functions 𝑎 and (𝜓𝑗)𝑗≥1. These results (see e.g. Thms. 1.1 and 1.2 in [1]) show that, under mild
decay or summability conditions on the functions 𝜓𝑗 , one has that the sequence (‖𝑡𝜈‖𝑉 )𝜈∈ℱ is in ℓ𝑝 for certain
𝑝 < 1 with a bound on the ℓ𝑝 quasi-norm. It then follows that for each 𝑛, there is a set Λ𝑛 ⊂ ℱ with #(Λ𝑛) = 𝑛
such that

sup
𝑦∈𝑌

‖𝑢(𝑦) −
∑︁

𝜈∈Λn

𝑡𝜈𝑦
𝜈‖ ≤ 𝐶𝑛−𝑟, 𝑟 := 1/𝑝− 1. (1.9)
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Similar results have been obtained for more general models of linear and nonlinear PDEs, see in particular [5,6],
using orthogonal expansions into tensorized Legendre polynomials in place of Taylor series.

Therefore the space 𝑉𝑛 := span{𝑡𝜈 : 𝜈 ∈ Λ𝑛} has dimension 𝑛 with an a priori bound 𝐶𝑛−𝑟 on its
approximation error for all members of the solution manifold ℳ. One choice of Λ𝑛 giving (1.9) is the set of
indices corresponding to the 𝑛 largest ‖𝑡𝜈‖𝑉 . Further analysis Cohen and Migliorat [8] shows that the same
convergence estimate can be obtained imposing in addition that the sets Λ𝑛 are downward closed (or lower sets),
i.e. having the property

𝜈 ∈ Λ𝑛 and 𝜇 ≤ 𝜈 =⇒ 𝜇 ∈ Λ𝑛, (1.10)

where 𝜇 ≤ 𝜇 is to be understood componentwise. We stress that the rate of decay 𝑛−𝑟 in the bound (1.9) may
be suboptimal compared to the actual rate of decay of the 𝑛-width 𝑑𝑛(ℳ).

The present paper is concerned with another prominent reduced modeling strategy known as the Reduced

Basis Method (RBM). In this approach [10,11,14,15], particular snapshots

𝑢𝑘 = 𝑢(𝑦𝑘), 𝑘 = 1, 2, . . . , (1.11)

are selected in the solution manifold and the space 𝑉𝑛 is defined by

𝑉𝑛 := span{𝑢1, . . . , 𝑢𝑛}. (1.12)

A certain greedy procedure has been first proposed in [12] and analyzed in [3] for selecting these snapshots. It
was shown in [2, 9] that the approximation error

𝜎𝑛 = 𝜎𝑛(ℳ)𝑉 := sup
𝑢∈ℳ

‖𝑢− 𝑃𝑉n
𝑢‖, (1.13)

provided by the resulting spaces has the same rate of decay (polynomial or exponential) as that of 𝑑𝑛. In
this sense, the method leads to reduced models with optimal performance, in contrast to sparse polynomial
expansions.

In its simplest (and idealized) form, the greedy procedure can be described as follows: at the initial step, one
sets 𝑉0 = {0}, and given that 𝑉𝑛 has been produced after 𝑛 steps, one selects the new snapshot by

𝑢𝑛+1 := argmax
𝑢∈ℳ

‖𝑢− 𝑃𝑉n
𝑢‖. (1.14)

Each greedy step thus amounts to maximizing

𝑒𝑛(𝑦) := ‖𝑢(𝑦) − 𝑃𝑉n
𝑢(𝑦)‖ (1.15)

over the parameter domain 𝑌 . While in this precise form the scheme cannot be realized in practice an important
modification of this greedy selection, known as the weak greedy algorithm, allows the selection to be done in a
a practically feasible manner while retaining the same performance guarantees, see Section 2 below.

The optimization in the greedy algorithm is typically performed by replacing 𝑌 at each step by a discrete
training set 𝑌 . In order to retain the performance guarantees of the greedy algorithm, this discretization should
in principle be chosen fine enough so that the solution map 𝑦 ↦→ 𝑢(𝑦) is resolved up to the target accuracy
𝜀 > 0, that is, the discrete set

̃︁ℳ = {𝑢(𝑦) : 𝑦 ∈ 𝑌 }, (1.16)

is an 𝜀-approximation net for ℳ.
Although performed in the offline stage, this discretization becomes computationally problematic when the

parametric dimension 𝑑 is either large or infinite, due to the prohibitive size of this net as 𝜀→ 0. For example,
in the typical case when the Kolmogorov width of ℳ decays like 𝑂(𝑛−𝑠) for some 𝑠 > 0, we can invoke

Carl’s inequality [13] to obtain a sharp bound 𝑒𝑐𝜀−1/s

for the cardinality of ℳ̃ and 𝑌 . This exponential growth
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drastically limits the possibility of using 𝜀-approximation nets in practical applications when the number of
involved parameters become large.

There is a preference toward the use of the greedy constructions over the Taylor expansion constructions
because they guarantee error decay comparable to the decay of Kolmogorov widths while the Taylor polynomial
constructions do not provide any such guarantee. Therefore, it is of interest to understand whether the apparent
impediment of requiring such a fine discretization of the solution manifold can somehow be avoided or signifi-
cantly mitigated. The main result of this paper is to prove that this is indeed the case provided that one is willing
to accept error guarantees that hold with high probability rather than with certainty. Our main result shows
that a target accuracy 𝜀 can generally be met with high probability by searching over a randomly discretized
set 𝑌 whose size grows only polynomially in 𝜀−1 rather than exponentially, in contrast to 𝜀-approximation nets.

The paper is organized as follows. In Section 2, we elaborate on the weak form of the greedy algorithm,
which is used in numerical computation, and recall some known facts on its performance and complexity. In
Section 3, we use properties of downward closed polynomial approximation to show how a random sampling 𝑌
provides an approximate solution of the optimization problem engaged at each step of the greedy algorithm.
In Section 4, we formulate our modification of the greedy algorithm based on such random selection and then
analyze its performance. Finally, we illustrate in Section 5 the validity of the randomized approach by some
numerical tests performed in parametric dimensions up to 𝑑 = 64 for which the size of 𝜀-approximation nets
become computationally prohibitive.

2. Performance and complexity of reduced basis greedy algorithms

The greedy selection process described in the introduction is not practically feasible, due to at least three
obstructions:

(1) Given a parameter value 𝑦, the snapshot 𝑢(𝑦), in particular, the generators of the reduced spaces cannot
be exactly computed.

(2) For a given 𝑦 ∈ 𝑌 , the quantity 𝑒𝑛(𝑦) to be maximized cannot be exactly evaluated.
(3) The map 𝑦 ↦→ 𝑒𝑛(𝑦) is non-convex/non-concave and therefore difficult to maximize, even if it could be

exactly evaluated.

