
1

Reduced-Complexity ML Detection and

Capacity-Optimized Training for

Spatial Modulation Systems
Rakshith Rajashekar, Student Member, IEEE, K.V.S. Hari, Senior Member, IEEE, and L. Hanzo, Fellow, IEEE

Abstract—Spatial Modulation (SM) is a recently developed
low-complexity Multiple-Input Multiple-Output scheme that
jointly uses antenna indices and a conventional signal set to
convey information. It has been shown that the Maximum-
Likelihood (ML) detector of an SM system involves joint detection
of the transmit antenna index and of the transmitted symbol,
hence, the ML search complexity grows linearly with the number
of transmit antennas and the size of the signal set. To circumvent
the problem, we show that the ML search complexity of an
SM system may be rendered independent of the constellation
size, provided that the signal set employed is a square- or a
rectangular-QAM. Furthermore, we derive bounds for the ca-
pacity of the SM system and derive the optimal power allocation
between the data and the training sequences by maximizing
the worst-case capacity bound of the SM system operating with
imperfect channel state information. We show, with the aid of
our simulation results, that the proposed detector is ML-optimal,
despite its lowest complexity amongst the existing detectors.
Furthermore, we show that employing the proposed optimal
power allocation provides a substantial gain in terms of the
SM system’s capacity as well as signal-to-noise ratio compared
to its equal-power-allocation counterpart. Finally, we compare
the performance of the SM system to that of the conventional
Multiple-Input Multiple-Output (MIMO) system and show that
the SM system is capable of outperforming the conventional
MIMO system by a significant margin, when both the systems
are employing optimal power splitting.

Index Terms—Spatial modulation, ML decoding, computa-
tional complexity, training, and channel estimation.

I. INTRODUCTION

Spatial Modulation (SM) [1]-[4] is a recently devel-

oped low-complexity Multiple-Input Multiple-Output (MIMO)

scheme, where the information bitstream is divided into blocks

of log2(NtM) bits, where Nt is the number of transmit

antennas and M is the size of the classic signal set. In each

such block, log2 (M) bits select a symbol s from an M -ary

signal set (such as M -QAM or -PSK), and log2 (Nt) bits select

an antenna out of Nt transmit antennas for the transmission of

the symbol s, effectively conveying (log2 M + log2 Nt) bits.

The throughput achieved by this scheme is R = log2 (NtM)
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bits per channel use (bpcu). Thus, the SM scheme achieves

a throughput increase of log2 Nt bits over single-antenna

systems. In order to achieve higher throughputs, either Nt or

M , or both have to be increased, which renders this scheme

suitable for both low and for moderately high bandwidth

efficiencies. One of the important benefits of this scheme is

that it is free from Inter-Antenna Interference (IAI), which is

achieved by activating only a single transmit antenna in any

symbol duration.

In [5], it was shown that the Maximum Likelihood (ML)

detector of the SM system involves joint detection of both the

transmit antenna index and of the transmitted symbol. Thus,

the ML search complexity in the SM system grows as NtM .

Recently, various sub-optimal low-complexity detectors were

proposed for the SM system in [6]-[9]. Furthermore, specially

tailored Sphere Decoding (SD) schemes [10]-[13] were pro-

posed for SM systems, which were termed as Transmitter-

centric SD (Tx-SD) [14], Receiver-centric SD (Rx-SD) [15]

and Combined SD (C-SD) schemes [14]. The Tx-SD arrange-

ment of [14] was proposed for SM systems having Nt ≤ Nr,

where Nr is the number of receive antennas. It was shown in

[14] that the Rx-SD is suitable for SM systems with a large

Nr, while the C-SD is suitable for systems using a large Nt or

M , or both. In [17], the SD of [15] was further developed for

SM systems having Nr < Nt ≤ 2Nr − 1, and a generalized

ML-optimal detector was proposed for SM systems having

arbitrary Nt. Though all the detectors mentioned above aim

at achieving near-ML performance, their complexities grow

with the size of the signal constellation used.

In practical scenarios the Channel State Information at

the Receiver (CSIR) is imperfect due to imperfections in

the channel estimation process. Some recent studies on the

performance of SM systems operating with imperfect CSIR

can be found in [18]-[21]. However in [18], no solution was

proposed to reduce the performance degradation imposed.

An iterative channel-estimation/data detection algorithm was

proposed in [19] that aims for reducing the performance

degradation due to imperfect CSIR, but, this algorithm incurs a

significant computational complexity and data detection delay

at the receiver. In [20], [21], the performance of space shift

keying (a special case of SM) operating with imperfect CSIR

was studied by considering various training periods.

Against this background the following are the novel contri-

butions of this paper:

1) We show that for a square- or a rectangular-QAM signal

set, the ML search complexity of an SM system becomes
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independent of the constellation size and hence, grows

only with Nt (Section III). This is achieved by employ-

ing a simple hard-limiting operation, and the resultant

detector is termed as the Hard-Limiter based ML (HL-

ML) detector. Furthermore, we compare the computa-

tional complexity of the proposed HL-ML detector to

that of the various existing sub-optimal detectors [6]-[9]

as well as of SDs [14]-[17] and show that the proposed

detector has the lowest computational complexity among

these detectors. Since the proposed detector imposes a

constant complexity which is independent of the con-

stellation size, it proves very beneficial for SM systems

that adapt modulation order at the transmitter depending

on the channel conditions. An additional benefit of our

proposed detector is that it remains optimal even when

the receiver operates with imperfect channel estimates.

2) Note that the algorithm proposed in [19] for SM sys-

tems operating with imperfect CSIR incurs a significant

computational complexity and naturally increasing the

fraction of pilot/training symbols [20] for improving

the quality of the Channel Estimate (CE) reduces the

effective data throughput. Our objective is to improve

the system performance without increasing the receiver

complexity or increasing the fraction of training sym-

bols. This is achieved by optimally splitting the trans-

mission power between training and data blocks so

that the Mutual Information (MI) of the SM system

operating with imperfect CSIR is maximized (Section

IV). An important advantage of our approach is that

the power sharing strategy does not depend on the

instantaneous channel realization, nor does it require any

feedback information to be sent to the transmitter from

the receiver1.

Note that the statement in 1) is not restricted to SM systems

alone, but is applicable to any ICI-free system, such as the

Space-Time Shift Keying scheme of [24]. The hard-limiter

can be used in the ML detection of conventional Space-Time

Block Codes (STBC) as well. However the reduction in the

ML decoding complexity is marginal due to multiple symbols

encoded in the STBC. Further details on this can be found in

[25].

Notations: Boldface uppercase letters represent matrices.

Boldface lowercase letters represent vectors, while tr(·) rep-

resents the trace of a matrix, ‖ · ‖ denotes the two-norm of a

vector; 〈·, ·〉 represents the inner product of two vectors; ℜ(·)
and ℑ(·) are the real and imaginary parts of a complex-valued

quantity; |·| is the magnitude of a complex quantity, or the car-

dinality of a given set; ⌊·⌉ indicates the operation of rounding

a real number to the nearest integer; H([a : b], :) represents a

matrix with rows a, a+ 1, . . . , b− 1, b of H and H(:, [a : b])
denotes a matrix with columns a, (a + 1), . . . , (b − 1), b of

1In [22], [23], the power allocation for transmit antennas for data trans-
mission phase was proposed for space shift keying system, where the scheme
in [23] needs partial channel state information at the transmitter. Both the
schemes of [22], [23], are assumed to have perfect CSIR. To the best of
our knowledge, power allocation between training and data blocks in the SM
system operating with imperfect CSIR has not been reported in the existing
literature.

