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Abstract

In this paper, we extend reduced-basis output bound methods developed earlier for elliptic prob-
lems, to problems described by parametrized parabolic partial differential equations. The essential new
ingredient and the novelty of this paper consist in the presence of time in the formulation and solution
of the problem. First, without assuming a time discretization, a reduced-basis procedure is presented
to efficiently compute accurate approximations to the solution of the parabolic problem and relevant
outputs of interest. In addition, we develop an error estimation procedure to a posteriori validate the
accuracy of our output predictions. Second, using the discontinuous Galerkin method for the temporal
discretization, the reduced-basis method and the output bound procedure are analyzed for the semi-
discrete case. In both cases the reduced-basis is constructed by taking snapshots of the solution in both
time and parameters. In that sense the method is close to POD.

1 Introduction

The repeated solution of parametrized partial differential equations for many different input parameters
is interesting in many different contexts. The “input” parameters, which we will collectively denote as
“inputs,” serve to characterize a configuration of the physical system. These inputs may represent design or
decision variables, such as geometry or physical properties — for example, in optimization studies; control
variables, such as actuator power — for example in real-time applications; or characterization variables,
such as physical properties — for example in inverse problems. Of interest is, for a given set of “inputs”,
to compute the solution of the partial differential equation and, usually, evaluate relevant “outputs” which
are performance indicators for the particular configuration — for example, maximum temperatures, stresses,
flow-rates. Typically in the contexts above, a repeated solution of the underlying partial differential equations
is required — for many different inputs — and this is usually prohibitively expensive.

Especially for parabolic systems, to reduce the computational complexity, model-order reduction tech-
niques have been extensively studied in the literature. Probably the most notable approaches are those based
on the proper orthogonal decomposition [7, 10] or the use of Krylov subspaces [4]. In developing such meth-
ods a number of issues have to be addressed: we mention here, efficiency of the low-order models, accuracy of
their predictions, stability and scalability of the numerical procedures; these, often conflicting, requirements
have led to an abundance of methods. Usually relevant a priori results establish the approximation proper-
ties of these methods (see [8] for a discussion); on the contrary, ways to a posteriori validate the accuracy
are scarce. Moreover, earlier research has focused on developing efficient low-order models that preserve the
relevant dynamics of a specific system; with the exception of Balmes [2], the case of parametrized partial
differential equations has not be considered.

To address some of these issues, reduced-basis output bound methods have been developed for problems
described by elliptic partial differential equations — see [16] for a review of earlier work. In the reduced-basis
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method [1, 12, 15] the solution is sought in low-dimensional spaces, comprised of solutions to the original
problem for different “inputs” [2, 11]. The critical observation is that the solution and the outputs evolve
in low-dimensional manifolds induced by the parametric dependence of the problem; using these problem-
specific spaces we achieve good accuracy at a minimal cost — this is confirmed both in theory [13, 18] and
practice [16]. The increased efficiency incurred by this computational relaxation comes at the cost of higher
uncertainty. To validate the accuracy of the predictions, a posteriori error estimation techniques have been
developed to quantify the error directly for the outputs of interest.

In this paper, we consider the extension of reduced-basis output bound methods developed earlier, to
problems described by parabolic partial differential equations. The essential new ingredient in the parabolic
case is the presence of time in the formulation and solution of the problem. For the parametrization of the
problem, time is considered as an additional parameter, albeit a special one as we will see in the development
to follow. For the numerical solution of the problem the finite-element method is employed for the spatial
discretization. For the temporal discretization the discontinuous Galerkin method [6, 21] is used; although
not the only choice, the variational origin of the discontinuous Galerkin is desirable for the development
and proof of the bounding properties. A procedure to efficiently calculate upper and lower estimators to the
outputs of interest is developed. We prove that these estimators are bounds to the exact value for the output.
These bounds can be calculated efficiently by assuming an (often-satisfied) form for the partial differential
operator [12]; the details specific to the parabolic case are presented in [19].

2 Problem Statement

To start, consider a bounded open domain Ω ⊂ Rd, d = 1, 2, 3 with Lipschitz-continuous boundary; if T > 0
is the final time and I = (0, T ) (Ī = [0, T ]) the time interval of interest, we define the “space-time” domain
QT = I ×Ω. Furthermore, let V be a closed linear subspace of H1(Ω), such that H1

0 (Ω) ⊂ V ⊂ H1(Ω). The
space L2(I;V ) can be defined as

L2(I;V ) =
{
v : I → V | v is measurable and

∫
I

‖v(t)‖21 dt <∞
}

;

with ‖·‖1 the usual H1(Ω)-norm. Similarly, we define C0(Ī;L2(Ω)) the set of functions which are continuous
(and therefore bounded) in time, and L2(Ω) in space for t ∈ Ī; also, we will use in the following L2(QT ) ≡
L2(I;L2(Ω)), and H ≡ L2(I;V )∩C0(Ī;L2(Ω)) [9, 17]. For the parametric dependence, let P be the number
of input parameters and D ⊂ RP the set of allowed configurations; a particular configuration will be denoted
by µ ∈ D.

Let f(·;µ) ∈ L2(QT ) and u0(µ) ∈ L2(Ω) be known functions which depend on the parameter µ. The
problem we are interested in solving is: given a µ ∈ D, find the solution u(·;µ) ∈ H to the equation:

(∂tu(t;µ), v) + a(u(t;µ), v;µ) = (f(t;µ), v), ∀v ∈ V, (1)
u(0;µ) = u0(µ);

here (·, ·) denotes the L2(Ω)-inner product and a(·, ·;µ) : V × V → R is a continuous and coercive-in-V
bilinear form, uniformly in µ ∈ D. Equation (1) has to be understood in the proper distributional sense for
t ∈ I. Under the assumptions above the problem is parabolic and a unique solution u(·;µ) ∈ H exists for all
µ ∈ D [17]. We should also mention that a solution to (1) exists under weaker assumptions than the ones
presented above (e.g. f(·;µ) ∈ L2(I;V ′), with V ′ the dual of V ) — this generality is not required for our
presentation. Also to keep the notation minimal, we assume that the L2(Ω)-inner product and the bilinear
form a(·, ·;µ) do not depend on time.

As was mentioned in Section 1, in practical applications the solution field u(·;µ) is less important than
relevant outputs of interest. We consider here the output of interest which is obtained from s(µ) ≡ S(u(·;µ)),
with S : H → R a linear functional

S(v) =
∫

I

(
`O(t), v(t)

)
dt+ (gO, v(T−));

2



with v(t±) = lims→0+ v(t± s). Here `O(·) ∈ L2(QT ) (or more generally, `O ∈ L2(I;V ′)) and gO ∈ L2(Ω) do
not depend on µ — a parametric dependence of the output can be readily treated, see [19] for more details.