The first obstruction can be handled when a numerical solver is available for computing an approximation

𝑦 ↦→ 𝑢ℎ(𝑦), (2.1)

of 𝑢(𝑦) to any prescribed accuracy 𝜀ℎ > 0, that is, such that

sup
𝑦∈𝑌

‖𝑢(𝑦) − 𝑢ℎ(𝑦)‖ ≤ 𝜀ℎ. (2.2)

Here ℎ > 0 is a space discretization parameter: typically, 𝑢ℎ belongs to a finite element space 𝑉ℎ of meshsize ℎ
and (possibly very large) dimension 𝑛ℎ. The selected reduced basis functions are now given by 𝑢𝑖 = 𝑢ℎ(𝑦𝑖) ∈ 𝑉ℎ

and therefore the reduced basis space 𝑉𝑛 is a subspace of 𝑉ℎ. Whenever the 𝑛-widths 𝑑𝑛 decay much faster than
the approximation order provided by 𝑉ℎ the reduced space 𝑉𝑛 has typically much smaller dimension than 𝑉ℎ,
that is

𝑛≪ 𝑛ℎ. (2.3)

This yields substantial computational savings when using the reduced basis discretization in the online stage.

Note that this numerical solver allows us in principle to also handle the second obstruction: we could now
perform the greedy algorithm by maximizing at each step the quantity

𝑒𝑛,ℎ(𝑦) := ‖𝑢ℎ(𝑦) − 𝑃𝑉n
𝑢ℎ(𝑦)‖, (2.4)
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which, in contrast to 𝑒𝑛(𝑦), can be exactly computed and satisfies

|𝑒𝑛(𝑦) − 𝑒𝑛,ℎ(𝑦)| ≤ 𝜀ℎ, 𝑦 ∈ 𝑌. (2.5)

In other words, the greedy algorithm is applied on the approximate solution manifold

ℳℎ := {𝑢ℎ(𝑦) : 𝑦 ∈ 𝑌 }. (2.6)

While the quantity 𝑒𝑛,ℎ(𝑦) can in principle be computed exactly, the complexity of this computation depends,
at least in a linear manner, on the dimension 𝑛ℎ = dim(𝑉ℎ), which is typically much higher than 𝑛. Substantial
computational saving may still be obtained when maximizing instead an a posteriori estimator 𝑒𝑛,ℎ(𝑦) of this
quantity that satisfies

𝛼𝑒𝑛,ℎ(𝑦) ≤ 𝑒𝑛,ℎ(𝑦) ≤ 𝛽𝑒𝑛,ℎ(𝑦), 𝑦 ∈ 𝑌. (2.7)

The computation of 𝑒𝑛,ℎ(𝑦) for a given 𝑦 ∈ 𝑌 is based in particular on replacing the orthogonal projection
𝑃𝑉n𝑢ℎ(𝑦) by a Galerkin projection. It, in turn, does not require the computation of 𝑢ℎ(𝑦) and entails a compu-
tational cost 𝑐(𝑛) depending on the small dimension 𝑛, typically in a polynomial way, rather than on the large
dimension 𝑛ℎ. We refer to [6] for the derivation of a residual-based estimator 𝑒𝑛,ℎ(𝑦) having these properties in
the case of elliptic PDEs with affine parameter dependence.

Maximizing the a posteriori estimator 𝑒𝑛,ℎ(𝑦) amounts to applying to ℳℎ a so called weak-greedy algorithm,
where 𝑢𝑛+1 now satisfies

‖𝑢𝑛+1 − 𝑃𝑉n
𝑢𝑛+1‖ ≥ 𝛾‖𝑢− 𝑃𝑉n

𝑢‖, 𝑢 ∈ ℳℎ, (2.8)

with parameter 𝛾 := 𝛼/𝛽 ∈ ]0, 1[.
For such an algorithm, it was proved in [2, 9] that any polynomial or exponential rate of decay achieved by

the Kolmogorov 𝑛-width 𝑑𝑛 is retained by the error performance 𝜎𝑛 for this algorithm. More precisely, the
following holds, for any compact set 𝒦 in a Hilbert space 𝑉 , see [6].

Theorem 2.1. Let 𝑑𝑛 = 𝑑𝑛(𝒦)𝑉 be the 𝑛-widths of the solution manifold. Consider the weak greedy algorithm

with threshold parameter 𝛾. For any 𝐶0 > 0 and 𝑠 > 0, we have

𝑑𝑛 ≤ 𝐶0(max{1, 𝑛})−𝑠, 𝑛 ≥ 0 =⇒ 𝜎𝑛 ≤ 𝐶𝑠𝛾
−2(max{1, 𝑛})−𝑠, 𝑛 ≥ 0, (2.9)

where 𝐶𝑠 := 24𝑠+1𝐶0. For any 𝑐0, 𝐶0 > 0 and 𝑠 > 0, we have

𝑑𝑛 ≤ 𝐶0𝑒
−𝑐0𝑛s

, 𝑛 ≥ 0 =⇒ 𝜎𝑛 ≤ 𝐶𝑠𝛾
−1𝑒−𝑐1𝑛s

, 𝑛 ≥ 0, (2.10)

where 𝑐1 = 𝑐0

2 3−𝑠 and 𝐶1 := 𝐶0 max{
√

2, 𝑒𝑐1}.

Remark 2.2. If the same rates of 𝑑𝑛 in the above theorem are only assumed within a limited range 0 ≤ 𝑛 ≤ 𝑛*,
then the same decay rates of 𝜎𝑛 are achieved for the same range 0 ≤ 𝑛 ≤ 𝑛*, up to some minor changes in the
expressions of the constants 𝑐1 and 𝐶1, independently of 𝑛*.

Remark 2.3. The reduced basis algorithm aims to construct an 𝑛-dimensional linear space that is tailored
for the approximation of all solutions that constitute the solution manifold ℳ. Therefore, its performance
𝜎𝑛 is always bounded from below by the 𝑛-width 𝑑𝑛 = 𝑑𝑛(ℳ). Assuming some rate of decay on 𝑑𝑛, at least
polynomial, is thus strictly necessary if we want the reduced basis method to converge at such a rate. As discussed
in the introduction, in the high dimensional parametric context, such rate can be rigourously established for
certain instances of linear elliptic PDE’s with affine parametrization of the diffusion function. A more general
approach applicable to nonlinear PDE’s and non-affine parametrizations for proving such rates is given in [6].
On the other hand, it is known that 𝑑𝑛(ℳ) has poor decay for certain categories of parametrized problems. This
includes, in particular, transport dominated problems with sharp transition locus that varies with the value of
the parameter 𝑦. Such problems are thus intrinsically not well tailored to reduced basis methods.



