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Reduced-Complexity Semidefinite Relaxations of

Optimal Power Flow Problems
Martin S. Andersen, Anders Hansson, Senior member, IEEE, Lieven Vandenberghe, Senior member, IEEE

Abstract—We propose a new method for generating semidef-
inite relaxations of optimal power flow problems. The method
is based on chordal conversion techniques: by dropping some
equality constraints in the conversion, we obtain semidefinite
relaxations that are computationally cheaper, but potentially
weaker, than the standard semidefinite relaxation. Our numerical
results show that the new relaxations often produce the same
results as the standard semidefinite relaxation, but at a lower
computational cost.

Index Terms—optimal power flow, semidefinite relaxation,
chordal conversion

I. INTRODUCTION

The general AC optimal power flow (OPF) problem is an

extension of the economic dispatch problem introduced by

Carpentier in 1962 [1]. The goal of the OPF problem is to

find a cost-optimal operating-point of a power system that

consists of a set of power busses that are interconnected

through a network of transmission lines. Each power bus may

have one or more generators and/or a load (i.e., demand),

and typical problem formulations minimize generation cost or

transmission loss, subject to a set of nonlinear power flow con-

straints and bounds on e.g. generation, voltage magnitudes, and

transmission line flows. Many different problem formulations

exist, but AC OPF problems are generally difficult nonconvex

optimization problems; see e.g. [2], [3] for further details on

different formulations and applications.

Numerous solution techniques have been proposed in pre-

vious work, including nonlinear optimization techniques such

as sequential quadratic programming, Lagrangian relaxation,

and interior-point methods, and more recently, derivative-free

methods such as particle swarm optimization, genetic algo-

rithms, and evolutionary programming; see e.g. [4], [5] and

references therein. Although the derivative-free methods are

generally more versatile, the conventional nonlinear optimiza-

tion techniques have some important advantages. For example,

derivative-free methods do not compute dual variables which

have valuable economic meanings in electricity markets.
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In recent work, researchers have applied semidefinite relax-

ation (SDR) techniques to various OPF problem formulations

[6]–[8]. This approach leads to conic optimization problems

that can be solved in polynomial time with an interior-

point method. The SDR formulation has attracted significant

attention since, unlike previous methods, the solution provides

either (i) a certificate of global optimality, (ii) a certificate of

infeasibility, or (iii) a lower bound on the optimal value. We

say that the SDR is “exact” if it provides the global solution

to the original problem. Conditions that guarantee exactness

of the SDR have been derived and studied in [8]–[10].

The computational cost of solving the SDR problem grows

rapidly with the size of the OPF problem, and this renders

the direct SDR formulation impractical for large-scale OPF

problems. This can be attributed to two computational bot-

tlenecks: (i) a dense symmetric matrix variable that grows

with the number of busses in the power network, and (ii) a

large dense positive definite system of equations, the so-called

Schur complement system, that defines the search direction

at each iteration. Despite its apparent high computational

complexity, the SDR formulation possesses both sparsity and

low-rank structure. The sparsity is related to the fact that each

power bus is typically connected to only a small number of

adjacent power busses, and, in fact, the dual variable inherits

its sparsity pattern from the network graph. This was pointed

out by Lavaei & Low [8] who proposed to solve the dual

problem; however, they solve the dual problem with SeDuMi

[11], which is a general-purpose primal–dual conic solver. The

solver therefore maintains and factors at each iteration not only

the sparse dual variable, but also the dense primal variable. It is

important to note that the second computational bottleneck (the

dense Schur complement system) remains even if one avoids

forming the dense primal variable, for example, by solving

the SDR problem and/or its dual using a sparse semidefinite

programming (SDP) solver such as DSDP [12] or SMCP [13].

Inspired by advances in sparse semidefinite programming,

Jabr [14] applied the conversion method by Fukuda et al.

[15] to the SDR of the OPF problem. The conversion method

is based on positive semidefinite matrix completion, and it

reformulates a sparse SDP as an equivalent block-diagonal

SDP with additional equality constraints. When applied to a

tree network, the conversion method yields a block-diagonal

SDP with 2 × 2 blocks. In general, the blocks correspond to

the so-called cliques of a chordal embedding of the network

graph, and the extra equality constraints impose consistency

by forcing certain elements of different blocks to be equal.

Although this method typically introduces sparsity in the Schur

complement system, it also increases the order of the Schur
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complement system quite substantially in many cases. The

benefit of using the conversion method therefore depends very

much on the network graph and on the chordal embedding.

In [16], Molzahn et al. apply the conversion method in

combination with a simple heuristic for reducing the number

of cliques in the converted problem, and their method typically

reduces the computation time by a factor of three. However,

like previous work in this area, the conversion is performed

based on the SDR of a real-valued formulation of the problem,

and as we explain in Section IV, this approach adds more than

twice as many equality constraints to the converted problem

than necessary (unless the special structure of the real-valued

problem is taken into account).

a) Contributions: The main goal of this paper is to

propose new formulations and relaxations of the AC OPF

problem. Specifically, we propose a class of new computa-

tionally cheaper SDRs of the OPF problem which are obtained

by dropping some of the equality constraints introduced when

converting the original SDR to a block-diagonal one. We also

propose a primal formulation of the AC OPF problem in

which we model line flow constraints using second-order cones

(SOCs) of dimension three instead of positive semidefinite

cones of order three. This reduces the number of variables.

