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Abstract

Using the theory of standard pentads, we can embed an arbitrary finite-dimensional reduc-

tive Lie algebra and its finite-dimensional completely reducible representation into some larger

graded Lie algebra. However, it is not easy to find the structure of the “larger graded Lie alge-

bra” from the definition in general cases. Under these, the first aim of this paper is to show that

the “larger graded Lie algebra” is isomorphic to some PC Lie algebra, which are Lie algebras

corresponding to special standard pentads called pentads of Cartan type. The second aim is to

find the structure of a PC Lie algebra.

Introduction

Using the theory of standard pentads, an arbitrary finite-dimensional reductive Lie algebra

and its representation can be embedded into some graded Lie algebra. The term “standard

pentad” is defined as the following.

D 0.1 ( , [3, Definition 2.2]). Let g be a Lie algebra, ρ : g⊗V →

V a representation of g on V ,  a submodule of Hom(V,C) and B a non-degenerate invariant

bilinear form on g all defined over C. When a pentad (g, ρ,V, , B) satisfies the following

conditions, we call it a standard pentad:

• the restriction of the canonical bilinear form 〈·, ·〉 : V × Hom(V,C)→ C to V ×  is

non-degenerate,

• there exists a linear map Φρ : V ⊗  → g, called a Φ-map, satisfying an equation

B(a,Φρ(v ⊗ φ)) = 〈ρ(a ⊗ v), φ〉

for any a ∈ g, v ∈ V , φ ∈  .

From a standard pentad, we can construct a graded Lie algebra.

Theorem 0.2 ([3, Theorem 2.15]). For any standard pentad (g, ρ,V, , B), there exists a

graded Lie algebra

L(g, ρ,V, , B) =
⊕

n∈Z

Vn,

called the Lie algebra associated with (g, ρ,V, , B), satisfying the conditions that

V0 ≃ g

2010 Mathematics Subject Classification. Primary 17B65; Secondary 17B67, 17B70.



290 N. S

as Lie algebras, that

V−1 ≃  , V1 ≃ V

as g-modules via the isomorphism of Lie algebras V0 ≃ g and that the restriction of bracket

product [·, ·] : V1 × V−1 → V0 is induced by the Φ-map Φρ : V ⊗  → g.

When a Lie algebra g is finite-dimensional, it is known that any pentad (g, ρ,V, , B) is

standard. Thus, we can “embed” a finite-dimensional reductive Lie algebra1 and its rep-

resentation into some graded Lie algebra in the sense of Theorem 0.2. Here, we have a

problem how to find the structure of a Lie algebra of the form L(g, ρ,V, , B). In this paper,

we shall consider this problem under some assumptions.

Now, as special cases of standard pentads, we give the notion of pentads of Cartan type.

A pentad of Cartan type is a pentad which has a finite-dimensional commutative Lie algebra

and its finite-dimensional diagonalizable representation. We can describe an arbitrary pentad

of Cartan type by two positive integers r, n and three matrices A,D,Γ as P(r, n; A,D, Γ). We

denote the Lie algebra associated with P(r, n; A,D, Γ) by L(r, n; A,D, Γ), and moreover, we

call a Lie algebra of the form L(r, n; A,D, Γ) a PC Lie algebra. For detail on pentads of

Cartan type, see [4].

We have two aims of this paper. The first aim is to show that an arbitrary Lie algebra

of the form L(g, ρ,V,Hom(V,C), B) with a finite-dimensional reductive Lie algebra g and its

finite-dimensional completely reducible representation (ρ,V) is isomorphic to some PC Lie

algebra (Theorem 2.1). And, moreover, the second aim is to find the structure of PC Lie

algebras (Theorem 3.2). In [4, Theorem 3.9], we have obtained a way how to describe the

structure of L(r, n; A,D, Γ) under the assumption that Γ · tD · A ·D is invertible. In this paper,

we shall find the structure of L(r, n; A,D, Γ) without any assumptions on r, n and A,D, Γ.

N 0.3. Throughout this paper, all objects are defined over the complex number

field C. We use the following notations:

• Span(v1, . . . , vn): a vector space spanned by v1, . . . , vn,

• M(k, l;C): a set of matrices of size k × l whose entries belong to C,

• diag(c1, . . . , cm): a diagonal matrix of size m whose (i, i)-entry is ci,

• δi j: the Kronecker delta.