1514 A. COHEN ET AL.

The additional perturbations due to the numerical solver and the a posteriori error indicator can thus be
incorporated in the analysis of the reduced basis algorithm. If 𝜀 > 0 a posteriori is our final target accuracy, we
set the space discretization parameter ℎ so that 𝜀ℎ = 𝜀

2 where 𝜀ℎ is the space discretization error bound in (2.2).
We then apply the greedy selection on ℳℎ based on maximizing 𝑒𝑛,ℎ(𝑦) until we are ensured that 𝑒𝑛,ℎ(𝑦) ≤ 𝜀

2
for all 𝑦 ∈ 𝑌 . The target accuracy 𝑒𝑛(𝑦) ≤ 𝜀 is thus met for all 𝑦 ∈ 𝑌 in view of (2.5).

Note that a decay rate 𝑑𝑛(ℳ) ≤ 𝛾(𝑛) for some decreasing sequence 𝛾(𝑛) implies a comparable rate 𝑑𝑛(ℳℎ) ≤
2𝛾(𝑛), for the range 𝑛 ≤ 𝑛* where 𝑛* is the largest value of 𝑛 such that 𝛾(𝑛) ≥ 𝜀ℎ. Therefore, using Remark 2.2
in conjunction with Theorem 2.1 applied to ℳℎ, we obtain an estimate on the number of greedy steps 𝑛(𝜀)
that are necessary to reach the target accuracy 𝜀.

Corollary 2.4. Let 𝑑𝑛 = 𝑑𝑛(ℳ)𝑉 be the 𝑛-width of the solution manifold. For any 𝑠 > 0 and 𝐶0 > 0,

𝑑𝑛 ≤ 𝐶0(max{1, 𝑛})−𝑠, 𝑛 ≥ 0 =⇒ 𝑛(𝜀) ≤ 𝐶1𝜀
− 1

s , 𝜀 > 0, (2.11)

where 𝐶1 depends on 𝐶0, 𝑠 and 𝛾. For any 𝑠 > 0 and 𝑐0, 𝐶0 > 0,

𝑑𝑛 ≤ 𝐶0𝑒
−𝑐0𝑛s

, 𝑛 ≥ 0 =⇒ 𝑛(𝜀) ≤ 𝐶1 max{log(𝑐1𝜀)
1/𝑠, 0}, 𝜀 > 0, (2.12)

where 𝐶1 and 𝑐1 depend on 𝐶0, 𝑐0, 𝑠 and 𝛾.

The difficulty in item 3 is the most problematic one, in particular when the parametric variable 𝑦 is high-
dimensional, and is the main motivation for the present work. Since the quantities 𝑒𝑛(𝑦), 𝑒𝑛(𝑦), 𝑒𝑛,ℎ(𝑦) and
𝑒𝑛,ℎ(𝑦) may have many local maxima, continuous optimization techniques are not appropriate. A typically
employed strategy is therefore to replace the continuous optimization over 𝑌 by its discrete optimization over
a training set ̃︀𝑌 ⊂ 𝑌 of finite size. This amounts to applying the greedy or weak-greedy algorithm to the
discretized manifold ̃︁ℳ defined by (1.16) or, more practically, to its approximated version

̃︁ℳℎ := {𝑢ℎ(𝑦) : 𝑦 ∈ ̃︀𝑌 }. (2.13)

On a first intuition, the discretization should be sufficiently fine so that the manifold ℳℎ is resolved with
accuracy of the same order as the target accuracy 𝜀. Recall that if 𝐾 is a compact set in some normed space, a
finite set 𝑆 is called a 𝛿-net of 𝐾 if

𝐾 ⊂
⋃︁

𝑣∈𝑆

𝐵(𝑣, 𝛿), (2.14)

that is, any 𝑢 ∈ 𝐾 is at distance at most 𝛿 from some 𝑣 ∈ 𝑆.

The perturbation of the greedy algorithm due to this discretization can be accounted for jointly with the pre-
viously discussed perturbation, namely finite element approximation and a posteriori error estimation. Assuming
for example that ̃︁ℳℎ is a 𝜀/3-net of ℳℎ, we set the space discretization parameter ℎ so that 𝜀ℎ = 𝜀

3 . We then

apply the greedy selection on ̃︁ℳℎ based on maximizing 𝑒𝑛,ℎ(𝑦) over ̃︀𝑌 until we are ensured that 𝑒𝑛,ℎ(𝑦) ≤ 𝜀
3

for all 𝑦 ∈ ̃︀𝑌 . By the covering property, we have 𝑒𝑛,ℎ(𝑦) ≤ 2𝜀/3 for all 𝑦 ∈ 𝑌 , and therefore the target accuracy

𝑒𝑛(𝑦) ≤ 𝜀 is met for all 𝑦 ∈ 𝑌 . In addition, since 𝑑𝑛( ̃︁ℳℎ)𝑉 ≤ 𝑑𝑛(ℳℎ)𝑉 , the statement of Corollary 2.4 remains
unchanged for this discretized algorithm.

The main problem with this approach is that the current estimates on the size of an 𝜀-net of ℳ or ℳℎ

become extremely large as 𝜀→ 0, especially in high parametric dimension.

A first natural strategy to generate such an 𝜀-net would be to apply the solution map 𝑦 ↦→ 𝑢(𝑦) to an 𝜀-net
for 𝑌 in a suitable norm, relying on a stability estimate for this map. For example, in the simple case of the
elliptic PDE (1.7) with parametrized coefficients (1.8), one can easily establish a stability estimate of the form

‖𝑢(𝑦) − 𝑢(𝑦)‖ ≤ 𝐶‖𝑦 − 𝑦‖ℓ∞ , 𝑦, 𝑦 ∈ 𝑌, (2.15)
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under the minimal uniform ellipticity assumption
∑︀

𝑗≥1 |𝜓𝑗 | ≤ min 𝑎− 𝛿 for some 𝛿 > 0, with 𝐶 depending on

min 𝑎 and 𝛿. Thus, one possible 𝜀-net of ℳ or ℳℎ in the 𝑉 norm is induced by a 𝐶−1𝜀-net ̃︀𝑌 of 𝑌 in the ℓ∞

norm. However, the size of such a net scales like

#(̃︀𝑌 ) ∼ 𝜀−𝑐𝑑. (2.16)

with the parametric dimension 𝑑, therefore suffering from the curse of dimensionality. In the case 𝑑 = ∞, one
would have to truncate the parametric expansion (1.8) for a given target accuracy 𝜀, resulting into an active
parametric dimension 𝑑(𝜀) <∞. Assuming a polynomially decaying error ‖∑︀

𝑗>𝑘 |𝜓𝑗 |‖𝐿∞ <∼𝑘
−𝑏, the growth of

𝑑(𝜀) as 𝜀→ 0 is in 𝒪(𝜀−1/𝑏) resulting in a training set of size scaling like

#(̃︀𝑌 ) ∼ 𝜀−𝑐𝜀−1/b

, (2.17)

which is extremely prohibitive.
One sharper way to obtain an estimate independent of the parametric dimension is to use a fundamental

result that relates covering and widths. We define the entropy number 𝜀𝑛 := 𝜀𝑛(ℳ)𝑉 as the smallest value of
𝜀 > 0 such that there exists a covering of ℳ by 2𝑛 balls of radius 𝜀. Then, Carl’s inequality [13] states that for
any 𝑠 > 0,

