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Our knowledge of the pathophysiology of affect dysregulation has progressively increased,
but the pharmacological treatments remain inadequate. Here, we summarize the cur-
rent literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in
major depression and other neurological disorders that also include mood disturbances.
We focus on direct evidence in the human postmortem brain, and review rodent
genetic and pharmacological studies probing the role of the somatostatin system in
relation to mood. We also briefly go over pharmacological developments targeting the
somatostatin system in peripheral organs and discuss the challenges of targeting the
brain somatostatin system. Finally, the fact that somatostatin deficits are frequently
observed across neurological disorders suggests a selective cellular vulnerability of
somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes
are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunc-
tion, high inflammatory response, high demand for neurotrophic environment, and
overall aging processes. Together, based on the co-localization of somatostatin with
gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron sub-
types, and its temporal-specific function, we discuss the possibility that deficits in
somatostatin play a central role in cortical local inhibitory circuit deficits leading to
abnormal corticolimbic network activity and clinical mood symptoms across neurological
disorders.
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INTRODUCTION
Mood disturbances are commonly observed in many neuro-
logical disorders. The chronic, recurrent and long duration
of mood disturbances not only place an enormous emotional
and financial burden on patients, but also on their fami-
lies and society. Nearly 10% of all primary care office visits
are depression-related (Stafford et al., 2000), but only 30% of
patients with mood disturbances achieve remission with ini-
tial treatment (Trivedi et al., 2006). Somatostatin is a pep-
tide expressed in multiple organs. In the brain, somatostatin
(also known as somatotrophin release inhibiting factor and
often abbreviated as SST, SRIF, or SOM) acts as a modulatory
and inhibitory neuropeptide that is co-localized with gamma-
aminobutyric acid (GABA), and that is involved in regulating
multiple aspects of physiological and behavioral stress responses,
including inhibition of hypothalamic hormone release, amyg-
dala central nucleus output, and cortical local circuit integra-
tion of sensory input. Research advances over the past three
decades suggest a critical role for somatostatin in the patho-
physiology of mood disorders, and potential new therapeutic
strategies. Several recent reviews have summarized the role of the
somatostatin system, including in receptor subtypes (Patel, 1999;
Csaba and Dournaud, 2001), pharmacological developments
(Neggers and van der Lely, 2009), and during normal and patho-
logical aging (Patel, 1999; Viollet et al., 2008; Martel et al., 2012).

This article highlights current findings on the functional roles of
somatostatin in local neuronal circuits, and reviews somatostatin
deficits across neurological disorders, including neuropsychi-
atric disorders [e.g., major depressive disorder (MDD), bipolar
disorder, schizophrenia], and neurodegenerative disorders (e.g.,
Parkinson’s, Alzheimer’s, and Huntington’s diseases; Table 1).
This raises interesting questions, including first; whether the
somatostatin deficits observed in neurological disorders repre-
sent common, distinct, or partly overlapping mechanisms of
symptoms across disorders and, second, what may be the causes
and biological mechanisms underlying the selective neuronal vul-
nerability of somatostatin-expressing neurons. In addition, we
review somatostatin findings associated with affect regulation
at the genetic, cellular, and pharmacological levels in animal
studies. So far, these findings suggest that somatostatin deficits
across different brain systems and diseases may play a central
role in the affective symptom dimension rather than non-specific
signals in neurological disorders (Figure 1). As somatostatin
itself is not an ideal drug target, including for antidepres-
sant effect, we suggest that further studies characterizing the
intrinsic properties and biological vulnerabilities of somatostatin-
expressing neurons, may identify novel targets with implications
for understanding the function of local cell circuits and brain
regions underlying affective symptoms across several neurological
disorders.
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Table 1 | Low somatostatin in human neurological disorders.

Neurological disorders Brain region Pathological findings Reference

Major depressive disorder CSF Decreased Agren and Lundqvist (1984),

Kling et al. (1993), Molchan et al. (1993)

Dorsolateral prefrontal cortex Decreased (RNA expression) Sibille et al. (2011)

Anterior cingulate cortex Decreased (RNA expression) Tripp et al. (2011),

Tripp et al. (2012)

Amygdala Decreased (RNA and protein expression) Guilloux et al. (2012)

Schizophrenia CSF Decreased Bissette et al. (1986),

Reinikainen et al. (1990)

Dorsolateral prefrontal cortex Decreased (RNA expression) Morris et al. (2008),

Guillozet-Bongaarts et al. (2013)

Hippocampus Decreased (neuron number and density) Konradi et al. (2011a)

Caudal entorhinal cortex Decreased (neuron number and density) Wang et al. (2011)

Parasubiculum Decreased (neuron number and density) Wang et al. (2011)

Bipolar disorder Caudal entorhinal cortex Decreased (neuron density) Wang et al. (2011)

Parasubiculum Decreased (neuron density) Wang et al. (2011)

Hippocampus Decreased (neuron number and RNA expression) Konradi et al. (2011b)

Dorsolateral prefrontal cortex Decreased (RNA expression; trend level) Sibille et al. (2011)

