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Abstract—Binary low-density parity-check (LDPC) codes
perform very well on magnetic recording channels (MRCs) with
additive white Gaussian noise (AWGN). However, an MRC is
subject to other impairments, such as media defects and thermal
asperities. Binary LDPC codes may not be able to cope with these
impairments without the help of a Reed–Solomon code. A better
form of coding may be -ary LDPC codes, which have been shown
to outperform binary LDPC codes and Reed–Solomon codes on
the AWGN channel. In this paper, we report on our investigation
of -ary LDPC coded MRCs, both with AWGN and with burst
impairments, and we present a new reduced-complexity decoding
algorithm for -ary LDPC codes. We show that -ary LDPC
codes outperform binary LDPC codes in the presence of burst
impairments.

Index Terms—Belief propagation, iterative decoding, low-den-
sity parity-check (LDPC) codes, magnetic recording.

I. INTRODUCTION

B INARY low-density parity-check (B-LDPC) codes have
been shown to perform very well on additive white

Gaussian noise (AWGN) channels [1], [2], and have been
recommended for use on magnetic recording channels (MRCs)
[3]–[5]. However, magnetic recording channels have burst
impairments due to disk defects and thermal asperities (TAs),
which can severely degrade the performance of B-LDPC codes.

A disk defect can be modeled as the fading of the readback
signal, which in some cases can be completely erased and last
for hundreds of bits. A full erasure corresponds to the total
loss of the readback signal, while a half erasure corresponds
to the readback signal being reduced by a factor of two. When
a thermal asperity occurs, the readback signal saturates the
analog-to-digital converter, generating a noise burst in the
readback signal.

The first work on -ary LDPC ( -LDPC) codes appeared in
[6] and [7]. Similar to B-LDPC codes, a-LDPC code can be
described by a low-density parity-check matrix . Each
element of is now an element from GF .
A row vector xxx of length is a codeword if

(1)

Similar to B-LDPC codes, a -LDPC code can be regarded as a
collection of subcodes, which are simply parity-check codes
[3]. For regular -LDPC codes, column weight and row
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weight can be defined as the number of nonzero GFele-
ments in each column and each row in.

It was shown in [6]–[8] that -LDPC codes of rates to
outperform B-LDPC codes on the AWGN channel. It is

reasonable to expect that this might hold for any code rate, and
that -LDPC codes might perform better than B-LDPC codes
on MRCs with AWGN. On channels with noise bursts and/or
erasures, the consecutive bits in the burst window are grouped
into fewer symbols and, therefore, it is also reasonable to expect
that -LDPC codes may have an advantage over binary codes.
These conjectures motivated our experimental investigation of

-LDPC codes.
In Section II, a -LDPC code design for burst channels

is briefly introduced. In Section III, a reduced-complexity
decoding algorithm for -LDPC codes is presented. In Sec-
tion IV, magnetic recording systems with -LDPC codes
are investigated and simulation results comparing them with
Reed–Solomon (RS) coded systems are provided. Concluding
remarks are given in Section V.

II. -LDPC CODE DESIGN

In a -LDPC code over GF , each code symbol con-
tains bits. In principle, -LDPC codes can be generated from
B-LDPC codes. By substituting each element one in the parity
check matrix for a B-LDPC code with a nonzero element
randomly chosen from GF , a -LDPC parity check matrix

is obtained [6], [7]. It is shown in [8] that the GF ele-
ments replacing the ones in cannot be all the same, otherwise
the resultant -LDPC code is simply composed of-disjointed
(also interleaved) B-LDPC codes.

Conceptually, any B-LDPC code (random or algebraic, reg-
ular or irregular) parity check matrix can be used to gen-
erate a -LDPC code parity check matrix . However, since
irregular LDPC codes have larger decoding complexity than
regular LDPC codes, only random regular-LDPC codes are
considered.

