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REDUCED DIVISORS AND EMBEDDINGS

OF TROPICAL CURVES

OMID AMINI

Abstract. Given a divisor D on a tropical curve Γ, we show that reduced
divisors define an integral affine map from the tropical curve to the complete
linear system |D|. This is done by providing an explicit description of the
behavior of reduced divisors under infinitesimal modifications of the base point.
We consider the cases where the reduced-divisor map defines an embedding of
the curve into the linear system and, in this way, classify all the tropical curves
with a very ample canonical divisor. As an application of the reduced-divisor
map, we show the existence of Weierstrass points on tropical curves of genus at

least two and present a simpler proof of a theorem of Luo on rank-determining
sets of points. We also discuss the classical analogue of the (tropical) reduced-
divisor map: For a smooth projective curve C and a divisor D of non-negative
rank on C, reduced divisors equivalent to D define a morphism from C to the
complete linear system |D|, which is described in terms of Wronskians.

1. Introduction

Reduced divisors are one of the main tools in the study of linear systems on
tropical curves. Our aim in this paper is to present results on the behavior of
reduced divisors under a modification of the base point and on their locus in the
underlying complete linear system. After a general introduction on tropical curves
and linear systems, providing the basic definitions and results, we show in Section 2
that reduced divisors linearly equivalent to a divisor D define an integral affine map
from Γ to the complete linear system |D|. This is done by providing an explicit
description of the behavior of reduced divisors under infinitesimal changes of the
base point. We use this description in Section 3 to characterize very ample divisors
as the ones defining an embedding of Γ in |D| and classify all the tropical curves
with a very ample canonical divisor. In Section 4, we present two applications
of the reduced divisor map. We first show the existence of tropical Weierstrass
points on tropical curves of genus at least two, and second, we derive a simple
proof of a theorem of Luo on rank-determining sets of points on tropical curves. In
Section 5, we compare the reduced divisor map with maps to tropical projective
spaces defined by families of rational functions. Finally, in Section 6, we show that
the reduced divisor map has a classical analogue. For a smooth projective curve C
and a divisor D of non-negative rank on C, reduced divisors equivalent to D define
a morphism from C to the complete linear system |D|. This map is described in
terms of Wronskians.

1.1. Tropical curves and Riemann-Roch theorem. Tropical curves are alge-
braic curves defined over the tropical semi-ring T = (R∪{−∞},⊕,�). The tropical

Received by the editors March 9, 2011 and, in revised form, November 22, 2011.
2010 Mathematics Subject Classification. Primary 14T05; Secondary 14C20, 14A10, 05C10.

c©2013 American Mathematical Society
Reverts to public domain 28 years from publication

4851

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4852 OMID AMINI

sum ⊕ is taking the maximum and the tropical product � is the (usual) sum, i.e.,
a ⊕ b = max{a, b} and a � b = a + b. A (complete) tropical curve is a compact
topological space homeomorphic to a one-dimensional simplicial complex equipped
with an integral affine structure. This means that the topological space has a fi-
nite covering by open sets Ui and there are chart maps φi : Ui → Tni , sending
Ui homeomorphically to a subset Vi ⊂ Tni such that the change of charts are re-
strictions of affine maps with integer linear part, i.e., for i and j, there exist a
matrix Ai,j ∈ Mnj×ni

(Z) and an a ∈ Tnj such that the change of charts φjφ
−1
i

on φi(Ui ∩ Uj) coincides with the map A.x + a. It is easy to see that the above
definition is equivalent to the following more concrete definition.

A weighted graph (G, �) is a finite graph G = (V,E), where each edge e ∈ E has
been assigned a positive length �e ∈ T. This data defines a metric space Γ, called
the geometric representation of (G, �), as follows. This is obtained by replacing each
edge of the graph by an interval of the given length associated to that edge, the
end points of the interval being the corresponding vertices of the original weighted
graph. The metric space Γ is called a metric graph, and the corresponding weighted
graph (G, �) is called a model of Γ. It is clear that different models can give the
same metric graph. The choice of a model corresponds to the choice of a finite set
of vertices V , i.e., a subset of Γ such that Γ\V is a disjoint union of open intervals.
In this paper, when we talk about the vertices of a metric graph, we understand
that a model of Γ is fixed.

Note that a metric graph Γ inherits a topology from the above-described geomet-
ric representation and it is possible to speak about the closed and open sets. The
distance distΓ(v, w) between two points v and w of Γ is measured in the metric space
corresponding to the geometric representation of Γ (the subscript Γ is omitted if
the metric graph Γ is clear from the context). A segment in Γ is a closed subinterval
of one of the intervals in a geometric representation of Γ described above.

Each point v of Γ has a degree deg(v). This is defined by taking a sufficiently
small neighborhood of v in Γ, removing v from that neighborhood and counting
the number of connected components. Note that every point in the interior of an
edge of a model of Γ has degree two. Points of degree larger than two are called
branching points. The coarsest model for Γ, if it exists, is a weighted graph in which
every vertex has degree different from two, i.e., each vertex is either a branching
point or a leaf. Note that the coarsest model is unique if it exists, and it exists if
the metric graph is connected and there is at least one branching point, i.e., if the
metric graph is not a circle (a weighted graph is allowed to contain loops).

An abstract tropical curve is a metric graph where some of the edges incident
with vertices of degree one (leaves) have infinite length. Such edges are identified
with the interval [0,∞], such that ∞ is identified with the vertex of degree one, and
are called infinite ends or bounds. Since infinite ends do not play any interesting
role with respect to divisor theory on a tropical curve, in this paper we suppose
that Γ does not have any infinite end.

The genus of a tropical curve Γ, denoted by g(Γ) or g, is the first Betti number
of Γ as a topological space. Given a model (G, �) of Γ with G = (V,E), the genus
of Γ is g = |E| − |V |+ 1.

A divisor D on a tropical curve Γ is an element of the infinite free abelian
group Div(Γ) on points of Γ. The basis element of Div(Γ) corresponding to a point
v of Γ is denoted by (v). Each divisor D ∈ Div(Γ) can be uniquely written as
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D =
∑

v∈Γ av(v) with av ∈ Z, and all but a finite number of av’s are zero. The
coefficient av of (v) in D is denoted by D(v). A divisor D is called effective if
D ≥ 0, i.e., if D(v) ≥ 0 for all v ∈ Γ. The degree of a divisor D ∈ Div(Γ), denoted
by deg(D), is defined as deg(D) :=

∑
v∈Γ D(v). The canonical divisor of a tropical

curve Γ is the divisor KΓ defined by

KΓ :=
∑
v∈Γ

(deg(v)− 2)(v).

A rational function on a tropical curve Γ is a continuous piecewise linear function
f : Γ → R ∪ {±∞} with integral slopes at every point and such that the number
of linear parts of f on every edge is finite and the only points v with f(v) = ±∞
are unbounded ends. (This is simply equivalent to a continuous map respecting
the integral affine structure of Γ and the obvious integral affine structure on R ∪
{±∞}.) The order ordf (v) of a rational function f on Γ at a point v is the sum
of the outgoing slopes of f along the segments of Γ emanating from v. Given
a rational function f , the divisor div(f) =

∑
v ordv(f)(v) is called the principal

divisor associated to f . Note that if v is not a branching point of Γ and the
function f does not change its slope at v, then ordf (v) = 0; thus, there are only
finitely many points v with ordf (v) �= 0 and div(f) ∈ Div(Γ). The degree of a
principal divisor is equal to zero since each linear part of a given slope in a rational
function contributes twice in the degree, once with a positive sign and once with a
negative sign. Two divisors D and D′ on Γ are called linearly equivalent, written
D ∼ D′, if there exists a rational function f on Γ such that D = D′ + div(f).

Let D be a divisor on a tropical curve Γ. The (complete) linear system of D,
denoted by |D|, is defined as the set of all effective divisors E linearly equivalent
to D,

|D| := {E ∈ Div(Γ) : E ≥ 0 and E ∼ D }.
The rank of a divisor D ∈ Div(Γ), denoted by r(D), is defined by

r(D) := min
E : E≥0,|D−E|=∅

deg(E)− 1.