N 0.4. We regard a representation ρ of a Lie algebra l on U as a linear map

ρ : l ⊗ U → U

satisfying

ρ([a, b] ⊗ u) = ρ(a ⊗ ρ(b ⊗ u)) − ρ(b ⊗ ρ(a ⊗ u))

for any a, b ∈ l and u ∈ U. Moreover, we denote an ideal {a ∈ l | ρ(a⊗ u) = 0 for any u ∈ U}

of l by Ann U.

1It is known that any finite-dimensional reductive Lie algebra has a non-degenerate invariant bilinear form

(see [1, Chapter 1. §6.4 Proposition 5]).
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1. PC Lie algebras and contragredient Lie algebras

1. PC Lie algebras and contragredient Lie algebras
The purpose of this section is to prepare some notion and notations we need to understand

the statements of the main theorems, Theorems 2.1 and 3.2. For detail, refer [2] and [4].

D 1.1 (  C , [4, Definition 2.4]). Let r, n be positive integers.

Let A ∈ M(r, r;C) be an invertible square matrix, D = (di j) ∈ M(r, n;C) a matrix and

Γ = diag(γ1, . . . , γn) ∈ M(n, n;C) an invertible diagonal matrix. Let hr, CΓD, CΓ−D
be vector

spaces with dimensional r, n and n respectively, and take their bases {ǫ1, . . . ǫr}, {e1, . . . , en}

and { f1, . . . , fn} respectively:

hr = Span(ǫ1, . . . , ǫr), C
Γ

−D = Span(e1, . . . , en), C
Γ

D = Span( f1, . . . , fn).

We regard hr as a commutative Lie algebra:

hr ≃ glr1

and define representations �r
D

and �r
−D

of hr on CΓD and CΓ−D
as:

�
r
D(ǫi ⊗ e j) = di je j, �

r
−D(ǫi ⊗ f j) = −di j f j

for any i = 1, . . . , r and j = 1, . . . , n. Moreover, we define non-degenerate bilinear maps

BA : hr × hr → C and 〈·, ·〉Γ
D

: CΓD ×C
Γ

−D
→ C as:

BA(c1ǫ1 + · · · + crǫr, c
′
1ǫ1 + · · · + c′rǫr) =

(

c1 · · · cr

)

· tA−1 ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c′
1
...

c′r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 〈ei, f j〉
Γ

D = δi jγi

for i, j = 1, . . . , n. Under these, we define a standard pentad (hr,�r
D
,CΓD,C

Γ

−D
, BA) and denote

it by P(r, n; A,D,Γ). We call a standard pentad of the form P(r, n; A,D,Γ) a pentad of Cartan

type.

D 1.2 (C      C , [4, Definition 2.15]). For a

pentad of Cartan type P(r, n; A,D, Γ), put

C(A,D, Γ) = Γ · tD · A · D.

We call C(A,D, Γ) the Cartan matrix of P(r, n; A,D,Γ).

D 1.3 (PC L , [4, Definition 3.6]). For a pentad of Cartan type

P(r, n; A,D,Γ), we denote its corresponding graded Lie algebra (see Theorem 0.2) by

L(r, n; A,D, Γ). We call a Lie algebra of the form L(r, n; A,D, Γ) a PC Lie algebra.

R 1.4. The structure of a PC Lie algebra L(r, n; A,D,Γ) is independent to the diag-

onal matrix Γ and to the order of column vectors in D (see [4, Propositions 1.7 and 2.6]).

Moreover, we need to recall some notion of graded Lie algebras due to Kac in [2].

D 1.5 (, [2, p.1275, Definition 2]). A graded Lie algebra

G =

+∞
⊕

i=−∞

Gi
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is said to be transitive if:

• for x ∈ Gi, i ≥ 0, [x,G−1] = {0} implies x = 0,

• for x ∈ Gi, i ≤ 0, [x,G1] = {0} implies x = 0.