For a low-density matrix, theminimum space distance(MSD)
is defined as the minimum length of runs of zeros in all rows,
and denoted as. It is shown in [9] that a B-LDPC code with
MSD is guaranteed to recover a burst erasure of length
bits. The key observation is that a burst erasure of length up to

bits causes at most one unknown bit in each parity check
equation. A -bit-symbol -LDPC code with MSD is guar-
anteed to recover a burst erasure of symbols, or
bits. Burst erasures shorter than symbols can be recov-
ered in one LDPC iteration. Since one of the reasons for con-
sidering -LDPC codes is to improve the error correction capa-

0018-9464/03$17.00 © 2003 IEEE



1082 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 2, MARCH 2003

TABLE I
Q-LDPC CODES ONGF(16),W = 3

bility under long bursts, the MSD should be maximized. For a
matrix with columns and row weight , clearly .

To obtain a parity check matrix with large MSD, the fol-
lowing method is used. First, a reasonable value is
chosen. Then, starting from the first column, locations are
randomly chosen and filled with ones. For each latter column,
both cycle-four and MSD constraints are checked, and priority is
given to the row locations with the smallest current row weight
(row weight of all previous columns). So, the generated matrix
will have uniform but not necessarily uniform row weights,
but typically the row weights do not vary much.

Considering the complexity (see Section III), GF(16) is prob-
ably the largest field of practical interest for-LDPC codes, and
only codes with are considered. For sector-size codes,
i.e., 4096 bits, three -LDPC codes designed on GF(16) are
considered and their parameters are summarized in Table I. No-
tice that Code 1 has rate , while the maximum code
rate for a , LDPC code is 0.9267 [2], showing
that the MSD rule does not hinder the design of high-rate codes.

Consider the AWGN channel and model the worst case era-
sures as the received channel value being zero. As shown in
Table I, Code 2 has . On a binary erasure channel, where
only a single burst erasure can occur per codeword, this code
is guaranteed to recover erasures of 31 four-bit symbols. In the
worst case, a 118-bit erasure can result in a 31-symbol erasure,
with the first and the last bit in the sequence the only erased bit
in the corresponding erased symbols. Therefore, Code 2 is guar-
anteed to recover single burst erasures of length 118 bits.

Since we assume that only a single burst erasure can occur
in a codeword, a length-bit burst erasure can occur at

different locations. Examination of the cases
shows that Code 2 is able to recover all single-burst erasures
of length up to 344 bits. Notice that an interleaved RS code on
GF with the same length (in bit) and code rate would have
64 eight-bit-symbol redundancy and, therefore, would able to
recover up to 512-bit burst erasures.

The performance of -LDPC Code 2 is shown in Fig. 1
(labeled as Q) on the AWGN channel with and without a single
burst erasure of length 144 bits. Also shown is the performance
of a B-LDPC code (labeled as B) of column weight four, which
has the same code length (in bit) and code rate as Code 2. In
addition, the performance of a binary irregular code (labeled as
Irr B) is also shown, which has 4352 information bits and code
rate 0.9 [9]. It can be seen that although the-LDPC code
performance is very similar to the weight-four B-LDPC code
in AWGN, it performs 0.2 dB better at a bit-error rate (BER) of

Fig. 1. Performance ofQ-LDPC and B-LDPC codes on the AWGN channel.

BER in the presence of 144-bit erasures. The irregular
B-LDPC code does not perform as well as the other two codes
in both cases.

It is well known that Reed–Solomon codes achieve maximum
Hamming distance and perform better with random errors (era-
sures) than LDPC codes if decoding is bound by the half Ham-
ming distance. However, -LDPC codes offer a way of com-
bining soft iterative decoding with nonbinary codes, a powerful
synergy when the channel has bursty impairments.

III. -LDPC DECODING

Any decoding method for B-LDPC codes can be extended to
-LDPC codes by using the proper field operations. However,

the efficient implementation of the belief propagation (BP) al-
gorithm for B-LDPC codes using log-likelihood-ratios (LLRs)
cannot be done for -LDPC codes. This fact increases the de-
coding complexity of -LDPC codes.