Gathmann and Kerber [5] and, independently, Mikhalkin and Zharkov [9] proved
the following Riemann-Roch theorem for tropical curves (see also [7] for another
more combinatorial proof of this theorem, similar to the proof of Baker and Norine’s
Riemann-Roch theorem for graphs [3]).

Theorem 1 (Tropical Riemann-Roch). Let D be a divisor on a tropical curve Γ
of genus g and K be the canonical divisor of Γ. Then

r(D)− r(K −D) = deg(D) + 1− g.

1.2. Reduced divisors. The proof of the Riemann-Roch theorem for graphs and
tropical curves is based on the notion of reduced divisors that we now explain. (We
refer to [1] for a different, more geometric, proof of a slightly more general result
in the graph case.)

Let Γ be a tropical curve and v0 be a given (base) point of Γ. For a closed
connected subset X of Γ and a point v ∈ ∂X, the number of edges leaving X at v,
denoted by degoutX (v), is by definition the maximum size of a collection of internally
disjoint segments in Γ \ (X − {v}) with an end in v. In what follows we also call
such a connected subset of Γ a cut in Γ. A boundary point v of a closed connected
subset X of Γ is called saturated with respect to D ∈ Div(Γ), and the cut X if the
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number of edges leaving X at v is at most D(v) (i.e., if degoutX (v) ≤ D(v)) and is
called non-saturated, otherwise. A cut is said to be saturated if all its boundary
points are saturated. When talking about saturated and non-saturated points, we
sometimes omit D and/or the set X if they are clear from the context.

A divisor D on a tropical curve Γ is said to be v0-reduced if the following two
properties are satisfied:

• For all points v �= v0 of Γ, D(v) ≥ 0; in other words, if all the coefficients
of D are non-negative except possibly for the base point v0.

• For every closed connected subset X of points of Γ which does not contain
v0, there exists a non-saturated point v ∈ ∂X.

Every divisor is equivalent to a unique v0-reduced divisor. Here we provide a
quick proof and refer to [3, 7] for more details.

Theorem 2. Let Γ be a tropical curve and v0 be a point of Γ. For every divisor
D ∈ Div(Γ), there exists a unique v0-reduced divisor D0 such that D0 ∼ D.

Proof. Let TD be the set of all divisorsD′ ∼ D such that all the coefficients ofD′ are
non-negative at every point of Γ except possibly at v0, and such that, in addition,
the coefficient of v0 is maximum possible with respect to this property. Note that
TD is non-empty. This is simply because there are linearly equivalent divisors to D
with non-negative coefficients at every point v �= v0 of Γ. To see this, note that if k
is large enough (as a function of the number of branching points, the diameter of the
underlying graph, and the maximum absolute value of the coefficients of D), then
it can be easily shown that the divisor D+k(v0) is equivalent to an effective divisor
E. Now E − k(v0) ∼ D has the required property. Note that the Riemann-Roch
theorem implies that if k is large enough so that the degree of D + k(v0) is larger
than g, then the rank of D+k(v0) is non-negative; however the existence of a large
enough k with this property does not need the full strength of the Riemann-Roch
theorem (whose proof is based on reduced divisors).

We next observe that TD inherits a natural topology from the topology of Γ and
is compact.

Let N be the sum of the coefficients of points of Γ \ {v0} in any divisor in TD
(by the definition of TD, N is well defined). Let A be the subset of RN defined as
follows:

A :=
{
(x1, . . . , xN ) | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN

}
.

Note that A has a natural total order defined by the lexicographical order: (x1, . . . ,
xN ) < (y1, . . . , yN ) if and only if there exists a non-negative integer i such that
x1 = y1, . . . , xi = yi and xi+1 < yi+1.

Define a continuous map F : TD → A as follows: for each divisor D′ ∈ TD,
consider the multiset A(D′) of points in Γ \ {v0}, where each point v �= v0 appears
in this multiset exactly D′(v) times. Define F (D′) to be the point of A defined by
the multiset of distances distΓ(v, v0) for v ∈ A(D′), ordered in an increasing way
to define a point of A. It is straightforward to show that the map F is continuous.

Since TD is a compact set and F is continuous, there exists a divisor D0 such that
F takes its minimum value on D0, i.e., F (D0) = minD′∈TD

F (D′). We claim that
D0 is v0-reduced. The first property is clearly verified by the choice of D0: D0 ∼ D
and the coefficients D0(v) are all non-negative for v �= v0 in Γ. We must show
that every connected set X which does not contain v0 has a non-saturated point on
its boundary. For the sake of a contradiction, suppose this is not the case and let
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X be the connected set violating this condition. This means that for all v ∈ ∂X,
D0(v) ≥ degoutX (v). By the definition of degoutX , there exists an ε > 0 such that for
each vertex v ∈ ∂X, there exist closed segments Iv1 , . . . , I

v
degout

X (v) emanating from

v with the following properties:

• For v ∈ ∂X and 1 ≤ j ≤ degoutX (v), each Ivj has length ε, and the half-open
line segments Ivj \ v live outside X and are all disjoint.

Now define the rational function f : Γ → R as follows: f takes value zero on X,
is linear of slope −1 on each interval Ivj and takes value −ε on all the points of

Γ \
(
X ∪

⋃
Ivj

)
, the union being over all v ∈ ∂X and 1 ≤ j ≤ degoutX (v). Since

degoutX (v) ≤ D0(v), the divisor D0 + div(f) lies inside TD. Since the distance of
X to v0 is strictly larger than the distance from the set X ∪

⋃
Ivj to v0, and the

boundary points of X are all in the multiset A(D0), it is straightforward to see that
F (D0) > F (D0 + div(f)), and this contradicts the choice of D0. This proves the
existence.

To prove the uniqueness, for the sake of a contradiction, suppose there are two
v0-reduced divisors D0 and D′

0 which are linearly equivalent. This means that there
exists a non-constant rational function f such that D′

0 = D0 + div(f). Since f is
not a constant function, we can assume that f does not take its maximum at v0 (if
not, we change the role of D0 and D′

0, and replace f by −f). Let X be a connected
component of the set of all points where f takes its maximum. Note that v0 /∈ X.
For any point v lying on the boundary of X, the slope of f along any segment Ivj
emanating from v is at most −1. It follows that the coefficient of (v) in D0+div(f)
is at most D0(v) − degoutX (v). Since D0 is v0-reduced, there exists a point v ∈ ∂X
such that D(v) < degoutX (v). For this point, D′

0(v) = D0(v)− degoutX (v) < 0, which
contradicts the assumption that D′

0 is non-negative outside v0. The uniqueness
follows. �

2. The map Red from Γ to a (complete) linear system

Let D be a divisor and |D| its complete linear system. Suppose that r(D) ≥ 0
such that |D| is non-empty. There is a natural polyhedral structure on |D| that we
now explain.

Let Γ be a tropical curve and N be an integer. The symmetric product Γ(N) is
defined as the set of all unordered N -tuples of points of Γ, i.e.,

Γ(N) := ΓN/SN ,

where SN is the symmetric group of degree N and ΓN is the product of N copies
of Γ.

The linear system |D| is naturally a subset of the symmetric product Γ(deg(D)):
define a map ι : |D| ↪→ Γ(deg(D)) by sending each E ∈ |D| to ι(E) of Γ(deg(D))

consisting of the (unordered) multiset of all the points v with Ev �= 0. The topology
of |D| is the natural topology induced from Γ(deg(D)). We will explain the cell
structure of |D| in more detail in the next section.

2.1. The integral affine structure on Γ(N) and |D|. We start this section by
describing a natural integral affine structure on Γ(deg(D)) induced from Γ. First,
we need to say more precisely what we mean by an integral affine structure. Recall
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that a manifold with an integral affine structure of dimension n is given by the
following data:

• A (finite) collection of open sets (charts) Ui covering all of X.
• A homeomorphism φi from Ui to an open subset Vi of Rn for each i such
that for different i and j the change of chart map φj φ

−1
i : φi(Uj ∩ Ui) →

φj(Ui ∩ Uj) is the restriction of an integral affine map from Rn to Rn, i.e.,

there exists a ∈ Rnj and A ∈ Mn×n(Z) such that φi φ
−1
j (x) = Ax + a for

all x ∈ φi(Uj ∩ Ui).