Furthermore, by using complex-valued voltage variables in our

model instead of their real-valued real and imaginary parts,

we obtain an SDR that involves a Hermitian matrix variable

of order equal to the number of power busses instead of a

symmetric matrix variable of twice the order. By applying the

conversion method of Fukuda et al. [15] to this SDR, we avoid

introducing unnecessary equality constraints.

b) Notation: We denote by R
n and C

n the sets of real

and complex n-dimensional vectors, and R
m×n and C

m×n

denote the sets of real and complex m×n matrices. The set Hn

is the set of Hermitian matrices of order n, and Hn
+ denotes

the set of positive semidefinite matrices in Hn. The matrix

inequality A � B means that A− B is positive semidefinite,

i.e., the eigenvalues of A − B are nonnegative. We denote

by  =
√
−1 is the imaginary unit, a∗ denotes the complex

conjugate of a ∈ C, and AH denotes the Hermitian transpose

of a matrix A ∈ C
m×n. Finally, tr(A) denotes the trace of a

square matrix A, and tr(BHA) denotes the inner product of

A and B.

c) Outline: The rest of the paper is organized as follows.

We first introduce the power system model and our formulation

of the OPF problem and its SDR in Section II. We then

review chordal conversion in Section III and introduce some

new SDRs in Section IV. This is followed by numerical

experiments in Section V, and we conclude the paper in

Section VI.

II. PROBLEM FORMULATION AND SEMIDEFINITE

RELAXATION

We start this section by describing the power system model

and a variant of the AC OPF problem. We then propose a

reformulation of the problem and derive the associated SDR.

A. Model

The power system model consists of a network of power

busses. We denote the set of power busses (nodes) by N and

the set of transmission lines (edges) by L ⊆ N × N , i.e.,

(k, l) ∈ L if there is a transmission line from node k to node

l. Transmission lines may be nonsymmetric and there may be

more than one transmission line between a pair of nodes, so

we model the network graph as a directed graph. We denote

the number of nodes by |N | and the number of transmission

lines by |L|. For each k ∈ N , we define Gk as the set of

generators at node k, and G =
⋃

k∈N Gk denotes the set of all

generators in the network. We allow Gk to be the empty set

which corresponds to a power bus without generators. We also

define a set F ⊆ L of transmission lines with flow constraints

(i.e., F = L if all transmission lines have flow constraints).

We associate with power bus k a complex bus voltage

vk and a complex current ik, and we define two vectors

v = (v1, v2, . . . , vn) and i = (i1, i2, . . . , in). The currents

and voltages satisfy the equation i = Y v where Y ∈ C
n×n is

a so-called bus admittance matrix which inherits its sparsity

from the network graph, thus Y is generally very sparse. We

will henceforth assume that the network graph is connected.

The bus admittance matrix follows from Kirchhoff’s current

law, and it can be computed from the problem data; refer to

e.g. [17] for details on how to compute the bus admittance

matrix. We denote the complex power generated by generator

g by sg = pg + qg , and similarly, Sd
k = P d

k + Qd
k denotes

the known demand or load at bus k.

The OPF problem takes the following form

minimize
∑

g∈G

fg(pg) (1a)

subject to i = Y v and the constraints

i∗kvk =
∑

g∈Gk

sg − Sd
k , k ∈ N (1b)

Pmin
g ≤ pg ≤ Pmax

g , g ∈ G (1c)

Qmin
g ≤ qg ≤ Qmax

g , g ∈ G (1d)

V min
k ≤ |vk| ≤ V max

k , k ∈ N (1e)

|Sfl
k,l(v)| ≤ Smax

k,l , (k, l) ∈ F (1f)

|Sfl
l,k(v)| ≤ Smax

k,l , (k, l) ∈ F . (1g)

The constraints (1b) are the power balance equations, (1c)-

(1d) are real and reactive power generation constraints, (1e)

are voltage magnitude constraints, and (1f)-(1g) are constraints

on transmission line flows. The variables are i, v, and sg =
pg + qg for g ∈ G, and Sfl

k,l(v) denotes the complex power

flow from bus k to bus l which is a quadratic function of

vk and vl. We will use the notation Sfl
k,l(v) = vHTk,lv +

vH T̃k,lv where Tk,l and T̃k,l are Hermitian and given (see

[17] for details regarding the transmission line model). The

scalars Pmin
g , Pmax

g , Qmin
g , Qmax

g , V min
k , V max

k , and Smax
k,l are

real and given, and the cost function fg : R → R represents

the fuel cost model of generator g and can be any so-called

semidefinite representable convex function. This includes the

set of linear and convex quadratic representable functions; see
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e.g. [18]. Here we will model the fuel cost curve as a convex

quadratic function of the form

fg(pg) = αgp
2
g + βgpg, (2)

where the scalars αg ≥ 0 and βg are given; see e.g. [2].