D 1.6 ( L , [2, p.1279]). Let A = (Ai j) i, j = 1, . . . , n

be a matrix with elements from C. Let G−1, G1, G0 be vector spaces with bases {Fi}, {Ei},

{Hi} respectively (i = 1, . . . , n). We define a structure of local Lie algebra on Ĝ(A) :=

G−1 ⊕G0 ⊕G1 by

[Ei, F j] = δi jHi, [Hi,H j] = 0, [Hi, E j] = Ai jE j, [Hi, F j] = −Ai jF j.(1.1)

Then, we call the minimal graded Lie algebra G(A) =
⊕

i∈Z
Gi with local part Ĝ(A) a

contragredient Lie algebra, and the matrix A its Cartan matrix.

D 1.7 (  L , [2, p.1280]). Let G(A) be a con-

tragredient Lie algebra with Cartan matrix A and Z the center of G(A). We call a factor Lie

algebra G(A)/Z a reduced contragredient Lie algebra with Cartan matrix A.

2. Representations of finite-dimensional reductive Lie algebras and PC Lie algebras

2. Representations of finite-dimensional reductive Lie algebras and PC Lie algebras
In this section, we shall give the first main theorem of this paper. The following theorem

tells us the importance of PC Lie algebras.

Theorem 2.1. Let g be a finite-dimensional reductive Lie algebra, (ρ,V) a finite-

dimensional completely reducible representation of g, B a non-degenerate symmetric invari-

ant bilinear form on g all defined over C. Then a pentad (g, ρ,V,Hom(V,C), B) is standard,

and moreover, the corresponding Lie algebra L(g, ρ,V,Hom(V,C), B) is isomorphic to some

PC Lie algebra up to grading. That is, an arbitrary finite-dimensional reductive Lie algebra

and its arbitrary finite-dimensional completely reducible representation can be embedded

into some PC Lie algebra.

Proof. Since g is finite-dimensional, we have that the pentad (g, ρ,V,Hom(V,C), B) is

standard (see [3, Lemma 2.3]). Denote the center part of g by z and the semisimple part of

g by s. Take a Cartan subalgebra h of s and a fundamental system ψ of the root system R

with respect to (s, h). We regard V and Hom(V,C) as subspaces of L(g, ρ,V,Hom(V,C), B)

in the sense of Theorem 0.2. If we take a non-zero root vector Xγ of a root γ ∈ R and define

g-submodules V ⊂ V and  ⊂ Hom(V,C) by

V = {y ∈ V | [X−α, y] = 0 for any α ∈ ψ},

 = {η ∈ Hom(V,C) | [Xα, η] = 0 for any α ∈ ψ},

then we have an isomorphism of Lie algebras up to grading:

L(g, ρ,V,Hom(V,C), B)

≃ L

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z⊕ h, ρ |z⊕ h,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

α∈ψ

C Xα ⊕ V

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

α∈ψ

C X−α ⊕ 

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B |(z⊕ h)×(z⊕ h)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

using [4, Theorem 3.27 and (3.17) in its proof], chain rule ([3, Theorem 3.26]) and the as-
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sumption that the bilinear form B is symmetric. Thus, to prove our claim, it suffices to show

that the representation ρ |z⊕ h of z⊕ h on
∑

α∈ψ C Xα⊕V is simultaneously diagonalizable (see

[4, Proposition 2.5]). Here, note that the representation restricted to h on
∑

α∈ψ C Xα ⊕ V is

simultaneously diagonalizable from the well-known properties of Cartan subalgebras. Thus,

if we assume that the representation (z⊕ h,
∑

α∈ψ C Xα ⊕ V) is not simultaneously diagonal-

izable, then there exist an element ǫ ∈ z, an element a ∈ C and an element Y ∈ V such

that

ρ(ǫ ⊗ Y) − aY � 0, ρ(ǫ ⊗ (ρ(ǫ ⊗ Y) − aY)) − a(ρ(ǫ ⊗ Y) − aY) = 0.(2.1)

Using these, define a non-zero proper vector subspace U of V by

U = {y ∈ V | ρ(ǫ ⊗ y) − ay = 0}.

Since ǫ belongs to the center part of g, U is a g-submodule of V . Then from the assumption

that the representation ρ of g on V is completely reducible, we have a non-zero proper g-

submodule W of V such that

V = U ⊕W.