Since the objects we will be considering will have singularities, we need to modify
the above definition to also cover the case of stratified manifolds. Roughly speaking,
if X admits a filtration X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X such that for each i,
Xi \ Xi−1 is a (possibly disconnected) manifold of dimension i, then it is natural
to impose that each Xi \Xi−1 is an i-dimensional manifold with an integral affine
structure and such that, in addition, there is a compatibility between the integral
affine structure on Xi \Xi−1 and the one “induced” from Xi+1 \Xi on Xi \Xi−1.
To give a more precise meaning to this, in what follows it turns out to be more
convenient for our purpose to work with abstract rational polyhedral complexes
(which will carry by definition an integral affine structure in the above general
sense).

Let N be a lattice of rank n in the n-dimensional real vector space NR = N⊗ZR.
Recall that a rational polyhedral complex Σ in NR is a finite collection of (convex)
rational polyhedra in NR which satisfies the following two properties:

• If σ ∈ Σ and τ is a face of σ, then τ is in Σ.
• If σ and τ are in Σ, then σ ∩ τ is a (possibly empty) common face of σ and
τ (which is also in Σ).

Since the polyhedral complex Σ is rational, for each point x in the relative
interior of a polyhedra σ ∈ Σ, the tangent space of x in σ has a canonical sublattice
of full rank. This canonically coincides with the sublattice Nσ of N of dimension
dim(σ) defined by the set of all points of N which lie on the rational plane span(σ−
x) =: Nσ,R in NR defined by σ. Under this identification, one canonically has an
isomorphism between the tangent space of the interior of σ with int(σ)×Nσ,R.

Now to make the above definition independent of the embedding into a fixed
NR, we can proceed as follows. An abstract rational polyhedral complex structure
Σ on a Hausdorff topological space X is a finite collection of closed topological
subspaces σ ⊆ X with the following properties. Each σ is homeomorphic to a
full-dimensional polyhedra |σ| in a real vector space Nσ,R. In addition, Nσ,R has a
sublattice of full rank Nσ such that |σ| is rational with respect to Nσ. By rational,
we mean that the real vector space defined by any face of |σ| comes (by extension
of scalars from Q to R) from a subvector space of Nσ,Q = N ⊗Z Q. Under these
homeomorphisms, Σ satisfies the following properties, analogous to the properties
of a rational polyhedral complex in NR given above. For σ ∈ Σ, define Fσ as the
poset (under inclusion) of all τ ∈ Σ such that τ ⊆ σ. For convenience, assume that
∅ ∈ Fσ for all σ ∈ Σ.

• If σ ∈ Σ, there is an isomorphism of posets from Fσ to the face poset of |σ|.
Under this isomorphism, if τ ∈ Fσ and η is the corresponding face of |σ| in
Nσ,R, there exists an isomorphism of rational polyhedra between |τ | and η.

• If σ and τ are in Σ, then σ ∩ τ is in Σ and thus belongs to both Fσ and Fτ .
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Given an abstract rational polyhedral complex structure Σ on X, define Xi as
the union of all σ ∈ Σ such that |σ| has dimension i. The following facts are easy
to verify:

• For each i, Xi \Xi−1 is naturally an (open) manifold of dimension i with
an integral affine structure. More precisely, Xi \Xi−1 is the disjoint union
of the relative interior of all σ ∈ Σ such that |σ| has dimension i.

• If Σ and Σ′ are abstract rational polyhedral structures onX andX ′, respec-
tively, there exists a natural abstract rational polyhedral complex structure
Σ×Σ′ on X ×X ′. The elements of Σ×Σ′ are of the form σ×σ′ ⊂ X×X ′

for σ ∈ Σ and σ′ ∈ Σ′.

Any metric graph Γ with a simple model G = (V,E) admits an abstract rational
polyhedral structure given by Σ = V ∪E. (Recall that G is called simple if it does
not have any loop or parallel edges.) For each edge e ∈ E, identify e with the
interval [0, �(e)] of length �(e) in R and let Ne = Z ⊂ R. This naturally defines
an abstract rational polyhedral complex structure ΣN = ΣN

G=(V,E) on ΓN . Each

σ ∈ ΣG=(V,E) is of the form σ1×· · ·×σN for σi ∈ V ∪E. Note that the integral affine

structure on ΓN is invariant under the action of the symmetric group SN . Also
note that subdividing the rational polyhedral structure of Γ consists of choosing
another model G′ = (V ′, E′) of Γ which is a refinement of G (i.e., V ⊆ V ′). This
in turn induces a subdivision of the abstract rational polyhedral structure of ΓN .

Next we show that the topological quotient Γ(N) of ΓN by SN admits an integral
affine structure given by an abstract rational polyhedral complex structure Σ(N).
In addition, the projection map π : ΓN → Γ(N) is “integral affine” in the sense that
for all x in the relative interior of a σ in ΣN , with image y in the relative interior
of η in Σ(N), Nη ⊆ π∗(Nσ) (π∗ is the push forward of tangent vectors from ΓN to

Γ(N)).
To describe the integral affine structure of Γ(N), we fix a model G = (V,E) of

Γ without loops and parallel edges. From the description below, it will be clear
that choosing another simple model G′ = (V ′, E′) of Γ which is a refinement of
G consists of subdividing the abstract rational polyhedral structure of Γ(N), and
thus, the induced integral affine structure does not depend on the particular choice
of the model.

Let v1, . . . , vn be the set of all the vertices of V . The enumeration defines an
orientation on the set of edges of Γ, thus a lexicographical order on the points of
the edge respecting the orientation, and also a lexicographical order on the edges
set. Since Γ does not have any loop or parallel edges, there is no ambiguity in the
definition of the lexicographical order. First, for an edge e of G of length �(e) and
an integer m, consider the closed subset e(m) = em/Sm of Γ(m) and identify |e(m)|
with the rational polytope in Rm consisting of all the points (x1, . . . , xm) such that
0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ �(e). The faces of |e(m)| induce a decomposition of e(m)

into closed subsets and define a rational polyhedral structure on e(m). Now, more
generally, given a sequence e consisting of N edges e1 = e1 = · · · = e1 < e2 = · · · =
ei < · · · < ek = · · · = ek of Γ ordered in the lexicographical order, and in which

each edge ei is repeated si times with
∑k

i=1 si = N , consider the closed subset σe

of Γ(N) defined by σe = e
(s1)
1 × · · · × e

(sk)
k and consider its geometric realization as

a rational polytope in RN defined by

|σe| = |e(s1)1 | × · · · × |e(sk)k |.
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The faces of |σe| define a decomposition of σe into closed subsets and induce an
abstract rational polyhedral structure Σe on σe. Note that the relative interior
int(σe) of σe is given by

int(σe) =
{
(x1, . . . , xs1 , xs1+1, . . . ,xs1+s2 , . . . , xs1+···+sk−1+1, . . . , xN ) ∈ ΓN |

x1 < · · · < xs1 ∈ int(e1) ;

xs1+1 < · · · < xs1+s2 ∈ int(e2) ; . . . ;

xs1+···+sk−1+1 < · · · < xN ∈ int(ek)
}
.

Here int(e) denotes the interior of an edge e. The abstract rational polyhedral
structure Σ on Γ(N) is defined as follows. Σ(N) is the union of all the closed subsets
of Γ(N) which appear in some Σe for some sequence of edges e, Σ(N) =

⋃
e Σe. Each

element τ of Σ(N) belongs to some Σe, and thus one can define |τ | and its rational
polyhedral structure to be the one defined by the corresponding face of |σe|. It is
straightforward to check that this does not depend on the choice of the sequence e,
and thus one obtains a global structure of an abstract rational polyhedral complex
on Γ(N). This abstract rational polyhedral structure on Γ(N) is pure of dimension
N , i.e., all the maximal cells in Σ(N) have dimension N .

Note that in the stratification X0 ⊂ X1 ⊂ · · · ⊂ XN of Γ(N) defined by Σ(N),
XN \ XN−1 is the disjoint union of all the open sets int(σe). If among the strict
inequalities describing int(σe) i of them become equality (also counting the situa-
tions where the points lie on the boundary of an edge), then these so-defined cells
become disjoint and their union forms the subset XN−i \XN−i−1. It is clear that
the set of vertices X0 consists of all the N -tuples vi1 , . . . , viN of vertices of G with
1 ≤ i1 ≤ · · · ≤ iN ≤ n.