B. Reformulation and Semidefinite Relaxation

If we denote by ek the kth column of the identity matrix of

order n, we can express the left-hand side of each of the power

balance equations (1b) as i∗kvk = vHY Heke
T
k v, and hence we

can eliminate the variables ik and remove the equation i = Y v
from (1). The real power generation inequalities (1c) can be

expressed as

pg = Pmin
g + plg, plg + pug = Pmax

g − Pmin
g ,

where plg and pug are nonnegative slack variables, and the equa-

tion pg = Pmin
g + plg allows us to eliminate the free variable

pg . In a similar fashion, we may introduce nonnegative slack

variables qlg and qug for each of the inequalities (1d), and each

of the voltage constraints (1e) can be expressed as

V min
k + νlk = |vk|, |vk|+ νuk = V max

k ,

with nonnegative slack variables νlk and νuk . We now define

two Hermitian matrices Yk = (1/2)(Y Heke
T
k + eke

T
k Y ) and

Ỹk = −(/2)(Y Heke
T
k − eke

T
k Y ) so that the real and reactive

power balance equations at bus k can be expressed as
∑

g∈Gk

(Pmin
g + plg) = vHYkv + P d

k ,

∑

g∈Gk

(Qmin
g + qlg) = vH Ỹkv +Qd

k.

The convex quadratic cost functions (2) can be expressed using

the epigraph formulation fg(pg) ≤ tg where tg is an auxiliary

variable, and hence the inequality can be expressed as the

quadratic constraint |√αgpg|2 ≤ tg − βgpg . This, in turn, is

equivalent to a SOC constraint (see e.g. [18])

‖
[
1/2− tg + βgpg√

2αgpg

]
‖2 ≤ 1/2 + tg − βgpg.

Using the above reformulations and slack variables, and if

we partition G into a set of generators Glin = {g ∈ G |αg = 0}
with linear cost and generators Gquad = {g ∈ G |αg > 0}
with quadratic cost, the OPF problem (1) can be expressed as

minimize
∑

g∈Glin

βg(P
min
g + plg) +

∑

g∈Gquad

tg (3a)

subject to

tr(YkX) =
∑

g∈Gk

(Pmin
g + plg)− P d

k , k ∈ N (3b)

tr(ỸkX) =
∑

g∈Gk

(Qmin
g + qlg)−Qd

k, k ∈ N (3c)

plg + pug = Pmax
g − Pmin

g , g ∈ G (3d)

qlg + qug = Qmax
g −Qmin

g , g ∈ G (3e)

(V min
k )2 + νlk = Xkk, Xkk + νuk = (V max

k )2, k ∈ N (3f)

zk,l =




(Smax
k,l )

tr(Tk,lX)

tr(T̃k,lX)


 , zl,k =




(Smax
k,l )

tr(Tl,kX)

tr(T̃l,kX)


 , (k, l) ∈ F (3g)

wg =



1/2 + tg − βg(P

min
g + plg)

1/2− tg + βg(P
min
g + plg)√

2αg(P
min
g + plg)


 , g ∈ Gquad (3h)

plg, p
u
g , q

l
g, q

u
g ≥ 0, g ∈ G (3i)

νlk, ν
u
k ≥ 0, k ∈ N (3j)

zk,l ∈ K3
q , zl,k ∈ K3

q , (k, l) ∈ F (3k)

wg ∈ K3
q , g ∈ Gquad (3l)

X = vvH . (3m)

Here K3
q = {(t, x) ∈ R × R

2 | t ≥ ‖x‖} denotes the SOC

in R
3. The constraints (3g) and (3k) correspond to the line

flow constraints (1f)-(1g), and the constraints (3h) and (3l)

correspond to the epigraph formulation of the cost functions

for generators with quadratic cost.

The only nonconvex constraint in (3) is the rank-1 constraint

(3m), and we obtain an SDR of the problem simply by

replacing the nonconvex constraint X = vvH with the positive

semidefinite constraint X � 0. The SDR problem is convex,

and its solution X⋆ provides a lower bound on the optimal

value of (1). Furthermore, if X⋆ has rank 1, we obtain

a globally optimal solution to (1) by computing a rank-1

factorization X⋆ = ṽṽH . Note that X⋆ only carries relative

phase information since ṽṽH = v̄v̄H for any v̄ = exp(θ)ṽ
where θ ∈ [0, 2π].

The SDR of (3) can be expressed as a “cone linear program”

(cone LP) of the form

minimize hT z
subject to GT z + c = 0

z ∈ K
(4)

with variable z and where K is the direct product of cones. To

see this, notice that the constraints (3b)-(3h) are linear equality

constraints. There are a total of

r = 4|N |+ 2|G|+ 3(2|F|+ |Gquad|)
of these, and they correspond to the constraint GT z+c = 0 in

(4). Similarly, the cone constraint z ∈ K in (4) corresponds to

the 4|G|+2|N | nonnegativity constraints (3i)-(3j), the 2|F|+
|Gquad| SOC constraints (3k)-(3l), and the constraint X � 0
(i.e., the relaxed version of (3m)). In other words, z represents

all variables in the SDR of (3), and the cone K is given by

K = R
4|G|+2|N |
+ ×Kq ×H|N |

+

where Kq = K3
q × · · · × K3

q is the direct product of 2|F| +
|Gquad| SOCs. Thus, the total number of variables is equal to

4|G|+ 2|N |+ 3(2|F|+ |Gquad|) + |N |2

where |N |2 is the number of scalar variables needed to

represent the Hermitian matrix variable X .