It will be useful in the following to replace (1), with a space-time weak formulation: given µ ∈ D, find
u(·;µ) ∈ H such that∫

I

(∂tu(t;µ), v(t)) dt+
∫

I

a(u(t;µ), v(t);µ) dt+(u(0+;µ), v(0+)) =
∫

I

(f(t;µ), v(t)) dt+(u0(µ), v(0+)), (2)

∀v ∈ H. It is obvious that if u(·;µ) is the solution of (1) then it is also a solution of (2). We can readily
prove the following:

Lemma 2.1. The problem in (2) is stable, and therefore u(·;µ) ∈ H is the unique weak solution to (2).

Proof. Stability and therefore uniqueness, follows from the coercivity of the bilinear form a(·, ·;µ),

∃c > 0 such that c‖v‖1 ≤ a(v, v;µ),∀v ∈ V,∀µ ∈ D;

which implies that∫
I

(∂tv(t), v(t)) dt+
∫

I

a(v(t), v(t);µ) dt+ (v(0+), v(0+)) =

1
2
(v(T−), v(T−)) +

1
2
(v(0+), v(0+)) +

∫
I

a(v(t), v(t);µ) dt ≥ c‖v‖2L2(I;H1), ∀v ∈ H, v 6= 0.

We will also require in the following ψ(·;µ) ∈ H which is the solution of the following dual problem:

−
∫

I

(∂tψ(t;µ), v(t)) dt+
∫

I

a(v(t), ψ(t;µ);µ) dt+ (ψ(T−;µ), v(T−)) =

−
∫

I

(
`O(t), v(t)

)
dt− (gO, v(T−)), ∀v ∈ H; (3)

the importance of the dual problem will become clear in the analysis that follows. Notice that if we define
τ = T − t, (3) is actually parabolic: the dual problem evolves backward in time. Therefore, under the
requirements above for the primal problem a unique weak solution ψ(·;µ) to (3) will exist.

In practice, for the solution of (2) and (3), we replace V by a finite but high-dimensional finite-element
space Vh, so that Vh ≈ V (dimVh = N ). Given an input configuration µ, solution of the resulting system of
ordinary differential equations (and relatedly, calculation of the output of interest), can be very expensive.
We develop in the next section, a reduced-basis approach to significantly reduce the complexity of this
problem.

3 Reduced-basis Approximation

We define µ̃ = (t, µ) ∈ D̃ ≡ I × D, and introduce the following sample sets Spr
N = {µ̃pr

1 , . . . , µ̃
pr
N } and

Sdu
M = {µ̃du

1 , . . . , µ̃du
M }. In general, N 6= M and µ̃pr

i 6= µ̃du
j , i = 1, . . . , N, j = 1, . . . ,M . We then compute the

solution of (2) for all {µ ∈ I | ∃t : (t, µ) ∈ Spr
N }, and of (3) for all

{
µ ∈ I

∣∣ ∃t : (t, µ) ∈ Sdu
M

}
. Using these

solutions we define the Lagrangian reduced-basis approximation spaces, as follows:

W pr
N = span{ζi ≡ u(µ̃pr

i ), i = 1, . . . , N}, W du
M = span{ξi ≡ ψ(µ̃du

i ), i = 1, . . . ,M},

where dimW pr
N = N, and dimW du

M = M ; by construction W pr
N , W du

M ⊂ V . We can then define the following
spaces,

Hpr
N ≡ L2(I;W pr

N ) ∩ C0(Ī;L2(Ω)), and Hdu
M ≡ L2(I;W du

M ) ∩ C0(Ī;L2(Ω)).
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In the construction of the reduced-basis spaces the choice of µi ∈ D (and consequently µ̃i) for the sample
sets Spr

N and Sdu
M is critical. Both the a priori theory [13] (in the context of elliptic problems) and extensive

numerical tests [16, 19] suggest that the points should be chosen “log-randomly” over D: we sample from a
multivariate uniform probability density on log(D). Especially for large ranges of the input parameters, this
logarithmic distribution performs considerably better than other obvious candidates.

The reduced-basis approximation uN (·;µ) to u(·;µ) is obtained by a standard Galerkin projection: given
a µ ∈ D, find uN (·;µ) ∈ Hpr

N , such that∫
I

(∂tuN (t;µ), v(t)) dt+
∫

I

a(uN (t;µ), v(t);µ) dt+ (uN (0+;µ), v(0+)) =∫
I

(f(t;µ), v(t)) dt+ (u0(µ), v(0+)),∀v ∈ Hpr
N . (4)

The error to the approximation of u(·;µ) by uN (·;µ) is epr(t;µ) ≡ u(t;µ)−uN (t;µ), and relatedly Rpr(v;µ)
is the residual for the primal problem:

Rpr(v;µ) = (5)

=
∫

I

(f(t;µ), v(t)) dt−
∫

I

(∂tuN (t;µ), v(t)) dt−
∫

I

a(uN (t;µ), v(t);µ) dt−
(
uN (0+;µ)− u0(µ), v(0+)

)
=
∫

I

(∂te
pr(t;µ), v(t)) dt+

∫
I

a(epr(t;µ), v(t);µ) dt+
(
epr(0+;µ), v(0+)

)
;

the last line above follows from (2). Similarly, for the dual variable, we obtain an approximation ψM (·;µ) ∈
Hdu

M to ψ(·;µ) ∈ H from:

−
∫

I

(∂tψM (t;µ), v(t)) dt+
∫

I

a(v(t), ψM (t;µ);µ) dt+ (ψM (T−;µ), v(T−)) =

−
∫

I

(
`O(t), v(t)

)
dt− (gO, v(T−)),∀v ∈ Hdu

M . (6)

The residual for the dual problem Rdu(v;µ) is then:

Rdu(v;µ) = (7)

= −
∫

I

(
`O(t), v(t)

)
dt+

∫
I

(∂tψM (t;µ), v(t)) dt−
∫

I

a(v(t), ψM (t;µ);µ) dt−
(
ψM (T−;µ) + gO, v(T−)

)
= −

∫
I

(
∂te

du(t;µ), v(t)
)
dt+

∫
I

a(v(t), edu(t;µ);µ) dt+
(
edu(T−;µ), v(T−)

)
;

from (3) and defining edu(t;µ) = ψ(t;µ)− ψM (t;µ).
Using now the reduced-basis solutions to the primal and dual problems, we can obtain an approximation

to the output of interest sN (µ) from:

sN (µ) ≡ S(uN (·;µ))−Rpr(ψM (·;µ);µ) =
∫

I

(
`O(t), uN (t;µ)

)
dt+ (gO, uN (T−;µ))−Rpr(ψM (·;µ);µ). (8)

Regarding the convergence of the output approximation (8), we have the following:

Lemma 3.1. Let

εdu
M = inf

χM∈Hdu
M

{[
‖epr‖L∞(I;L2) + ‖epr‖L2(I;H1)

]
×
[
‖ψ − χM‖L∞(I;L2) + ‖ψ − χM‖L2(I;H1)

]
+‖epr‖L2(I;L2)‖ψ − χM‖H1(I;L2)

}
,

then

|s(µ)− sN (µ)| ≤ C
[
‖epr‖L∞(I;L2) + ‖epr‖L2(I;H1)