Our next aim will be to explain how |D| inherits a natural structure of an abstract
rational polyhedral complex from that of Γ(deg(D)). This essentially amounts to
providing the description of the cell structure on |D| given in [5, 9] and [6]. We
point out that this cell structure is rational, is induced by the rational polyhedral
complex structure of Γ(deg(D)), and is so that the inclusion map |D| ↪→ Γ(deg(D)) is
integral affine.

Let Γ be a tropical curve with a simple model G = (V,E). Let v1, . . . , vn be
the set of all the vertices of V . Let D be a divisor of degree d = deg(D) of non-
negative rank. Consider the abstract rational polyhedral complex structure Σ(d) on
Γ(d) described above. For each τ ∈ Σ(d), the intersection of |D| with the relative
interior of τ has a finite number of connected components. Define ΣD as the family
of all the closed subsets of |D| which are the closure in Γ(d) (or equivalently in
|D|) of a connected component of |D| ∩ int(τ ) for a τ ∈ Σ(d). We claim that ΣD

defines an abstract rational polyhedral structure on |D|. This is reduced to proving
two claims, namely that first, for each η the closure of a connected component of
|D| ∩ int(τ ), the geometric realization |η| in |τ | is a rational polytope, and that, in
addition, each face of |η| is the geometric realization of an element γ in ΣD, this
second assertion itself being a direct consequence of the first one and the assertion
that the dimension of |D| ∩ int(τ ) is locally constant (thus, η cannot have a proper
face in the interior of τ ).
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Recall that the enumeration of the vertices induces an orientation of the edges
of Γ and a lexicographical order on the edges. The relative interior of an element
τ ∈ Σ(d) is the set of all the points x = {x1, . . . , xd} of Γ(d) described by

• A map d : V � E → Z which encodes the following data: For any vertex
v ∈ V , d(v) is the number of xi in x which are equal to v. For any edge
e ∈ E, d(e) is the number of xi in x which lie in the interior of the edge e.
Note that

∑
v∈V d(v) +

∑
e∈E d(e) = d.

• In addition, for every edge e, an ordered decomposition of d(e) = d1(e) +
· · · + dse(e) for some non-negative integer se = se(τ ). This is given by
looking at the location of all the points xi which are in the interior of the
edge e: among these points, the first de(1) are the same and are strictly
smaller than the following d2(e) points which are the same, these points
being strictly smaller than the following d3(e) points which are the same,
and so on.

We now claim that int(τ ) ∩ |D| is a disjoint union of rational polyhedra in Nτ,R

of the same dimension. This establishes the two above-mentioned assertions and
thus shows that |D| has an abstract rational polyhedral complex structure.

To see this, first note that |D| ∩ int(τ ) consists of all the divisors D′ linearly
equivalent to D such that

• the coefficient of D′ at v is equal to d(v), and
• for every edge e, there are points xe

1 < xe
2 < · · · < xe

se ∈ int(e) such that
the support of D′ in the interior of e is given by

∑
di(e)(x

e
i ).

To describe the rational polyhedral structure of |D| ∩ int(τ ), one also has to fix the
slopes of the rational function f which provides the linear equivalence of D and D′,
i.e., div(f) +D = D′, at the beginning of any edge e. In other words, one fixes an
integer-valued functionm : E → Z and assumes that f has slope equal tom(e) along
e at the starting point of e. The combinatorial data d(.), di(.) and m(.) provide
linear equations and inequalities with rational coefficients which define a rational
polyhedral part of |D| ∩ int(τ ) [5]. In addition, by the up-to-an-additive-constant
uniqueness of the rational function f , it becomes immediately clear that these poly-
hedra form different connected components of |D| ∩ int(τ ). To show the assertion
that the dimensions are all equal, let nτ be the number of connected components of
the topological space obtained by removing se points from the interior of any edge
e. Note that for any D′ =

∑
v∈V d(v)(v)+

∑
e∈E

∑se
i=1 di(e)(x

e
i ) ∈ |D| ∩ int(τ ), the

number of connected components of Γ \ {xe
i }i,e is nτ . Each connected component

A of Γ \ {xe
i}i,e forms a saturated cut in Γ, because all the points on the boundary

have out-going degree one and coefficient at least one. For small enough positive
ε, by considering small out-going segments Ivε of length ε/D′(v) from A at v for
any point v ∈ ∂A, one can define a rational function fε with value zero at A, with
slope −D′(v) along the segment Ivε , and with value −ε outside the union of A and
the segments Ivε . In this way, by combining these functions, one can show that the
nτ connected components of Γ \ {xe

i}i,e allow one to infinitesimally move D′ in an
open subset of dimension nτ − 1 in |D| ∩ int(τ ), which shows that the dimension of
each connected component of |D| ∩ int(τ ) is nτ − 1; cf. [6] and Proposition 22.

It can happen in general that |D| is not pure dimensional, i.e., some maximal
cells of |D| can have dimension less than the dimension of |D|. For example, if the
tropical curve consists of four points P,Q,R, S with an edge between P and Q, two
parallel edges from P to R and two parallel edges from Q to S, and the divisor D
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is equal to P + Q, the complete linear system |D| consists of three maximal cells:
two segments and a triangle.

2.2. The reduced divisor map. Let D be a divisor with r(D) ≥ 0. For a point
P ∈ Γ, we denote by DP the unique P -reduced divisor linearly equivalent to D.
Note that r(D) ≥ 0 is equivalent to DP ≥ 0 for every point P . Since all the
coefficients of DP are already non-negative, this simply means that the coefficient
DP (P ) of DP at P is non-negative.

Before stating the main theorem of this section, let us recall that a map φ from
a tropical curve Γ to a space X with an abstract rational polyhedral complex
structure Σ is called integral affine if it is piece-wise linear with integral slopes in
X. In other words, φ is integral affine if for any point v of Γ and any sufficiently
small segment I on an edge adjacent to v whose image under φ entirely lies inside
some τ in Σ, the image of I in |τ | is a segment with slope in Nτ,Q.

The main result of this section is the following theorem, whose proof gives an ex-
plicit description of the behavior of the reduced divisor DP ∼ D under infinitesimal
changes of the base point P .

Theorem 3. Let D be a divisor of non-negative rank r(D) ≥ 0. The map Red :
Γ → |D| ↪→ Γ(deg(D)) defined by sending a point P ∈ Γ to the point defined in
Γdeg(D) by the (unique) P -reduced divisor DP linearly equivalent to D is integral
affine, and thus, continuous.

Proof. Let P be a point of Γ and E = DP be the unique P -reduced divisor linearly
equivalent to D. We give an explicit behavior of Red around P which shows in
particular that Red is integral affine.

Let u be a unit vector tangent to Γ at P . (It is clear that there are deg(P ) unit
vectors tangent to Γ at P .) We consider the interval [P, P+δ0u] for δ0 small enough
and show how the family of reduced divisors Dv behave for v a point of Γ in this
interval. We first choose δ0 small enough such that there is no point of the support
of E (= DP ) in the half-open interval (P, δ0u ]. Since we will be dealing only with
effective divisors, the first property of reduced divisors, namely the non-negativity
of coefficients outside the base point, is obviously verified for the divisor E and
for every point in this interval. Thus, we will consider below the second property
concerning closed connected subsets and show how the divisor E has to be modified
for any point of the interval [P, P + δ0u] in order to respect this property.

The following cases can happen:

(i) E itself is Q-reduced for all the points Q ∈ [P, δ0u]. (This case happens for
example when the coefficient of E at P is zero, i.e., E(P ) = 0.)

In this case, the restriction of Red to [P, P + δ0u] is the constant map, i.e., Red
contracts the interval [P, P + δ0u] to a point E. It is obvious that Red is integral
affine restricted to this interval.

(ii) There are points Q ∈ [P, δ0u] for which E is not P -reduced. (From the
description we give below, it will be clear that, in this case, E cannot be
reduced for any point of the interval (P, δ0u ].)