Before we present our new relaxations of the OPF problem,

we note that the problem in (3) is equivalent to a nonconvex

quadratic optimization problem, and hence it is also possible

to derive relaxations based on linear optimization and SOC
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
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γ1 = {1, 2, 3}

γ2 = {2, 3, 4}

Fig. 1. Example of sparsity pattern, sparsity graph, and clique tree.

optimization; see e.g. [19] and references therein. While these

relaxations are computationally more tractable than the SDR

of (3), they are also weaker in general, which means that they

may provide more conservative lower bounds than the standard

SDR. For example, it is possible to obtain a SOC relaxation of

(3) simply by replacing the constraint X � 0 in the SDR of (3)

by positive semidefiniteness constraints on some or all 2 × 2
principal minors of X . These constraints can be expressed as

SOC constraints since if W is Hermitian and of order 2, then

W =

[
x y∗

y w

]
� 0 ⇔ ‖



x− w
2ℜy
2ℑy


 ‖2 ≤ x+ w.

It is important to note that the positive semidefiniteness of the

2×2 principal minors of X is only a necessary condition, but

not a sufficient condition, for positive semidefiniteness of X ,

so a SOC relaxation is generally weaker than the SDR.

III. CHORDAL CONVERSION

We begin this section with a quick review of chordal sparsity

and chordal cones; a more comprehensive treatment of these

concepts can be found in e.g. [20]–[22].

A. Chordal Sparsity Patterns and Cones

We represent a symmetric sparsity pattern of order n as a set

of index pairs E ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} where each

pair (i, j) ∈ E corresponds to a nonzero entry of a sparse

matrix of order n. We associate with the sparsity pattern E
an undirected graph which has n nodes {1, 2, . . . , n} and an

edge between nodes i and j (i 6= j) if (i, j) ∈ E. Fig. 1

shows an example of a sparsity pattern and the associated

sparsity graph. We say that the sparsity pattern E is chordal if

the sparsity graph is chordal. A graph is chordal if all cycles

of length greater than or equal to 4 have a chord (i.e., an

edge joining two non-adjacent nodes in a cycle). Note that

an immediate consequence of this definition is that acyclic

graphs are chordal. A clique of the sparsity graph is a node

subset γ ⊆ {1, 2, . . . , n} such that the subgraph induced

by γ is complete and maximal. Here “maximal” means that

there exists no other complete subgraph that properly contains

the subgraph induced by γ. In other words, each clique of

the sparsity graph corresponds to a maximal dense principal

submatrix of the sparsity pattern E. It is easy to verify that the

sparsity graph in Fig. 1 is chordal (there are no cycles of length

4 without a chord), and there are two cliques γ1 = {1, 2, 3}
and γ2 = {2, 3, 4}. Indeed, these index sets correspond to

maximal dense principal submatrices in the sparsity pattern.

Note that the set {1, 2} also induces a complete subgraph, but

is is not maximal since it is contained in γ1, and hence it is

not a clique according to our definition. As a final example,

we mention that a clique of a connected acyclic graph is any

pair of nodes that are connected by an edge, and this implies

that a connected acyclic graph with n nodes has n−1 cliques

of order 2.

We denote by Eγ(X) the principal submatrix Xγ,γ of X
defined by the index set γ. Similarly, we denote the adjoint

operator by Eadj
γ (W ) which takes a matrix W of order |γ| and

returns a matrix of order n with W in the principal submatrix

defined by γ and with zeros elsewhere.

Suppose γ1, γ2, . . . , γm are the cliques of a connected

chordal graph. (We have m < n since a connected chordal

graph with n vertices has at most n− 1 cliques.) The cliques

can be arranged in a clique tree (a maximum weight spanning

tree of the clique intersection graph) that satisfies the so-called

running intersection property, i.e., γi ∩ γj ⊆ γk if clique k
is on the path between cliques i and j in the tree; see e.g.

[20]. Given a chordal graph, the cliques and a clique tree

can be found efficiently using e.g. the algorithm by Pothen

& Sun [23]. Nonchordal graphs can be handled by means

of a chordal embedding, and this technique is closely related

to sparse symbolic factorization techniques; see e.g. [24] and

references therein. In particular, a chordal embedding can be

found using a fill reducing reordering (such as “approximate

minimum degree” or “nested dissection”) in combination with

a symbolic Cholesky factorization.

Given a sparsity pattern E, we define Hn
E as the set of

Hermitian matrices of order n and with sparsity pattern E, and

PE(X) denotes the projection of a (possibly dense) Hermitian

matrix X onto Hn
E . We define the cone of positive semidefinite

completable matrices in Hn
E as Hn

E,c = {PE(X) |X � 0}.

A key result by Grone et al. [25, Theorem 7] establishes

that the cone Hn
E,c is equivalent to the set of partial positive

semidefinite matrices in Hn
E (i.e., matrices in Hn

E for which

all dense principal submatrices in E are positive semidefinite)

if and only if the sparsity pattern E is chordal.

B. The Conversion Method

The conversion method of Fukuda et al. [15] (which was

further studied and generalized by Kim et al. in [26]) makes

use of the aforementioned result by Grone et al. to express a

cone constraint X ∈ Hn
E,c (where E is henceforth assumed to

be chordal) as m coupled constraints

Wk � 0, Wk = Eγk
(X), k = 1, . . . ,m, (5)

with X ∈ Hn
E and Wk ∈ H|γk|. Using the running intersection

property, we can eliminate the variable X in (5), i.e., Wk =
Eγk

(X) for some X ∈ Hn
E,c if and only if for k = 1, . . . ,m,

Wk � 0, Eγj∩γk
(Eadj

γj
(Wj)− Eadj

γk
(Wk)) = 0, j ∈ ch(k) (6)