Alzheimer’s disease CSF Decreased Bissette et al. (1986); Tamminga et al. (1987)

Temporal cortex Decreased (immune-reactivity) Rossor et al. (1980); Candy et al. (1985)

Frontal cortex Decreased (immune-reactivity) Davies and Terry (1981); Candy et al. (1985)

Hippocampus Decreased (gene expression per cell) Dournaud et al. (1994)

Parahippocampal cortex Decreased (neuronal density) Dournaud et al. (1994)

Parkinson’s disease CSF Decreased Dupont et al. (1982)

Frontal cortex Decreased (radioimmune-reactivity) Epelbaum et al. (1988)

Others Temporal cortex Decreased (immune-reactivity) Beal et al. (1986)

LOW SOMATOSTATIN IN NEUROPSYCHIATRIC AND
NEURODEGENERATIVE DISORDERS
MAJOR DEPRESSIVE DISORDER
Patients with major depressive disorder (MDD) show decreased
somatostatin levels in the cerebrospinal fluid (CSF; Agren and
Lundqvist, 1984; Molchan et al., 1991; Kling et al., 1993), and tran-
siently decreased CSF somatostatin which normalize with recovery
in MDD (Rubinow et al., 1985; Post et al., 1988). Evidence for low
levels of CSF somatostatin was found to correlate significantly
with elevated urinary cortisol in MDD patients (Molchan et al.,
1993). This is consistent with the altered hypothalamic-pituitary-
adrenal (HPA) axis function described in some depressed patients
(Holsboer, 2000). The route and characterization, however, from
CSF somatostatin to MDD pathophysiology is not direct, poten-
tially due to a paucity of information on factors regulating CSF
somatostatin, and to inconclusive somatostatin/HPA axis studies
in MDD patients. Hence, despite these early findings, interest in
somatostatin in mood disorders has declined over time.

Human post-mortem studies from our group have described
region-specific somatostatin deficits in MDD patients, includ-
ing a down-regulation of somatostatin gene expression in the

dorsolateral prefrontal cortex (dlPFC), subgenual anterior cingu-
late cortex (sgACC), and amygdala (Sibille et al., 2011; Tripp et al.,
2011, 2012; Guilloux et al., 2012). In addition, two peptides co-
localized with somatostatin, neuropeptide Y and cortistatin, are
both significantly down-regulated in MDD patients (Tripp et al.,
2011, 2012).These three neuropeptides (somatostatin, neuropep-
tide Y, and cortistatin) are markers of GABAergic neurons that
specifically target the dendritic compartment of pyramidal cells
(de Lecea et al., 1997; Viollet et al., 2008), and that are essential
in gating incoming sensory information (Figure 1). Other types
of GABAergic cell markers, such as parvalbumin and cholecys-
tokinin, are mostly not affected by MDD (although see Tripp et al.,
2012). Interestingly, these somatostatin deficits were systematically
more robust in female subjects across cohorts and regions (Sibille
et al., 2011; Tripp et al., 2011, 2012; Guilloux et al., 2012), consis-
tent with the female heightened vulnerability to develop MDD,
and suggesting that low somatostatin may represent a molec-
ular correlate of sexual dimorphism in vulnerability to affect
dysregulation. Notably, these findings are also consistent with
earlier postmortem studies showing reduced calbindin-positive
cell numbers in MDD (Rajkowska et al., 2007; Maciag et al.,
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FIGURE 1 | Schematic of somatostatin signaling, pathological regulators

and biological functions relevant to affect regulation. Somatostatin
pathway activity is responsive to (left panel), and regulates (right panel),
several biological events, and molecular and cellular properties that have
been linked to mood disturbances. Somatostatin and somatostatin-

expressing interneurons are key conduits for regulating incoming information
and pyramidal cell function. In contrast, other GABA neurons subtypes
targeting the perisomatic pyramidal cell compartment are mostly not affected
in major depression. NPY, neuropeptide Y; PYR, pyramidal neuron; PV,
parvalbumin.

2010), as somatostatin is mostly expressed in a subgroup of
calbindin-positive cells (reviewed in Viollet et al., 2008). Converg-
ing evidence from down-regulation of somatostatin co-localized
GABA markers in MDD across multiple human post-mortem
studies suggests that this particular GABA subpopulation in the
forebrain is selectively vulnerable, among other subtypes of GABA
neurons. Furthermore, these local cell circuit-based findings intro-
duce a new role for somatostatin in depression, which is distinct
from its previously investigated role in the regulation of the HPA
axis (Rubinow et al., 1983; Molchan et al., 1993; Weckbecker et al.
2003).