This means that there exists a closed connected set X which does not contain
Q and such that for any point v ∈ ∂X, we have E(v) ≥ degoutX (v). In this case P
should belong to X; otherwise the cut X would violate the assumption that E is P -
reduced. By the choice of δ0, for all the points v ∈ (P, P + δ0u], we have E(v) = 0.
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Since X separates P and Q in the interval [P,Q], we have [P, P + δ0u ] � X. We
conclude that X ∩ [P, P + δ0u] = P . Thus, we have a closed connected set X with
the following properties:

(1) The intersection of X with the interval [P, P + δ0u] contains only P .
(2) For all v ∈ ∂X, E(v) ≥ degoutX (v).

In particular, this shows that E is not reduced for any point of the interval (P, P +
δ0u ].

Let F be the family of all the closed connected subsets X of Γ with the above
two properties. For any set X ∈ F and for any point v ∈ ∂X, we have E(v) ≥
degoutX (v) ≥ 1, which implies that F is a finite set. Define Y as the union of all the
elements of F , Y :=

⋃
X∈F X. Next we will show that Y itself is a closed connected

subset of Γ which verifies conditions (1) and (2) above. In other words, we will see
that Y is the maximal element of F .

Property (1) easily follows by observing that Y ∩ [P, P + δ0u] =
⋃

X∈F
(
X ∩

[P, P + δ0u ]
)
= {P}. To show property (2), let v be a point of ∂Y . By the

finiteness of F , there exists at least one X ∈ F such that degoutY (v) ≤ degoutX (v).
This clearly shows that E(v) ≥ degoutY (v).

Let δ0 > 0 be a small enough positive real such that for any point v ∈ ∂Y and
any unit vector w tangent to Γ at v and pointing outside Y , the whole interval
(v, v + δ0 w ] lives outside Y and does not contain any point of the support of E.

Let w1, . . . , ws different from u be all the different unit vectors tangent to Γ at
points v1, . . . , vs ∈ ∂Y , respectively, and pointing out of Y . Remark that we might
have vi = vj for two different indices i and j. The intervals (vi, vi + δ0 wi ] together
with [P, P + δ0u ] form (a segment on) all the out-going edges from Y .

To simplify the presentation below, define the excess of E at P with respect to
the cut Y to be the integer quantity exE,Y (P ) := E(P )− degoutY (P )+ 1. Note that
since P is a boundary point of Y , and Y verifies property (2), we have exE,Y (P ) ≥ 1.

For any non-negative δ ≤ δ0
exE,Y (P ) , the rational function fδ : Γ → R is defined

as follows:

• the restriction of fδ on Y is zero,
• the restriction of fδ on any interval [vi, vi+exE,Y (P ).δ wi] is linear of slope
−1 for any 1 ≤ i ≤ s,

• the restriction of fδ on the interval [P, P +δu ] is linear of slope −exE,Y (P ),
and

• fδ takes value −δ.exE,Y (P ) at any other point of Γ.

Obviously, by the properties of Y , the divisor E + div(fδ) is effective. For any
δ ≤ δ0

exE,Y (P ) define the point Qδ of Γ by Qδ = P + δu. We claim that E + div(fδ)

is Qδ-reduced. This will in turn imply the theorem. Indeed, assuming the claim, it
is fairly easy to check that E+div(fδ) is integral affine on the interval [0, δ0

exE,Y (P ) ].

More explicitly, the image by the reduced divisor map Red of any point Qδ in the
interval [P, P + δ0

exE,Y (P )u ] will be equal to the point of Γ(deg(D)) whose coordinates

are described as follows. Among the deg(D) points of Γ in Red(Qδ),

• exE,Y (P ) of them are equal to Qδ = P + δu,
• s of them are the points v1 + δ.exE,Y (P )wi, . . . , vs + δ.exE,Y (P )ws, and
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• the remaining points are given by the image

Red
(∑
v �=P

(E(v)− degoutY (v))(v)
)

in Γ(deg(D)−s−exE,Y (P )).

(Here degoutY (v) = 0 if v is not a boundary point of Y .) Since Red
(∑

v �=P (E(v)−
degoutY (v))(v)

)
does not depend on δ and so is a constant function on the interval

[0, δ0
exE,Y (P ) ], and since the other points are integral affine functions of δ, the whole

map Red becomes integral affine on the interval [P, P + δ0
exE,Y (P )u]. This being true

for any P and any tangent vector u to Γ at P , the statement of the theorem follows.
Thus, all we need to prove this is to show that Eδ := E+div(fδ) is Qδ-reduced.

For the sake of a contradiction, suppose this is not the case. Since Eδ is effective,
this means there exists a closed connected subset X of Γ which does not contain
Qδ and such that for all v on the boundary of X, we have Eδ(v) ≥ degoutX (v). First
we claim that X does not contain P , and more generally any point of the interval
[P,Qδ]. Indeed, otherwise, since X does not contain Qδ, it should contain a point v
of [P,Qδ) on its boundary. But clearly for this point we have Eδ(v) = 0 < degoutX (v),
which is a contradiction by the choice of X. We now show that X contains one of
the points vi + δ.exE,Y (P ) wi on its boundary. Indeed, since E is P -reduced and
X is a closed and connected subset which does not contain P , by the definition
of reduced divisors there exists a point v ∈ ∂X such that E(v) < degoutX (v). If
v �= vi + δ.exE,Y (P ) wi for all 1 ≤ i ≤ s, then by the construction of Eδ we have

Eδ(v) ≤ E(v) < degoutX (v), which again leads to a contradiction by our choice of
X. This shows our second claim.

To summarize, we have proved so far that X is a closed connected subset of
Γ which does not contain any point of [P,Qδ], while X contains at least one of
the points vi + δ.exE,Y (P )wi on its boundary ∂X. Without loss of generality, let
v1 + δ.exE,Y (P )w1, . . . , vk + δ.exE,Y (P )wk, k ≥ 1, be all the points among vi + δ wi

for i ≤ s which lie on the boundary of X.
For any point vi+δ.exE,Y (P )wi in ∂X, we claim that either [vi, vi+δ.exE,Y (P )wi]

⊂ X or (vi, vi + δ.exE,Y (P )wi] ∩ X = {vi + δ.exE,Y (P )wi}. To see this, note
that if none of these situations happen, then X has to contain another point x of
(vi, vi+ δ.exE,Y (P )wi] on its boundary. For this point, obviously, we have Eδ(x) =

0 < degoutX (x), which is certainly a contradiction by the choice of X. Thus, without
loss of generality, assume v1 + δ.exE,Y (P )w1, . . . , vh + δ.exE,Y (P )wh, h ≤ k, are all
the points on the boundary of X with the property that

(vi, vi + δ.exE,Y (P )wi] ∩X = {vi + δ.exE,Y (P )wi}.
We divide the rest of the proof into two cases, depending on whether h = 0 or

h ≥ 1.

• h = 0; in other words, for any i ≤ k, [vi, vi + δ.exE,Y (P )wi] ⊂ X.
Let X ′ := X \

⋃
i≤k(vi, vi + δ.exE,Y (P )wi ]. Clearly X ′ is a closed con-

nected subset of Γ which does not contain P . Since E is P -reduced, there
exists a point v ∈ ∂X ′ such that E(v) < degoutX′ (v). We claim that there
exists a j ≤ k such that v = vj . Indeed, if v �= vj for all j ≤ k, then

Eδ(v) ≤ E(v) < degoutX′ (v) = degoutX (v), which clearly contradicts the as-
sumption we made on X. Now consider the set J of all indices j ≤ k
such that vj = v. Obviously, we have degoutX′ (v) = degoutX (v) + |J |. By
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the definition of Eδ, we also have Eδ(v) ≤ E(v) − |J |. It follows that
Eδ(v) ≤ E(v)− |J | < degoutX′ (v)− |J | = degoutX (v). Since Eδ is effective, we
infer that v ∈ ∂X and Eδ(v) < degoutX (v). This is again in contradiction
with our assumption on X. Thus, Eδ is Qδ-reduced in this case.

• h ≥ 1.
In this case, define

Y ′ =
(
Y ∪X

)
\

⋃
h+1≤i≤k

(vi, vi + δ.exE,Y (P )wi ].