]
×
[
‖edu‖L∞(I;L2) + ‖edu‖L2(I;H1)

]
+ Cεdu

M . (9)
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Proof. We start with an auxiliary result that will also be required below,

s(µ)− sN (µ) =
∫

I

(
`O, u

)
dt+ (gO, u(T−))−

∫
I

(
`O, uN

)
dt− (gO, uN (T−)) +Rpr(ψM ;µ)

=
∫

I

(
`O, epr

)
dt+ (gO, epr(T−)) +Rpr(ψM ;µ)

=
∫

I

(∂tψ, e
pr) dt−

∫
I

a(epr, ψ;µ) dt− (ψ(T−), epr(T−)) +Rpr(ψM ;µ)

= −
∫

I

(∂te
pr, ψ) dt−

∫
I

a(epr, ψ;µ) dt− (epr(0+), ψ(0+)) +Rpr(ψM ;µ)

= −Rpr(edu;µ); (10)

using (3), integration by parts, (5) and linearity of the primal residual. From (10)

|s(µ)− sN (µ)| =
∣∣∣∣∫

I

(
∂te

pr, edu
)
dt+

∫
I

a(epr, edu;µ) dt+ (epr(0), edu(0))
∣∣∣∣ ; (11)

we look at each of the terms on the right-hand side separately. For any χM (·) ∈ Hdu
M , then∣∣∣∣∫

I

(
∂te

pr, edu
)
dt

∣∣∣∣ =
∣∣∣∣∫

I

(∂te
pr, ψ − χM + χM − ψM ) dt

∣∣∣∣
≤

∣∣∣∣∫
I

(∂te
pr, ψ − χM ) dt

∣∣∣∣+ ∣∣∣∣∫
I

(∂te
pr, ψM − χM ) dt

∣∣∣∣ .
For the first term above we use integration by parts to get:∣∣∣∣∫

I

(∂te
pr, ψ − χM ) dt

∣∣∣∣ ≤ C
[
‖epr‖L∞(I;L2)‖ψ − χM‖L∞(I;L2) + ‖epr‖L2(I;L2)‖ψ − χM‖H1(I;L2)

]
;

and for the second term from (5) and using the Galerkin orthogonality property (since ψM (t)−χM (t) ∈W du
M ),

we get:∣∣∣∣∫
I

(∂te
pr, ψM − χM ) dt

∣∣∣∣ =
∣∣∣∣∫

I

a(epr, ψM − χM ;µ) dt+ (epr(0+), ψM (0+)− χM (0+))
∣∣∣∣

≤ γ‖epr‖L2(I;H1)‖ψM − ψ + ψ − χM‖L2(I;H1)

+‖epr‖L∞(I;L2)

[
‖ψM − ψ‖L∞(I;L2) + ‖ψ − χM‖L∞(I;L2)

]
≤ γ‖epr‖L2(I;H1)

(
‖ψM − ψ‖L2(I;H1) + ‖ψ − χM‖L2(I;H1)

)
+‖epr‖L∞(I;L2)‖edu‖L∞(I;L2) + ‖epr‖L∞(I;L2)‖ψ − χM‖L∞(I;L2),

with γ the continuity constant of a(·, ·;µ). Combining the expressions above and minimizing over all χM

yield ∣∣∣∣∫
I

(
∂te

pr, edu
)
dt

∣∣∣∣ ≤ γ‖epr‖L2(I;H1)‖edu‖L2(I;H1) + Cεdu
M . (12)

The second and third terms in (11) can be bounded using the continuity of the bilinear form a and the
Cauchy-Schwartz inequality, giving

|s(µ)− sN (µ)| ≤
∣∣∣∣∫

I

(
∂te

pr, edu
)
dt

∣∣∣∣+ γ‖epr‖L2(I;H1)‖edu‖L2(I;H1) + ‖epr‖L∞(I;L2)‖edu‖L∞(I;L2). (13)

The desired result follows directly from (12) and (13).
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The previous lemma gives an a priori bound on the convergence of the output approximation, defined in
(8), to its exact value; as we see from (9), a term appears involving εdu

M — a measure of how well members
of the reduced-basis space Hdu

M approximate the solution to the adjoint problem — as well as norms of the
error to the dual problem edu. Had we used S(uN (·;µ)) instead of (8) to calculate the output approximation,
the corresponding bound would depend on norms of the primal error epr only. As M increases, the term
involving the dual errors will become smaller and, given the approximation properties of W du

M , will converge
to zero; this suggests faster convergence of the adjoint-corrected output and use of (8) is justified.

In the calculation above we have, in effect, replaced V (or Vh) with W pr
N for the primal and W du

M for
the dual problem. These reduced-basis spaces have approximation properties specific to the problem of
interest, so only a small number of basis functions need to be retained to accurately represent the solution.
Significant computational savings are affected, since the computational complexity scales as N(= dimW pr

N )
and M(= dimW du

M ) instead of N (= dimVh), and N, M will be small — typically O(10) — and independent
of N . As N, M → ∞, and given the specific choice of the approximation spaces, uN (·;µ) → u(·;µ),
ψM (·;µ) → ψ(·;µ), and sN (µ) → s(µ) will converge to the exact values very fast.

4 A posteriori error estimation

The computational relaxation introduced in the previous section, allows us to compute very efficiently accu-
rate approximations to the solution and the output of interest. Thanks to the expected rapid convergence N
and M could, in theory, be chosen quite small. However, in practice we do not know how small N and M can
be: this will depend of the desired accuracy, the choice of µ̃i in the construction of the reduced-basis spaces,
the output of interest and the particular problem in question; in some cases N, M = 5 may suffice, while in
other cases N, M = 100 may still be insufficient. In the face of this uncertainty, either too many or too few
basis functions will be retained: the former results in computational inefficiency; the later in unacceptable
uncertainty. It is therefore critical that we can ascertain the accuracy of our predictions; we develop next, a
rigorous error-estimation approach, directly for outputs of interest, to a posteriori validate the accuracy of
our predictions.