H; R and C represent the field of real and complex numbers,

respectively; CN (µ, σ2) denotes a complex Gaussian random

variable with mean µ and variance σ2. If S1 and S2 are two

sets such that S2 ⊂ S1, then X = S1 \ S2 represents a set

containing all the elements of S1 that are not present in S2.

N−PAM = {−N+1,−N+3, . . . ,−1, 1, . . . , N−3, N−1},
where N is a power of two. With a slight abuse of notation,

both random variables and their instantiations are represented

by lower case letters.

II. SM SYSTEM MODEL

An SM system having Nt transmit as well as Nr receive

antennas and communicating over a quasi-static, frequency-flat

fading channel, can be modeled as

y = Hxl,s + n, (1)

where xl,s ∈ C
Nt is the transmitted vector, which is of the

form

xl,s = [0, . . . , 0
︸ ︷︷ ︸

l−1

, s, 0, . . . , 0
︸ ︷︷ ︸

Nt−l

]T ∈ C
Nt , (2)

where l ∈ L = {i}Nt

i=1 and s is a complex symbol from

the signal set S with |S| = M , y ∈ C
Nr is the received

vector, H = [h1,h2, . . . ,hNt
] ∈ C

Nr×Nt is the channel

matrix, n ∈ C
Nr is the noise vector. The entries of the

channel matrix and the noise vector are from CN (0,1) and

CN (0, σ2) such that σ2 = γ
ρ

, respectively, where ρ is the

average signal-to-noise ratio (SNR) at each receive antenna

and γ =
∑M

i=1 |si|2
M

is the average energy of the signal set

S. Throughout this paper we assume S to be a square- or

a rectangular-QAM constellation. Assuming perfect channel

state information (CSI) and ML detection at the receiver, we

have

(l̂, ŝ)ML = arg min
l∈L,s∈S

‖y −Hxl,s‖22. (3)

III. ML SEARCH COMPLEXITY REDUCTION IN SM

SYSTEMS EMPLOYING A

LATTICE CONSTELLATION

Definition 1: Given an optimization problem, the number of

evaluations of the optimization metric is defined as the order

of complexity for the algorithm.

Definition 2: The number of real-valued multiplications in-

volved in solving an optimization problem is defined as the

computational complexity2.

It is straightforward from (3) that the order of complex-

ity for the ML detector is MNt, since |S| = M and

|L| = Nt, and its computational complexity is 6NrNtM
which increases linearly with M . Note that for a given (l, s),
‖y − hls‖2 =

∑Nr

i=1 |yi − hi,ls|2 takes 6Nr real-valued

multiplications, since hi,ls takes 4 real-valued multiplications

and |yi − hi,ls|2 = [ℜ(yi − hi,ls)]
2 + [ℑ(yi − hi,ls)]

2 takes 2

real-valued multiplications.

2Given an optimization problem, if C is the computational complexity
in evaluating the optimization metric once, then the overall computational
complexity is given by [order of complexity × C]. Thus, minimizing the
order minimizes the overall computational complexity.
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Before presenting our proposed low-complexity ML de-

tector, we provide a brief overview of the sub-optimal and

optimal detectors conceived for the SM system in the existing

literature and compare them to that of the proposed detector.

Note that the comparison of various detectors based on their

computational complexity alone is difficult, thus for the ease

of comparison the order of complexity is also provided for

the various detectors. Appendix A provides the details of the

computational complexity of various detectors listed in column

four of Table I, including that of the proposed HL-ML detector.

It is clear from Table I that our proposed detector is the only

ML-optimal detector whose computational complexity does

not increase with the size of the constellation. The proposed

HL-ML detector is presented in the proof of the following

proposition.

Proposition 1: If S is a lattice constellation such as a

square or a rectangular QAM which can be viewed as a

Cartesian product of two PAM signal sets, say S1 = N1-

PAM and S2 = N2-PAM, then the order of complexity for

ML detector in an SM system having Nt transmit antennas

becomes independent of the constellation size. In other words,

the ML search complexity in (3) reduces from NtN1N2 to Nt.

Proof: Considering (3), we have

(l̂, ŝ)ML = arg min
l∈L,s∈S

‖y −Hxl,s‖22, (4)

= arg min
l∈L,s∈S

‖y − hls‖2 ⇔ arg min
l∈L,s∈S

|ŷl − s|22,
(5)

where ŷl =
hH

l y

‖hl‖2 . The equivalence in (5) follows from (A.55)

of [26]. Thus, the ML solution can be equivalently written as

(l̂, ŝ)ML = arg min
l∈L,s∈S

|ŷl − s|22,

= argmin
l∈L

[

min
sI∈N1−PAM,sQ∈N2−PAM

{
(ℜ(ŷl)− sI)

2 + (ℑ(ŷl)− sQ)
2
} ]

.

In what follows, we show that the complexity of the inner

optimization problem given by mins∈S |ŷl − s|22 is a constant

and does not depend on the size of S. Thus, the overall

complexity of the proposed algorithm depends only on the

variable l.

Since sI and sQ are from orthogonal dimensions, we have

(l̂, ŝ)ML = argmin
l∈L

[

min
sI∈N1−PAM

(ℜ(ŷl)− sI)
2

+ min
sQ∈N2−PAM

(ℑ(ŷl)− sQ)
2
]

.

Now consider the optimization problem ℜ(ŝl) =
minsI∈N1−PAM (ℜ(ŷl) − sI)

2. Since the symbols of N1 −
PAM are given by {2i + 1}

N1
2 −1

i=
−N1

2

, ℜ(ŝl) can be expressed

as follows:

ℜ(ŷl) < −N1 + 2 ⇒ ℜ(ŝl) = −N1 + 1

−N1 + 2 ≤ ℜ(ŷl) < −N1 + 4 ⇒ ℜ(ŝl) = −N1 + 3

...
...

−2 ≤ ℜ(ŷl) < 0 ⇒ ℜ(ŝl) = −1

0 ≤ ℜ(ŷl) < 2 ⇒ ℜ(ŝl) = 1

...
...

N1 − 4 ≤ ℜ(ŷl) < N1 − 2 ⇒ ℜ(ŝl) = N1 − 3

N1 − 2 ≤ ℜ(ŷl) ⇒ ℜ(ŝl) = N1 − 1.

However, ℜ(ŝl) can be obtained directly without employing

the above set of comparisons. Assuming that the active trans-

mit antenna index is l, we have ŷl = (2j+1)+n̂l for some j ∈
{−N1

2 , −N1

2 +1, . . . , N1

2 −2, N1

2 −1}, where n̂l =
hH

l n

‖hl‖2 . Then

consider
(

2
⌊
ℜ(ŷl)+1

2

⌉

− 1
)

, which simplifies to 2(j+k)−1,

where k =
⌊
ℜ(n̂)
2

⌉

. Note that 2(j + k) − 1 is of the form

2z − 1 for z ∈ Z, that is closest to ℜ(ŷl). But the symbols of

N1 − PAM range from −N1 + 1 to N1 − 1. Therefore we

have to ensure that 2
⌊
ℜ(ŷl)+1

2

⌉

− 1 lies in the N1 − PAM

range, which is achieved based on the following comparisons:

max

(

2

⌊ℜ(ŷl) + 1

2

⌉

− 1,−N1 + 1

)

, (6)

which ensures that 2
⌊
ℜ(ŷl)+1

2

⌉

− 1 is less than or equal to

(−N1 + 1), and

min

[

max

(

2

⌊
u1 + 1

2

⌉

− 1,−N1 + 1

)

, N1 − 1

]

, (7)

ensures that 2
⌊
ℜ(ŷl)+1

2

⌉

−1 is greater than or equal to (N1−
1).