A. BP Decoding for -LDPC Codes

Given the probability mass function pmf , ,
where can be any GF , BP
decoding for -LDPC codes is done in exactly the same two
steps as for B-LDPC codes: a row step and a column step [2]

subcode is satisfied

pmf for (2)

(3)

where and ;
and

.
In the row step, the subcodes are decoded. Let us simplify

the notation for subcode constraint to , in which
only the bits participating in the subcode are included. If
we define the state at stage as , then this
subcode can be represented by a trellis withstates and radix-.
An example of a trellis section for is shown in Fig. 2.

The well-known Bahl–Cocke–Jelinek–Raviv (BCJR) algo-
rithm can be used for maximuma posteriori(MAP) decoding
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Fig. 2. Diagram of a trellis section ofQ-LDPC subcodes.

[14] and involves three steps: forward recursion, backward re-
cursion, and a combination step. The forward recursion is

(4)
where is the inverse of in GF .

In the column step, message nodes are updated with the inde-
pendence assumption

(5)

and the posterior probabilities are computed as

(6)

The hard decision is made as .

B. Fast Implementation of the BP Algorithm Using Fast
Fourier Transforms

The computation complexity of the algorithm described
above is , but it can be reduced. The idea of using a
fast Fourier transform (FFT) in the BP decoding was proposed
in [8] and [11].

Notice that in the row step, decoding of the subcodes consists
in finding pmf with known pmf , and pmf
is the same as the convolution of all pmf , which can be ef-
ficiently computed using the FFT

pmf IFFT FFT pmf (7)

where IFFT is the inverse FFT. It is worth noting that for
B-LDPC codes, (7) is actually the same as the difference BP
in [2].

Since the function pmf is defined on GF ,
FFT pmf is not a -point FFT but a -dimension
two-point FFT, where is the number of bits in a GF field
with . An example for is illustrated in Fig. 3.
The field elements are represented in polynomial form. In the
first layer, the FFT computes the sum and difference of the
probabilities of two field elements differing from each other by
only one bit location.

Fig. 3. FFT of pmf(x ) for q = 8.

Using the FFT, the forward recursion (4) becomes

FFT pmf FFT pmf FFT pmf (8)

The column step remains the same as in (5). We refer to this
algorithm as the FFT-BP algorithm.

C. Logarithm Domain Implementation of the FFT-BP
Algorithm

In a practical implementation of the decoder, it is highly de-
sirable to eliminate the need for real-valued multiplications. In
the following, a technique is described to meet this requirement.

In the FFT-BP algorithm, real-valued multiplication occurs in
both the row step and the column step. In the column step, the
multiplicands are pmf . Intuitively, one should define new
variables as the logarithm of these multiplicands. Letbe a
probability, and define

(9)

Then, in the column step, only additions are needed.
In the row step, as in (8), the multiplicands are FFTpmf .

Since FFTpmf may have negative values, the definition
of the logarithm domain variables is complicated. Define

by

(10)

where is the field of reals. The inverse
is

(11)

Then, for , and

, where , define the operations , ,
and such that

(12)

where stands for any of the four operations. It is straightfor-
ward to show that

1)

(13)
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2)

(14)

3)

(15)

where is determined as

if
or
or
if
or
or

(16)

and is calculated in two cases:

a)

(17)

b)

(18)

4)

(19)

where and can be determined similarly to (16)–(18).
In (17), can be obtained by table

lookup. Similarly, in (18), can also
be obtained by table lookup. Therefore, neglecting binary op-
erations, the computations needed for (15) are one comparison,
one addition, and one table lookup. The above algorithm is re-
ferred to as the Log-FFT-BP.

To summarize, (15) and (19) are used in the FFT; (13) and
(14) are used in the forward–backward recursion. Also, calcu-
lating for all can be efficiently implemented by first
calculating , then subtracting each (similar idea cannot
be applied to for all because of the “divide by zero”
problem).

In Table II, the decoding complexity of B-LDPC and
-LDPC codes is compared. The decoding complexity of

B-LDPC codes is given in [12]. For , the Log-FFT-BP
-LDPC decoding is 12 times more complex than the Log-BP

B-LDPC decoding algorithm.