If we take elements u ∈ U and w ∈ W such that

Y = u + w,

then we have that

0 � ρ(ǫ ⊗ Y) − aY = (ρ(ǫ ⊗ u) − au) + (ρ(ǫ ⊗ w) − aw) = ρ(ǫ ⊗ w) − aw ∈ U ∩W

from (2.1). It is a contradiction. �

E 2.2. For m = 0, 1, 2, . . ., we denote by mΛ1 the irreducible representation of sl2

on (m + 1)-dimensional vector space V(m + 1). For example, the adjoint representation of

sl2 on itself is (ad, sl2) = (2Λ1,V(3)). Denote the Killing form of sl2 by Ksl2 . Then we have

an isomorphism of Lie algebras

L(sl2,mΛ1,V(m + 1),Hom(V(m + 1),C),Ksl2) ≃ L

(

1, 2;
(

1/8
)

,
(

2 −m
)

,

(

4 0

0 4

))

up to grading (see [4, (3.21) in Theorem 3.28]). That is, the representation (mΛ1,V(m + 1))

of sl2 can be embedded into the PC Lie algebra associated with

P

(

1, 2;
(

1/8
)

,
(

2 −m
)

,

(

4 0

0 4

))

.(2.2)

From Theorem 2.1, it is natural for us to ask the structure of PC Lie algebras.

3. Structure of PC Lie algebras

3. Structure of PC Lie algebras
Using the notion and notations recalled in section 1, we can describe the structure of a

given PC Lie algebra. For this, we shall start with the following lemma.

Lemma 3.1. We identify an m-tuple (x1, . . . , xm) ∈ glm1 with a row vector
(

x1 · · · xm

)

∈

M(1,m;C). For an arbitrary pentad of Cartan type P(r, n; A,D, Γ) and its corresponding
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Lie algebra L(r, n; A,D,Γ), we have the following claims.

(i) We have equations

[V−1,V1] = Span(the row vectors of (Γ · tD · A))

=

{(

c1 · · · cn

)

· Γ · tD · A
∣

∣

∣ c1, . . . , cn ∈ C
}

and

dim[V−1,V1] = rank D.

(ii) We have equations

AnnC
Γ

D =

{

c1ǫ1 + · · · + crǫr
∣

∣

∣

(

c1 · · · cr

)

· D =
(

0 · · · 0
)

, c1, . . . , cr ∈ C
}

=

{(

c1 · · · cr

) ∣

∣

∣

(

c1 · · · cr

)

· D =
(

0 · · · 0
)

, c1, . . . , cr ∈ C
}

and

dim AnnC
Γ

D = r − rank D.

(iii) We have equations

[V−1,V1] ∩ AnnC
Γ

D

=

{(

c1 · · · cn

)

· Γ · tD · A
∣

∣

∣

(

c1 · · · cn

)

·C =
(

0 · · · 0
)

, c1, . . . , cn ∈ C
}

and

dim([V−1,V1] ∩ AnnC
Γ

D) = rank D − rank C,

where C = C(A,D, Γ) is the Cartan matrix of P(r, n; A,D, Γ).

Proof. (i) The vector space [V−1,V1] is spanned by hi ∈ h
r (i = 1, . . . , r), which are

identified with the i-th row vectors of the matrix Γ · tD · A (i = 1, . . . , r) (see [4,

Proposition 2.11, Definition 2.12]). Thus, we have that

[V−1,V1] = Span(h1, . . . , hn) = Span(the row vectors of Γ · tD · A)

=

{(

c1 · · · cn

)

· Γ · tD · A
∣

∣

∣ c1, . . . , cn ∈ C
}

.

Moreover, since both Γ ∈ M(n, n;C) and A ∈ M(r, r;C) are invertible, we have an

equation

dim[V−1,V1] = rank(Γ · tD · A) = rank D.

(ii) This claim has been proved in [4, Proposition 2.25].

(iii) This claim follows from (i) and (ii) immediately.

This completes the proof. �

Using Lemma 3.1, we can describe the structure of an arbitrary PC Lie algebra using

reduced contragredient Lie algebras. This is the second main theorem.