Proceeding along similar lines for ℑ(ŝl) =
minsQ∈N2−PAM (ℑ(ŷl)− sQ)

2, we obtain

ℜ(ŝl)ML
= min

[

max

(

2

⌊

u1 + 1

2

⌉

− 1,−N1 + 1

)

, N1 − 1

]

,

(8)

ℑ(ŝl)ML
= min

[

max

(

2

⌊

u2 + 1

2

⌉

− 1,−N2 + 1

)

, N2 − 1

]

,

(9)

where u1 = ℜ(ŷl) and u2 = ℑ(ŷl), yielding ŝl = ℜ(ŝl)ML +
jℑ(ŝl)ML. Thus, from (8) and (9) we obtain Nt complex-

valued symbols associated with the Nt hypotheses, since 1 ≤
l ≤ Nt. These symbols are represented by the set Smin =
{ŝ1, ŝ2, . . . , ŝNt

}. Thus, we have

(l̂, ŝ)ML = arg min
l∈L,s∈S

‖y − hls‖22, (10)

= argmin
l∈L

‖y − hlŝl‖22. (11)

Furthermore, by considering that

‖y − hlŝl‖22 = ‖y‖2 + ‖hl‖2|ŝl|2 − 2ℜ(hH
l yŝ∗l ), (12)

= ‖y‖2 + ‖hl‖2|ŝl|2 − 2ℜ(ŷlŝ∗l )‖hl‖2, (13)

= ‖y‖2 +
{
|ŝl|2 − 2ℜ(ŷlŝ∗l )

}
‖hl‖2, (14)

= ‖y‖2 +
{
|ŷl − ŝl|2 − |ŷl|2

}
‖hl‖2, (15)
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TABLE I
COMPARISON OF SOME OF THE THE KNOWN EXISTING DETECTORS CONCEIVED FOR THE SM SYSTEM.

ML Order of Computational Complexity
Detectors Optimality complexity complexity grows with M ?

ML detector of (3) optimal OML = NtM CML = 6NtNrM YES

Matched-Filtering (MF) sub-optimal OMF = NtM/4 CMF = 12NrNt + (Nt + 4)M YES
based detector [6] (refer to (22) in [6]) (refer to (35) in [6])

Signal Vector based sub-optimal OSV D = max(M,Nt) CSV D = (6Nr + 4)Nt + 2Nr + 6NrM YES
Detector (SVD) [7] (refer to (5) in [7])

Developed MF (DMF) sub-optimal ODMF ≥ OMF CDMF ≥ CMF YES
based detector [8] (refer to Section II-B [8])

Distance Based ordered Conditionally ODBD = max(M,p) CDBD = 8NrNt + 6Nrp+ 3Nt + 2NtM YES
Detection (DBD) [9] optimal (p = Nt) 1 ≤ p ≤ Nt (refer to Section II-F [9])

Proposed detector optimal Nt CHL−ML = (6Nr + 11)Nt NO

from (15) and (11) we arrive at:

(l̂, ŝ)ML = argmin
l∈L

(
|ŷl − ŝl|2 − |ŷl|2

)
‖hl‖2. (16)

A. Optimality of the HL-ML detector under imperfect CSIR

Assuming that the true channel matrix is H ∈ C
Nr×Nt and

the channel estimated by the receiver is Ȟ ∈ C
Nr×Nt , the ML

detector employed by the SM system is given by

(l̂, ŝ)ML = arg min
l∈L,s∈S

‖y − ȟls‖22, (17)

△
= arg min

l∈L,s∈S
|y̌l − s|22, (18)

where y̌l =
ȟH

l y

‖ȟl‖2 . Proceeding along similar lines to those of

Proposition 1, it is straightforward to show that the proposed

HL-ML detector remains optimal under imperfect CSIR. In

the remaining part of the paper, we focus our attention on

achieving a performance, which is same as that of the SM

system operating with perfect CSIR, when the system is

actually operating in an imperfect CSIR scenario.

B. Sphere Detection in SM systems

Sphere detection is a well-known method of approaching

the ML performance in MIMO systems at a significantly re-

duced computational complexity [10]-[13]. Recently, specially

tailored SDs were proposed in [14], [15], for SM systems

having Nt ≤ Nr. In [16], SDs were proposed for SM

systems having Nt > Nr by regularizing the underdetermined

channel matrix. Furthermore, in [17] the SD of [15] was

extended for SM systems having Nr < Nt ≤ 2Nr − 1,

and a generalized ML-optimal decoder was proposed for

SM systems having arbitrary Nt. All these detectors are

optimal, when the search radius is sufficiently large so that

at least one point is found within the radius of search.

These detectors essentially involve the computation of the

QR decomposition [27] of the real-valued channel matrix (for

example, refer to (15) in [15]) which imposes a complexity

of CQR =
∑N

k=1

[
2f(k) + f(k)2 + 2f(k)3 + 1

]
−N3

r , where

N = min(Nr − 1, Nt) (refer to (22) in [15]). The additional

computational complexity includes that of Cz̄ = 4NtNr and

C‖Q̄2
T
ȳ‖2 = 2Nr(2Nr − 2Nt + 1) (refer to Section IV-A in

[15] for more details). Therefore, regardless of the number of

points found inside the search radius, the SD incurs a fixed

complexity of Cfix = CQR +Cz̄ +C‖Q̄2
T
ȳ‖2

3. In Section V,

we compare the complexity imposed by the proposed detector

to that of the SD and show that Cfix of the SD exceeds

the overall computational complexity of the proposed HL-ML

detector by a large margin.

IV. CAPACITY OPTIMIZED TRAINING AND POWER

ALLOCATION

In Section III we presented a low-complexity detector

designed for SM systems, which was shown to be ML-optimal

under both perfect and imperfect CSIR conditions. In a practi-

cal scenario the channel estimated at the receiver with the aid

of training/pilot symbols is always prone to estimation errors

due to the inherent imperfection of the channel estimation

process. A straightforward approach to reduce the estimation

error is to increase the number of training symbols, but this

reduces the useful data rate, hence it is undesirable. In [18]-

[20], the performance of the SM system relying on realistic

imperfect CSIR was studied. In [18], it was shown that by

employing a sufficiently large number of training symbols the

performance loss due to imperfect CSIR can be significantly

reduced. In [19], an iterative channel-estimation/data-detection

algorithm was proposed for reducing the performance loss in

the SM system due to imperfect CSIR, while using a minimum

number of training symbols. However, this solution incurs

a significant computational complexity at the receiver. Our

objective in this section is to minimize the performance loss

due to imperfect CSIR without increasing the number of pilot

symbols or increasing the receiver complexity. This is achieved

by sharing the available transmission power optimally between

the training and data symbols, as described in the following

steps:

1) A non-trivial lower bound on the capacity of the SM

system relying on the estimated channel is obtained

3Analogous to QR decomposition used in [14], [15], the SD based detector
in [16] uses Cholesky decomposition. It can be easily verified the complexity
imposed by pre-computations involved in SD based detector of [16] itself
exceeds the overall computational complexity of the the proposed HL-
ML detector. Note that the computational complexity of various SD based
detectors presented in [14]-[16] are normalized by that of the ML detector.
In this paper, we have considered the absolute computational complexity of
various detectors for the sake of explicit clarity. The insightful comments
of the anonymous Reviewer are much appreciated, which eliminated any
ambiguity concerning the system’s complexity in comparison to [16].
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and the reduction in the SM system’s capacity due to

imperfect CSIR is analyzed.