OTHER NEUROPSYCHIATRIC DISORDERS
Schizophrenia is a neuropsychiatric disorder characterized by
positive (e.g., hallucination), negative symptoms (e.g., emo-
tional blunting, apathy) and cognitive symptoms. Somatostatin
deficits in schizophrenia are demonstrated by a reduction of
CSF somatostatin (Bissette et al., 1986; Reinikainen et al., 1990),
decreased somatostatin gene expression in the dlPFC (Mor-
ris et al., 2008; Guillozet-Bongaarts et al., 2013), and decreased
number and density of somatostatin-expressing neurons in the
hippocampus (Konradi et al., 2011a), caudal entorhinal cortex
and parasubiculum (Wang et al., 2011). Changes in somatostatin
are also identified in bipolar disorder, which is clinically char-
acterized by fluctuating mood. Studies in subjects with bipolar
disorder indicate decreases in somatostatin cellular density in the
caudal entorhinal cortex and parasubiculum (Wang et al., 2011),
number of somatostatin-expressing neurons in the hippocampus
(Konradi et al., 2011b), somatostatin gene expression in the dlPFC
(trend level; Sibille et al., 2011) and hippocampus (Konradi et al.,

2011b). In addition, patients with bipolar disorder show elevated
CSF somatostatin during manic states (Sharma et al., 1995).

NEURODEGENERATIVE DISORDERS
Alzheimer’s disease is a neurodegenerative disease with neu-
ropsychiatric symptoms (Bungener et al., 1996). Decreased CSF
somatostatin (Bissette et al., 1986; Tamminga et al., 1987) and
decreased somatostatin immune-reactivity across cortical and
subcortical regions is reported in subjects with Alzheimer’s dis-
ease, including temporal cortex, frontal cortex, and hippocampus
(Davies et al., 1980; Rossor et al., 1980; Davies and Terry, 1981;
Candy et al., 1985; Dournaud et al., 1994). Depression is a com-
mon comorbid symptom in Parkinson’s disease and predicts
greater disability at any assessment point (Aarsland et al., 1999).
Decreased CSF somatostatin, decreased somatostatin immuno-
reactivity, and binding sites are also observed in the temporal
cortex and frontal cortex of patients with Parkinson’s disease (Beal
et al., 1986; Epelbaum et al., 1988). Notably, reduced CSF somato-
statin in Parkinson’s disease appears to be irreversibly present at
the onset of symptoms (Dupont et al., 1982).

REDUCED SOMATOSTATIN AND LOW MOOD?
The evidence outlined in this review provides only a glimpse of the
potential full range of somatostatin deficits across neurological dis-
orders, as multiple other brain regions and disease categories await
further characterization (Table 1). Taken together, the cumula-
tive evidence demonstrates that somatostatin deficits are common
neurochemical and molecular features in individuals with neuro-
logical disorders, regardless of their categorical diagnosis. While
somatostatin studies of cell number and gene expression in human
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postmortem brains suggest a specific alteration of somatostatin-
positive neurons across neurological disorders, it is possible
that changes and dys-synchronization of additional components
of local neuronal circuits contribute to a common symptom
dimension, which we speculate includes low affect and mood dys-
regulation. Hence, this review is not comprehensive, but rather,
highlights the recent findings in brain somatostatin signaling and
the potential role of somatostatin deficits in affect dysregula-
tion for integrating categorical models of mood symptoms into
a dimensional model across neurological disorders.

SOMATOSTATIN: GENES, NEURONS AND PHARMACOLOGY
SOMATOSTATIN SIGNALING
Somatostatin is a modulatory neuropeptide that synergizes with
GABA-mediated inhibition, and that specifically targets the
distal dendritic compartment of pyramidal neurons in corti-
cal local circuits (Kawaguchi and Kubota, 1997; Gentet et al.,
2012). Somatostatin inhibits release of numerous hormones from
the hypothalamus, including corticotrophin releasing hormone
(CRH; Wang et al., 1987; Patel, 1999). The somatostatin gene prod-
uct is composed of 14 or 28 amino-acid residues. Both forms of
somatostatin, somatostatin-14 and somatostatin-28, are generated
by tissue-specific post-translational processing of the 116 amino-
acid pre-pro-somatostatin peptide (Warren and Shields, 1984;
Tostivint et al., 2008). Somatostatin-14 is predominantly produced
in the central nervous system (CNS) but also in many peripheral
organs (Epelbaum, 1986). Somatostatin-28 is mainly synthesized
along the gastrointestinal tract (Fitz-Patrick and Patel, 1981). The
5′-upstream sequence of the somatostatin gene contains cyclic-
AMP response element (CRE; Montminy et al., 1986), making
its expression activity-dependent. Thus, somatostatin expression
is preferentially altered by various stressors, such as seizures
(Vezzani and Hoyer, 1999; Tallent and Qiu, 2008) and electri-
cal foot shock (Ponomarev et al., 2010). Moreover, mice with
conditional homozygous and constitutive heterozygous brain-
derived neurotrophic factor (Bdnf) knockout or disruption of
exon IV-expressing Bdnf transcripts show decreased somatostatin
gene expression (Glorioso et al., 2006; Martinowich et al., 2011;
Guilloux et al., 2012), demonstrating that somatostatin expression
depends on Bdnf signaling. However, the molecular mechanisms
by which this neurotrophic factor controls somatostatin and
somatostatin-expressing neurons are still unknown.