Theorem 3.2. Let P(r, n; A,D,Γ) be a pentad of Cartan type and C = C(A,D, Γ) =

(Ci j)i, j=1,...,n its Cartan matrix. Let G′(C) be the reduced contragredient Lie algebra with

Cartan matrix C. Then there exist vector spaces U′
0
, Z, ∆ ⊂ L(r, n; A,D, Γ) and a Z-grading
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of L(r, n; A,D, Γ)

L(r, n; A,D, Γ) =
⊕

m∈Z

Um

such that

U0 = U′0 ⊕ Z ⊕ ∆, dim Z = rank D − rank C, dim∆ = r − rank D

and

U′0 ⊕
⊕

m�0

Um ≃ G′(C), [Z, L(r, n; A,D, Γ)] = {0},(3.1)

[Um,U−m] ⊂ U′0 ⊕ Z, the action of ∆ on Um is diagonalizable

for all m ∈ Z.

That is, any PC Lie algebra is of the form

L(r, n; A,D, Γ) ≃ (G′(C) ⊕ Z) ⊕ ∆

for some vector space Z ⊂ (the center of L(r, n; A,D, Γ)) and ∆ satisfying

[L(r, n; A,D, Γ), L(r, n; A,D,Γ)] = G′(C) ⊕ Z,

dim Z = rank D − rank C, dim∆ = r − rank D.

proof of Theorem 3.2. Let

L(r, n; A,D, Γ) =
⊕

m∈Z

Vm

be the canonical Z-grading of L(r, n; A,D, Γ),

V−1 ≃ C
Γ

−D = Span( f1, . . . , fn), V0 ≃ h
r
= Span(ǫ1, . . . , ǫr), V1 ≃ C

Γ

D = Span(e1, . . . , en),

and denote its bracket product by [·, ·]. Take a complementary subspace ∆ to [V−1,V1] in V0:

V0 = h
r
= gl

r
1 = [V−1,V1] ⊕ ∆.

Moreover, put

Z = [V−1,V1] ∩ AnnC
Γ

D

and take a complementary subspace V ′
0

to Z in [V−1,V1]:

[V−1,V1] = V ′0 ⊕ Z = V ′0 ⊕ ([V−1,V1] ∩ AnnC
Γ

D).

Summarizing,

V0 = [V−1,V1] ⊕ ∆ = V ′0 ⊕ Z ⊕ ∆.(3.2)

Then, from Lemma 3.1, we have equations:

dim V ′0 = rank C, dim Z = rank D − rank C, dim∆ = r − rank D.(3.3)

Let us denote the canonical surjection from V0 to V ′
0

with respect to the decomposition (3.2)

by p. Under these, to prove our claim, it is sufficient to show that a Lie algebra
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L′′(r, n; A,D, Γ) = V ′0 ⊕
⊕

m∈Z \{0}

Vm

with bracket product [·, ·]′′ defined by

[xk, yl]
′′
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[xk, yl] (k + l � 0)

p([xk, yl]) (k + l = 0)
, where xk ∈ Vk, yl ∈ Vl (k, l � 0), x0, y0 ∈ V ′0,

is isomorphic to a reduced contragredient Lie algebra G′(C) with Cartan matrix C. We can

easily check that the bilinear map [·, ·]′′ satisfies the axioms of Lie algebras.

Take elements hi = [ei, fi] ∈ V0 (see [4, Definition 2.12]) and put h′
i
= p(hi) ∈ V ′

0
for

i = 1, . . . , n. Then the Lie algebra L′′(r, n; A,D, Γ) is generated by { fi, h
′
i
, ei | i = 1, . . . , n}

with relations

[h′i , e j]
′′
= Ci je j, [h′i , f j]

′′
= −Ci j f j, [ei, f j]

′′
= δi jh

′
i

for all i, j = 1, . . . , n (see [4, Proposition 2.13]). On the other hand, we take {Fi,Hi, Ei |

i = 1, . . . , n} a basis of Ĝ(C) = G−1 ⊕ G0 ⊕ G1, which is the local part of a contragredient

Lie algebra G(C) = G(C(A,D, Γ)), satisfying the equations (1.1). Define a linear map φ :

Ĝ(C)→ V−1 ⊕ V ′
0
⊕ V1 by

φ(Hi) = h′i , φ(Ei) = ei, φ(Fi) = fi

for i = 1, . . . , n. This linear map φ is a surjective homomorphism between the local parts

of G(C) and of L′′(r, n; A,D,Γ). We can compute the kernel of φ using Lemma 3.1 (iii) as

follows:

Ker φ =
{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣ φ(c1H1 + · · · + cnHn) = 0, c1, . . . , cn ∈ C
}