2) The power sharing between the training and data sym-

bols is optimized so that the lower bound on the SM

system’s capacity relying on the estimated CSIR is

maximized. Thus, better estimates of the channel are

obtained without any increase in the number of training

symbols or increase in the receiver complexity.

Note that the above approach is commonly used in the existing

literature [28]-[30] for optimizing the transmit power, training

period, training sequence and so on, in both single and

multiuser scenarios.

A. Bounds on the Capacity of the SM System

Note that (1) can also be written as y =
√
ρhls+n, where

ρ represents the average received signal-to-noise ratio at each

receive antenna and elements of n are from CN (0, 1). Since,

the transmitted symbol s as well as the antenna index l convey

information in an SM system, the MI is given by

I(y; s, l) = I(y; s|l) + I(y; l). (19)

Note that the SM system’s capacity was studied in [31], where

neither I(y; l) was evaluated nor any bounds were derived

(refer to (10) in [31]). In this paper, we bound I(y; l) using

Jensen’s inequality and obtain a closed form expression, which

in turn provides a better capacity estimate for the SM system

than that given by the SIMO capacity. Let fs(s) and fl(l)
represent the p.d.f. and p.m.f. of the transmitted symbol and

of the antenna index, respectively. Note that s ∈ C and l can

only assume values from the set {i}Nt

i=1. Then the capacity of

the SM system is given by

max
fs(s),fl(l)

I(y; s, l) = max
fs(s),fl(l)

{I(y; s|l) + I(y; l)} ,

≤ max
fs(s),fl(l)

I(y; s|l) + max
fs(s),fl(l)

I(y; l).

Since, I(y; l) = H(l)−H(l|y), we have

max
fs(s),fl(l)

I(y; l) = max
fs(s),fl(l)

{H(l)−H(l|y)} ,

≤ max
fs(s),fl(l)

H(l) = logNt,

where l is uniformly distributed over the set {i}Nt

i=1. Thus, we

have

I(y; s|l) = El [I(y; s)|l] =
1

Nt

Nt∑

l=1

[I(y; s)|l].

For a given antenna index l, it is straightforward to show

that I(y; s) is maximized, when s is from the zero-mean

complex-valued Gaussian distribution [32], therefore we have

maxfs(s) I(y; s|l) = 1
Nt

∑Nt

l=1 log(1 + ρ‖hl‖2). Thus,

CSM = max
fs(s),fl(l)

I(y; s, l) ≤ 1

Nt

Nt∑

l=1

log(1 + ρ‖hl‖2) + logNt.

(20)

By exploiting the fact that I(y; s, l) ≥ I(y; s|l) [32], the

following trivial bound can be obtained

CSM ≥ CSIMO =
1

Nt

Nt∑

l=1

log(1 + ρ‖hl‖2). (21)

Thus, from (20) and (21) we have

1

Nt

Nt
∑

l=1

log(1+ρ‖hl‖
2) ≤ CSM ≤

1

Nt

Nt
∑

l=1

log(1+ρ‖hl‖
2)+logNt.

(22)

The following proposition gives a non-trivial lower bound for

CSM .

Proposition 2: The capacity of an SM system relying on

Nt transmit antennas can be lower bounded as

CSM ≥ 1

Nt

Nt∑

l=1

log(1 + ρ‖hl‖2) + log(Nt)

− 1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2ρ+ 1)

(‖hl‖2 + ‖hl′‖2)ρ+ 2

]

.

(23)

Proof: Proof is given in Appendix B.

At high SNRs the lower bound given in (23) may be

approximated as

CSM ≥ 1

Nt

Nt∑

l=1

log(ρ‖hl‖2) + log(Nt)

− 1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2)
(‖hl‖2 + ‖hl′‖2)

]

. (24)

Thus, at high SNR the bound on the ergodic MI of the

SM system is given by (25). Note that in (25), we have

assumed that the SM system is operating with perfect CSIR.

In the next subsection, we consider the SM system operating

with minimum mean-square error (MMSE) CE and obtain the

capacity bound equivalent to that given in (25).

B. Capacity-optimized Training in SM Systems

Let n represent the number of channel uses per transmis-

sion frame such that n ≤ Tc, where Tc is the coherence

period in terms of the number of channel uses. Let nt and

nd represent the number of training and data symbols per

frame, respectively, so that n = (nt + nd) and nd ≫ nt.

Let ρt and ρd represent the transmitted signal power during

the training and data period, respectively, so that nρ =
(ntρt + ndρd), where nρ is the total available energy per

frame. Furthermore, let n
(i)
t represent the training period

associated with each transmit antenna, so that
∑Nt

i=1 n
(i)
t = nt,

while Xt = [xt(1) xt(2) . . . xt(nt)] ∈ C
Nt×nt and Xd =

[xd(1) xd(2) . . . xd(nd)] ∈ C
Nt×nd represent the training

and data sequences, respectively. The sequence received during

the training phase is given by

Yt =
√
ρtHXt +Nt,

while that during the data transmission phase is given by

Yd =
√
ρdHXd +Nd,
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CSM ≥ E

{

1

Nt

Nt∑

l=1

log(ρ‖hl‖2) + log(Nt)−
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2)
(‖hl‖2 + ‖hl′‖2)

]}

. (25)

where the elements of Nt ∈ C
Nr×nt and Nd ∈ C

Nr×nd are

from CN (0, 1). The MMSE estimate of the channel matrix is

given by

Ȟ =
1√
ρt
YtX

H
t

[
1

ρt
INt

+XtX
H
t

]−1

. (26)

It is shown in [33], [34] that the optimal training sequence

that minimizes the estimation error must satisfy the condition

XtX
H
t ∝ INt

. This may be easily satisfied in the SM

system by choosing the training sequence to be a sequence

of scaled diagonal matrices. Hence, we have an identical

training overhead across the antennas, yielding n
(i)
t = nt

Nt
for

1 ≤ i ≤ Nt. Note that when RH = E
[
HHH

]
6= INt

, that

is when the channels of the transmit antennas are correlated,

it was shown in [35] that the columns of the optimal training

matrix must be proportional to the columns of Q, where the

columns of Q are the Eigenvectors of RH. Thus, when the

channels of transmit antennas are correlated, optimal training

is not possible in the SM system due to the limitation imposed

on the number of active transmit antennas per channel use. In

this paper, we consider the uncorrelated fading scenario, where

RH = INt
.

The capacity bound in (25) was obtained by considering

perfect channel knowledge at the receiver. In what follows, we

determine the worst-case lower bound on the capacity of the

SM system considering the estimated channel matrix instead

of the actual channel matrix and obtain the optimal values of

ρt and ρd that maximize the worst-case lower bound on the

SM system’s capacity.