(𝑛+ 1)𝑠𝜀𝑛 ≤ 𝐶𝑠 sup
𝑘=0,...,𝑛

(𝑘 + 1)𝑠𝑑𝑘, (2.18)

where 𝑑𝑘 = 𝑑𝑘(ℳ)𝑉 and 𝐶𝑠 is a fixed constant. This inequality shows that, in the case of polynomial decay

𝑛−𝑠 of the 𝑛-widths, there exists an 𝜀-net ̃︁ℳ associated with a training set of size

#(̃︀𝑌 ) ∼ 2𝑐𝜀−1/s

. (2.19)

While this estimate is more favorable than (2.17), it is still prohibitive. Moreover, the construction of such
an 𝜀-net, as in the proof of Carl’s inequality, necessitates the knowledge of the approximation spaces 𝑉𝑛 that
perform with the 𝑛-width accuracy 𝑛−𝑠 which is precisely the objective of the greedy algorithm.

The computational cost at each step 𝑛 of the offline stage is determined by the product between #(̃︀𝑌 ) and

the cost 𝑐(𝑛) of evaluating the error bound 𝑒𝑛,ℎ(𝑦) for an individual 𝑦 ∈ ̃︀𝑌 . Therefore, the prohibitive number
of error bound evaluations is the limiting factor in practice and poses the main obstruction to the feasibility
of certified reduced basis methods in the regime of polynomially decaying 𝑛-widths, and hence in particular, in
the context of high parametric dimension.

In what follows, we show that this obstruction can be circumvented by not searching for an 𝜀-net of ℳ but
rather defining ̃︀𝑌 by random sampling of 𝑌 . This approach allows us to significantly reduce the size of training
sets used in greedy algorithms while still obtaining reduced bases with the same guarantee of performance at
least with high probability. In order to keep our arguments and notation as simple and clear as possible, we
do not consider the issue of space discretization and error estimation, assuming that we have access to 𝑒𝑛(𝑦)
for each individual 𝑦 ∈ 𝑌 . As just described, a corresponding finer analysis can incorporate the perturbation of
using instead 𝑒𝑛(𝑦), 𝑒𝑛,ℎ(𝑦) or 𝑒𝑛,ℎ(𝑦), with the same resulting overall performance.

3. Polynomial approximation

Let 𝑉𝑛 := span{𝑢1, . . . , 𝑢𝑛} be the reduced basis space at the 𝑛-th step of the weak greedy algorithm. The
next step of the greedy algorithm is to search over 𝑌 to find a point 𝑦 ∈ 𝑌 where

𝑒𝑛(𝑦) := ‖𝑢(𝑦) − 𝑃𝑉n
𝑢(𝑦)‖𝑉 (3.1)

(in practice 𝑒𝑛,ℎ(𝑦)) is large, hopefully close to its maximum over 𝑌 . In this section we show that random

sampling gives a discrete set ̃︀𝑌 , of moderate size, on which the maximum of 𝑒𝑛(𝑦) can be compared with the
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maximum of 𝑒𝑛(𝑦) over all of 𝑌 with high probability. To obtain a result of this type we use approximation by
polynomials.

Recall that Λ ⊂ ℱ is said to be a downward closed set if whenever 𝜈 ∈ Λ and 𝜇 ≤ 𝜈, then 𝜇 ∈ Λ, where 𝜇 ≤ 𝜇
is to be understood componentwise. To such a set Λ, we associate the multivariate polynomial space

PΛ := span

⎧
⎨
⎩𝑦 ↦→ 𝑦𝜈 :=

∏︁

𝑗≥1

𝑦
𝜈j

𝑗 : 𝜈 ∈ Λ

⎫
⎬
⎭ . (3.2)

We define
𝒫Λ := 𝑉 ⊗ PΛ, (3.3)

the space of 𝑉 -valued polynomials spanned by the same monomials. Thus, any polynomial 𝑃 in 𝒫Λ takes the
form 𝑃 (𝑦) =

∑︀
𝜈∈Λ 𝑎𝜈𝑦

𝜈 where the 𝑎𝜈 are in 𝑉 . For any 𝑚 ≥ 0, we let

Σ𝑚 :=
⋃︁

#(Λ)=𝑚

𝒫Λ, (3.4)

where the union is over all downward closed sets of size 𝑚. Note that the union of all downward closed sets of
cardinality 𝑚 is the so-called hyperbolic cross 𝐻𝑚,𝑑 that consists of all 𝜈 such that

∏︀𝑑
𝑗=1(1 + 𝜈𝑗) ≤ 𝑚.

Given a function 𝑣 in 𝐿∞(𝑌, 𝑉 ), we consider its approximation in 𝐿∞(𝑌, 𝑉 ) by the elements of Σ𝑚 and the
error

𝛿𝑚(𝑣) := inf
𝑃∈Σm

sup
𝑦∈𝑌

‖𝑣(𝑦) − 𝑃 (𝑦)‖𝑉 . (3.5)

For 𝑟 > 0, a function 𝑣 in 𝐿∞(𝑌, 𝑉 ) is said to be in the approximation class 𝒜𝑟 = 𝒜𝑟((Σ𝑚)𝑚≥1) if

𝛿𝑚(𝑣) ≤ 𝐶𝑚−𝑟, 𝑚 ≥ 1, (3.6)

and the smallest such 𝐶 defines a quasi-seminorm |𝑣|𝒜r for this class which is a linear subspace of 𝐿∞(𝑌, 𝑉 ). A
quasi-norm for this space is defined by

‖𝑣‖𝒜r := max{‖𝑣‖𝐿∞(𝑌,𝑉 ), |𝑣|𝒜r}. (3.7)

Several foundational results in parametric PDEs prove that the solution map 𝑦 ↦→ 𝑢(𝑦) belongs to classes 𝒜𝑟,
as already mentioned in our introduction. An important observation to us is that whenever 𝑢 ∈ 𝒜𝑟 and 𝑉𝑛 is a
finite dimensional subspace of 𝑉 then both 𝑃𝑉n𝑢 and 𝑢− 𝑃𝑉n𝑢 are also in 𝒜𝑟. For example, for any downward
closed set Λ ⊂ ℱ and an approximation 𝑃 (𝑦) =

∑︀
𝜈∈Λ 𝑎𝜈𝑦

𝜈 to 𝑢(𝑦), the polynomial 𝑄(𝑦) :=
∑︀

𝜈∈Λ 𝑃𝑉n
𝑎𝜈𝑦

𝜈 is
in 𝒫Λ and

‖𝑃𝑉n𝑢(𝑦) −𝑄(𝑦)‖𝑉 = ‖𝑃𝑉n(𝑢(𝑦) − 𝑃 (𝑦))‖𝑉 ≤ ‖𝑢(𝑦) − 𝑃 (𝑦)‖𝑉 . (3.8)

It follows that 𝛿𝑚(𝑃𝑉n
𝑢) ≤ 𝛿𝑚(𝑢) for all 𝑚 ≥ 1. The same holds for 𝑢− 𝑃𝑉n

𝑢 = 𝑃𝑉 ⊥
n
𝑢. From this, one derives

that
‖𝑃𝑉n

𝑢‖𝒜r ≤ ‖𝑢‖𝒜r and ‖𝑢− 𝑃𝑉n
𝑢‖𝒜r ≤ ‖𝑢‖𝒜r . (3.9)

The next result shows that when a function belongs to the class 𝒜𝑟, its maximum over a random set of point
̃︀𝑌 is above a fixed fraction of its maximum over 𝑌 with some controlled probability.