where ch(k) is the set of indices of the cliques in the clique

tree that are children of clique k (node j is a child of node k
in a rooted tree if there is an edge between j and k, and k is

on the path between j and the root of the tree). Note that the

constraint Eγj∩γk
(Eadj

γj
(Wj) − Eadj

γk
(Wk)) = 0 in (6) couples

principal submatrices of Wj and Wk. These submatrices are

of order |ηj | where ηj = γj ∩ γk, and since Wk and Wj are

both Hermitian, the coupling consists of a total of |ηj |2 real
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equality constraints, i.e., |ηj |(|ηj | + 1)/2 equality constraints

that correspond to the symmetric real part and |ηj |(|ηj |−1)/2
equality constraints that correspond to the skew-symmetric

imaginary part. The conversion (6) therefore introduces a

total of s =
∑m

k=1

∑
j∈ch(k) |ηj |2 equality constraints. The

Hermitian matrix inequality X � 0 can also be expressed as

the real-valued symmetric matrix inequality

Z =

[
ℜX −ℑX
ℑX ℜX

]
� 0

and if we apply the conversion method to Z without exploiting

its particular structure, as has been done in previous work

(e.g., [14], [16]), we add unnecessary consistency constraints.

Specifically, applying the conversion method directly to Z
introduces

∑m

k=1

∑
j∈ch(k) 2|ηj |(2|ηj | + 1)/2 equality con-

straints, which is more than twice the number necessary when

conversion is applied to X .

The conversion method can be applied to a cone LP of the

form (4). However, since the conversion method only affects

the positive semidefinite matrix variables, we will simplify

our notation by considering the conversion method applied to

a semidefinite optimization problem of the form

minimize tr(A0X)
subject to tr(AjX) = bj , j = 1, . . . , r,

X ∈ Hn
E,c

(7)

where Aj ∈ Hn
E , j = 0, 1, . . . , r. Notice that we can express

the inner products tr(AjX) in terms of W1, . . . ,Wm as

tr(AjX) =

m∑

k=1

tr(Ãj,kWk). (8)

where the matrices Ãj,k ∈ H|γk| must satisfy the condition

Aj =
∑m

k=1 Eadj(Ãj,k). In general there are infinitely many

ways of splitting Aj in this way.

The conversion of (7) is a semidefinite optimization problem

with m blocks, i.e.,

minimize
∑m

k=1 tr(Ã0,kWk)

subject to
∑m

k=1 tr(Ãj,kWk) = bj , j = 1, . . . , r,
for k = 1, . . . ,m and j ∈ ch(k),
Eγj∩γk

(Eadj
γj

(Wj)− Eadj
γk

(Wk)) = 0

Wk � 0, k = 1, . . . ,m.

(9)

The total number of equality constraints is r + s where s
is the number of consistency constraints. For example, if the

sparsity graph is an acyclic graph, then there are m = n − 1
cliques of order 2 and s = n − 1 consistency constraints.

Thus, in this special case, the SDR is equivalent to the SOC

relaxation obtained by enforcing n− 1 principal minors of X
to be positive semidefinite and expressing these constraints as

SOC constraints. For general problems, we will see in Section

V that when applying the conversion method directly to the

cone LP (4), the number of consistency constraints s may be

several times larger than r. However, the number of variables

in the converted problem is typically much smaller than in

the unconverted problem since the m blocks are equivalent to∑m

i=1 |γi|2 scalar real-valued variables instead of |N |2.

As mentioned in the introduction, the computational bottle-

neck when solving an SDP is typically forming and factorizing

the Schur complement equations that define the search direc-

tion at each interior-point iteration. The Schur complement

matrix H associated with (7) is of order r with entries of

the form Hkl = tr(AkS
−1AlS

−1) for some S ∈ Hn
E,+, and

hence H is generally dense. The Schur complement system

associated with (9), however, is often sparse, but it is of

order r + s instead of r. A detailed exposition pertaining

to conversion and sparsity in the Schur complement system

is outside the scope of this paper; see e.g. [27], [28] and

references therein.

C. Clique Amalgamation

The conversion method introduces a large number of equal-

ity constraints when some of the sets ηj are large. Amalgamat-

ing (i.e., merging) a clique j and its parent in the clique tree

(say, clique k), reduces the number of cliques by one, and

it also reduces the number of equality constraints by |ηj |2.

This, in turn, implies that the order of the Schur complement

system is reduced, but it also affects the sparsity of the Schur

complement system. Moreover, the new combined clique is

given by γk∪γj , and hence it is larger than both of the cliques

from which it was constructed. Thus, there are two different

but coupled trade-offs to consider, namely a trade-off between

the number of cliques and their order (many small cliques or

fewer but larger cliques) and a trade-off between the order of

the Schur complement system and its sparsity (a large sparse

system or a smaller but less sparse system).

In this paper, we will use the greedy clique amalgamation

heuristic from Sun et al. [28] which does not take the sparsity

of the Schur complement system into account. Specifically,

we start at the bottom of the tree and merge clique j and its

parent clique k if (|γk|−|ηj |)(|γj |−|ηj |) ≤ tfill or max(|γj |−
|ηj |, |γk| − |ηk|) ≤ tsize. Here tfill is a threshold based on the

amount of fill induced by merging clique j and its parent, and

tsize is a threshold based on the cardinality of the so-called

supernodes which are the sets γk \ ηk and γj \ ηj .