The received vector in the ith channel use during the data

transmission phase is given by

yd(i) =
√
ρdHx(i) + n(i), (27)

=
√
ρdhlisi + n(i), (28)

where li and si represent the antenna index and the transmitted

symbol at the ith channel use. If Ȟ =
[
ȟ1 ȟ2 . . . ȟNt

]

represents the MMSE estimate of the channel gain matrix,

then (28) may be written in terms of the estimated channel as

yd(i) =
√
ρdȟlisi +

√
ρdh̃lisi + n(i)

︸ ︷︷ ︸

n′(i)

,

where h̃li = hli − ȟli is the estimation error. Note that n′(i)
is not independent, but it is uncorrelated with the data, since

E
[

si

(√
ρdh̃lisi + n(i)

)∗]
=

√
ρdE

[

h̃∗
li
|si|2

]

+ E [sin(i)
∗] ,

= 0,

where we have exploited the fact that the MMSE estimate is

unbiased [26], i.e., E
[
ȟli

]
= 0. From Theorem 1 of [28],

it is known that the specific n′(i) that gives the worst-case

capacity is a zero-mean Gaussian vector with the covariance

matrix σ2
n′INr

, where

σ2
n′ =

1

Nr

tr

{

E

[(√
ρdh̃lisi + n(i)

)(√
ρdh̃lisi + n(i)

)H
]}

=
1

Nr

tr
{

ρdE
[

h̃li h̃
H
li

]

+ INr

}

.

Note that E
[

h̃li h̃
H
li

]

is the covariance matrix of the MMSE,

which can be shown to be 1

(1+ρtn
(li)
t )

INr
. Details of this

derivation can be found in Appendix C. Thus, we have

σ2
n′ = 1

Nr
tr
{

ρdE
[

h̃li h̃
H
li

]

+ INr

}

= ρd

(1+ρtn
(li)
t )

+ 1. Now,

replacing the true channel in (23) by the estimated channel ȟi,

the SNR ρ by ρd

σ2
n′

and taking into account that only (n− nt)

out of n channel uses are dedicated to data transmission, we

have the worst case capacity bound given by (29) (in the next

page), where Cimp
SM represents the bound on the capacity of

the SM system operating with imperfect CSIR.

At high SNR, Cimp
SM can be approximated (30). Exploiting

that h̄l =
1

σ
ȟl

ȟl ∼ CN (0, INr
), where σ2

ȟl
=

ρtn
(l)
t

1+ρtn
(l)
t

, (30)

can be written as (31). Since
σ2
ȟl

σ2
n′

=
ρtn

(l)
t

1+ρd+ρtn
(l)
t

and
σ2
ȟl

σ2
ȟ
l′

=

n
(l)
t (1+ρtn

(l′)
t )

n
(l′)
t (1+ρtn

(l)
t )

≈ 1 for a large ρt and any (l, l′) pair, (31) can

be written as (32).

Note that the capacity bounds given in (25) and (32) are

identical, except for ρeff =
ρdρtn

(l)
t

1+ρd+ρtn
(l)
t

that captures the

SNR reduction due to imperfect CSIR and for the factor n−nt

n
,

which captures the reduction in the number of channel uses

available for data transmission owing to the training overhead.

Taking n
(i)
t = nt/Nt for 1 ≤ i ≤ Nt, corresponding to

equal training overheads across all transmit antennas, we arrive

at ρeff = ρdρtnt

Nt(1+ρd)+ρtnt
. Note that under equal training

overheads across all transmit antennas results in a ρeff , which

is the same as that of the conventional MIMO system, where

all the Nt transmit antennas are activated in any channel use

[28]. Let β define the fraction of total energy allocated for

data transmission and (1 − β) represent the fraction of total

energy allocated for training, which results in ρdnd = βρn
and ρtnt = (1 − β)ρn for 0 < β < 1. The optimal β that

maximizes (32) is obtained by substituting both ρd = βρn
nd

as

well as ρt =
(1−β)ρn

nt
in ρeff and then maximizing it over β,

which results in βopt = δ−
√

δ(δ − 1), where δ = Nt+ρn

ρn
(

1−Nt
nd

) .

Using optimal power splitting between the data and training

sequences, it may be shown that the optimal length of the

training sequence for the SM system is ntopt = Nt. Since the

proof of this result follows similar lines to that of Theorem 3

in [28], we omit the details of this part.

When the coherence intervals of the links of the various

transmit antennas differ significantly or when the SM system is
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Cimp
SM ≥ E







n− nt

n




1

Nt

Nt∑

l=1

log(1 +
ρd
σ2
n′

‖ȟl‖2) + log(Nt)−
1

Nt

Nt∑

l=1

log





Nt∑

l′=1

e(‖ȟl‖2 ρd

σ2
n′

+ 1)

(‖ȟl‖2 + ‖ȟl′‖2) ρd

σ2
n′

+ 2














(29)

Cimp
SM ≥ E

{

n− nt

n

(

1

Nt

Nt∑

l=1

log(1 +
ρd
σ2
n′

‖ȟl‖2) + log(Nt)−
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖ȟl‖2)
(‖ȟl‖2 + ‖ȟl′‖2)

])}

(30)

Cimp
SM ≥ E







n− nt

n







1

Nt

Nt∑

l=1

log(1 +
ρdσ

2
ȟl

σ2
n′

‖h̄l‖2) + log(Nt)−
1

Nt

Nt∑

l=1

log







Nt∑

l′=1

e

1 +
‖h̄l′‖2σ2

h̄l

‖ȟl‖2σ2
ȟ
l′



















(31)

Cimp
SM ≥ E







n− nt

n









1

Nt

Nt∑

l=1

log









1 +
ρdρtn

(l)
t

1 + ρd + ρtn
(l)
t

︸ ︷︷ ︸

ρeff

‖h̄l‖2









+ log(Nt)−
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e‖h̄l‖2
‖h̄l‖2 + ‖h̄l′‖2

]















(32)

equipped with redundant transmit antennas and it is employing

a selection algorithm, we may have to have different n
(i)
t for

1 ≤ i ≤ Nt. The detailed study of this is postponed for future

research.

V. SIMULATION RESULTS AND DISCUSSIONS

In the first part of this section, we present the results of

our numerical simulations for characterizing the performance

of the proposed HL-ML detector with respect to that of

the exhaustive search based ML detector. Furthermore, we

study the computational complexity of the proposed detector

in comparison to various detectors proposed in the existing

literature. In the second part, we study the capacity of the

SM system operating with imperfect CSIR and the resultant

capacity improvement due to the proposed optimal power

splitting over that of equal power splitting between the training

and data symbols. We also compare the performance of the SM

system employing the iterative detection/estimation algorithm

of [19] to that of the SM system employing optimal power

sharing, when both are operating with imperfect CSIR.

A. Proposed HL-ML detector - Performance and Complexity

analysis

Simulation Scenario 1: In all our simulations we have

assumed a frequency-flat block Rayleigh fading channel and

used at least 10t+1 symbols at a Symbol Error Rate (SER)

of 10−t. The receiver is assumed to have perfect CSIR, when

employing both the proposed and the exhaustive search based

ML detector.