Since h ≥ 1, we obviously have Y � Y ′. Obviously, Y ′ is closed and
connected, and contains P . We will show that for all the points v ∈ ∂Y ′,
we have E(v) ≥ degoutY ′ (v); in other words, Y ′ ∈ F (for the family F
defined at the beginning of the proof). This will be in contradiction with
the maximality of Y in F , and thus finishes the proof of the theorem. Let
v ∈ ∂Y ′. Two cases can occur:
Either, v ∈ {v1, . . . , vk, P}, in which case, by the properties of Y and the
fact that Y ⊂ Y ′, we have

E(v) ≥ degoutY (v) ≥ degoutY ′ (v).

Or, v ∈ ∂X \ {vi + δ.exE,Y (P )wi}ki=1 and v is not equal to any of the
points P , Qδ, and vi, for i ≤ k. In this case, by the choice of X, we have
Eδ(v) ≥ degoutX (v).
By the definition of Eδ, we have E(v) = Eδ(v). We again infer that

E(v) ≥ degoutX (v) ≥ degoutY ′ (v).

�

3. Ample divisors and canonical embeddings

In the previous section, we proved that the map RedD : Γ → |D| is continuous.
By analogy with the classical case, in this section we consider the cases where the
map defines an embedding of the tropical curve. Since |D| does not admit a tropical
structure in general, here by an embedding we simply mean an injective (proper)
map. The following definition could be thought of as the tropical analogue of ample
and very ample divisors on algebraic curves, via embeddings into projective spaces
(see [6]).

Recall that R(D) denotes the set of all rational functions f on Γ such that
D + div(f) ≥ 0.

Definition 4 (Ample and very ample divisors). A divisor D is called very ample
if the rational functions in R(D) separate points of Γ, i.e., for all pairs of points
P �= Q in Γ, there exist two rational functions f, g ∈ R(D) such that f(P )−g(P ) �=
f(Q)− g(Q). A divisor D is called ample if an integer multiple of D is very ample,
i.e., if there exists m ∈ N such that mD is very ample.

Remark 5. If D itself is an effective divisor, i.e., if 0 ∈ R(D), the assertion that
D is very ample is equivalent to the existence of a function f ∈ R(D) such that
f(P ) �= f(Q).

We have the following tropical analogue of the classical theorem on characteriza-
tion of very ample divisors in terms of embeddings into linear systems (for curves).
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Theorem 6. A divisor D is very ample if and only if the map Red defines an
embedding of Γ in |D|.

The proof is based on the following lemma.

Lemma 7. Let P ∈ Γ and D be a P -reduced divisor. A function f ∈ R(D) takes
its maximum value at P .

Proof. For the sake of a contradiction suppose this is not the case and let X be
the set of all points Q ∈ Γ, where f takes its maximum (thus, P /∈ X). Note that
X is a closed subset of Γ. Since f ∈ R(D), we have D + div(f) ≥ 0. Since D is
P -reduced and X is closed and does not contain P , there is point v ∈ ∂X such that
degoutX (v) > D(v). Note that f is strictly decreasing along any outgoing branch of
X at v, so the coefficient of v in D + div(f) is at most Dv − degoutX (v) < 0. This
contradicts the assumption that D+div(f) is effective, and the lemma follows. �

Proof of Theorem 6. We show that RedD is injective if and only if D is very ample.

• Let D be very ample. For the sake of a contradiction, suppose that RedD is
not injective. This means there are two points P andQ such that the P - and
Q-reduced divisors linearly equivalent to D are the same, i.e., DP = DQ.
For any rational function f ∈ R(DP ) = R(DQ), by applying Lemma 7 we
know that f takes its maximum value both at P and Q. This means that
f(P ) = f(Q) for all f ∈ R(DP ), and this contradicts the assumption that
D is a very ample divisor (see Remark 5).

• If RedD is injective, thenDP �= DQ. For two points P �= Q in Γ, there exists
a non-constant rational function g ∈ R(DP ) such that DP + div(g) = DQ.
By Lemma 7 applied twice, g takes its maximum value at P and −g takes its
maximum value at Q. Since g is not constant, this means that g(P ) �= g(Q),
and so D is very ample. �

Corollary 8. If deg(D) ≥ 2g + 1, then D is very ample. In particular, a divisor
D is ample if and only if deg(D) > 0.

Proof. This is a consequence of Theorem 6. Let E = DP ∼ D be P -reduced. By
the Riemann-Roch theorem, E is effective. We claim that the coefficient of P in E
is at least deg(D)−g. Consider the set S obtained as the union of all the branching
points of Γ and all the points in the support of E:

S := support (E) ∪ { branching points of Γ }.
Suppose |S| = N + 1 and greedily define an ordering v0, . . . , vN of S as follows.
Start by setting v0 = P . Suppose by induction that the partial ordering v0, . . . , vi
is already defined. Consider Xi to be the cut defined by all the points of S \
{v0, . . . , vi}. This is basically obtained by taking all the segments joining two
points of S \ {v0, . . . , vi} in Γ. Since P /∈ Xi and E is P -reduced, there exists a
point v such that E(v) < degoutXi

(v). Define vi+1 = v. It is straightforward to check

that
∑

i≥1 deg
out
Xi

(vi+1)−1 = g. Thus, by the construction of the ordering, we have
∑
i≥1

E(vi) ≤
∑
i≥1

degoutXi
(vi+1)− 1 = g.

This clearly implies that E(P ) = E(v0) = deg(D) −
∑

i≥1 E(vi) ≥ deg(D) − g,
which establishes the claim.
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To conclude the proof, observe that if deg(D) ≥ 2g + 1, it cannot happen that
DP = DQ. Otherwise, we would have

deg(D) ≥ DP (P ) +DP (Q) = DP (P ) +DQ(Q)

≥ deg(D)− g + deg(D)− g ≥ deg(D) + 1.

By Theorem 6, D is very ample provided that deg(D) ≥ 2g + 1. �
We end this section by giving an improvement on the statement of Corollary 8.

First, we note that the bound deg(D) ≥ 2g + 1 in the above corollary is tight.
To give an example, consider a tropical curve Γg obtained by associating positive
lengths to the edges of the banana graph of genus g with two branching points P
and Q of degree g+1 connected by g+1 parallel edges; see Figure 1(a). The divisor
D = g (P ) + g (Q) on Γg has degree 2g and is both P - and Q-reduced, so D is not
very ample. However, this is the only situation where this happens. More precisely,
if Γ does not have any model whose underlying graph is isomorphic to the banana
graph of genus g, i.e., the graph underlying Γg, then every divisor D of degree at
least 2g is very ample. We show this by reduction to absurdity, so for the sake of a
contradiction, consider a divisor E of degree 2g which is both P - and Q-reduced for
two different points P �= Q of Γ. As the proof of Corollary 8 shows, the coefficients
of P and Q in E are at least g, and since deg(E) = 2g and E is effective, then we
must have E = g (P )+ g (Q). Since E is P -reduced, by taking the cut consisting of
the only point Q, we see that degΓ(Q) ≥ g + 1. A similar argument shows that Q
is not a cut vertex, i.e., Γ \ {Q} is connected. Similarly degΓ(P ) ≥ g + 1 and P is
not a cut vertex. The genus of Γ being g, we infer that degΓ(P ) = degΓ(Q) = g+1
and all the other points are of degree two. Since none of P and Q is a cut vertex,
this shows that the underlying graph of Γ consists of P and Q and g + 1 parallel
edges between them.

3.1. Canonical embedding. In this section, we consider the map RedK defined
by the canonical divisor K = KΓ of a tropical curve Γ. We provide a complete
characterization of all the situations where the canonical divisor is not very ample.

We start this section by proving the following simple lemma.

Lemma 9. Let Γ be a tropical curve of genus g ≥ 2. If K is not very ample, then
there are two points P and Q of Γ such that KP = KQ = (g− 1).(P )+ (g− 1).(Q).
Here KP and KQ are the P - and Q-reduced divisors linearly equivalent to K.

Proof. We again use Theorem 6. If K is not very ample, then the map RedK is
not injective; i.e., there exist two points P and Q such that KP = KQ. We claim
that the coefficient of P in KP is at least g − 1. Indeed, by the Riemann-Roch
theorem, K − (g − 1)(P ) has non-negative rank. This means that the P -reduced
divisor associated to K − (g − 1)(P ) is effective. This P -reduced divisor being
simply KP − (g − 1)(P ), we infer that the coefficient of P in KP is at least g − 1.
The same argument gives KP (Q) = KQ(Q) ≥ g − 1. Since deg(K) = 2g − 2
and all the other coefficients of KP are non-negative, we must have KP = KQ =
(g − 1).(P ) + (g − 1).(Q). �

The following theorem characterizes all the situations where the canonical divisor
is not very ample. We can assume that Γ does not have any leaf.