Somatostatin, cortistatin and their receptors are closely inter-
twined systems (de Lecea et al., 1996, 1997; reviewed in Spier and
de Lecea, 2000; de Lecea, 2008). Sharing high structural homology
with somatostatin, cortistatin binds to all somatostatin receptor
subtypes and is known to be regulated by exon IV-expressing
Bdnf transcripts (Martinowich et al., 2011). However, distinct
from somatostatin, cortistatin binds to additional receptors (e.g.,
growth hormone secretagogue receptor 1a and Mas-related gene
X2 receptor) (Robas et al., 2003; Siehler et al., 2008) and has
different physiological properties (e.g., activation of cation selec-
tive currents not responsive to somatostatin; Spier and de Lecea,
2000), suggesting that somatostatin and cortistatin may both con-
tribute to affect regulation in an integrated, yet differential mode.
The intracellular pathway of somatostatin signaling coupled to
all five somatostatin receptors subtypes (Sst1−5) is through the

activation of inhibitory G protein (Gi) and the following inhi-
bition of adenylyl cyclase, leading to reduction of cAMP levels,
activation of phosphotyrosine phosphatases, and modulation of
mitogen-activated protein kinases and phospholipase C (Koch and
Schonbrunn, 1984; Koch et al., 1988).

Sst1−5 present different patterns of coexpression in the brain
(Kluxen et al., 1992; Moller et al., 2003; reviewed in Martel et al.,
2012). Sst1 is found in retina, basal ganglia and hypothalamus,
Sst2 is highly abundant in several telencephalic structures (neo-
cortex, hippocampus, and amygdala), Sst3 immunoreactivity has
only been described in neuronal cilia (Schulz et al., 2000), Sst4
is expressed in olfactory bulb, cerebral cortex and CA1 region of
the hippocampus (Schreff et al., 2000), and expression of Sst5 has
been detected in cerebral cortex, hippocampus, amygdala, pre-
optic area, and hypothalamus (Stroh et al., 1999; Strowski et al.,
2003; Olias et al., 2004). Interestingly, when co-expressed in the
same cells, Sst5 influences Sst2 internalization and trafficking and
modulates cellular desensitization to the effects of somatostatin-14
(Sharif et al., 2007), suggesting that the precise actions of somato-
statin depend on the specific interaction of the Sst1−5 receptors
expressed locally in each brain region.

GENETIC POLYMORPHISMS IN THE SOMATOSTATIN SYSTEM
The relatively high degree of amino acid conservation across
species indicates that somatostatin-related genes have been
highly constrained during evolution (Patel, 1999; Olias et al.,
2004). Accordingly, there are currently very few reports linking
somatostatin gene polymorphisms with neurological disorders.
A primate-specific single nucleotide polymorphism (SNP) in
the human somatostatin gene [C/T polymorphism (rs4988514)]
is associated with increased risk in Alzheimer’s disease pro-
gression and additive effect with the APOE epsilon4 allele
(Vepsalainen et al., 2007; Xue et al., 2009), although this was not
confirmed in larger genome-wide association studies (GWAS)
(Hollingworth et al., 2011; Guerreiro et al., 2013). Leu48Met and
Pro335Leu SNPs in the SST5 gene are of potential significance to
patients with bipolar disorder (Nyegaard et al., 2002), but no asso-
ciations of SST5 SNPs are found in patients with autism (Lauritsen
et al., 2003). The paucity of associations with somatostatin gene
variants is surprising and may reflect either strong negative selec-
tion against genetic variations in this gene, or alternatively, dilution
of signal due to heterogeneity of DSM-IV-based cohorts in genetic
association studies. So, dimensional phenotypes, as defined by
clusters of mood symptoms, which are closer to gene functions
may have implications for future genetic studies of somatostatin
and other genes.

SOMATOSTATIN-EXPRESSING NEURONS: DIVERSITY AND ROLES
Gamma-aminobutyric acid (GABA) neurons are a diverse group
of inhibitory cells which co-release neuropeptides in order to sup-
port a fine-tuning of neuronal signaling and architecture. The local
inhibitory circuits provide spatiotemporal control of information
processing through at least 20 subtypes of cortical GABA neurons,
which are based on their expression of different calcium binding
proteins and neuropeptides, localization, targeting, and differ-
ential electrophysiological properties. Recent detailed reviews on
GABA neuron subpopulations have been published (Csaba and
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Dournaud, 2001; Di Cristo et al., 2004; Markram et al., 2004; Tan
et al., 2008; Fishell and Rudy, 2011; Gentet et al., 2012; DeFelipe
et al., 2013; Le Magueresse and Monyer, 2013). Approximately 20–
30% of GABA neurons in the mouse somatosensory cortex express
somatostatin (Lee et al., 2010; Rudy et al., 2011), and 40–50% of
GABA neurons contain parvalbumin without overlapping with
somatostatin in the frontal cortex, primary somatosensory cortex
and visual cortex of mouse (Gonchar et al., 2007; Xu et al., 2010)
and the visual cortex of rat (Gonchar and Burkhalter, 1997).