Lemma 3.1. Let 𝑟 > 1 and suppose that 𝑣 ∈ 𝒜𝑟 with ‖𝑣‖𝒜r ≤ 𝑀0 and ‖𝑣‖𝐿∞(𝑌,𝑉 ) = 𝑀 . Let 𝑚 be an integer

such that

4𝑀0𝑚
−𝑟+1 < 𝑀. (3.10)

If ̃︀𝑌 is any finite set of 𝑁 points drawn at random from 𝑌 with respect to the uniform probability measure on

𝑌 , then

sup
𝑦∈̃︀𝑌

‖𝑣(𝑦)‖𝑉 ≥ 𝑀

8𝑚
(3.11)



REDUCED BASIS GREEDY SELECTION 1517

with probability larger than 1 −
(︁
1 − 3

4𝑚2

)︁𝑁

.

Proof. From the definition of𝑚, there exists a downward closed set Λ with #(Λ) = 𝑚 and a 𝑉 -valued polynomial
𝑃 ∈ 𝒫Λ such that

‖𝑣 − 𝑃‖𝐿∞(𝑌,𝑉 ) ≤
𝑀

4𝑚
· (3.12)

We use the Legendre polynomials to represent 𝑃 . We denote by (𝐿𝑗)𝑗≥0 the sequence of univariate Legendre
polynomials normalized in 𝐿2([−1, 1], d𝑡

2 ). Their multivariate counterparts

𝐿𝜈(𝑦) :=
∏︁

𝜈j ̸=0

𝐿𝜈j
(𝑦𝑗), 𝜈 ∈ ℱ , (3.13)

are an orthonormal basis on 𝐿2(𝑌, 𝜌), where 𝜌 is the uniform probability measure on 𝑌 . We write 𝑃 in its
Legendre expansion

𝑃 (𝑦) =
∑︁

𝜈∈Λ

𝑐𝜈𝐿𝜈(𝑦), 𝑐𝜈 :=

∫︁

𝑌

𝑃 (𝑦)𝐿𝜈(𝑦) d𝜌, (3.14)

where the coefficients 𝑐𝜈 are elements of 𝑉 . We next invoke a result from [4] which says that for any downward
closed set Λ, one has

max
𝑦∈𝑌

∑︁

𝜈∈Λ

|𝐿𝜈(𝑦)|2 ≤ #(Λ)2. (3.15)

Thus, it follows from the Cauchy-Schwartz inequality that for any 𝑦 ∈ 𝑌 ,

‖𝑃 (𝑦)‖2
𝑉 ≤

∑︁

𝜈∈Λ

‖𝑐𝜈‖2
𝑉

∑︁

𝜈∈Λ

|𝐿𝜈(𝑦)|2 ≤ 𝑚2

∫︁

𝑌

‖𝑃 (𝑦)‖2
𝑉 d𝜌, (3.16)

or equivalently
‖𝑃‖𝐿∞(𝑌,𝑉 ) ≤ 𝑚‖𝑃‖𝐿2(𝑌,𝑉 ). (3.17)

Now, let 𝑆 := {𝑦 ∈ 𝑌 : ‖𝑃 (𝑦)‖𝑉 ≥ 𝛿} where 𝛿 := 𝑀1

2𝑚 with 𝑀1 := ‖𝑃‖𝐿∞(𝑌,𝑉 ). Then,

‖𝑃‖2
𝐿2(𝑌,𝑉 ) ≤

∫︁

𝑆

‖𝑃 (𝑦)‖2
𝑉 d𝜌+

∫︁

𝑆c

‖𝑃 (𝑦)‖2
𝑉 d𝜌 ≤𝑀2

1 𝜌(𝑆) + 𝛿2. (3.18)

Inserting this into (3.17) gives

𝑀2
1𝑚

−2 ≤𝑀2
1 𝜌(𝑆) + 𝛿2 ≤𝑀2

1 𝜌(𝑆) +𝑚−2𝑀
2
1

4
· (3.19)

In other words,

𝜌(𝑆) ≥ 3

4𝑚2
· (3.20)

Suppose now that ̃︀𝑌 is a set formed by 𝑁 independent draws with respect to the uniform measure 𝜌 on 𝑌 .
The probability that none of these draws is in 𝑆 is at most (1 − 3

4𝑚2 )𝑁 . So, with probability greater than
1 − (1 − 3

4𝑚2 )𝑁 , we have

max
𝑦∈̃︀𝑌

‖𝑃 (𝑦)‖𝑉 ≥ 𝛿 =
𝑀1

2𝑚
· (3.21)

Accordingly, with at least the same probability, we have from (3.12)

max
𝑦∈̃︀𝑌

‖𝑣(𝑦)‖𝑉 ≥ 𝛿 − 𝑀

4𝑚
≥ 𝑀1

2𝑚
− 𝑀

4𝑚
≥ 𝑀 − 𝑀

4𝑚

2𝑚
− 𝑀

4𝑚
≥ 𝑀

8𝑚
, (3.22)

which proves the lemma. �
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Remark 3.2. Intuitively, the above proof relies on the fact that 𝑣 is close to a polynomial 𝑃 , and that the
𝐿∞ norm of 𝑃 on a sufficiently fine discrete set 𝑌 is comparable to its 𝐿∞ norm on the continuous domain
𝑌 . A general line of research is to look for equivalences between discrete and continuous 𝐿𝑝 norms for a given
𝑚-dimensional space 𝑋𝑚 of functions, thus of the form

𝑐1‖𝑣‖𝐿p(𝑌 ) ≤

⎛
⎝ 1

#(𝑌 )

∑︁

𝑦∈𝑌

|𝑣(𝑦)|𝑝
⎞
⎠

1/𝑝

≤ 𝑐2‖𝑣‖𝐿p(𝑌 ), 𝑣 ∈ 𝑋𝑚. (3.23)

Such results are refered to as Marcinkiewicz-type discretization theorems, see [16] for a recent survey. In several
settings where 𝑋𝑚 consists of algebraic or trigonometric polynomials, it is known that random sampling for
𝑌 yields such inequalities with high probability at a sampling budget #(𝑌 ) that grows polynomially, and
sometimes linearly, with 𝑚. Note that the inequality (3.15) is used in [4] to show that for 𝐿2 norms and
downward closed polynomials spaces in any dimension, the norm equivalence (3.23) holds with high probability
for random samples of cardinality 𝒪(#(Λ)2) up to logarithmic factors.