We end this section by noting that the term “clique amal-

gamation” is inspired by terminology from the sparse factor-

ization literature where “supernodal amalgamation” refers to

a similar technique used to balance the number of supernodes

and their orders to obtain cache-efficient block sizes [29], [30].

IV. CONVERSION-BASED SEMIDEFINITE RELAXATION

In this section, we propose a new SDR technique for sparse

nonconvex QPs of the form

minimize xHA0x
subject to xHAjx = bj , j = 1, . . . , r,

(10)

where A0, A1, . . . , Ar ∈ Hn
E are given and E is chordal with

cliques γ1, . . . , γm. An SDR of (10) is given by (7) where

X ∈ Hn
E,c is a convex relaxation of the constraint X = xxH .

Recall that applying the conversion method to (7) yields the

equivalent problem (9). We refer to (9) as “full conversion”

which is closely related to the sparse SDR technique of Waki

et al. [31] for polynomial optimization with structured sparsity.

Now recall that the consistency constraint (6) that couples

clique j and its parent clique is equivalent to |ηj |2 equality
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constraints. By dropping some of these equality constraints, we

can obtain computationally cheaper relaxations. We will refer

to this method as “conversion-based SDR” (CSDR), and we

will see in Section V that O(|ηj |) equality constraints linking

each clique j and its parent are often sufficient to recover the

solution to the standard SDR. This is not surprising since we

can verify whether two Hermitian rank-1 matrices of order

|ηj | are equal or not by comparing a single column or row.

This corresponds to 2|ηj | − 1 equality constraints since each

row/column contains |ηj | real values and |ηj | − 1 complex

values. Note that the CSDR solution is also a solution to the

standard SDR whenever it satisfies the full set of consistency

constraints (6). In the remainder of this section, we discuss

CSDRs based on different heuristic consistency strategies.

A. Band CSDR

A straightforward method for reducing the number of con-

sistency equalities is to keep only equalities that correspond

to entries of Eγj∩γk
(Eadj

γj
(Wj) − Eadj

γk
(Wk)) = 0 within a

band of half-bandwidth ρj (where 0 ≤ ρj < |ηj |). Diagonal

consistency corresponds to ρj = 0, and full consistency

corresponds to ρj = |ηj | − 1. To simplify the choice of

parameters, we define a “global” half-bandwidth parameter

ρ ≥ 0 and let ρj = min(ρ, |ηj | − 1). The total number of

consistency constraints in the band CSDR is then given by

m∑

k=1

∑

j∈ch(k)

(
|ηj |+ 2

ρj∑

l=1

(|ηj | − l)
)
.

Recall that ρ = 0 corresponds to diagonal-only coupling, and

this is generally not sufficient to recover a feasible solution

to the original problem even if the CSDR solution has rank-

1 blocks. This is because the diagonal elements of a rank-1

block correspond to squared voltage magnitudes, and hence

phase consistency is not enforced. However, for ρ ≥ 1, we

can always recover a solution to the original problem if all

blocks have rank 1 since the additional equality constraints

are sufficient to recover relative phase information.

B. Other CSDRs

An alternative to band CSDR is to keep only equality

constraints that correspond to diagonal entries as well as the

entries in ρj = min(ρ, |ηj | − 1) rows/columns with ρ ≥ 0
(e.g., an arrow pattern). This approach leads to exactly the

same number of equality constraints as in the band CSDR

with parameter ρ, and we can recover a solution to the original

problem if ρ ≥ 1 and all blocks have rank 1.

Yet another possibility is to keep equality constraints that

correspond to nonzero entries in the bus admittance ma-

trix (i.e., corresponding to edges in the network graph).

The total number of consistency equalities is then equal to∑m

k=1

∑
j∈ch(k)(|ηj |+ 2|Lj |) where Lj ⊆ L is the subset of

transmission lines that connect a pair of power busses that

each belong to both clique j and its parent clique. We refer to

this strategy as sparse CSDR. It is also possible to combine

several consistency strategies, for example, using band-plus-

sparse structure.

Case |N | |Gfix| |Glin| |Gquad| |L| |F|
IEEE-118 118 0 0 54 186 0
IEEE-300 300 0 0 69 409 0
2383wp 2,383 92 235 0 2,896 5
2736sp 2,736 118 82 0 3,269 1
2737sp 2,737 165 54 0 3,269 1
2746wop 2,746 346 85 0 3,307 0
2746wp 2,746 352 104 0 3,279 0
3012wp 3,012 9 376 0 3,572 5
3120sp 3,120 25 273 0 3,693 8

TABLE I
TEST CASES AND PROBLEM DIMENSIONS

As a final remark, we mention the possibility to use the

conversion technique based on the cliques of a nonchordal

embedding of the network graph (or the network graph it-

self) instead of the cliques of a chordal embedding. Positive

semidefiniteness of the cliques of a partial Hermitian matrix

is a necessary condition for it to have a positive semidefinite

completion. However, we know from the theorem of Grone et

al. [25, Theorem 7] that this is not a sufficient condition in gen-

eral unless the sparsity pattern is chordal. Hence by applying

the conversion method based on the cliques of a nonchordal

patterns, we can obtain SDRs that are computationally cheaper

to solve (but generally also weaker) than the standard SDR.

We will not explore this strategy further in this paper.