=

{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣ c1h′1 + · · · + cnh′n = 0 ∈ L′′(r, n; A,D,Γ), c1, . . . , cn ∈ C
}

=

{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣ c1h′1 + · · · + cnh′n ∈ Z = [V−1,V1] ∩ AnnC
Γ

D, c1, . . . , cn ∈ C
}

=

{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣ c1h1 + · · · + cnhn ∈ Z = [V−1,V1] ∩ AnnC
Γ

D, c1, . . . , cn ∈ C
}

=

{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣

(

c1 · · · cn

)

· Γ · tD · A ∈ Z, c1, . . . , cn ∈ C
}

=

{

c1H1 + · · · + cnHn ∈ Ĝ(C)
∣

∣

∣

(

c1 · · · cn

)

·C =
(

0 · · · 0
)

, c1, . . . , cn ∈ C
}

= (the center of G(C)).

Thus, we have an isomorphism of local Lie algebras:

(the local part of L′′(r, n; A,D,Γ)) ≃ V−1 ⊕ V ′0 ⊕ V1

≃ Ĝ(C)/(the center of G(C)) ≃ (the local part of G′(C)).

Here, both graded Lie algebras L′′(r, n; A,D, Γ) = V ′
0
⊕
⊕

m∈Z \{0}
Vm and G′(C) =

⊕

m∈Z
G′m

are transitive except their local parts, i.e. they satisfy the condition in Definition 1.5 for

i � 0,±1. Indeed, the transitivity for |m| ≥ 2 of L′′(r, n; A,D,Γ) comes from the construction

of the Lie algebra associated with a standard pentad (see [3, Definitions 2.9, 2.12]), and,

one of G′(C) comes from the construction of minimal Lie algebras (see [2, pp.1276–1278,

Proposition 4]). We can extend the isomorphism between the local parts of L′′(r, n; A,D,Γ)

and of G′(C) to the isomorphism between the whole graded Lie algebras:
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L′′(r, n; A,D,Γ) ≃ G′(C)

by a similar way to the proof of [4, Theorem 1.5]. Thus, we have our claim. �

We retain to use the notations in Theorem 3.2. When a pentad P(r, n; A,D,Γ) has the

invertible Cartan matrix, it has already been shown that we have an isomorphism of Lie

algebras:

L(r, n; A,D, Γ) ≃ glr−n
1 ⊕G(C(A,D, Γ)) (see [4, Theorem 3.9]).

This result is a special case of Theorem 3.2. In fact, from the definition of Cartan matrices

of a pentad of Cartan type, we can easily show that the data satisfy conditions that

r ≥ n and rank D = rank C = n

when C = C(A,D, Γ) is invertible. Under this situation, we have that

G′(C) ≃ G(C), dim Z = 0, dim AnnC
Γ

D = r − n

from Lemma 3.1 and the equations (3.3). Since we have dim[V−1,V1] + dim AnnCΓD =

r = dim V0 and [V−1,V1] ∩ AnnCΓD = {0}, we can take ∆ = AnnCΓD. Thus, we have an

isomorphism of Lie algebras:

L(r, n; A,D, Γ) ≃ G′(C) ⊕ Z ⊕ ∆ ≃ G(C) ⊕ {0} ⊕ AnnC
Γ

D ≃ gl
r−n
1 ⊕G(C).

Corollary 3.3. We retain to use the notations in Theorem 3.2. When a pentad of Cartan

type P(r, n; A,D,Γ) satisfies

r = rank D = rank C(A,D, Γ),

the corresponding Lie algebra is isomorphic to a reduced contragredient Lie algebra:

L(r, n; A,D, Γ) ≃ G′(C(A,D, Γ)).

As we have seen in [4, Theorem 3.11], for any invertible matrix C, we can find a pentad

of Cartan type P(r, n; A,D, Γ) with Cartan matrix C(A,D, Γ) = C such that its data sat-

isfy the assumption of Corollary 3.3: r = rank D = rank C = n (thus, G′(C) ≃ G(C) ≃

L(r, n; A,D, Γ)). However, it does not hold when C is non-invertible. There exists a non-

invertible matrix C which do not have a pentad of Cartan type with Cartan matrix C satisfy-

ing the assumption of Corollary 3.3. As an example, we can take

C =

(

0 1

0 0

)

.