Remark 3.3. The result in the above lemma can be improved by sampling according to the tensor product
Chebychev measure, that is, with 𝜌 now defined as

d𝜌(𝑦) :=
⨂︁

𝑗≥1

d𝑦𝑗

𝜋
√︁

1 − 𝑦2
𝑗

· (3.24)

Indeed, we can apply a similar reasoning with the 𝐿𝜈 replaced by the tensorized Chebychev polynomials 𝑇𝜈 , for
which it is proved in [4] that

max
𝑦∈𝑌

∑︁

𝜈∈Λ

|𝐿𝜈(𝑦)|2 ≤ #(Λ)2𝛼, 𝛼 :=
ln 3

2 ln 2
· (3.25)

for any downward closed set Λ. Therefore, the statement of the lemma is modified as follows: if 𝑚 is such that
4𝑀0𝑚

−𝑟+𝛼 < 𝑀 and ̃︀𝑌 is any finite set of 𝑁 points drawn at random from 𝑌 with respect 𝜌, then

sup
𝑦∈̃︀𝑌

‖𝑣(𝑦)‖𝑉 ≥ 𝑀

8𝑚𝛼
(3.26)

with probability larger than 1 −
(︁
1 − 3

4𝑚2α

)︁𝑁

.

4. The main result

We are now in position to formulate our main result. We suppose that we are given an error tolerance 𝜀
and we wish to use a greedy algorithm to construct a space 𝑉𝑛 such that with high probability, say probability
greater than 1 − 𝜂, we have

dist(ℳ, 𝑉𝑛) ≤ 𝜀, (4.1)

with 𝑛 hopefully small and the off-line complexity also acceptable. We assume that the solution map 𝑦 ↦→ 𝑢(𝑦)
belongs to 𝒜𝑟 for some 𝑟 > 2 and that we have an upper bound 𝑀0 for ‖𝑢‖𝒜r . This assumption is known to
hold in a great variety of settings of parametric PDEs, see [6].

Given 𝑟 and the user prescribed 𝜂, we first define 𝑚 as the smallest integer such that

32𝑀0𝑚
−𝑟+2 ≤ 𝜀 and 24𝑟+2𝑚−𝑟 ≤ 1. (4.2)



REDUCED BASIS GREEDY SELECTION 1519

We then define 𝑁 as the smallest integer such that

(︂
1 − 3

4𝑚2

)︂𝑁

≤ 𝜂

𝑚2
· (4.3)

We consider the following greedy algorithm for finding a reduced basis. In the first step, we make 𝑁 independent
draws of the parameter 𝑦 according to the uniform measure 𝜌. This produces a set ̃︀𝑌0 of cardinality 𝑁 . We then
use

𝑢0 := 𝑢(𝑦0), 𝑦0 := argmax
𝑦∈̃︀𝑌0

‖𝑢(𝑦)‖𝑉 . (4.4)

At the general step, once 𝑢0, . . . , 𝑢𝑛−1 and 𝑉𝑛 := span{𝑢0, . . . , 𝑢𝑛−1} have been chosen, we make 𝑁 independent

draws of the parameter 𝑦, producing the set ̃︀𝑌𝑛, and then define

𝑢𝑛 := 𝑢(𝑦𝑛), 𝑦𝑛 := argmax
𝑦∈̃︀𝑌n

𝑒𝑛(𝑦), (4.5)

where 𝑒𝑛(𝑦) := ‖𝑢(𝑦) − 𝑃𝑉n𝑢(𝑦)‖𝑉 . In practice, each 𝑒𝑛(𝑦) to be computed is only approximately computed
through a surrogate 𝑒𝑛,ℎ(𝑦) and 𝑢𝑛 is only approximated as described in Section 2. However, we do not incor-
porate these facts in the analysis that follows in order to simplify the presentation.

Let
�̂�𝑛 := max

𝑦∈̃︀𝑌n

𝑒𝑛(𝑦), 𝜎𝑛 := max
𝑦∈𝑌

𝑒𝑛(𝑦), 𝑛 ≥ 0, (4.6)

be the computed error and the true error for approximation of ℳ by 𝑉𝑛. We terminate the algorithm at the
smallest integer 𝑛 ≤ 𝑚2 for which �̂�𝑛 ≤ 𝜀

8𝑚 . If this does not occur before 𝑚2 steps we then terminate after step
𝑛 = 𝑚2 has been completed. The 𝑉𝑛 is the output of the algorithm.

Theorem 4.1. Assume that the solution map 𝑦 ↦→ 𝑢(𝑦) belongs to 𝒜𝑟 for some 𝑟 > 2 with upper bound 𝑀0 for

‖𝑢‖𝒜r . Then, with probability greater than 1 − 𝜂 the following hold for the above numerical algorithm:

(i) The algorithm produces a reduced basis space 𝑉𝑛 such that dist(ℳ, 𝑉𝑛) ≤ 𝜀.
(ii) If for some 𝑠 > 0 and 𝐶0 > 0, we have 𝑑𝑛(ℳ) ≤ 𝐶0 max{1, 𝑛}−𝑠 for all 𝑛 ≥ 0, then the algorithm

terminates in 𝑛(𝜀) steps, where

𝑛(𝜀) ≤ 𝐶𝜀−( 1
s + 3

s(r−2)
), (4.7)

and requires 𝑁(𝜀) error bound evaluations, where

𝑁(𝜀) = 𝐶𝜀−
2s+r+1
s(r−2) (| ln 𝜂| + | ln 𝜀|). (4.8)

The constants 𝐶 in the above bounds depend only on (𝑟, 𝑠, 𝐶0,𝑀0).

Remark 4.2. Note that the assumption 𝑢 ∈ 𝒜𝑟 implies in particular that the Kolmogorov 𝑛-width of ℳ
decays at least like 𝑛−𝑟 and therefore we may assume that 𝑠 ≥ 𝑟 in the above theorem, although this is not
used in the proof.

