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Abstract Using numerical simulations, we demonstrate the feasibility of polarisation division multi-
plexing nonlinear inverse synthesis transmission. A reduced-complexity processing for dual polarization
nonlinear Fourier-based transmission schemes is proposed and studied.

Introduction
Optical transmission methods based on the
nonlinear Fourier transform (NFT) for signal
(de)modulation have recently attracted a great
deal of attention1 due to their robustness to fiber
nonlinear effects, which are believed to limit the
performance of current-generation transmission
systems. The NFT exploits the integrability of
the master models for fiber channels—either the
scalar nonlinear Schrödinger equation (NLSE) for
single-polarization signals or the vector Manakov
equation (ME) for dual-polarization signals2—to
represent the optical signal through a nonlinear
spectrum that evolves in a linear manner along
the channel3,4. The nonlinear inverse synthe-
sis (NIS)5 is an NFT-based transmission scheme
that encodes the information into the nonlinear
spectrum, such that deterministic propagation ef-
fects can be exactly reversed at the receiver (RX).
Recently, polarization division multiplexing (PDM)
NFT-based schemes6,7 have been studied as
a tool to increase the line throughput. In this
work we consider PDM nonlinear inverse synthe-
sis (PDM-NIS) as a dual polarization extension of
NIS. The standard PDM-NIS assumes that we
use the NFT associated with the ME for encod-
ing and decoding information, in agreement with
the channel model. To reduce the method’s com-
plexity, we also propose here the PDM-NISNLS ap-
proach that exploits the scalar NFT (associated
with the NLSE) to independently process each
polarization component of the optical signal, in
place of the more involved vector NFT associated
with the ME.

Numerical methods for the NFT for ME
In this section, we briefly describes two methods
for the numerical computation of the NFT and the
inverse NFT (INFT) for the ME4 in the case of
fiber links with anomalous dispersion.

For the computation of the nonlinear spectrum

from the time-domain signal (direct NFT), we pro-
pose a generalization of the well-studied Boffetta-
Osborne method8, within which we compute the
scattering data (the NFT spectrum) a(λ), b1(λ),
and b2(λ), which depends on the nonlinear fre-
quency λ, assuming a piece-wise constant ap-
proximation of the dual-polarization time domain
signal q(t) = (q1(t), q2(t)). The dual-component
continuous nonlinear spectrum is obtained as

ρ(λ) = (ρ1(λ), ρ2(λ)) = (b1(λ), b2(λ))/a(λ).

Let q(t) = 0 outside [−T, T ], and consider the
uniform grid tn = −T +(n−1)δ for n = 1, . . . , N+

1, with discretization step δ = 2T/N . Let q(n) =

q(tn) and U (n) be the transfer matrix
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where ck = cosh (δdk) and sk = sinh (δdk) /dk for
k = 0, 1, 2, d0 = (−λ2 − |q(n)1 |2 − |q(n)2 |2)1/2, and
dk = (−λ2 − |q(n)k |2)1/2 for k = 1, 2. Compute φ =

(φ1, φ2, φ3)
T = U (N+1) . . . U (1)[1, 0, 0]T and obtain

a(λ) = φ1e
jλ(2T+δ), b1(λ) = φ2, and b2(λ) = φ3.

Regarding the INFT, the time domain sig-
nal q(t) can be obtained from the nonlin-
ear spectrum by generalizing the Nystrom-
conjugate-gradient method used to solve the
Gelfand-Levitan-Marchenko equation (GLME) in
the scalar NLSE case9. The GLME for the
ME4 is a two-dimensional integral equation in
which the nonlinear spectrum appears through
the dual-component kernel function F(y) =

(F1(y), F2(y))
4, defined (in the case of a(λ) hav-

ing only simple zeros) as
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Fig. 1: PDM-NIS (upper) and PDM-NISNLS (lower) schemes.

where Ci is the discrete spectrum component
corresponding to the eigenvalue λi, for any i =