TABLE II
COMPLEXITY COMPARISON OFB-LDPC AND Q-LDPC CODES

IV. -LDPC CODED MAGNETIC RECORDINGCHANNELS

Two -LDPC coded systems, one on an equalized extended
PR4 (EPR4) channel with partial response and
the other on an equalized modified extended EPR4 (MEPR4)
channel with partial response , are
investigated. These systems are simulated at signal-to-noise ra-
tios (SNRs) lower than the actual operating points with AWGN
only, and also simulated at somewhat higher SNRs with burst
impairments. This gives some indication of the performance of
an actual system with both AWGN and burst impairments.

A. -LDPC Coded Equalized EPR4 System

Shown in Fig. 4 is the diagram of a-LDPC coded system.
The Lorentzian channel model is assumed [13]. The channel is
equalized to the EPR4 target. The rate 16/17 run-length-limited
(RLL) code is not implemented in the simulation, but it is in-
cluded in the diagram to indicate that we are taking into account
the coding penalty present in the actual system.

The system is simulated with Code 1 and Code 2, respec-
tively, and is compared with the uncoded system, at user density

. The BP decoder is set to perform at most 50 iter-
ations. Turbo equalization is not implemented. Plotted in Fig. 5
are the BER and the symbol-error rate (SymER) performance.
These two codes perform very similarly, and both provide more
than 3.5-dB gain over the uncoded system at BER . At
BER , less than three iterations are executed on average.
For comparison, the performance of the weight-four B-LDPC
code and the irregular B-LDPC code are also shown. It can be
seen that the weight-four B-LDPC code performs marginally
better than the two -LDPC codes, which is consistent with the
performance comparison on AWGN in Fig. 1. Again, the irreg-
ular B-LDPC code does not perform as well as the other codes.

This system with Code 2 is also simulated at SNR dB
with full erasures, half erasures, and thermal asperities of dif-
ferent lengths, and the performance is shown in Table III. The
sector error rate is in the form of sectors in error per number
of sectors simulated. Roughly, this system is able to correct full
erasures of length up to 160 bits. Intuitively, the system should
be able to correct longer partial erasures. It can be seen that
280-bit half erasures can be corrected, almost doubled the length
for full erasures.

For simplicity, the TA is modeled as a rectangular window
in which the readback signal equals the maximum signal level
possible for the partial response target. Table III also shows the
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Fig. 4. Q-LDPC coded EPR4-equalized magnetic recording system.

Fig. 5. Performance ofQ-LDPC coded EPR4-equalized magnetic recording
channel.

TABLE III
SECTORERRORRATE WITH NOISE BURSTS,Q-LDPC CODE 2

TABLE IV
SECTORERRORRATE WITH NOISE BURSTS, B-LDPC CODE

simulation results for the system with TAs. The maximal length
of a correctable thermal asperity is 80 bits, which is not as good
as in the case of erasures. The reason, intuitively, is as follows.
With erasures, there is no information from the channel detector,
and it is essentially an erasure to the LDPC decoder. In contrast,
with TAs, the channel detector provides some estimate of the
bits involved, statistically half of which have the wrong polarity.

For comparison, the performance of the system with the
weight-four B-LDPC code is shown in Table IV. This code can
only correct erasures of about half the length of the-LDPC

Fig. 6. Model for an RS coded system.

Fig. 7. Q-LDPC coded system.

code. In addition, it performs poorly in the presence of thermal
asperities. The irregular B-LDPC code was also simulated,
and it can correct longer erasures and thermal asperities than
the weight-four B-LDPC code, but it is not as effective as the

-LDPC Code 2. In addition, as shown in Fig. 5, it performs
significantly worse with AWGN only.

In practice, TAs may be detectable, in which case the channel
values in the TA window can simply be zeroed out. The noise
condition is therefore improved, and the system must perform
better than in the presence of full erasures of the same length
as the TA. Furthermore, one can perform channel detection ex-
cluding the TA window, and set the LLR to zero in the thermal
asperity window, as done in [9].