To begin assume that we may find a function g(µ) : D → R+, and a symmetric, continuous and coercive
bilinear form â : V × V → R such that

c‖v‖1 ≤ g(µ)â(v, v) ≤ a(v, v;µ), ∀v ∈ V, ∀µ ∈ D; (14)

we understand g(µ) as a lower bound to the â-coercivity constant.
We then compute the “reconstructed” errors êpr(·;µ) ∈ H and êdu(·;µ) ∈ H such that

g(µ)
∫

I

â(êpr(t;µ), v(t)) dt = Rpr(v;µ), ∀v ∈ H, and

g(µ)
∫

I

â(êdu(t;µ), v(t)) dt = Rdu(v;µ), ∀v ∈ H. (15)

Note that a unique solution exists for problems (15), by an application of the Riesz-Frechet representation
theorem since Rpr and Rdu are continuous linear functionals on the Hilbert space L2(I;V ′) and

∫
I
â(·, ·) dt

is a scalar product in L2(I;V ). An estimate for the output is then computed, sB(µ):

sB(µ) = sN (µ)− g(µ)
2

∫
I

â(êpr(t;µ), êdu(t;µ)) dt; (16)

and a bound gap ∆(µ):

∆(µ) =
g(µ)

2

[∫
I

â(êpr(t;µ), êpr(t;µ)) dt
] 1

2
[∫

I

â(êdu(t;µ), êdu(t;µ)) dt
] 1

2

. (17)

Finally, upper and lower output estimators can be calculated from s±(µ) = sB(µ) ±∆(µ). We now prove
that these estimators s±(µ) are always rigorous bounds to the true output s(µ). In the proof that follows,
unless it is essential, we will not explicitly indicate dependence on the variables t and µ.
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Proposition 1. Let sB(µ) be the output approximation, defined in (16), and ∆(µ) the bound gap, defined
in (17). If we then define s±(µ) = sB(µ)±∆(µ) then

s−(µ) ≤ s(µ) ≤ s+(µ), ∀µ ∈ D;

that is, s+(µ) and s−(µ) are rigorous upper and lower bounds to the true output s(µ).

Proof. To start, notice that Rpr(edu;µ) = Rdu(epr;µ) since:

Rpr(edu;µ) =
∫

I

(
∂te

pr, edu
)
dt+

∫
I

a(epr, edu;µ) dt+
(
epr(0+), edu(0+)

)
= −

∫
I

(
∂te

du, epr
)
dt+

∫
I

a(epr, edu;µ) dt+
(
epr(T−), edu(T−)

)
= Rdu(epr;µ);

using integration by parts, and the definition of the primal (5) and dual (7) residuals. Therefore from (10),

−Rdu(epr;µ) = s(µ)− sN (µ). (18)

We can now start the proof of the bounding property, and define ê± = êpr ∓ 1
κ ê

du, with κ > 0. From the
coercivity of â, we have:

κg(µ)
∫

I

â(epr − 1
2
ê±, epr − 1

2
ê±) = κg(µ)

∫
I

â(epr, epr) + κ
g(µ)

4

∫
I

â(ê±, ê±)− κg(µ)
∫

I

â(ê±, epr) ≥ 0. (19)

Since ê± = êpr ∓ 1
κ ê

du, and using (15) we get:

g(µ)
∫

I

â(ê±, epr) dt = Rpr(epr;µ)∓ 1
κ
Rdu(epr;µ). (20)

But:

Rpr(epr;µ) =
∫

I

(∂te
pr, epr) dt+

∫
I

a(epr, epr;µ) dt+
(
epr(0+), epr(0+)

)
≥ 1

2
(epr(T−), epr(T−))︸ ︷︷ ︸

>0

+
1
2

(epr(0+), epr(0+))︸ ︷︷ ︸
>0

+
∫

I

a(epr, epr;µ) dt ≥ g(µ)
∫

I

â(epr, epr) dt,

since from (14) we have
∫

I
a(epr, epr;µ) dt ≥ g(µ)

∫
I
â(epr, epr) dt. Replacing in (20) for Rpr(epr;µ) the

expression we just obtained, and (18) for Rdu(epr;µ), we have:

−κg(µ)
∫

I

â(ê±, epr) dt ≤ −κg(µ)
∫

I

â(epr, epr) dt∓ (s(µ)− sN (µ)). (21)

Combining now (19) and (21), we get

±(s(µ)− sN (µ)) ≤ κg(µ)
4

∫
I

â(ê±, ê±) dt.

Expanding ê± = êpr ∓ 1
κ ê

du we have

±(s(µ)− sN (µ)) ≤ g(µ)
4

[
κ

∫
I

â(êpr, êpr) dt+
1
κ

∫
I

â(êdu, êdu) dt∓ 2
∫

I

â(êpr, êdu) dt
]

and from the definition of sB(µ) = sN (µ)− g(µ)
2

∫
I
â(êpr, êdu) dt,

±(s(µ)− sB(µ)) ≤ κg(µ)
4

∫
I

â(êpr, êpr) dt+
g(µ)
4κ

∫
I

â(êdu, êdu) dt. (22)

7



Since κ is an arbitrary positive constant, we choose it as:

κ =

(∫
I
â(êdu, êdu) dt∫

I
â(êpr, êpr) dt

) 1
2

,

so that the right-hand side in (22) is minimized. Then

±(s(µ)− sB(µ)) ≤ g(µ)
2

[∫
I

â(êpr, êpr) dt
] 1

2
[∫

I

â(êdu, êdu) dt
] 1

2

;

which from the definition of ∆(µ) becomes ±(s(µ)− sB(µ)) ≤ ∆(µ), or

s−(µ) ≡ sB(µ)−∆(µ) ≤ s(µ) ≤ sB(µ) + ∆(µ) ≡ s+(µ).

So following the previous theorem, instead of using the exact value for the output s(µ), we can use the
output prediction sB(µ) and the bound gap ∆(µ). The basic premise is that these two quantities can be
computed more efficiently than the exact output. This is indeed the case when a certain decomposition
exists for all the parameter-dependent linear and bilinear forms [11, 19]. More specifically, assume that for
t ∈ I, µ ∈ D and for Qa, f, u ∈ N the following “affine” decomposition exists:

a(w, v;µ) =
Qa∑
q=1

σq
a(µ)aq(w, v), ∀w, v ∈ V 2, f(t;µ) =

Qf∑
q=1

σq
f (t;µ)fq, u0(µ) =

Qu∑
q=1

σq
u(µ)uq

0; (23)

with σq
a, f, u functions which depend on µ and t, whereas the aq, fq, and uq

0 do not. For a large class of
problems such a decomposition exists; certain relaxations are possible for locally non-affine problems [16].
For general nonlinear problems, the use of the “empirical interpolation” method [3] is developed in the
framework of parabolic problems [5].

Using (23) and following the same steps as in [12], a two-stage computational procedure can be developed:
Off-line the reduced-basis space is formed and a database with certain auxiliary quantities is created; this
is a relatively expensive preprocessing step which needs to be performed only once. On-line, for each new
µ, using the database: the reduced-basis problem is formed and solved; the reduced-basis solution is used to
compute the output approximation; and finally, the output bounds are calculated. The incremental cost for
each on-line step is minimal and scales only with the dimension N, M of the reduced-basis spaces and the
parametric complexity Qa, f, u of the linear and bilinear forms. We do not discuss further the computational
procedure here; for more details, specific to the parabolic case, see [19].

The definition of the reduced-basis spaces comprising of snapshots to the solution at different parameter
points is not the only possibility. An alternative approach is to construct the reduced-basis spaces by using
the entire time-dependent solution at certain parameter values. A space-time Galerkin projection can then
be used to obtain the reduced-basis problems. Moreover the a posteriori error estimator, defined above,
could be easily adapted to this case. There are certain advantages in this alternative approach; for example,
instead of solving the low-dimensional parabolic problems (4) and (6), one has to solve linear systems of
small dimension. Also, there is some simplification in the computation of the error estimator. On the other
hand, during the preprocessing/off-line stage the computational cost and required memory storage become
much higher, making overall this second approach less attractive.