1, . . . , N such that λi ∈ C
+ is a simple zeros

of a(λ). Let t be the time instant in which the
solution has to be found, and consider the uni-
form grid αm = (m − 1)2δ for m = 1, . . . ,M

where M is chosen such that ||F(y)|| = 0 for
y ≥ 2t+αM . Let D be the diagonal matrix charac-
terizing the composite Simpson’s quadrature rule,
i.e., with diagonal 2δ/3{1, 4, 2, 4, . . . , 4, 2, 4, 1}; Hk

be the matrices (Hk)m,n = Fk(2t + αm + αn) for
m,n = 1, . . . ,M and k = 1, 2, and fk the vector
(fk)m = Fk(2t+αm) for m = 1, . . . , L and k = 1, 2.
The GLME is reduced to the system

{
A1,1b1 +A1,2b2 +Db1 = Df∗1
A2,1b1 +A2,2b2 +Db2 = Df∗2

, (1)

with unknown L-dimensional column vectors b1

and b2, where Am,n = DH†
mDHnD and Hm-

s are Hankel matrices. The discrete system (1)
can now be solved with the conjugate gradient
method, using FFTs for fast products between the
matrices Hm and respective vectors. Finally, the
time domain solution (in the fixed time instant t)
is found from the first component of the unknown
vectors as qk(t) = −2(bk)1.

Simulation setup and results
In this work, we consider two PDM transmis-
sion schemes based on the NFT: PDM-NIS and
PDM-NISNLS, shown schematically in Fig. 1 in
the upper and lower parts, respectively. Both
schemes are considered in the same scenario
as in10, rearranged for the dual polarization
case. At the transmitter (TX), Ns information
symbols (Ns/2 per polarization) with quadrature
phase-shift keying modulation are independently
mapped onto two nonlinear spectra ρ1(λ) and
ρ2(λ)

10. The optical signal is obtained as follows:
PDM-NIS uses one joint INFTM to obtain q(t) from
ρ(λ) = (ρ1(λ), ρ2(λ)), while PDM-NISNLS per-
forms two independent INFTNLS to obtain the two
components qk(t) from the corresponding ρk(λ)

for k = 1, 2. At the RX, the TX operations are in-

verted: PDM-NIS performs a joint NFTM to obtain
the dual polarization nonlinear spectrum, while
PDM-NISNLS uses two independent NFTNLS of
each signal’s polarization to get the two nonlinear
spectrum components. Then, deterministic prop-
agation effects are removed multiplying for e4jλ

2L,
with L being the normalized channel length7, and
matched filtering and sampling are used to re-
cover the transmitted information.

In an ideal noiseless scenario, the PDM-NIS is
exact since TX and RX employ NFTM in agree-
ment with the signal propagation (governed by the
ME). Conversely, the PDM-NISNLS is affected by
ISI due to the mismatch between signal propa-
gation (governed by the ME and, hence, includ-
ing an interaction between the two polarizations)
and the encoding/decoding techniques (which ne-
glect such interaction). The impact of this mis-
match is addressed later in this section. However,
the PDM-NISNLS is less computationally complex
(i.e., it requires less floating-point operations).

In our simulations the link, of length L =

2000 km, is a standard single mode fiber with an
ideal distributed amplification, with: group velocity
dispersion parameter β2 = −20.39 ps2/km, non-
linear coefficient γ = 1.22W−1km−1, attenua-
tion αdB = 0.2 dB/km, and spontaneous emission
noise was simulated in a standard way10,11. The
symbol rate is Rs = 50GBd per polarization. We
inserted Nz = 800 guard symbols per polarization
between bursts to avoid their interaction during
propagation10. The NFTs are computed as de-
scribed in the previous section, with oversampling
factor of 4 samples per symbol (i.e., δ = 1/(4Rs)):
this value is enough to eliminate the impact of nu-
merical inaccuracies on our results.