Theorem 10. Let Γ be a tropical curve of genus g ≥ 2 without points of degree
one. The only cases where the canonical divisor is not very ample are the following:
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C.I The underlying graph of Γ consists of two vertices P and Q of degree g+1
which are connected by g+1 parallel edges. In particular, K = (g−1)(P )+
(g − 1)(Q).

C.II The underlying graph of Γ consists of two vertices P and Q of degree g
which are joined by g parallel edges and a point of degree four in the middle
of one of the edges with an extra edge from this point to itself, i.e., a point
R such that the segments [P,R] and [R,Q] have the same length and there
is a loop connecting R to R (see Figure 1(b)).

C.II′ The underlying graph of Γ consists of four branching points P , Q, R, and
S as in Figure 1(c), with deg(P ) = deg(Q) = g and deg(R) = deg(S) = 3.
In addition [P,R] and [Q,S] have the same length.

C.III The underlying graphs of Γ have four branching points P , Q, R, and S as
in Figure 1(d), with deg(P ) = deg(Q) = g and deg(R) = deg(S) = 3. The
lengths are arbitrary.

Recall that a tropical curve is called hyperelliptic if there exists a divisor D
of degree two such that r(D) = 1. For a tropical curve whose canonical divisor
is not very ample, let D = (P ) + (Q) such that K ∼ (g − 1).D by Lemma 9.
By the above characterization theorem, it is easy to see that r(D) = 1. Since
deg(D) = 2, the tropical curves Γ appearing in the characterization theorem above
are all hyperelliptic. In addition, one obtains that canonical divisors of generic
tropical curves of genus g ≥ 2 are very ample.

(a) (b) (c) (d)

Figure 1. Cases where K is not very ample; cf. Theorem 10.
(a) Case C.I: deg(P ) = deg(Q) = g + 1, and the lengths are
arbitrary.
(b) Case C.II: deg(P ) = deg(Q) = g, deg(R) = 4, and �([P,R]) =
�([R,Q]). The other lengths are arbitrary.
(c) Case C.II′: deg(P ) = deg(Q) = g, deg(R) = deg(S) = 3, and
�([P,R]) = �([S,Q]). The other lengths are arbitrary.
(d) Case C.III: deg(P ) = deg(Q) = g, deg(R) = deg(S) = 3, and
the lengths are arbitrary.

Proof of Theorem 10. Suppose K is not very ample. By Lemma 9, there are two
points P and Q such that KP = KQ = (g − 1)(P ) + (g − 1)(Q). Since KP is P -
reduced, we have deg(Q) ≥ g. Similarly we have deg(P ) ≥ g. Since

∑
P∈Γ deg(P )−

2 = 2g − 2 and Γ does not have any leaf, the following cases happen:

• deg(P ) = deg(Q) = g + 1. In this case, KP = KQ since P -(resp. Q)-
reduced, Q (resp. P ) cannot be a cut vertex in Γ. Thus, the underlying
graph of Γ consists of two vertices P and Q of degree g + 1 which are
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(a) (b)

Figure 2. (a) deg(P ) = g + 1, deg(Q) = g, deg(R) = 3.
(b) deg(P ) = g + 2, deg(Q) = g.

connected by g+1 parallel edges. In particular, K = (g−1)(P )+(g−1)(Q),
and this is case C.I of the theorem.

• Either deg(P ) = g+1 and deg(Q) = g, or deg(P ) = g and deg(Q) = g+1.
Without loss of generality, suppose that deg(P ) = g+1 and deg(Q) = g. In
this case, Γ has a branching point R �= P,Q of degree three. The underlying
graph of Γ is the graph of Figure 2(a). It is easy to see that since R �= Q,
K � (g − 1)(P ) + (g − 1)(Q), so this situation cannot happen.

• deg(P ) = deg(Q) = g. In this case, Γ has either one branching point
R �= P,Q of degree four, or two different branching points R �= P,Q and
S �= P,Q of degree three. The underlying graph of Γ then has a very
particular shape. A case analysis shows that the only possibilities for (g −
1)(P ) + (g − 1)(Q) to be equivalent to the canonical divisor are the cases
C.II, C.II′, and C.III described in the theorem; see Figures 1(b),1(c),1(d).

• deg(P ) = g and deg(Q) = g+2 (or deg(P ) = g+2 and deg(Q) = g). In this
case, the underlying graph of Γ consists of the two points P and Q joined
by g parallel edges and there is an extra loop based on P (see Figure 2(b)).
It is easy to show that this case cannot happen.

The theorem follows. �

4. Applications: Tropical Weierstrass points

and rank-determining sets

We already saw some applications of the reduced divisor map, especially in
obtaining a characterization of all the tropical curves with a very ample canonical
divisor. In this section, we provide two more applications of this method: we first
provide an effective way of proving the existence of Weierstrass points on tropical
curves of genus at least two, and then proceed by giving an alternative shorter proof
of a theorem of Luo on tropical rank-determining sets.

4.1. Tropical Weierstrass points. Let Γ be a tropical curve of genus g, and K
the canonical divisor of Γ. By analogy with the theory of algebraic curves, we say
that P ∈ Γ is a Weierstrass point if r(g(P )) ≥ 1. Equivalently, by the Riemann-
Roch theorem, a point P ∈ Γ is Weierstrass if and only if r(K − g(P )) ≥ 0, i.e.,
if K − g(P ) is equivalent to an effective divisor. The Riemann-Roch theorem also
implies

Proposition 11. For every point P ∈ Γ, r(K − (g − 1)(P )) ≥ 0. Let KP =
aP (P ) +

∑
v:v �=p av(v) be the (unique) P -reduced divisor linearly equivalent to K.

Then aP ≥ g − 1. In addition, P is Weierstrass if and only if aP ≥ g.
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In this section we show the following tropical analogue of the classical theorem
that every smooth projective curve of genus at least two over an algebraically closed
field κ has a Weierstrass point.

Theorem 12. Any tropical curve of genus at least two has a Weierstrass point.

Before going through the proof, the following remarks are in order.

Remark 13. • The theorem easily follows by Baker’s specialization lemma [2],
by using the existence of a degeneration of smooth curves to Γ, from the
classical theorem on the existence of Weierstrass points; see [2] for more
details. The proof given here has the advantage of being more explicit,
providing an efficient way of finding a Weierstrass point.

• In the classical setting, it is possible to count the number of Weierstrass
points in a very precise sense; see Section 6. In the tropical context, such
a formula cannot exist, at least with the definition of Weierstrass points
given above. Indeed, as was pointed out in [2], the example of the graph
Γg with two branching points of degree g + 1 with g + 1 parallel edges
for g ≥ 3 (Figure 1(a)) shows that Γ can have an infinite number of such
points. In this tropical curve, it is quite easy to see that there exists an
interval of positive length on each edge joining P to Q whose points are all
Weierstrass.

Proof of Theorem 12. Let Γ be a tropical curve of genus g ≥ 2 and K the canonical
divisor of Γ. Let Red : Γ → Γ(2g−2) be the map defined in Section 2 which sends
a point P ∈ Γ to the point of Γ(2g−2) which corresponds to the unique P -reduced
divisor KP linearly equivalent to K. Our proof will essentially be based on The-
orem 3 and the explicit description of the behavior of the map Red given in the
proof of Theorem 3.

Suppose for the sake of a contradiction that there is no Weierstrass point in Γ.
Then, by Proposition 11, for every point P ∈ Γ, the coefficient of P in KP is exactly
g − 1. Let F : Γ → R≥0 be the continuous function defined as follows. For a point
P ∈ Γ, let P1, . . . , Pg−1 be all the points in the support of KP which are different
from P (potentially we could have Pi = Pj for some i �= j). The value of F at

P is defined as F (P ) := min
{
distΓ(P, Pi)

}g−1

i=1
. Recall that distΓ(. , .) denotes the

distance between points in Γ. By Theorem 3, the point (P1, . . . , Pg−1) ∈ Γ(g−1) is
a continuous function of P , thus the map F is continuous. By the compactness of
Γ and continuity of F , there is a point P ∈ Γ such that F takes its minimum value
at P , i.e., F (P ) is the minimum of F (Q) over Q ∈ Γ. By our assumption, all the
points Pi are different from P , and so F (P ) > 0. Let P1 �= P be the point in the
support of KP such that F (P ) = distΓ(P, P1) and let C be a shortest path from P
to P1. We show that moving P to another point P ′ in the direction of the shortest
path C will decrease the value of F , which will obviously be a contradiction.