Considering an SM system having Nt = 4, Nr = 2 and

employing 16-, 32-, 64- and 128-QAM signal sets, Fig. 1

gives the SER comparison of the proposed HL-ML detector

to that of the exhaustive search based ML detector. It is clear

4 8 12 16 20 24 28
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

SE
R

N
t
=4, N

r
=2, Perfect CSIR

 

 

HL-ML (proposed)

Exhaustive ML search

64-QAM

128-QAM

32-QAM

16-QAM

Fig. 1. SER comparison of the proposed HL-ML detector with that of
the exhaustive search based ML detector in an SM system having Nt = 4,
Nr = 2 and employing 16-, 32-, 64- and 128-QAM signal sets in the presence
of Rayleigh fading and perfect CSIR.

from Fig. 1 that the proposed detector attains an identical

performance compared to that of the exhaustive search based

ML detector for all SNR points and data rates, which validates

our Proposition 1. Note that the existing detectors listed in

Table I are sub-optimal and hence their SER performance is

expected to be poorer than that of the exhaustive search based

ML detector.

Fig. 2 gives the comparison of the computational complexity

per symbol detection of the proposed HL-ML detector to that

of the various existing detectors as a function of the signal
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Fig. 2. Comparison of the computational complexity per symbol detection
of the proposed detector with various existing detectors as a function of the
signal set size M .

set size M . It is clear from Fig. 2 that the complexity of

the proposed detector does not grow with M . This property is

very desirable in closed-loop operations such as adaptive mod-

ulation or adaptive modulation and antenna selection, where

the modulation order is changed suitably based on the limited

feedback information sent by the receiver. Furthermore, it is

easy to see from Fig. 2 that the proposed HL-ML detector

imposes a significantly reduced complexity compared to that

of the existing detectors. More specifically, when using the

128-QAM signal set, the computational complexity of the HL-

ML detector is about 98.5% lower than that of the exhaustive

search based ML detector, about 94% lower than that of the

MF based detector, and about 91% lesser compared to that of

SVD [7] and DBD (p = 1) [9].

Fig 3 gives a comparison of the proposed detector’s com-

plexity to various existing detectors as a function of Nt for

fixed values of M = 16 and Nr = 2, 8. It is clear from both the

plots of Fig. 3 that the proposed detector imposes the lowest

complexity among the existing detectors. More specifically,

when considering Nr = 2 and Nt = 8 (refer to Plot (a) in

Fig. 3), the computational complexity of the proposed detector

is about 88% lower compared to that of the exhaustive search

based ML detector, about 56% lower than that of the MF and

DBD, and about 43% lower compared to that of the SVD.

When considering Nr = 8 and Nt = 4 (refer to Plot (b) in

Fig. 3), the computational complexity of the proposed detector

is about 92% lower than that of the exhaustive search based

ML detector, about 90% lower compared to that of the SD,

about 76% lower compared to that of the SVD, about 54%

lower compared to that of the MF based detector and about

46% lower compared to that of the DBD. Note that the true

computational complexity of the SD [15] is higher than that

considered (Cfix). Thus, we emphasize that using a SD is not

essential in the SM system for achieving an ML performance

at a reduced complexity.

B. Capacity optimized training in the SM system

Simulation Scenario 2: In all our simulations the im-

perfect CSIR scenario relies on the MMSE CE obtained using

an nt-length training block, where the training block used is

a set of scaled identity matrices. In evaluating the ergodic MI,

we have considered at least 5000 channel realizations and a

coherence interval of n = 100 channel uses. As before, we

have used at least 10t+1 symbols at a SER of 10−t.

Fig. 4 gives a comparison of the ergodic MI as a function

of SNR in an SM system operating with both perfect and

estimated channel information. The trivial upper and lower

bounds on the capacity of the SM system given in (22) are

also plotted for comparison. The SM system is assumed to

have Nt = 4, n = 100, nt = 4 and Nr = 1, 2. Plot (a)

and Plot (b) in Fig. 4 correspond to Nr = 1 and Nr = 2,

respectively. It is readily seen from both the plots of Fig. 4

that

• the SM system suffers from a significant MI loss when

operating with imperfect CSIR. Specifically, at an SNR

of 20 dB, with equal power allocation between data and

training symbols, there is a reduction in MI of about 16%

for Nr = 1 and 17% for Nr = 2. and with optimal

power sharing, the MI reduction due to imperfect CSIR

is observed to be about 7% for Nr = 1 and 8% for

Nr = 2.

In Fig. 4 we have considered the frame length (or equiv-

alently the coherence interval) to be 100 channel uses. Now,

considering a fixed SNR of 20 dB, we study the MI of the

SM system operating with imperfect CSIR as a function of

the frame length for both the equal and optimal power sharing

scenarios. Fig. 5 gives a comparison of the ergodic MI in an

SM system for Nt = 4, nt = 4 Nr = 1, 2, and employing

both equal and optimal power splitting between the data and

training symbols. Plot (a) and Plot (b) in Fig. 5 correspond to

Nr = 1 and Nr = 2, respectively.

• It is clear from both the plots of Fig. 5 that equal power

splitting suffers from a higher MI reduction compared

to that of the optimal splitting. Specifically, at a frame

length of 200 channel uses, equal power splitting suffers

from about 16% reduction for Nr = 1 and about 14%

reduction for Nr = 2, whereas the optimal power splitting

results in about 7% reduction for both Nr = 1 and

Nr = 2. Thus, optimal power splitting mitigates the

MI reduction due to imperfect CSIR by more than 50%

compared to equal power splitting.

• Also, it is clear from Fig. 5 that although a higher frame

length (or coherence interval) yields a higher MI, the gain

in MI diminishes as the frame length increases, which is

more prominent in case of equal power sharing than for

optimal power allocation.

Plot (a) in Fig. 6 quantifies the power allocated for training

and data blocks as a function of the SNR, while Plot (b) in

Fig. 6 gives the mean channel estimation error as a function

of SNR, when considering both equal and optimal power

sharing between data and training blocks. It is clear from
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Fig. 3. Comparison of the computational complexity per symbol detection of the proposed detector with the various existing detectors as a function of
number of transmit antennas Nt when the signal set size is fixed to be M = 16. Plot (a) corresponds to Nr = 2 case and Plot (b) corresponds to that of
Nr = 8.
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Fig. 4. Comparison of the ergodic MI as a function of SNR in the SM system operating with perfect CSIR with that of the SM system operating with
imperfect CSIR and employing equal and optimal power splitting between training and data symbols. The SM system is assumed to have Nt = 4, nt = 4,
n = 100 and Nr = 1, 2. Plot (a) corresponds to Nr = 1 case and Plot (b) corresponds to that of Nr = 2.

Plot (a) in Fig. 6 that the power allocated for the training

block is significantly higher than that allocated for data blocks.

Plot (b) in Fig. 6 gives the mean channel estimation error

for various training periods, when considering equal power

sharing between the data and training blocks.

• It is clear from this plot that the optimal allocation using

a minimal training length of nt = 4 gives a better CE

than that of the equal power allocation associated with

nt = 12. Therefore, optimal power sharing reduces the

loss in the data throughput due to lower training overhead

and with a better CE, can be expected to give a better

SER performance.

Let us now consider an SM system operating with imperfect

CSIR and employing a conventional QAM signal set, and then

compare the SER performance offered by the iterative data-

detection/channel-estimation algorithm [19] to that offered by

the SM system employing optimal power splitting. In order

to benchmark the performance of the SM system having im-

perfect CSIR against that of the conventional MIMO system,

the SER performance of the Alamouti code [36] is provided,

considering both cases of equal and optimal power sharing

[28].