System performance, evaluated through simu-
lations and presented in terms of Q2-factor10, is
shown in Fig. 2(a) as a function of the average
power Ps = EsRs, where Es is the average en-
ergy per information symbol. Figure 2(a) qual-
ifies the performance obtained for different Ns

(marked with the same color) for the PDM-NIS
system with solid lines, and for PDM-NISNLS

with dashed ones. The comparison between
the PDM-NIS and PDM-NISNLS performance in-
dicates that (i) for larger Ns, i.e., when the op-
timal performance is higher, PDM-NISNLS per-
forms worse than PDM-NIS, as the expected con-
sequence of the mismatch between the chan-
nel and the processing technique; (ii) for smaller
Ns, i.e, when the optimal performance is lower,
PDM-NISNLS performs better than PDM-NIS, con-



5

10

15

20

25

30

-20 -15 -10 -5 0 5

Q
2

(d
B)

Ps (dBm)

Ns=32
Ns=64
Ns=128
Ns=256
Ns=512
Ns=1024

(a)PDM-NIS
PDM-NISNLS

5

10

15

20

25

30

-20 -15 -10 -5 0 5

Q
2

(d
B)

Ps (dBm)

Ns=32
Ns=64
Ns=256
Ns=1024

(b)L=2000km
B2B

-14dBm -3.1dBm 5

10

15

20

25

30

35

0 400 800 1200 1600 2000

Q
2

(d
B)

L [km]

Ns=1024
Ps=-14dBm

Ns=32
Ps=-3.1dBm

PDM-NISNLS

PDM-NIS

(c)

Fig. 2: (a): Q-factor for PDM-NIS and PDM-NISNLS after transmission over 2000 km; (b): PDM-NISNLS vs power Ps for fixed
noise power; (c): PDM-NIS and PDM-NISNLS vs propagation distance L for fixed powers.

trary to the previous case. Such a counterintuitive
behavior can be explained by noting that, while
PDM-NISNLS processes each polarization com-
ponent of the received noisy signal by an inde-
pendent NFTNLS, PDM-NIS uses a single NFTM

to jointly process the two components, in fact
processing a doubled-energy noisy signal. We
conjecture that this fact increases the impact of
noise on the nonlinear spectrum (which, in the
scalar case, is known to depend on the energy
of the signal10,11). Overall, Fig. 2(a) shows that
when the achievable performance is higher, the
optimal performance is obtained by the PDM-NIS
scheme, while when the achievable performance
is worse, it is better to use the PDM-NISNLS one,
both in terms of complexity and performance.

The impact of the mismatch in PDM-NISNLS

is shown in Fig. 2(b), which compares the per-
formance with the actual fiber and in back-to-
back (B2B) configuration (but with same total
accumulated noise), as a function of Ps. For
smaller Ns, the B2B performance (when there
is no propagation and, hence, no mismatch) is
significantly higher than after 2000 km (when
the mismatch becomes relevant). Conversely,
for larger Ns, the noise impact on the system
is stronger than the mismatch (recall that the
impact of noise on the nonlinear spectrum in-
creases with Ns, as demonstrated in the single-
polarization case10,11), such that the latter be-
comes negligible and the same performance is
achieved in B2B and after 2000 km. In this case,
PDM-NISNLS performs better than PDM-NIS, as
shown in Fig. 2(a). Finally, Fig. 2(c), which com-
pares PDM-NIS and PDM-NISNLS as a function of
the propagation length for a fixed launch power
(optimal for PDM-NISNLS), shows that their recip-
rocal behavior remains unchanged for different L.

Conclusions
In this work, we considered two PDM NFT-
based schemes: PDM-NIS uses the ME integra-
bility, while PDM-NISNLS uses a simplified scalar
NFTNLS processing and has lower complexity. A

comparison between the two schemes reveals a
peculiar behaviour that depends on the relative
impact of noise and of the deterministic mismatch
in PDM-NISNLS (absent in B2B, increasing with
propagation length): when the former is domi-
nant, PDM-NISNLS achieves a performance im-
provement of about 1 dB compared to PDM-NIS,
while PDM-NIS performs better in the other case.
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