It is verified through the above simulations that-LDPC
codes perform well on MRCs with burst impairments. Since the
SNR is quite high in these simulations, the results reflect the
error correction capability on erasure-dominated systems. For
a practical system, it is necessary to know the performance of
the system at lower SNR. An extensive simulation was carried
out for the system shown in Fig. 4 at SNR dB with 80-bit
full erasures. Out of 10 sectors simulated, only three sectors
were in error, which corresponds to a sector error rate of ap-
proximately 3 10 . This is probably acceptable for systems
where burst erasures do not exceed 80 bits.

B. -LDPC Versus RS Systems on an Equalized MEPR4
Channel

Shown in Fig. 6 is a magnetic recording system diagram sim-
plified for simulation purposes. The random data at the input of
the MRC are assumed to be RS codewords, and pseudo-RS de-
coding is performed. The overall code rate is 0.8425.

The -LDPC system studied is shown in Fig. 7. These two
systems have similar code rates. The-LDPC code is Code 3
in Table I with rate 0.8890 and MSD . The overall code
rate is 0.8298, close to the RS system.

The two systems were simulated at on
Lorentzian–Gaussian channels [15] with purely AWGN, and
also on channels with 90% jitter noise power [16]. At most, 50
LDPC iterations were allowed.

Shown in Fig. 8 is the performance of the-LDPC and RS
coded systems under purely AWGN, with both sector and byte
(8-bit) error rates shown. At a sector error rate (SecER) of 10,
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Fig. 8. Performance on magnetic recording channels with purely AWGN.

Fig. 9. Performance on magnetic recording channels with 90% jitter noise
power.

TABLE V
ERASUREPERFORMANCE OFQ-LDPC ON AN ME PR4 EQUALIZED SYSTEM

the -LDPC coded system outperforms current RS systems by
2.2 dB. Shown in Fig. 9 are similar results for the-LDPC and
RS coded systems under 90% jitter noise power. At a sector error
rate of 10 , the investigated -LDPC coded system outper-
forms current RS systems by 1.4 dB.

The performance of the -LDPC system with burst erasures
is shown in Table V. With purely AWGN, the raw BER at
SNR dB is approximately ; and with 90% jitter
noise power, the raw BER at SNR dB is also around

. In both cases, the -LDPC system cannot correct
80-bit burst erasures.

Compared with the -LDPC coded EPR4 system, shown in
Table III, both systems have raw channel BER ,
same erasure length, same code rate, and similar length, but the
ME PR4 system does not perform as well as EPR4. Since the
only significant difference is the PR target, the channel BCJR
output was examined and compared for the two systems.

The channel BCJR detector output log-likelihood ratios of
a sector in error were examined. For sectors in error, the av-
erage LLR magnitude inside the erasure window was obtained
through simulation, as well as the average LLR magnitude out-
side the erasure window. The ratio of the former to the latter is
found to be 0.41 for the MEPR4-equalized channel and 0.23
for the equalized EPR4 channel. The large LLR magnitude in
the erasure window indicates higher noise. This may explain the
difference in performance.

If full erasures or thermal asperities are detected, then by ze-
roing the channel BCJR detector output LLRs in the impairment
window, the 80-bit bursts are correctable.

V. CONCLUSION

A reduced-complexity decoding algorithm for -LDPC
codes was presented, which brings the complexity of LDPC
codes over GF(16) to about 12 times that of comparable binary
codes. This reduced-complexity algorithm makes-LDPC
codes attractive for magnetic recording. We have investigated
the performance of these codes on Lorentzian–Gaussian
magnetic recording channel models equalized to high-order PR
targets. -LDPC codes were shown to be a good alternative
to B-LDPC or RS codes for magnetic recording, because they
perform well with AWGN and outperform B-LDPC codes
when burst impairments are present. We further conclude that
future hard disk drive systems could use a single sector-size
LDPC code over GF(16) without the need for an outer RS code.
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