Proof. We first show that with probability greater than 1 − 𝜂, the algorithm produces at each step 𝑘 ≤ 𝑛 a
snapshot 𝑢𝑘 = 𝑢(𝑦𝑘) which realizes a weak greedy algorithm, applied over all of 𝑌 , with parameter 𝛾 := 1

8𝑚 .
Indeed, for any 𝑘, let 𝑣(𝑦) = 𝑢(𝑦) − 𝑃𝑉k

𝑢(𝑦) be the error function at the step after 𝑉𝑘 is defined. As shown in
the previous section, 𝑣 ∈ 𝒜𝑟 and ‖𝑣‖𝒜r ≤𝑀0. Since the algorithm has not terminated, we have

‖𝑣‖𝐿∞(𝑌,𝑉 ) = 𝜎𝑘 ≥ �̂�𝑘 ≥ 𝜀

8𝑚
≥ 4𝑀0𝑚

−𝑟+1, (4.9)
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where the last inequality is the first condition in (4.2). Therefore, we can apply Lemma 3.1 to 𝑣 and find that

with probability greater than 1 −
(︁
1 − 3

4𝑚2

)︁𝑁

, and thus from (4.3) with probability greater than 1 − 𝜂
𝑚2 , we

have
�̂�𝑘 = max

𝑦∈̃︀𝑌k

‖𝑣(𝑦)‖𝑉 ≥ 𝛾 sup
𝑦∈𝑌

‖𝑣(𝑦)‖𝑉 = 𝛾𝜎𝑘. (4.10)

This means that with this probability the function 𝑢𝑘+1 is a selection of the weak greedy algorithm with
parameter 𝛾. Since, the draws are independent and there are at most 𝑚2 sets ̃︀𝑌𝑘, the union bound implies
that with probability at least 1 − 𝜂, the sequence 𝑢1, . . . , 𝑢𝑛 is a sequence that is the realization of the weak
greedy algorithm with this parameter. For the remainder of the proof, we put ourselves in the case of favorable
probability.

Now consider the termination of the algorithm. If 𝑛 < 𝑚2, then

𝜎𝑛 ≤ 8𝑚�̂�𝑛 ≤ 𝜀, (4.11)

and so dist(ℳ, 𝑉𝑛) ≤ 𝜀. We now check the case 𝑛 = 𝑚2. Since by assumption, the solution map belongs to 𝒜𝑟,
we know that

𝑑𝑘(ℳ) ≤ ‖𝑢‖𝒜r max{1, 𝑘}−𝑟 ≤𝑀0 max{1, 𝑘}−𝑟, 𝑘 ≥ 0. (4.12)

From the estimates on the performance of the weak greedy algorithm given in Theorem 2.1, we thus know that

𝜎𝑛 ≤ 24𝑟+164𝑚2𝑀0𝑛
−𝑟 = 24𝑟+232𝑚2−2𝑟𝑀0 ≤ 𝜀, (4.13)

where we have used the product of the two conditions in (4.2). Hence at step 𝑛 = 𝑚2 we have dist(ℳ, 𝑉𝑛) ≤ 𝜀.
Therefore, we have completed the proof of (i).

We next prove (ii). So assume that 𝑑𝑛(ℳ) ≤ 𝐶0 max{1, 𝑛}−𝑠, for some 𝑠 > 0. Then, according to Theorem 2.1,

dist(ℳ, 𝑉𝑛) = 𝜎𝑛 ≤ 24𝑠+1𝛾−2𝐶0𝑛
−𝑠 ≤ 24𝑠+164𝑚2𝐶0𝑛

−𝑠, 𝑛 ≥ 1. (4.14)

It follows that the numerical algorithm will terminate at a 𝑛(𝜀) with 𝑛(𝜀) ≤ 𝑛 where 𝑛 is the smallest integer
that satisfies

24𝑠+164𝑚2𝐶0𝑛
−𝑠 ≤ 𝜀

8𝑚
· (4.15)

Therefore,

𝑛(𝜀) ≤ 24+ 10
s 𝐶

1/𝑠
0 𝑚

3
s 𝜀−

1
s . (4.16)

Using the first condition in (4.2), this leads to the estimate (4.7) with multiplicative constant 𝐶 :=

24+ 10
s 𝐶

1/𝑠
0 (32𝑀0)

3
s(r−2) .

Finally, to execute the algorithm, we will need to draw 𝑛(𝜀) sets (̃︀𝑌0, . . . , ̃︀𝑌𝑛−1), each of them of size 𝑁 . The
total number of error bound evaluation is thus

𝑁(𝜀) = 𝑛(𝜀)𝑁. (4.17)

From the definition of 𝑁 in (4.3) we derive that

𝑁 ≤ 1 +
(︁
ln

(︁
1 − 3

4𝑚2

)︁)︁−1

(ln |𝜂| + 2 ln 𝑚) ≤ 𝐶𝑚2(| ln 𝜂| + ln 𝑚). (4.18)

Using the first condition in the definition (4.2) of 𝑚, this leads to

𝑁 ≤ 𝐶𝜀−
2

(r−2) (| ln 𝜂| + | ln 𝜀|), (4.19)

where 𝐶 depends on 𝑟 and 𝑀0. Combining this with (4.7), we obtain (4.8), which concludes the proof
of (ii). �
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Remark 4.3. The above theorem can be improved by sampling according the tensor product Chebychev mea-
sure (3.24), in view of Remark 3.3. Here, we require that the solution map 𝑦 ↦→ 𝑢(𝑦) belongs to 𝒜𝑟 for some
𝑟 > 2𝛼 := ln 3

ln 2 . We then define 𝑚 as the smallest integer such that

32𝑀0𝑚
−𝑟+2𝛼 ≤ 𝜀 and 24𝑟+2𝑚−(2𝛼−1)𝑟 ≤ 1, (4.20)

and 𝑁 as the smallest integer such that

(︁
1 − 3

4𝑚2𝛼

)︁𝑁

≤ 𝜂

𝑚2𝛼
· (4.21)

We terminate the algorithm at the smallest integer 𝑛 ≤ 𝑚2𝛼 for which �̂�𝑛 ≤ 𝜀
8𝑚α . With the exact same proof,

we reach the statement as Theorem 4.1, however with a number of step

𝑛(𝜀) ≤ 𝐶𝜀−( 1
s + 3α

s(r−2α)
), (4.22)

and a number of error bound evaluations

𝑁(𝜀) = 𝐶𝜀−
2sα+r+α
s(r−2α) (| ln 𝜂| + | ln 𝜀|). (4.23)

Let us comment on the difference in performance between the above algorithm using random sampling and
the greedy algorithm based on using an 𝜀-net for the solution manifold as a training set. We aim at a target
accuracy 𝜀, and assume that the 𝑛-widths of the solution manifold decay like 𝑑𝑛(ℳ) ≤ 𝐶𝑛−𝑠.

Then, the approach based on an 𝜀-net constructs a reduced basis space 𝑉𝑛 of optimal dimension

𝑛 = 𝑛(𝜀) ∼ 𝜀−1/𝑠, (4.24)

and the total number of error bound evaluations is at best of the order

𝑁(𝜀) ∼ 𝑛(𝜀)2𝑐𝜀−1/s

, (4.25)

each of them having a cost Poly(𝑛) = Poly(𝜀−1), resulting in a prohibitive offline cost Poly(𝜀−1)2𝑐𝜀−1/s

. Note
that one should also add the cost of evaluating the 𝑛(𝜀) reduced basis functions on the finite element space of
large dimension 𝑛ℎ ≫ 1.