5 Time Discretization — Discontinuous Galerkin Method

In the previous section we presented the general theory without any reference to the time-discretization
procedure. Here we consider one possible time-discretization method, the discontinuous Galerkin method.

8



The discontinuous Galerkin method was first introduced in the context of time-dependent problems by
Jamet [6], and was further analyzed [14, 20]. The variational origin of the discontinuous Galerkin method,
will allow us to extend the a posteriori error estimation method developed in the previous section for the
discrete-in-time approximation.

Consider a set of L+1 points in Ī = [0, T ] such that t0 ≡ 0 < t1 < t2 < . . . < tL ≡ T is a partition I of I in
intervals Il = (tl−1, tl), l ∈ L ≡ {1, . . . , L}. The diameter for each Il will be ∆τ l = tl− tl−1, l ∈ L. We then
define the spaces Pq(Il;V ) = {v : Il → V | v(t) =

∑q
s=0 vst

s, vs ∈ V } ⊂ L2(Il;V )∩C0(Īl;L2(Ω)),∀l ∈ L, and
V q(I;V ) =

{
v ∈ L2(I;V ) | v|Il

∈ Pq(Il;V ), ∀Il ∈ I
}
. Obviously, if v ∈ V q(I;V ) then the function can be

discontinuous at the points tl, l ∈ L. We further define the jump at these points as [v]l = v(t+l )− v(t−l ), l ∈
{0, . . . , L}, with v(t±l ) = lims→0+ v(tl±s). The problem is then to compute using the discontinuous Galerkin
method a solution uq(·;µ) ∈ V q(I;V ) — which is a discontinuous approximation to u(·;µ) of (2) — from:∫

I

(∂tu
q(t;µ), v(t)) dt+

∫
I

a(uq(t;µ), v(t);µ) dt+
∑
l∈L

([uq(·;µ)]l−1, v(t+l−1)) =
∫

I

(f(t;µ), v(t)) dt, (24)

∀v ∈ V q(I;V ); with [uq(·;µ)]0 = uq(0+;µ) − u0(µ) (or uq(0−;µ) = u0(µ)). In (24) we can solve separately
for each Il; continuity is imposed only weakly due to the presence of the additional jump terms. For the
dual problem, we can compute a solution ψq(·;µ) ∈ V q(I;V ) from:

−
∫

I

(∂tψ
q(t;µ), v(t)) dt+

∫
I

a(v(t), ψq(t;µ);µ) dt−
∑
l∈L

([ψq(·;µ)]l, v(t−l )) = −
∫

I

(
`O(t), v(t)

)
dt, (25)

∀v ∈ V q(I;V ); with [ψq(·;µ)]L = −gO −ψq(T−;µ) (or ψq(T+;µ) = −gO). The output of interest sq(µ) can
then be calculated using uq(·;µ), from:

sq(µ) =
∫

I

(
`O(t), uq(t;µ)

)
dt+ (gO, uq(T−;µ)) =

∑
l∈L

∫
Il

(
`O(t), uq(t;µ)

)
dt+ (gO, uq(T−;µ)). (26)

The reduced-basis spaces are formed similarly to the continuous case, by obtaining “snapshots”of the solution
to the primal and dual problems for all points in the sets Spr

N and Sdu
M respectively:

W pr
N = span{ζi ≡ uq(µ̃pr

i ), i = 1, . . . , N, µ̃pr
i ∈ Spr

N }, W
du
M = span{ξi ≡ ψq(µ̃du

i ), i = 1, . . . ,M, µ̃du
i ∈ Sdu

M };

recall that, from the definition of Spr
N and Sdu

N , the “snapshots” are for different points in parameter space
and time. The reduced-basis approximation to uq(t;µ) can be obtained by a standard Galerkin projection:
for a given µ ∈ D, find uq

N (·;µ) ∈ V q(I;W pr
N ), such that∫

I

(∂tu
q
N (t;µ), v(t)) dt+

∫
I

a(uq
N (t;µ), v(t);µ) dt+ ([uq

N (·;µ)]l−1, v(t+l−1)) =
∫

I

(f(t;µ), v(t)) dt,

∀v ∈ V q(I;W pr
N ) with [uq

N (·;µ)]0 = uq
N (0+;µ) − u0(µ); similarly, we define the dual problem and obtain

ψq
M (·;µ) ∈ V q(I;W du

M ). The primal and dual residuals are defined as: Rpr q(v;µ) =
∑

l∈LR
pr q
l (v;µ) with

Rpr q
l (v;µ) the residual for the primal problem in the time interval Il:

Rpr q
l (v;µ) =

∫
Il

(f(t;µ), v(t)) dt−
∫

Il

(∂tu
q
N (t;µ), v(t)) dt−

∫
Il

a(uq
N (t;µ), v(t);µ)dt−([uq

N (·;µ)]l−1, v(t+l−1))

=
∫

Il

(∂te
pr q(t;µ), v(t)) dt+

∫
Il

a(epr q(t;µ), v(t);µ) dt+ ([epr q(·;µ)]l−1, v(t+l−1));

where epr q(t;µ) ≡ uq(t;µ) − uq
N (t;µ), the error in the primal variable. The residual for the dual problem

Rdu q
l (v;µ) is defined as:

Rdu q
l (v;µ) = −

∫
Il

(
`O(t), v(t)

)
dt+

∫
Il

(∂tψ
q
M (t;µ), v(t))dt−

∫
il

a(v(t), ψq
M (t;µ);µ)dt+([ψq

M (·;µ)]l, v(t−l ))

= −
∫

Il

(
∂te

du q(t;µ), v(t)
)
dt+

∫
Il

a(v(t), edu q(t;µ);µ) dt− ([edu q(·;µ)]l, v(t−l ));
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from (25) and defining edu q(t;µ) = ψq(t;µ)− ψq
M (t;µ), the error in the dual variable. An approximation to

the output of interest sq
N (µ) can then be obtained from:

sq
N (µ) =

∑
l∈L

[∫
Il

(
`O(t), uq

N (t;µ)
)
dt−Rpr q

l (ψq
M (·;µ);µ)

]
+ (gO, uq

N (T−;µ)). (27)

Turning now to the a posteriori error estimator, we compute “representations” of the error êpr q(·;µ) ∈
V q(I;V ) with êpr q

l (·;µ) ≡ êpr q(·;µ)|Il
, and êdu q(·;µ) ∈ V q(I;V ) with êdu q

l (·;µ) ≡ êdu q(·;µ)|Il
such that:

g(µ)
∫

Il

â(êpr q
l (t;µ), v(t)) dt = Rpr q

l (v;µ), ∀v ∈ Pq(Il;V ), ∀Il ∈ I and

g(µ)
∫

Il

â(êdu q
l (t;µ), v(t)) dt = Rdu q

l (v;µ), ∀v ∈ Pq(Il;V ), ∀Il ∈ I.