Recent reports focusing on the patterns of cortical neu-
ronal connectivity show that somatostatin-expressing interneu-
rons mediate the firing of pyramidal neurons with a fine level
of specificity among cortical layers. Integrating optogenetic and
electrophysiology approaches, mouse somatostatin-expressing
interneurons in layer 2/3 of the somatosensory cortex provide
a tonic inhibition to the distal dendrites of excitatory pyramidal
neurons by sharpening selectivity during periods of quiet wake-
fulness, which may contribute to synchronized firing in cortical
networks and sensorimotor integration (Gentet et al., 2012). Inter-
estingly, in mouse somatosensory cortex, somatostatin-expressing
interneurons show a spatially precise connectivity with pyrami-
dal neurons through direct targeting in layers 2/3 or indirectly
through inhibition of local parvalbumin interneurons in layer 4
(Xu et al., 2013). Moreover, in layers 2/3 of the mouse prefrontal
cortex, somatostatin-expressing interneurons compartmentalizes
inhibitions of calcium signaling to spine heads, not shafts, sug-
gesting that dendrite-targeting inhibition through somatostatin-
expressing interneurons may contribute to downstream cellular
processes such as synaptic plasticity (Chiu et al., 2013). In mouse
visual cortex, somatostatin-expressing interneurons are found to
mediate response levels of specific subsets of pyramidal neu-
rons whereas parvalbumin-expressing neurons alter response gain
(Wilson et al., 2012). Parvalbumin-expressing neurons receive
excitatory input from the thalamus and make strong synapses on
the soma and axons of their target cells (Kawaguchi and Kubota,
1997) to control spike timing of the output neurons. In contrast,
somatostatin-expressing neurons mostly do not receive input from
thalamus (Beierlein et al., 2003; Cruikshank et al., 2010) and are
instead activated through feed-forward mechanisms by activated
pyramidal neurons. Somatostatin-expressing interneurons prefer-
entially target distal dendrites of pyramidal neurons in layer 2/3 to
modulate the processing of incoming sensory information before
it is integrated at the soma level (Di Cristo et al., 2004; Markram
et al., 2004; Tan et al., 2008; Murayama et al., 2009; Xu et al., 2013).
Hence, the distinct GABAergic and prototypical inhibitory pop-
ulations, expressing either parvalbumin or somatostatin, shape
the spatiotemporal control of multiple post-synaptic potentials in
cortical local circuits, and provide a framework to investigate the
role of inhibitory circuits in physiology and pathology.

GENETIC APPROACHES TO INVESTIGATE THE SOMATOSTATIN SYSTEM
Mice mutant for somatostatin were created by deleting the cod-
ing region of the pre-pro-somatostatin (the last ten codons of
the first exon; Zeyda et al., 2001). Somatostatin knockout (KO;
SstKO) mice show intact motor coordination and motor learning,
but have a significant impairment in motor learning as demands
of motor coordination are increased. Overall, a detailed analysis

demonstrated that SstKO mice are healthy, fertile, and show no
overt behavioral phenotypes, including anxiety-like behavior in
the open-field and fear conditioning tests. Notably, SstKO mice
display high basal plasma levels of corticosterone and growth hor-
mone (Zeyda et al., 2001), confirming a somatostatin-mediated
inhibition of HPA axis function. Similarly, mice lacking indi-
vidual Sst1−5 receptors have been tested in numerous biological
fields. Of these, Sst2 emerged as the primary receptor of inter-
est (Zeyda and Hochgeschwender, 2008), and Sst2

KO mice display
increased anxiety-like behavior in the elevated plus maze and open
field, increased immobility in the forced swim test, decreased loco-
motion coupled with an increase of pituitary adrenocorticotropic
hormone release instead of growth hormone (Viollet et al., 2000).
In line with the observed changes in Sst2

KO mice, acute predator
stress in rats led to up-regulated Sst2 gene expression in the amyg-
dala and cingulate cortex, shown correlated with Fos expression
in the amygdala (Nanda et al., 2008). As the product of a different
gene, cortistatin shares a high structural and functional similar-
ity with somatostatin-14 (de Lecea et al., 1996, 1997). Notably,
compared with the weak inhibitory effects of somatostatin on
the basal release of CRH from rat hypothalamus and hippocam-
pus, cortistatin exhibits strong inhibition of the expression and
release of basal CRH (Tringali et al., 2012). These findings sug-
gest that Sst2 may regulate affective phenotypes and HPA axis
responses both through somatostatin and cortistatin. Given the
limitations of human studies, SstKO mice provide an opportunity
to explore the causal role of somatostatin in affect dysregulation
and the underlying neural mechanisms. Such insights, however,
will require systematic behavioral characterization with fine spa-
tial and temporal resolution by including female cohorts and
region-specific manipulation at different developmental stages.
Based on the published studies to date, it is still unclear whether
these mutants recapitulate behavioral features of mood disorders.
Knowing the effects of somatostatin signaling on neuroendocrine
regulation, future studies need to assess the molecular and cellu-
lar systems that somatostatin mutations converge upon, and where
the exact neural circuits are affected. Moreover, combining genetic
and environmental factors in animal models is critical to enhance
the accuracy of disease modeling and translational efforts. For
example, acute or chronic exposure to stress or to stress hormones
may capture how such etiological factors determine the vulnera-
bility to external insults, in contrast to baseline behavioral testing.
In addition, mood disorder-related sex differences are observed
in community-based epidemiological studies, where the factor of
seeking treatment is removed (Kornstein et al., 2000; Festinger
et al., 2008; Leach et al., 2008) and findings of low somatostatin in
the amygdala appear more robust in postmortem studies of female
MDD subjects (Tripp et al., 2012), suggesting that gender/sex may
represent a biological predisposing factor, or at least a moderating
factor, in the intrinsic vulnerability of the somatostatin system.