Indeed, if it has such a pentad P(r, n; A,D,Γ), then we have that r = 1, n = 2 and that 1 × 1

matrix A, 1 × 2 matrix D, 2 × 2 matrix Γ satisfy

Γ · tD · A · D = C =

(

0 1

0 0

)

.

It is easy to show that such A, D, Γ do not exist.

R 3.4. Under the notations in Theorem 3.2, the vector space Z is contained in the

center of L(r, n; A,D,Γ). However, in general, Z and the center of L(r, n; A,D,Γ) do not
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coincide.

Lemma 3.5. Let P(r, n; A,D, Γ) be a pentad of Cartan type. Assume that the i-th column

vector of D is a zero-vector. Then corresponding elements ei ∈ C
Γ

D
and fi ∈ C

Γ

−D
belong to

the center of L(r, n; A,D,Γ).

Proof. Denote L(r, n; A,D,Γ) =
⊕

n∈Z
Vn and identify V−1,V0,V1 with CΓ−D

, hr,CΓD re-

spectively. Let us show that ei belongs to the center of L(r, n; A,D, Γ). From the assumption

of our claim, it is clear that [V0, ei] = {0}. Take arbitrary elements a ∈ V0 and f ∈ V−1. Then

we have an equation

BA(a, [ei, f ]) = BA(a,Φ�r
D
(ei ⊗ f )) = 〈�r

D(a ⊗ ei), f 〉ΓD = 〈0, f 〉ΓD = 0.

Since BA is non-degenerate on V0 ≃ h
r, we have that [V−1, ei] = {0}. Moreover, it holds that

[V1, ei] = {0}. In fact, for any f ∈ V−1, we have

[[V1, ei], f ] ⊂ [[V1, f ], ei] + [V1, [ei, f ]] ⊂ [V0, ei] + [V1, 0] = {0}.

Since [V1,V1] ⊂ V2 ⊂ Hom(V−1,V1) (see [3, Definitions 2.9, 2.12]), we have that [V1, ei] =

{0}. By a similar argument, we have the same results on fi:

[V−1 ⊕ V0 ⊕ V1, ei] = [V−1 ⊕ V0 ⊕ V1, fi] = {0}.

Since L(r, n; A,D, Γ) is generated by V−1 ⊕ V0 ⊕ V1, we have our result. �

From Lemma 3.5, we have the following claim immediately.

Lemma 3.6. Let P(r, n; A,D, Γ) be a pentad of Cartan type and assume that D and Γ are

of the forms

D =
(

D′ O
)

, Γ =

(

Γ
′ O

O Γ
′′

)

for some D′ ∈ M(r, n′;C), Γ′ ∈ M(n′, n′;C), Γ′′ ∈ M(n − n′, n − n′;C). Then we have an

isomorphism of Lie algebras:

L(r, n; A,D,Γ) ≃ gl
2(n−n′)

1
⊕L(r, n′; A,D′, Γ′)

up to grading.

From Lemma 3.6, to simplify the calculation, we can assume that D does not have zero-

column vectors without loss of generality.

E 3.7. We retain to use the notations in Example 2.2. Let us find the structure of

L(sl2,mΛ1,V(m + 1),Hom(V(m + 1),C),Ksl2) from the pentad (2.2). For this, we need to

calculate the Cartan matrix of (2.2):

C

(

(

1/8
)

,
(

2 −m
)

,

(

4 0

0 4

))

=

(

4 0

0 4

)

·

(

2

−m

)

·
(

1/8
)

·
(

2 −m
)

=

(

2 −m

−m m2/2

)

.

Under the notations of Theorem 3.2, we have equations
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dim Z = rank

(

2 −m

−m m2/2

)

− rank
(

2 −m
)

= 1 − 1 = 0,

dim∆ = 1 − rank
(

2 −m
)

= 1 − 1 = 0

for any integer m ≥ 0. Thus, we have an isomorphism of Lie algebras:

L(sl2,mΛ1,V(m + 1),Hom(V(m + 1),C),Ksl2) ≃ G′
((

2 −m

−m m2/2

))

.

That is, the representation (mΛ1,V(m + 1)) of sl2 can be embedded into the reduced contra-

gredient Lie algebra:

G′
((

2 −m

−m m2/2

))

.
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