For the error estimator we first calculate the output approximation, sq
B(µ):

sq
B(µ) = sq

N (µ)− g(µ)
2

∑
l∈L

∫
Il

â(êpr q
l (t;µ), êdu q

l (t;µ)) dt; (28)

and the bound gap ∆q(µ) is defined as:

∆q(µ) =
g(µ)

2

[∑
l∈L

∫
Il

â(êpr q
l (t;µ), êpr q

l (t;µ)) dt

] 1
2
[∑

l∈L

∫
Il

â(êdu q
l (t;µ), êdu q

l (t;µ)) dt

] 1
2

. (29)

Finally, as before, symmetric upper and lower output estimators can be calculated from s± q(µ) = sq
B(µ)±

∆q(µ). We can then prove the following:

Proposition 2. Let sq(µ) be the exact value of the output for the semi-discrete problem, defined in (26). If
we define sq

B(µ) and ∆q(µ) as in (28) and (29), respectively, then s± q(µ) = sq
B(µ) ±∆q(µ) are upper and

lower bounds to the true output:

s− q(µ) ≤ sq(µ) ≤ s+ q(µ),∀µ ∈ D.

Proof. We first obtain some results for
∑

l∈LR
pr q
l (epr q;µ) and

∑
l∈LR

du q
l (epr q;µ) that will be required in

the following. First we look in the error for the output, which from the definition of sq(µ) (26) and sq
N (µ)

(27) becomes:

sq(µ)− sq
N (µ) =

∑
l∈L

[
−
∫

Il

(∂te
pr q, ψq) dt−

∫
Il

a(epr q, ψq;µ) dt+Rpr q
l (ψq

M (·;µ);µ)
]

+ I1;

using (25) and integration by parts. The additional terms I1 can be simplified, as follows:

I1 =
∑
l∈L

[
([ψq]l, epr q(t−l )) + (ψq(t−l ), epr q(t−l ))− (ψq(t+l−1), e

pr q(t+l−1))
]
+ (gO(µ), epr q(T−))

=
∑
l∈L

[
(ψq(t+l ), epr q(t−l ))− (ψq(t+l−1), e

pr q(t−l−1))− (ψq(t+l−1), [e
pr q]l−1)

]
+ (gO(µ), epr q(T−))

= (gO(µ), epr q(T−)) + (ψq(T+)︸ ︷︷ ︸
−gO(µ)

, epr q(T−))− (ψq(0+), epr q(0−)︸ ︷︷ ︸
0

)−
∑
l∈L

([epr q]l−1, ψ
q(t+l−1));
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using in the second line the definition of the jump operator epr q(t+l−1) = [epr q]l−1 + epr q(t−l−1); and in the
last line, ψq(T+;µ) = −gO from the definition of the dual problem, and epr q(0−;µ) = 0. Therefore,

sq(µ)− sq
N (µ) =

=
∑
l∈L

[
−
∫

Il

(∂te
pr q, ψq) dt−

∫
Il

a(epr q, ψq;µ) dt− ([epr q]l−1, ψ
q(t+l−1)) +Rpr q

l (ψq
M (·;µ);µ);

]
= −

∑
l∈L

Rpr q
l (edu q;µ). (30)

But
∑

l∈LR
pr q
l (edu q;µ) =

∑
l∈LR

du q
l (epr q;µ), since

∑
l∈L

Rpr q
l (edu q;µ) =

∑
l∈L

[∫
Il

(
∂te

pr q, edu q
)
dt+

∫
Il

a(epr q, edu q;µ) dt+ ([epr q]l−1, e
du q(t+l−1))

]
=

∑
l∈L

[
−
∫

Il

(
∂te

du q, epr q
)
dt+

∫
Il

a(epr q, edu q;µ) dt
]

+ I2

=
∑
l∈L

[
−
∫

Il

(
∂te

du q, epr q
)
dt+

∫
Il

a(epr q, edu q;µ) dt− ([edu q]l, epr q(t−l ))
]

=
∑
l∈L

Rdu q
l (epr q;µ); (31)

from integration by parts and the definitions of the primal and dual residuals. The additional terms I2 are
calculated below:

I2 =
∑
l∈L

[
(epr q(t−l ), edu q(t−l ))− (epr q(t+l−1), e

du q(t+l−1)) + (epr q(t+l−1)− epr q(t−l−1), e
du q(t+l−1))

]
=

∑
l∈L

[
−(epr q(t−l ), [edu q]l) + (epr q(t−l ), edu q(t+l ))− (epr q(t−l−1), e

du q(t+l−1))
]

= −
∑
l∈L

([edu q]l, epr q(t−l ));

again the definition of the jump operator has been used, and epr q(0−) = edu q(T+) = 0. Combining (30)
and (31) we obtain:

−
∑
l∈L

Rdu q
l (epr q;µ) = (sq(µ)− sq

N (µ)) . (32)

Turning now to
∑

l∈LR
pr q
l (epr q;µ), we first compute I3

I3 =
∑
l∈L

[
1
2
(epr q(t−l ), epr q(t−l ))− 1

2
(epr q(t+l−1), e

pr q(t+l−1)) + (epr q(t+l−1)− epr q(t−l−1), e
pr q(t+l−1))

]
=

∑
l∈L

1
2
‖ [epr q(tl−1)] ‖2L2(Ω) +

1
2
(epr q(T−), epr q(T−))− 1

2
(epr q(0−)︸ ︷︷ ︸

0

, epr q(0−));

as before we used here the definition of the jump operator and simple algebraic manipulations. But then,∑
l∈L

Rpr q
l (epr q;µ) =

∑
l∈L

[∫
Il

(∂te
pr q, epr q) dt+

∫
Il

a(epr q, epr q;µ) dt+ ([epr q]l−1, e
pr q (t+l−1))

]
= I3 +

∑
l∈L

∫
Il

a(epr q, epr q;µ) dt ≥ g(µ)
∫

I

â(epr q, epr q) dt (33)
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since I3 is the sum of non-negative terms, and also using (14). We turn now to the proof of the bounding
properties, and as before, for κ > 0 we define ê± q = êpr q ∓ 1

κ ê
du q. From the coercivity of â,

κg(µ)
∫

I

â(epr q − 1
2
ê± q, epr q − 1

2
ê± q) dt ≥ 0

κg(µ)
∫

I

â(epr q, epr q) dt+
κg(µ)

4

∫ T

0

â(ê± q, ê± q) dt− κg(µ)
∫

I

â(ê± q, epr q) dt ≥ 0.

(34)

From the definition of ê± q, êpr q, and êdu q we have:

g(µ)
∫

I

â(ê± q, epr q) dt =
∑
l∈L

Rpr q
l (epr q;µ)∓ 1

κ

∑
l∈L

Rdu q
l (epr q;µ).

Using (33) to replace
∑

l∈LR
pr q
l (epr q;µ), and (32) to replace

∑
l∈LR

du q
l (epr q;µ), we get

−κg(µ)
∫

I

â(ê± q, epr q) dt ≤ −κg(µ)
∫

I

â(epr q, epr q) dt∓ (sq(µ)− sq
N (µ)) . (35)

Replacing now (35) in (34), we get

± (sq(µ)− sq
N (µ)) ≤ κg(µ)

4

∫
I

â(ê± q, ê± q) dt.