Although many mood disorders emerge during adolescence
(Paus et al., 2008), behavioral abnormalities including affect dys-
regulation are often heritable and apparent before diagnostic crite-
ria are met (McGuffin et al., 2003; Geller et al., 2006). It is unclear
when somatostatin deficits occur and potentially begin to con-
tribute to the formation of affective symptoms. Tracking somato-
statin system using new anatomic techniques with refined cellular
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definition, from Brainbow (Livet et al., 2007) to CLARITY (Chung
et al., 2013) and SeeDB (Ke et al., 2013), across different develop-
mental stages may help identify age-dependent neural architecture
and disease mechanisms related to somatostatin function.

SOMATOSTATIN ANALOG DEVELOPMENT AND PHARMACOLOGICAL
STUDIES
As native somatostatin peptides have a very short half-life time
(approximate 1–3 min; Sheppard et al., 1979), long-acting and
highly potent somatostatin analogues are currently available for
the treatment of acromegaly and neuroendocrine tumors, includ-
ing octreotide (long-acting; LAR-OCT; Bauer et al., 1982) and
Lanreotide (slow release or autogel; Bevan, 2005; Molitch, 2008).
Compared to somatostatin, pharmacological tools of the five
somatostatin receptor subtypes have lagged behind, partly due
to the lack of high-affinity antagonists.

In addition, several novel somatostatin therapy models are
available: (1) Universal somatostatin (Schmid and Schoeffter,
2004): a somatostatin molecular analog with high binding affin-
ity to all or most human somatostatin receptors. An exam-
ple is SOM230, which interacts with Sst1,2,3,5 and particularly
potent at Sst5 compared with LAR-OCT; (2) Chimeric somato-
statin/dopamine molecule (Saveanu et al., 2002; Pivonello et al.,
2005): a somatostatin and dopamine hybrid agonist, based on
reports that dopamine and somatostatin receptors can hetero-
oligomerize to enhance functional responses (Rocheville et al.,
2000). An example is BIM-23A760, which accelerates the suppres-
sion of growth hormone and adrenocorticotropic hormone by
the interaction with Sst2 and Drd2 simultaneously; (3) Chimeric-
somatostatin vaccinations (Haffer, 2012): a fusion protein express-
ing chloramphenicol acetyl transferase protein and somatostatin.
Two somatostatin vaccinations, JH17 and JH18, can effectively
reduce weight gain and reduce final body weight percentage of
normal, non-obese mice and mice with diet-induced obesity via
the intra-peritoneal route; (4) Non-peptide antagonists, such as
SRA880 (Sst1 selective), ACQ090 (Sst3 selective) and Sst4 selective
β peptide agonists (Rivier et al., 2003; Hoyer et al., 2004). Despite
this extensive list, the practical use of somatostatin in the brain is
hampered by the multiple effects of the peptide, by the need for
small molecules targeting specific, high affinity receptors on the
target cells in specific brain regions, and by the need for feasible
routes of administration that lead to fast delivery into the brain.

The potential for using somatostatin analogues as treatment
in the CNS is emerging for treatment of epilepsy (Vezzani and
Hoyer, 1999; Tallent and Qiu, 2008), pain (Mollenholt et al., 1994;
Taura et al., 1994) and headaches (Sicuteri et al., 1984; Kapicioglu
et al., 1997); potential use for treatment of mood disorders is sug-
gested by reversal of emotion-like behaviors in rodent models.
Several pharmacological studies support a role of somatostatin in
affect regulation. Intra-ventricular administration of somatostatin
in rats produces anxiolytic- and antidepressant-like behaviors
in the elevated plus-maze and forced swim tests, and a neu-
rophysiological signature of anxiolytic drugs (e.g., reduction of
theta frequency and theta frequency curve slope; Engin et al.,
2008). Mice with intra-amygdalar and intra-septal microinfusions
of somatostatin-14 and somatostatin-28 display reduced anxiety-
like behavior in the elevated plus-maze and shock-probe tests

(Yeung et al., 2011). Moreover, anxiolytic effects in the elevated
plus-maze test are described after intra-cerebroventricular infu-
sions of a selective Sst2 receptor agonist, but not after infusions of
the other four receptor agonists; antidepressant-like effects in the
forced swim test are observed following infusions of either Sst2 or
Sst3 agonists (Engin and Treit, 2009). Another agent to enhance
somatostatin functioning, SRA880 (an antagonist of auto-receptor
Sst1), synergizes with imipramine in causing antidepressant-like
effects in the tail suspension test and increases Bdnf mRNA
expression in the mouse cerebral cortex (Nilsson et al., 2012).