V. NUMERICAL EXPERIMENTS

We have implemented and tested the SDR of the problem in

(3) as well as some of the conversion-based SDR techniques

from Section IV. The experiments are based on the benchmark

problems from the MATPOWER package [17], and we build the

data matrices associated with the cone LP (4) directly without

using a modeling tool. The experiments were carried out in

Matlab R2013a on a laptop with an Intel Core i5 dual-core

1.8 GHz CPU and 8 GB RAM, and we used SeDuMi 1.3

with tolerance ǫ = 10−7 to solve the cone LP (4) and its

different conversions. Note that although we explicitly build

the complex-valued cone LP (4) and apply the conversion

method to this formulation, we cast the converted problem

as a real-valued cone LP before passing it to SeDuMi.

Following the approach in [16], we treat generators with

tight upper and lower bounds as generators with fixed power.

Specifically, we set pg = (Pmin
g +Pmax

g )/2 if Pmax
g −Pmin

g is

less than 0.001 units for generator g, and Gfix denotes the set

of number of such generators. We also eliminate transmission

line flow constraints that are not active (i.e., operating below

their maximum capacity) at the (local) solution provided by

MATPOWER. (For the test problems with several thousands

of power busses, SeDuMi did not return a useful solution

when all the transmission line constraints were included in

the problem.) Table I lists the test cases along with relevant

problem dimensions. The number of active transmission line

constraints are listed in the last column of the table.

In order to improve the conditioning of the problem, we

scale the problem data c, G, and h in the cone LP formulation

(4) as G := GD−1, c := D−1c, and h := h/‖h‖2 where

D = diag(d1, d2, . . . , dr+s) and dk = max(|ck|, ‖Gek‖∞).
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Case # constraints Full Amal. Band CSDR (ρ) Sparse
(unconv.) conv. conv. 1 2 3 CSDR

IEEE-118 742 ×1.0 1.78 1.10 1.03 1.07 1.09 1.04
IEEE-300 1,545 ×1.0 1.99 1.14 1.04 1.09 1.12 1.04
2383wp 10,000 ×1.0 2.97 1.63 1.08 1.20 1.30 1.10
2736sp 11,248 ×1.0 3.04 1.64 1.08 1.22 1.32 1.10
2737sp 11,163 ×1.0 3.03 1.62 1.08 1.22 1.32 1.10
2746wop 11,379 ×1.0 3.10 1.63 1.08 1.21 1.32 1.10
2746wp 11,438 ×1.0 3.00 1.62 1.08 1.21 1.32 1.09
3012wp 12,716 ×1.0 3.03 1.67 1.08 1.22 1.32 1.09
3120sp 12,990 ×1.0 3.10 1.72 1.08 1.22 1.33 1.09

TABLE II
NUMBER OF CONSTRAINTS BEFORE AND AFTER CONVERSION

Case Full Amal. Band CSDR (ρ) Sparse
conv. conv. 1 2 3 CSDR

IEEE-118 1.5E+6 1.1E+7 1.1E+1 2.0E+7 1.9E+7 1.1E+1
IEEE-300 2.4E+2 1.2E+3 1.7E-1 1.2E+3 1.1E+3 1.7E-1
2383wp 4.0E+2 5.3E+2 3.7E-1 9.4E+1 3.8E+2 4.1E-1
2736sp 1.6E+5 5.9E+5 1.2E-1 4.0E+2 1.1E+5 1.2E-1
2737sp 1.8E+4 7.2E+4 1.2E-1 6.2E+2 2.8E+4 1.2E-1
2746wop 2.0E+4 5.6E+4 1.5E-1 1.2E+2 3.2E+4 4.8E-1
2746wp 3.5E+5 3.9E+5 1.3E-1 3.9E+2 1.9E+5 1.3E-1
3012wp 8.5E+0 1.6E+2 2.4E-1 7.5E+1 2.2E+2 2.4E-1
3120sp 6.6E+1 1.5E+2 2.8E-1 6.9E+1 1.6E+2 2.8E-1

TABLE III
EIGENVALUE RATIOS

This scales the dual variables and the objective, but not the

primal variables. We found that this scaling heuristic reduced

the number of iterations and improved the solution accuracy

in most of the large-scale problems. Like in [8], we also use a

minimum line resistance of 10−4 per unit in our experiments.

For each test case, we solve the following SDRs: SDR

with full conversion based on chordal embedding with/without

clique amalgamation, band CSDR (with clique amalgamation),

and sparse CSDR (also with clique amalgamation). We use the

clique amalgamation parameters tsize = tfill = 16. Table II

lists the number of constraints in each of the SDR problems.

The second column lists the number of constraints r in the

unconverted problem, and columns 3–8 list (r + s)/r which

is the total number of constraints normalized by the number

of constraints in the unconverted problem. Recall that the

“full” and “amalgamated” conversions are equivalent to the

unconverted problem whereas the “band” and “sparse” CSDRs

are weaker, but computationally cheaper, relaxations. The

full conversion method adds the most equality constraints,

and for the large problems, this approach roughly triples the

number of constraints. The amalgamated conversion method

is clearly much more economical in term of the number of

added equality constraints, but the number of constraints still

grows with more than 60% when converting large problems.

The CSDRs introduce the smallest number of constraints, i.e.,

around 10%-30% for large problems, depending on the value

of ρ. As a result, and as we will see later in this section, the

CSDRs are often much cheaper to solve.