The rest of the proof follows similarly to that of the continuous case.

To measure the quality of the computed bounds, we define the a posteriori effectivity index η(µ), as the
ratio of the computed error over the true error in the output prediction

η(µ) =
∆q(µ)

|sq(µ)− sq
B(µ)|

.

According to the previous theorem, the prediction of the error in the output will overestimate the true error
and therefore the effectivity will always be larger than one, η(µ) ≥ 1, ∀µ ∈ D. One needs to be careful with
the definition of the effectivity above: for certain parameters, it might happen that the output prediction
sq

B(µ) is very close to the true error sq(µ) (in the worst case, equal)1 and this implies large effectivities (in
the worst case, infinite). This might not necessarily mean that the reduced-basis prediction is inaccurate:
in these cases we need to look at the bound gap and its magnitude. When interpreting the effectivity it is
best to compute the average value (or the median) of the effectivity for a large number of test points. Large
effectivities (on the average) suggest that the computed error bound largely overestimates the true error and
therefore the bounds obtained are not sharp. This implies that for a given accuracy, the error estimator
suggests the use of a larger-than-required number of basis functions and this leads to an unnecessary increase
in the computational cost. For efficiency, it is therefore desired that the effectivities will be as close to one as
possible. The choice of â and g(µ) is critical to obtain good effectivities; for a discussion see [16]. For better
effectivities, it is possible to choose different â and g(µ) which satisfy (14) only in subregions of the parameter
domain. Also the more general bound conditioners, developed in [22] for elliptic coercive problems, can also
be extended to the parabolic case.

6 Results

We consider the problem of designing the thermal fin of Figure 1 to cool (say) an electronic component at
the fin base, Γroot. The ith “radiator” of the fin has thermal conductivity ki (normalized relative to the

1Indeed sq(µ) is a real number and by chance sq
B(µ) might be equal to sq(µ) but this does not imply anything on the

approximation of the function u.
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conductivity of the central post), and the fluid surrounding the fin is characterized by the heat convection
coefficient expressed in non-dimensional form by a Biot number Bi. The fin geometry is described by the
radiator length β and the thickness α, both non-dimensionalized with respect to the width of the fin base.
We thus have P = 7, with a typical point µ ∈ D ⊂ R7 given by µ = {k1, k2, k3, k4,Bi, α, β}.

Initially, the non-dimensional temperature is u0(µ) =
Bi

k4

k3

k0

k2

k1

Ωout

Γroot

β

α

Figure 1: Two-dimensional thermal fin

0. A uniform heat flux is applied at the root of the fin
at t = 0 and remains on until the final time t = T ≡ 3.
The temperature increases until it reaches the final value
u(T−;µ). On the original domain the bilinear form is
given by, ã(w, v;µ) =

∫
Ω̃0
∇w · ∇v +

∑4
i=1 ki

∫
Ω̃i
∇w ·

∇v+Bi
∫

∂Ω̃\Γroot
wv; with Ω̃0 the fin central-post domain,

and Ω̃i the ith radiator domain. We then map the origi-
nal domain Ω̃ to a reference geometry Ω, shown by solid
lines in Figure 1. The original bilinear form ã(w, v;µ)
is replaced by a(w, v;µ) defined in the fixed domain Ω
— the variable geometry appears as domain-dependent
effective orthotropic conductivities and Bi numbers. Sim-
ilarly, the L2-inner product (w, v)L2(Ω̃) is replaced by
(w, v)L2(Ω) ≡ b(w, v;µ), defined on the fixed domain —
the variable geometry also makes the L2-inner product
parameter-dependent. We consider two outputs: the
first, is the mean temperature of the base Γroot averaged over the time interval (0, T ):

s1(µ) ≡ s1(u(·;µ)) =
1
T

∫
I

∫
Γroot

u(t;µ) dS dt;

the second, is the mean temperature in the shaded region Ωout (with area AΩout) at the final time t = T :

s2(µ) ≡ s2(u(t;µ)) =
1

AΩout

∫
Ωout

u(T−;µ).

Both outputs are, to a certain extent, indicators of the cooling performance of the fin.
Taking advantage of the natural domain decomposition afforded by our mapping, it is not difficult to

cast the problem such that the affine decomposition assumption is verified:

a(w, v;µ) =
Qa∑
q=1

σq
a(µ)aq(w, v), ∀w, v ∈ V 2, and

b(w, v;µ) =
Qb∑
q=1

σq
b (µ)bq(w, v), ∀w, v ∈ L2(Ω);

with Qa = 16 and Qb = 3. Choosing

â(w, v) =
Qa∑
q=1

aq(w, v) =
∫

Ω

∇w · ∇v +
∫

∂Ω\Γroot

wv,

and g(µ) = minq∈{1,...,Qa} σ
q
a(µ) (the σq

a(µ) are all bounded below by a positive constant), we are able to
verify (14). Thus all the requirements are honored, and the bound method can be applied.

We choose the total (non-dimensional) height of the thermal fin Ĥ = 4, and the length and height of the
radiators α̂ = 2.5 and β̂ = 0.25 respectively; the reference geometry Ω̂ is thus completely defined. To obtain
the “exact” solution: first, for the spatial discretization, we introduce a very fine triangulation Th and define

13



N = M
|s1N (µt)− s1(µt)|

s1(µt)
|s2N (µt)− s2(µt)|

s2(µt)
8 1.22e− 01 2.03e− 01
20 3.15e− 03 6.41e− 03
40 1.18e− 04 4.61e− 04
60 3.91e− 05 3.02e− 05
80 1.16e− 06 2.56e− 06
100 7.42e− 07 1.22e− 06
120 1.74e− 08 2.46e− 07

Table 1: Relative error by the reduced-basis prediction of the outputs of interest for different values of
N = M .

the finite-element space V ≈ Vh = {v ∈ H1(Ω)|v|Th
∈ P1,∀Th ∈ Th} with piecewise linear polynomials over

each of the elements Th; and second, for the temporal discretization, the discontinuous Galerkin method
is used with q = 0 and the time interval Ī = [0, 3] is partitioned into L = 30 intervals of uniform length
∆τ l ≡ ∆τ = 0.1, ∀l ∈ L. (The same parameters are used for the reduced-basis problems.)

Next in the definition of our problem, is the specification of the ranges for each of the input parameters.
We choose a parameter space as follows: D = [0.01, 100.0]4 × [0.001, 10.0] × [0.2, 0.6] × [2.3, 2.8], that is
0.01 ≤ k1,2,3,4 ≤ 100.0, 0.001 ≤ Bi ≤ 10.0, 0.2 ≤ α ≤ 0.6 and 2.3 ≤ β ≤ 2.8. Points in this parameter
space — for example, for the construction of the sample sets Spr

N and Sdu
M — are obtained by sampling

“log-randomly” (see Section 3). A point µ ∈ D, describes a particular configuration. For example, µt =
{0.4, 0.6, 0.8, 1.2, 0.1, 0.3, 2.8} represents a thermal fin with k1 = 0.4, k2 = 0.6, k3 = 0.8, k4 = 1.2, Bi = 0.1,
α = 0.3, and β = 2.8; this particular configuration will be used as a test point µt in the following numerical
experiments.