EFFECTS OF ANTIDEPRESSANTS ON SOMATOSTATIN IN THE CNS
Significant efforts have been directed toward the characterization
of the downstream targets of antidepressant treatment, with a
focus on somatostatin. A recent study demonstrates that chronic
imipramine treatment increases somatostatin expression in mouse
hypothalamus (Nilsson et al., 2012). However, there is incon-
sistency regarding the effect of chronic citalopram treatment
on somatostatin levels in rats (Kakigi et al., 1992; Prosperini
et al., 1997; Pallis et al., 2006, 2009). Repeated administration of
imipramine, maprotiline, mianserin, carbamazepine or zotepine
has no effect on somatostatin levels in various brain regions of rats
(Weiss et al., 1987; Kakigi et al., 1992). While some somatostatin
receptors seem to exert anxiolytic or antidepressant-like effects,
there is no direct evidence supporting somatostatin receptors as
downstream targets of current antidepressants. Together, these
findings suggest that somatostatin levels are mostly unchanged
by antidepressants. It is unclear whether somatostatin, GABA, or
GABA functioning in somatostatin-expressing interneurons may
be the real mediators or antidepressant targets. Future studies are
needed to determine the involvement of somatostatin receptors
and associated intracellular signaling pathways in the therapeu-
tic effects of antidepressants, or whether somatostatin effects are
independent of current antidepressant modalities.

POTENTIAL MECHANISMS OF SELECTIVE VULNERABILITY
OF SOMATOSTATIN-EXPRESSING INTERNEURONS
It is possible that low somatostatin in diseases acts as a biomarker
for deregulated function of somatostatin-expressing neurons. As
such, it is essential to identify upstream factors responsible for
the dysfunction of somatostatin-expressing interneurons in neu-
rological disorders. We speculate that intrinsic cellular properties
in somatostatin-expressing neurons may determine their selec-
tive vulnerability to various insults. Pathways underlying this
high vulnerability may include high intrinsic oxidative stress
related to mitochondria, high sensitivity to inflammation, high
dependence on neurotrophic environment, and cellular devel-
opmental and aging processes. These canonical pathways might
provide novel cell-based perspectives in the treatment of affected
somatostatin-expressing cells across neurological disorders.

OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTIONS
Oxidative stress produced by mitochondria during respiration is
a common pathogenic mechanism implicated in neurological dis-
orders (Sorce and Krause, 2009; Stefanescu and Ciobica, 2012).
Depressed states in mood disorders are associated with decreased
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brain energy generation (Baxter et al., 1985, 1989). Mitochon-
drial dysfunction together with the oxidative stress accumulation
has been proposed to synergistically contribute to the neuro-
endangerment processes underlying depression (Gardner et al.,
2003; Burnett et al., 2005) and neurodegenerative diseases (Lin and
Beal, 2006; Mancuso et al., 2007; Petrozzi et al., 2007). Similarly,
high baseline oxidative stress could be an intrinsic characteris-
tic of vulnerable neuronal populations. Notably, neuronal nitric
oxide synthase (nNOS) and NADPH diaphorase (NADPHd), two
enzymes that produce reactive oxidative species, are extensively
and almost exclusively co-localized with somatostatin and neu-
ropeptide Y (Dun et al., 1994; Figueredo-Cardenas et al., 1996;
Jaglin et al., 2012), hence providing a neurochemical basis for
high susceptibility of somatostatin-expressing neurons to generate
oxidative stress in response to pathophysiological insults.

HIGH DEPENDENCE ON NEUROTROPHIC ENVIRONMENT
Brain-derived neurotrophic factor (BDNF) and its receptor neu-
rotrophic tyrosine kinase receptor type 2 (TrkB) have been
implicated in mood disorders (Guilloux et al., 2012; Tripp et al.,
2012). BDNF-TrkB signaling is one of the key mediators for
maintaining normal somatostatin gene expression (Glorioso et al.,
2006; Martinowich et al., 2011). Progressively impairing BDNF-
TrkB signaling in patients with mood disturbances may directly
impact the biology of somatostatin-expressing neurons, resulting
in somatostatin deficits. In addition, Bdnf-TrkB signaling itself
is vulnerable to increased inflammation (Goshen et al., 2008; Koo
and Duman, 2008; Song and Wang, 2011) and high glucocorticoids
insults (Hodes et al., 2012). Mild oxidative stress inhibits tyrosine
phosphatases activity (Barrett et al., 2005), potentially leading to
impaired TrkB downstream signaling. Cortistatin and neuropep-
tide Y expression partly overlaps with the somatostatin neuron
population in rodents (Figueredo-Cardenas et al., 1996; de Lecea
et al., 1997; Xu et al., 2010). Comparing the profile of gene changes
between subjects with MDD and mice with genetically-altered
Bdnf signaling suggest that the reduced somatostatin, neuropep-
tide Y and cortistatin are partly downstream from a combination
of reduced constitutive and activity-dependent Bdnf signaling
(Guilloux et al., 2012). In contrast, markers for other GABA neu-
ron subtypes targeting the perisomatic area region cell body and
axon initial segment of pyramidal neurons (i.e., cholecystokinin
and calretinin), appear to be independent of BDNF signaling and
unaffected in MDD patients (Guilloux et al., 2012; Tripp et al.,
2012). Hence, it is possible that the somatostatin-specific cellu-
lar function and vulnerability are partly mediated by BDNF-TrkB
signaling during both physiological and pathological processes of
affect regulation.