Note that, although it is essential to consider a coded

system in order to compare the system performance to the

fundamental capacity/achievable MI limits, we restrict our

study in this paper to an uncoded system, since our focus is on

achieving same performance as that of the system operating

with perfect CSIR, without aiming for approaching the system
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Fig. 6. Ploat (a) gives the capacity optimized power splitting in an SM system having n = 100, nt = Nt = 4 and Nr = 2. Plot (b) compares the mean
squared error of the estimated channel in optimal power sharing scenario with that of the equal power sharing scenario for various training lengths.

capacity. Considering various throughputs, Fig. 7 gives the

SER curves of the

1) SM system operating with perfect CSIR;

2) SM system operating with imperfect CSIR and employ-

ing the proposed capacity-optimized power splitting;

3) SM system operating with imperfect CSIR and employ-

ing equal power splitting;

4) SM system operating with imperfect CSIR and em-

ploying the iterative data-detection/channel-estimation

algorithm of [19];

5) Alamouti code with perfect CSIR;

6) Alamouti code with imperfect CSIR, and

7) Alamouti code with imperfect CSIR and employing

optimal power splitting between data and training blocks

[28].

It is clear from Fig. 7 that both the SM system as well

as the Conventional MIMO (CMIMO) system employing the

Alamouti code suffer from a significant performance loss

compared to their perfect CSIR counterparts. Specifically, at

an SER of about 10−2 the SM system suffers about 2 dB, 2.5

dB and 2.5 dB SNR loss, when operating at 6, 7 and 8 bpcu,

respectively, and the system using Alamouti code suffers from

about 5 dB SNR loss, when operating at the same throughputs

as that of the SM system.

• The SM system is more robust to channel imperfections

compared to that of the conventional MIMO system.

• It is clear from Fig. 7 that employing optimal power

splitting between data and training blocks significantly

reduces the performance loss owing to imperfect CSIR

in both the SM and CMIMO systems.
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Fig. 7. SER performance comparison of the SM and the Alamouti code (AC) under imperfect CSIR condition. The performance of the iterative data-
detection/channel-estimation algorithm [19] in SM system is also provided. The SM system is assumed to have Nt = 4, Nr = 2, n = 100 and nt = 4.

• As the throughput increases, the SER performance of

the SM system using imperfect CSIR and employing

optimal power splitting coincides with that of the iterative

detection/estimation algorithm.

Therefore, the proposed capacity-optimized power splitting

enables us to achieve almost the same performance as that

of the algorithm in [19] without any additional computational

burden at the receiver.

It is evident from Fig. 7 that the SM system operating with

imperfect CSIR and employing optimal power splitting gives a

better SER performance compared to its CMIMO counterpart

in the low and medium SNR region. Specifically, at an SER of

about 10−2, it is observed that the SM system gives an SNR

gain of about 2.5 dB, 3 dB and 3.5 dB at 6, 7 and 8 bpcu,

respectively, with respect to the CMIMO system employing

Alamouti’s code. However, at high SNR region the Alamouti’s

code gives better SER performance owing to a higher diversity

order.

VI. CONCLUSIONS

In this paper, we have proposed a hard-limiting based ML-

optimal detector for the SM system whose computational

complexity does not grow with the size of the signal set,

provided that the employed signal set is either square- or

rectangular-QAM. The proposed detector is shown to have the

lowest computational complexity among the various existing

detectors proposed for SM systems, including that of SD.

We have considered the SM system operating with imperfect

CSIR and obtained a non-trivial lower bound on its capacity.

The power allocation between data and training blocks is

optimized by maximizing this lower bound, and the resultant

capacity improvement and the quality of the estimated channel

at the receiver is studied. The SER performance of the SM

system using both the equal and the proposed optimal power

allocation is compared to that of the SM system operating

with the aid of the iterative data-detection/channel-estimation

algorithm [19] and of the conventional MIMO system em-

ploying Alamouti’s code. The SM system employing the

proposed optimal power splitting is observed to give a SER

performance which is the same as that of the SM system

using the iterative data-detection/channel-estimation algorithm

of [19] and significantly outperforms the conventional MIMO

system employing Alamouti’s code.

VII. APPENDIX A

COMPUTATIONAL COMPLEXITY OF VARIOUS DETECTORS

CONCEIVED FOR THE SM SYSTEM

We provide a brief description of the computational com-

plexity of various existing detectors given in Table 1.

A. MF Based Detector [6]

Consider (35) of [6], which gives the computational com-

plexity of the MF based detector, formulated as:

C =
(4MNTQ+ 4NTQ+QL′)/τ + 4NTQ+ 3QL′ + 4L

log2(QL) .

(33)

Neglecting the normalization term log2(QL) and considering

Q = Nt, M = 1, N = Nr, T = 1, τ = 1, L′ = M/4 = |S|/4,

and L = M = |S| which correspond to the SM system having

Nt transmit as well as Nr receive antennas and employing a

signal set S having |S| = M , we arrive at CMF = 12NrNt+
(Nt + 4)M .
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B. SVD [7]

Consider (5) of [7], which is given by

k = argmin
j

θ(j), where θj = arccos
|hH

j y|
‖hj‖‖y‖

(34)

and

ŝ = argmin
s∈S

‖y − hks‖2. (35)

The computational complexity imposed by the above equations

is summarized as follows:

1) hH
j y takes 4Nr real-valued multiplications.

2) |hH
j y| =

√

[ℜ(hH
j y)]2 + [ℑ(hH

j y)]2 takes 2 real-

valued multiplications.

3) ‖hj‖ =
√
∑Nr

k=1 ℜ(hj,k)2 + ℑ(hj,k)2 takes 2Nr real-

valued multiplications.

4) ‖y‖ =
√
∑Nr

k=1 ℜ(yk)2 + ℑ(yk)2 takes 2Nr real-valued

multiplications.

5) The product ‖y‖‖hj‖ takes 1 real-valued multiplication

and the division
|hH

j y|
‖hj‖‖y‖ is considered as 1 multiplica-

tion.

Thus, the number of real-valued multiplications involved in

obtaining k is (4Nr + 2Nr + 2 + 1 + 1)Nt + 2Nr = (6Nr +
4)Nt + 2Nr. Note that ‖y‖ needs to be computed only once.

Furthermore, for a given s, hks takes 4Nr real-valued multi-

plications and ‖y−hks‖2 = ‖b‖2 =
∑Nr

i=1[ℜ(bi)]2+[ℑ(bi)]2
takes 2Nr real-valued multiplications. Thus, the overall com-

plexity is given by CSV D = (6Nr+4)Nt+2Nr+6NrM , since

|S| = M . Note that the complexity involved in computing

the square root operations in 2) to 4) (above) and the arccos
operation, which has to be computed Nt number of times for

obtaining k are not considered in the complexity analysis.

C. DMF Based Detector [8]

By referring to Section II-B of [8] it is clear that the

computational complexity of DMF based detector is lower

bounded by that of the MF based detector. Thus, we omit

the details of the complexity analysis of this detector.

D. DBD [9]

Consider (28) of [9], which is given by

CDBD =
(T/τ + T + 3Nt + 6Nrp)

L
, (36)

where T = 4NrNt, 1 ≤ p ≤ Nt, L = log2(NtM)
and τ is the coherence interval. Note that (36) does not

include the computational complexity involved in the classic

symbol demodulation, which is given by 2NtM real-valued

multiplications (refer to (5) of [9]). Thus, considering the

coherence interval τ = 1 and neglecting the normalization

term L, the overall complexity of the DBD is CDBD =
8NrNt + 3Nt + 6Nrp+ 2NtM .