For the construction of the primal reduced-basis space we sample D and obtain a number of points µpr
i .

For each of these points the primal problem is solved and the reduced-basis vectors are obtained by taking
“snapshots” of the solution at different times. The sampling times or the number of snapshots can vary
arbitrarily from one configuration to the next; in the following, for each configuration, four “snapshots”
were obtained at t = 1∆τ, 10∆τ, 20∆τ, and 30∆τ . For example if N = 20, five different configurations
were considered, each giving four basis vectors for the construction of the reduced-basis space. For the dual
reduced-basis space the same procedure is followed, solving the dual problem for a different set of parameter
points and taking “snapshots” of the solution at t = 29∆τ, 20∆τ, 10∆τ, and 0∆τ .

As a first test, we study the convergence of the reduced-basis solution to the exact one. For this, we sample
log-randomly the parameter space D and construct reduced-basis spaces of increasing dimension N = M .
Using these spaces we compute, for the test point µt, the reduced-basis solution and the two outputs of
interest. In Table 1, the error in the prediction of the adjoint-corrected output relative to the exact value,
is shown for increasing values of N . We can see that, for both outputs, the output prediction converges
very fast to the exact value, albeit at a different rate for each output. If, for example, a 1% accuracy is
required — which is sufficient in many engineering applications, — then only N = 20 basis functions would
be sufficient. This implies that the incremental cost for each new output evaluation is very small; depending
on the dimension of the space Vh, the computational savings can be of several orders of magnitude. For
sufficiently large values of N , M the vectors that comprise the reduced basis spaces are closely related and
this leads to ill-conditioning problems. Indeed in our case increasing N , M above 120, ill-conditioning leads
first to deterioration of the convergence rate and eventually to incorrect results. The issue of ill-conditioning
in the reduced-basis context is very important, but an analysis will not be further pursued; first, because
we are usually interested in the pre-asymptotic region (small values of N); and second, because even for
the conservative triangulation used here, the discretization error is of the same order of magnitude as the
reduced-basis error when N = M = 80 — using higher values for N is not relevant except, maybe, for testing
the convergence rate.
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N 20 40 60 80 100
M 100 80 60 40 20

∆1(µt) 1.10e− 03 7.62e− 04 8.39e− 04 1.22e− 03 9.98e− 04
∆2(µt) 2.78e− 03 2.10e− 03 2.33e− 03 3.25e− 03 3.47e− 03
η1(µt) 34.2 53.0 13.7 41.7 106.1
η2(µt) 184.8 22.3 16.5 33.1 88.2

Table 2: Bound gap and effectivities for the two outputs of interest, for different choices of N = dimW pr
N

and M = dimW du
M (N+M=120).

The choice of the sample set Spr
N , is critical for the approximation properties of W pr

N . For the same N ,
different choices for Spr

N can give different reduced-basis spaces and consequently different output approxi-
mations; relatedly the approximation error can vary significantly for different test points µ ∈ D. Moreover,
even for the same sample set Spr

N , the error for different outputs can be quite different. For example, in
Table 1, for N = 40 and the particular point µt, the error in the prediction of the second output is four times
larger compared to the error in the first output. Ascertaining the accuracy of our predictions without, of
course, computing the exact solution, is therefore critical for the successful application of the reduced-basis
method; the importance of efficient and reliable methods to a posteriori estimate the error in our predictions
should be clear.

We turn now to the a posteriori error estimator procedure and investigate its behavior in the context
of the model problem. To calculate the bounds, we need to solve using the reduced-basis method both the
primal problem of dimension N , and the dual problem of dimension M . These dimensions determine the
accuracy of the approximation to each of the problems and can, in principle, be chosen independently. To
understand how this choice affects the accuracy of the predictions, we fix the total dimension N +M = 120
and choose different combinations for N and M . In Table 2, for the particular point µt and the two outputs
of interest, the bound gap ∆(µt) and the effectivity η(µt) are presented for different choices of N and M .

To understand the behavior the bound gap, recall that it is defined (29) as the product of norms of
representations to the primal êpr and dual errors êdu — which are directly related to the true errors. As
N increases the error in the primal solution becomes smaller, while at the same time, M is decreasing and
the error in the dual solution becomes larger. Therefore, as we can verify from Table 2, the bound gap
does not change appreciably for the different N and M . The small variations can also be attributed to the
different selection of basis functions in the formation of the reduced-basis spaces. On the other hand, the
dual correction term in the output approximation (27), ensures that the output will be more accurate when
either N or M are large. In these cases the error in the output is small and given that the bound gap does
not change significantly, justifies the higher effectivities. The discussion above suggests that, for a given
accuracy — as dictated by the bound gap ∆(µ), — we can choose N or M arbitrarily, such that the total
number of basis functions is constant. On one side, we have the case M = 0 (N = 0), which corresponds to a
pure primal (dual) problem; on the other, we can have a mixed approach with N = M . The computational
cost for the second case is roughly two times smaller in the off-line stage and four times smaller in the
on-line. The use of both the primal and the adjoint problems is thus dictated by computational efficiency
considerations.

As a final test, we choose N = M and for the test point µt, we vary the dimension of the reduced-basis
spaces. The behavior of the bound gap as a function of N = M is shown in Figure 2, and of the effectivity
in Figure 3. Despite the relatively high dimension of the parameter space, we observe the good accuracy
and rapid convergence of the bound gap. Also, given that the effectivity remains bounded for all values
of N , we conclude that the bound gap converges at the same rate as the true error in the output. This
suggests that instead of using the high-dimensional model to evaluate outputs for different parameter points,
we can replace it with a reduced-basis model. Due to the rapid convergence only a few basis functions are
required and therefore we can obtain high efficiency. In addition, we recover certainty as the error bounds
validate the accuracy of the reduced-basis predictions. In terms of computational effort, the off-line stage
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Figure 2: Convergence of the bound gap as a func-
tion of N(=M), for the point µt.
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Figure 3: Effectivity as a function of N(=M) for
the point µt. Note the presence of two outliers for
N = 13, 38 that do not correspond to accidents on
the convergence of the bound gap but better approx-
imation for sq

B(µt) from which we shouldn’t conclude
that it is necessary to change N .

requires, typically, a few hundred solutions of the continuous problem — depending on the number of basis
functions and the parametric complexity of the bilinear forms. But then the on-line cost, for each new
configuration µ ∈ D is typically more than a hundred or a thousand times smaller — depending on the
dimension of Vh. The computational advantages in the limit of many evaluations, should be obvious. More
realistic applications, as well as integration of these components in an optimization or design framework will
be addressed in a future paper.
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