INFLAMMATION AND CELLULAR AGING
Inflammation has been implicated as a contributing factor in
the onset and progression of many neurological disorders (Di
Filippo et al.,2008). Mood disturbances are associated with an acti-
vated inflammatory response system (Padmos et al., 2008; Miller
et al., 2009), including increased levels of peripheral interleukins
and tumor necrosis factor-alpha in MDD patients (Kaestner
et al., 2005; Howren et al., 2009; Dowlati et al., 2010; Maes,
2011). Inflammatory illnesses are associated with more depressive

episodes (Celik et al., 2010; Maes et al., 2012), suggesting that
prior depression may sensitize inflammatory responses. Patients
treated with inflammatory cytokines, such as interferon-α, are
at greater risk of developing depressive episodes (Castera et al.,
2006; Lotrich et al., 2007). Somatostatin released from sensory
nerves and somatostatin receptors on peripheral blood mononu-
clear cells play a crucial role in anti-inflammation through
inhibition of pro-inflammatory peptide release (Szolcsanyi et al.,
1998; Kurnatowska and Pawlikowski, 2000; Helyes et al., 2004).
Rats with chronic inflammation induced by lipopolysaccharide
show decreased hippocampal somatostatin expression (Gavilan
et al., 2007). It is possible that there is crosstalk among periph-
eral inflammation, somatostatin function, and central effects
of somatostatin-expressing neurons. Hence, decreasing somato-
statin expression due to cellular impairment in the progress
of neurological diseases may further enhance inflammation in
a vicious cycle, leading to exacerbated cellular vulnerability of
somatostatin-expressing neurons.

Aging is associated with a considerable increase in
an activated, pro-inflammatory state (Wei et al., 1992;
Bruunsgaard and Pedersen, 2003), a decline in circulating levels
of Bdnf (Erickson et al., 2010), and increased oxidative dam-
age (Sohal and Weindruch, 1996). Somatostatin expression is
significantly decreased with age in human cortical regions, but
parvalbumin expression is not altered by age (Erraji-Benchekroun
et al., 2005; Glorioso et al., 2011). Similarly, the number of
hippocampal somatostatin-expressing interneurons decreases in
aged rats, but the number of parvalbumin-expressing neurons
remains the same (Vela et al., 2003). Somatostatin and IL-1β
mRNA expression are negatively correlated in aged hippocampus
of rats (Gavilan et al., 2007). Comparing the effects of aging on
somatostatin expression in the sgACC, an accelerated reduction is
found in patients with MDD compared to normal aging subjects
(Tripp et al., 2012), suggesting a pattern resulting in an early aging
phenomenon which we have speculated may be synergistically
induced by normal age-related changes and depression-related
pathological change (Douillard-Guilloux et al., 2013).

CONCLUSION
Here we have focused on somatostatin, a GABA marker,
down-regulated in MDD, schizophrenia, bipolar disorder, and
neurodegenerative diseases. Exploring cross-disease molecular
(somatostatin) and cellular (somatostatin-expressing interneu-
rons) pathological findings suggests a dimensional pathological
phenotype that is specific to the somatostatin gene/cell biolog-
ical entity rather than to categorical brain disorders. Based on
these results we speculate that common risk factors affecting
somatostatin and somatostatin-expressing neurons may impact
information processing in the cortical local circuits (Figure 1).
Clarifying the role of somatostatin and its regulation of GABA
inhibition in affect regulation could provide new strategies for
predicting, delaying, and treating neurological diseases with
mood disturbances. A number of questions remain. For exam-
ple, are the prevalent somatostatin deficits seen in multiple
diseases reflected in a common symptom dimension, such as
low mood, across neurological diseases? What are the critical
events that determine the vulnerability of somatostatin-expressing
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neurons? And what are the pathogenic mechanisms that mediate
the observed disease-related molecular and cellular phenotypes?
One possibility is that inflammation, oxidative stress, aging,
and reduced neurotrophic support may all converge to affect
somatostatin-expressing neurons. Targeting these pathways may
exert neuro-protective effects on somatostatin-expressing neu-
rons, as a potential therapeutic approach with implications

for several neuropsychiatric disorders and neurodegenerative
diseases.
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