In contrast, the approach based on random sampling constructs a reduced basis space 𝑉𝑛 of sub-optimal
dimension

𝑛(𝜀) ≤ 𝐶𝜀−( 1
s + 3

s(r−2)
), (4.26)

but the total number of error bound evaluation is now of the order

𝑁(𝜀) ∼ 𝜀−
2s+r+1
s(r−2) (| ln 𝜂| + | ln 𝜀|), (4.27)

where 𝜂 is the probability of failure.
In summary, while our approach allows for a dramatic reduction in the offline cost, it comes with a loss of

optimality in the performance of reduced basis spaces since 𝑛(𝜀) scales with 𝜀−1 with an exponent larger than 1
𝑠 .

In particular, this affects the resulting online cost. Inspection of the proof of the main theorem reveals that this
loss comes from the fact that the greedy selection from the random set can only be identified with a weak-greedy
algorithm with a parameter 𝛾 = 1

8𝑚 which instead of being fixed becomes small as 𝑚 grows, or equivalently as
𝜀 decreases. Let us still observe that the above perturbation of 1

𝑠 by 3
𝑠(𝑟−2) becomes negligible as 𝑟 gets larger.

We have also seen that this perturbation can be reduced to 3𝛼
𝑠(𝑟−2𝛼) by sampling randomly according to the

Chebychev measure.
This leaves open the question of finding a sampling strategy for the training set which leads to reduced basis

of optimal complexity 𝑛(𝜀) ∼ 𝜀−1/𝑠 and where the number of error bound evaluation in the offline stage remains
polynomial in 𝜀−1.
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5. Numerical illustration

The results that we have obtained in the previous section can be rephrased in the following way: a polynomial
rate of decay of the error achieved by the greedy algorithm in terms of reduced basis space dimension 𝑛 can be
maintained when using a random training set of cardinality 𝑁 that scales polynomially in 𝑛. More precisely, in
view of (4.26) and (4.27), a sufficient scaling is

𝑁 ∼ 𝑛𝛽∗

, 𝛽* =
2𝑠+ 𝑟 + 1

𝑠(𝑟 − 2)

(︂
1

𝑠
+

3

𝑠(𝑟 − 2)

)︂−1

(5.1)

independently of the parametric dimension 𝑑. Note that we obviously have

𝛽* ≥ 2𝑠+ 𝑟 + 1

3
≥ 3 + 2𝑠

3
> 1.

In this section, we illustrate these findings through the following numerical test: we consider the elliptic
diffusion equation (1.7) set on the square domain 𝐷 =]0, 1[2, and with affine parametrization (1.8) where
�̄� = 1 + 𝛿 for some 𝛿 > 0 and the 𝜓𝑗 are given by

𝜓𝑗 = 𝑎𝑗𝜒𝐷j
(5.2)

where {𝐷1, . . . , 𝐷𝑑} is a uniform partition of 𝐷 into 𝑑 = 𝑘×𝑘 squares of equal size. We take 𝑘 = 8 and therefore
𝑑 = 64, and take

𝑎𝑗 = 𝑗−𝑡, (5.3)

for some 𝑡 > 0. The effect of taking 𝑡 larger is to raise the anisotropy of the parametric dependence. The results
from [1] show that this is directly reflected by a rate 𝑛−𝑟 of sparse polynomial approximation of the parameter
to solution map, for any 𝑟 < 𝑡 − 1

2 , and therefore on the rate of decay of the 𝑛-width 𝑑𝑛(ℳ). The effect of
taking 𝛿 closer to 0 is to make the problem more degenerate as 𝑦1 gets close to −1.

We test the performance 𝜎𝑛 of the reduced basis spaces generated by the greedy algorithm using random
training sets ̃︁ℳ of cardinality

𝑁 = 𝑁(𝑛) = ⌊𝑛𝛽⌋, (5.4)

for some 𝛽 ≥ 1. Note that the case 𝛽 = 1 amounts in selecting the 𝑛 reduced basis element completely at
random since all the elements from ̃︁ℳ are necessarily chosen. We expect the performance to improve as 𝛽
becomes larger since we then perform a particular selection of the 𝑛 reduced basis elements within ℳ through
the greedy algorithm. On the other hand, our theoretical results indicate that a fixed value 𝛽 = 𝛽* should be
sufficient to ensure that the algorithm performs almost as good as if the selection process took place on the
whole of ℳ.

In our numerical test, we took 𝛿 = 10−2, that is �̄� = 1.01. As to the parametric dimension, we considered
𝑑 = 16 and 𝑑 = 64 that correspond to subdivisions of 𝐷 into 4 × 4 and 8 × 8 subdomains, respectively. As to
the decay of 𝑎𝑗 , we test the values 𝑡 = 1 and 𝑡 = 2. Finally for the growth of the training sample size 𝑁(𝑛), we
test the values

𝛽 = 1, 1.25, 1.5, 1.75, 2. (5.5)

The error curves of the reduced basis approximation, averaged over 20 realizations of the random training
sample, for the various choices of 𝑑, 𝑡 and 𝛽, are displayed on Figures 1 and 2. The reduced basis approximation
error has been computed by using separate test sample of cardinality similar to that of the training sample.

As predicted by the theoretical approximation results, the convergence rate of the reduced basis method
improves as 𝑡 gets larger. The observed convergence rates (for the highest value of 𝛽) are closer to the value 𝑡
than to 𝑡−1/2 which can be rigourously established from the polynomial approximation rates. This reflects the
fact that the reduced basis approximations perform generally better than sparse polynomial approximations.
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Figure 1. Reduced basis approximation with 𝑑 = 16 and decay rate 𝑡 = 1 or 𝑡 = 2.

Figure 2. Reduced basis approximation with 𝑑 = 64 and decay rate 𝑡 = 1 or 𝑡 = 2.

We also note that, for the same value of 𝑡, the errors are smaller in the higher parametric dimension 𝑑 = 64
than for 𝑑 = 16. This apparent paradox can be explained: in both cases, the most active variables are the
first ones (𝑦1, then 𝑦2, . . .) yet they are associated to domains 𝐷𝑗 of smaller size in the high dimensional case,
therefore having less impact on the variation of the solution with these variables.

As expected, we observe that the error curve behaves better as we increase the value of 𝛽 but we observed
that this phenomenon stagnates at 𝛽 = 2. This hints that the scaling 𝑁(𝑛) = 𝑛2 is practically sufficient to
ensure in this case the optimal convergence behaviour which would be met with a very rich training set, for
example an 𝜀-net. The value 𝛽 = 2 is much smaller than the value 𝛽* given by the theoretical analysis which is
thus too pessimistic.
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