E. Proposed HL-ML detector

For a given l, the computation of ŷl =
hHy

‖hl‖2 takes 6Nr +2
real-valued multiplications. Since

1) hHy takes 4Nr real-valued multiplications,

2) ‖hl‖2 =
∑Nr

k=1 ℜ(hl,k)
2 + ℑ(hl,k)

2 takes 2Nr real-

valued multiplications, and

3) the divisions
ℜ(hHy)
‖hl‖2 and

ℑ(hHy)
‖hl‖2 are considered as two

multiplications, which results in a total complexity of

6Nr + 2 operations.

Since l varies from 1 to Nt, the computation of the set {ŷl}Nt

l=1

takes (6Nr + 2)Nt real-valued multiplications.

Now consider (8), which is of the form

ℜ(ŝl) = min(a,N1 − 1),

where a = max(b,−N1 + 1) and b = 2

⌊
u1 + 1

2

⌉

− 1,

(37)

u1 = ℜ(ŷl) for a given l. It is clear from (37) that the

computation of b takes 2 real-valued multiplications and the

computation of max(b,−N1 +1) and min(a,N1 − 1) involve

no multiplications. Furthermore, it is straightforward to see

from (37) that the complexity involved in obtaining ℜ(ŝl)
and a does not depend on the particular value that N1

takes. Similarly, the computation of ℑ(ŝl) takes 2 real-valued

multiplications. Thus, ŝl = ℜ(ŝl) + jℑ(ŝl) takes 4 real-

valued multiplications. Therefore, the computation of the set

Smin = {ŝi}Nt

i=1 takes 4Nt real-valued multiplications.

Considering (16), for a given l the computation of

1) |ŷl|2 = ℜ(ŷl)2 + ℑ(ŷl)2 takes 2 real-valued multiplica-

tions,

2) |ŷl− ŝl|2 = ℜ(ŷl− ŝl)
2+ℑ(ŷl− ŝl)

2 takes 2 real-valued

multiplications, and

3) the product of |ŷl − ŝl|2 − |ŷl|2 and ‖h‖2 takes 1 real-

valued multiplication.

Note that ‖hl‖2 has already been computed while obtaining

ŷl. Thus, for a given l the computation of (16) takes 5

real-valued multiplications. Again, since l ranges from 1
to Nt the overall complexity in computing (16) is 5Nt,

the computational complexity of the proposed detector is

CHL−ML = (6Nr + 2)Nt + 4Nt + 5Nt = (6Nr + 11)Nt.

VIII. APPENDIX B

PROOF OF PROPOSITION 2

A non-trivial lower bound for CSM is derived as follows.

From (19), we have

I(y; l) = H(l)−H(l|y) = log(Nt)−H(l|y), and

H(l|y) =
Nt∑

l=1

∫

y′

fl,y′(l, y′) log
1

fl|y′(l|y′)dy
′, (38)
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where for a given l we have y′ =
√
ρ‖hl‖s + n′ and n′ ∼

CN (0, 1). Using Bayes’ rule, (38) can be written as

H(l|y) =
Nt∑

l=1

∫

y′

fy′|l(y
′|l)fl(l) log

∑Nt

l′=1 fy′|l′(y
′|l′)

fy′|l(y′|l)
dy′,

=
1

Nt

Nt∑

l=1

∫

y′

fy′|l(y
′|l) log 1

fy′|l(y′|l)
dy′+

1

Nt

Nt∑

l=1

∫

y′

fy′|l(y
′|l) log

(
Nt∑

l′=1

fy′|l′(y
′|l′)
)

dy′,

=
1

Nt

Nt∑

l=1

log
[
πe
(
1 + ‖hl‖2ρ

)]
+

1

Nt

Nt∑

l=1

∫

y′

1

πσ2
l

e
−|y′|2

σ2
l log

(
Nt∑

l′=1

1

πσ2
l′
e

−|y′|2

σ2
l′

)

dy′,

where σ2
l = ρ‖hl‖2 + 1. Furthermore, changing the variable

y′ to y′l for ease of presentation, we can write

1

Nt

Nt∑

l=1

∫

y′

1

πσ2
l

e
−|y′|2

σ2
l log

(
Nt∑

l′=1

1

πσ2
l′
e

−|y′|2

σ2
l′

)

dy′

=
1

Nt

Nt∑

l=1

Ey′
l

[

log

(
Nt∑

l′=1

1

πσ2
l′
e

−|y′
l
|2

σ2
l′

)]

. (39)

From Jensen’s inequality we have E[log(X)] ≤ log(E[X]),
thus, (39) can be bounded as

1

Nt

Nt∑

l=1

Ey′
l

[

log

(
Nt∑

l′=1

1

πσ2
l′
e

−|y′
l
|2

σ2
l′

)]

≤ 1

Nt

Nt∑

l=1

log

[

Ey′
l

(
Nt∑

l′=1

1

πσ2
l′
e

−|y′
l
|2

σ2
l′

)]

,

=
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

1

π(‖hl‖2 + ‖hl′‖2)ρ+ 2π

]

.

Thus,

H(l|y) ≤ 1

Nt

Nt∑

l=1

log
[
πe
(
1 + ‖hl‖2ρ

)]
+

1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

1

π(‖hl‖2 + ‖hl′‖2)ρ+ 2π

]

,

=
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2ρ+ 1)

(‖hl‖2 + ‖hl′‖2)ρ+ 2

]

.

Therefore, we have

I(y; l) ≥ log(Nt)−
1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2ρ+ 1)

(‖hl‖2 + ‖hl′‖2)ρ+ 2

]

,

and

CSM ≥ 1

Nt

Nt∑

l=1

log(1 + ρ‖hl‖2) + log(Nt)

− 1

Nt

Nt∑

l=1

log

[
Nt∑

l′=1

e(‖hl‖2ρ+ 1)

(‖hl‖2 + ‖hl′‖2)ρ+ 2

]

.

IX. APPENDIX C

EVALUATION OF MMSE COVARIANCE MATRIX

Since h̃li = hli − ȟli , we have

E
[

h̃li
h̃
H

li

]

= E
[

hli
h
H

li

]

+ E
[

ȟli
ȟ
H

li

]

− E
[

ȟli
h
H

li

]

− E
[

hli
ȟ
H

li

]

.

(40)

It is straightforward to show that E
[
hlih

H
li

]
= INr

. Consider

the received matrix corresponding to the training phase of the

lthi transmit antenna as Y
(li)
t =

√
ρthlixt+N

(li)
t ∈ C

Nr×n
(li)
t ,

where xt = [1, 1, . . . , 1] ∈ C
1×n

(li)
t . From (26), we have ȟli =(

ρtn
(li)
t

1+ρtn
(li)
t

)(

hli +
1√
ρt
n′
)

, where n′ = 1

n
(li)
t

N
(li)
t xH

t ∼
CN (0, 1

n
(li)
t

INr
). Therefore, we have

E
[
ȟli ȟ

H
li

]
=

ρtn
(li)
t

1 + ρtn
(li)
t

INr
,

E
[
ȟlih

H
li

]
= E

[
hli ȟ

H
li

]
=

ρtn
(li)
t

1 + ρtn
(li)
t

INr
.

Thus, from (40) we have E
[

h̃li h̃
H
li

]

= 1

1+ρtn
(li)
t

INr
.
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