The ratio between the largest and the second largest eigen-

value can be used as an indicator for the numerical rank of

the solution. Roughly speaking, the solution has numerical

rank 1 if the aforementioned eigenvalue ratio is sufficiently

Case Band CSDR (ρ) Sparse
1 2 3 CSDR

IEEE-118 0.999 1.000 1.000 0.999
IEEE-300 0.999 1.000 1.000 0.999
2383wp 0.990 0.998 1.000 0.990
2736sp 0.989 1.000 1.000 0.990
2737sp 0.980 1.000 1.000 0.979
2746wop 0.978 0.996 1.000 0.978
2746wp 0.989 1.000 1.000 0.989
3012wp 0.985 0.994 0.998 0.985
3120sp 0.988 0.999 1.000 0.989

TABLE IV
NORMALIZED OBJECTIVE VALUE FOR CSDRS

Case No Full Amal. Band CSDR (ρ) Sparse [16]
conv. conv. conv. 1 2 3 CSDR

IEEE-118 5.4 7.3 2.2 1.2 1.5 2.1 1.2 2.1
IEEE-300 78 19 5.0 3.8 4.2 4.0 3.7 5.7
2383wp - 650 225 78 103 132 85 730
2736sp - 484 145 56 72 102 74 622
2737sp - 716 200 57 107 133 93 607
2746wop - 439 138 51 104 86 65 738
2746wp - 547 168 50 95 95 82 752
3012wp - 575 201 57 87 86 78 1197
3120sp - 718 217 57 85 96 96 1619

TABLE V
COMPUTATION TIME

large. Since the converted problems have multiple blocks,

we consider the smallest such ratio, and these are listed in

Table III. It is interesting to note that full conversion with

clique amalgamation yields slightly better results than without.

In particular, for the problem 3012wp, there is an order of

magnitude difference between the eigenvalue ratio for the two

methods. Furthermore, for the band CSDR, the eigenvalue

ratio improves when the half-bandwidth ρ is increased, and for

ρ = 3, the eigenvalue ratios are comparable to those obtained

via full conversion. The sparse CSDR yields results that are

similar to the band CSDR with ρ = 1, and despite the lack of

a rank-1 solution, the nearest rank-1 approximation may still

be useful as initialization for a general nonlinear solver.

Recall that in general, the CSDRs are weaker than the

standard SDR. This implies that the objective value can be

used as an indication of the relaxation quality. Table IV

lists the objective values obtained via the CSDRs, normalized

by the objective values obtained via the standard SDR. A

normalized objective value of 1 corresponds to a relaxation

that is as tight as the original SDR. Notice that the CSDRs

all yield lower bounds that are within a few percent of the

objective value obtained via the standard SDR, and in all but

one case, the band CSDR with ρ = 3 yields a solution of the

same quality as that obtained via the standard SDR.

Finally we compare the computational complexity in terms

of computation time required to solve each of the relaxations.

Table V shows “wall time” in seconds as reported by SeDuMi

(the “CPU time” was roughly a factor of two larger for

all problems). If we compare the full conversion and the

amalgamated conversion, we see that clique amalgamation

typically results in a speed-up of around 2.5-3.5. Furthermore,

the time required to solve the band CSDR with ρ = 3 is
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roughly 100 seconds for the large-scale problems which is a

speed-up of around 5-6 when compared to the time required

to solve the full conversion SDR. The last column in the

table lists the results reported in [16], and although a direct

comparison is difficult (the experiments were performed on

different machines and using different formulations), the large

margins suggest that our approach is competitive and often

much faster than previously proposed methods.

VI. CONCLUSIONS

We have proposed a new method for generating compu-

tationally cheaper SDRs of AC OPF problems. The method

is based on chordal conversion, which, given a chordal em-

bedding of the network graph, converts a sparse semidefinite

optimization problem of the form (7) into an equivalent

block-diagonal problem (9) that includes a set of consistency

constraints. By including only a subset of the consistency

constraints, we can generate conversion-based SDRs with

reduced computational cost, but these SDRs may also be

weaker than the standard SDR. The band CSDR method from

Section IV keeps only consistency equalities associated with

entries within a band of half-bandwidth ρ, and our numerical

experiments indicate that this strategy works surprisingly well

in practice. More specifically, the band CSDR with ρ = 3 has

the same objective value as the standard SDR in all but one test

case, and the weaker band CSDRs yield objective values that

are within a few percent of those obtained via the standard

SDR. However, the experiments are based on only a small

number of test cases, so further experiments are necessary to

thoroughly evaluate the quality of the CSDRs.

In addition to the complexity-reducing CSDR technique,

we lower the computational cost further by applying the

conversion method to the complex-valued problem instead of

its real-valued counterpart. Moreover, we model transmission

line flow constraints and generators with quadratic fuel cost

using SOC constraints, which reduces the total number of

variables and therefore also computational cost. By combining

these techniques, we have shown that it is possible to solve

SDRs of large-scale OPF problems significantly faster than

with previously proposed methods.

The CSDR technique can also be applied to extensions

of the OPF formulation (3). One such extension is the so-

called multi-period OPF where power generation and demand

vary over time, and the time slots are coupled because of

generator ramp rate limits. With this kind of formulation, the

standard SDR has a Hermitian positive semidefinite matrix

X(i) of order |N | for each time slot i, and hence the problem

dimension grows quickly with the number of time periods.

The CSDR technique can therefore be expected to provide

significant computational savings when applied to the SDR of

the multi-period OPF problem.
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