Let u be the unit tangent vector to Γ at P such that [P, P + δu ] ⊂ C for all
sufficiently small δ. We look at the behavior of KP in the interval [P, P+δu ]. Since
for a point Q in this interval the coefficient of KQ at Q is at least g − 1 ≥ 1, KP

is evidently not Q-reduced for δ small enough. Thus, let Y be the maximal closed
connected subset of Γ, defined in the proof of Theorem 3 such that

1. The intersection of Y with the interval [P, P + δu] contains only P .
2. For all v ∈ ∂Y , KP (v) ≥ degoutY (v).
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Note that, by our assumption, we also have KP (P ) = g − 1. The proof of
Theorem 3 shows that for δ small enough and for Q ∈ [P, P + δu ], the coefficient
of KQ at Q is equal to KP (P ) − degoutY (P ) + 1. Since KP (P ) = KQ(Q) = g − 1,

we must have degoutY (P ) = 1.
Two cases can happen:

• Either P1 /∈ Y , in which case KP (P1) = KQ(P1). In other words, P1 lies
in the support of KQ for all Q ∈ [P, P + δu ] for δ > 0 small enough.
However, note that F (Q) ≤ distΓ(Q,P1) < length(C) = F (P ), which leads
to a contradiction.

• Or, P1 ∈ Y . We claim that in this case P1 ∈ ∂Y and C ∩ Y = {P1, P}.
Suppose for the sake of a contradiction that this is not true, i.e., P1 lies
in the interior of Y or C intersects Y in a point different from P1 and P .
Since C is a path from P to P1 and since the interval [P, P + δu ] ⊂ C and
(P, P+δu ]∩Y = ∅, in either of these cases there must exist a point v ∈ ∂Y ,
v �= P1, P , which is the first time C returns to Y while going from P to
P1. By property 2 of the set Y above, we have KP (v) ≥ degoutY (v) ≥ 1, i.e.,
v lies in the support of KP . We have distΓ(P, v) < distΓ(P, P1) = F (P ),
which contradicts the definition of F . This proves our claim.

Let w be the unit vector tangent to Γ at P1 such that the interval [P1, P1+
δ w ] lies inside C for δ small enough. By our explicit description of the
reduced divisors KQ for Q ∈ [P, P + δu ], given in the proof of Theorem 3,
there is a point Q1 ∈ [P1, P1 + δ w ] such that the coefficient of Q1 in KQ

is one, provided that Q is close enough to P . This shows that F (Q) ≤
distΓ(Q,Q1) < length(C) = F (P ), which again leads to a contradiction by
our choice of the point P .

The proof of Theorem 12 is now complete. �
The exact same argument gives the following more general statement.

Theorem 14. Let D be a divisor of positive rank. If for all P ∈ Γ the coefficient
of DP at P is at least a, for some integer a ≥ 1, then there exists a point P ∈ Γ
such that the coefficient of P in DP is at least a+ 1.

Definition 15. Let D be a divisor of rank r. A point P ∈ Γ is called a Weierstrass
point for D (or a D-Weierstrass point) if the coefficient of DP at P is at least r+1.

Corollary 16. Let Γ be a tropical curve and D be a divisor of positive rank. Then
Γ has a D-Weierstrass point.

Proof. Let r = r(D) ≥ 1. By definition of rank, for any point Q ∈ Γ, the coefficient
of Q in DQ is at least r. By Theorem 14, there exists a point P ∈ Γ with DP (P ) ≥
r + 1, i.e., P is a D-Weierstrass point. �

It is worth noticing that Remark 13 still remains valid for D-Weierstrass points.
It would be interesting to have a definition of tropical Wronskians (as in the classical
setting; cf. Section 6) which would allow one to obtain more precise statements
about the number of such points.

4.2. Rank-determining sets of points. Recall that a subset A ⊂ Γ is called
rank-determining [8] if the rank of a divisor in Γ is equal to the maximum r such
that for any effective divisor E of degree r with support in A, the divisor D − E
has non-negative rank (equivalently, D − E is equivalent to an effective divisor).
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The following proposition can be easily proved by induction on r.

Proposition 17. A given subset A ⊂ Γ is rank-determining if and only if for a
divisor D of non-negative rank the following two assertions are equivalent.

• Rank of D is at least one, r(D) ≥ 1.
• For any point P ∈ A, P is in the support of DP .

Let A be a set of points of Γ. By cutting Γ along A we mean the (possibly
disconnected) tropical curve obtained as the disjoint union of the closure in Γ of
each of the connected components of Γ \A.

Theorem 18 (Luo [8]). Given a subset A ⊂ Γ, if cutting Γ along the points of A
results in a disjoint union of at least two tropical curves and if all the connected
components of the cutting are of genus zero, then A is rank-determining.

Before giving the proof, the following remarks are in order.

Remark 19. (1) For a model G = (V,E) of a tropical curve Γ without loops,
the vertices of V form a rank-determining set. This was essentially proved
in [7].

(2) Luo’s theorem is a more general statement in terms of special open sets
(see [8] for the definition) and gives a necessary and sufficient condition for
a subset A of Γ to be rank-determining. We restrict ourselves to the above
statement; however, we note that the proof given below works without
any change in that more general setting and derives the sufficiency of the
condition in Luo’s theorem.

Proof of Theorem 18. Using Proposition 17 (twice, once for A and once for Γ), we
need to prove that if P belongs to the support of DP for every point P in A and
if cutting Γ along A results in a set of at least two tropical rational curves (i.e., of
genus zero), then for any point Q ∈ Γ, Q is in the support of DQ. Let Γ1, . . . ,Γs

be all the tropical curves obtained by cutting Γ along A, so s ≥ 2. Without loss of
generality, we can assume that Q ∈ Γ1. Let Γ̃1 ⊂ Γ1 be the set of all the points P
of Γ such that P lies in the support of DP . For the sake of a contradiction, suppose
that Q /∈ Γ̃1. Let X be the closure in Γ of the connected component of Γ1 \ Γ̃1

which contains Q. Note that X is a rational tropical curve, and for all the points
P of the boundary of X in Γ, P belongs to the support of DP (by the continuity
of Red). However, for all the points P in the interior of X, P does not belong to
the support of DP . We prove the following claim:

Let P be a point on the boundary of X. Then the P -reduced divisor DP is reduced
for all the points of X. In particular, all the points of the boundary of X belong to

the support of DP and no interior point lies in the support.

This will certainly be a contradiction: for the point Q in the interior of X, the
cut Γ \ int(X) is saturated. Indeed, all the points on the boundary of this cut have
valence one, and the coefficient of DQ at these points is at least one since by the
above claim all the points belong to the support of DQ.

To prove the claim, we use the explicit description of the reduced divisor map.
First of all, again as above, for any point P on the boundary of X, there is a unique
vector v emanating from P in the direction of X. By the description of the reduced
divisor in the interval [P, P + εv], DP is (P + εv)-reduced for all ε small enough.
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Indeed, if this was not the case, then P + εv would belong to the support of DP+ε�v,
which is certainly not true by the definition of X. For the sake of a contradiction,
suppose now that the claim does not hold. Then there exists a point R in the
interior of X and a direction v emanating from R such that DR = DP (for the
boundary point P of X as above) and such that DP is not reduced for any point
R + εv, for ε sufficiently small. In this case, R should be in the support of DR.
Indeed, as we saw in the proof of Theorem 3, if the coefficient of R in DR was zero,
then DR would remain obviously reduced for all the points sufficiently close to R.
This is not the situation here, and so DR(R) ≥ 1. But this is again a contradiction
by the choice of X: no point R in the interior of X can belong to the support of
DR. Since X is connected and Red is continuous, this shows that all the reduced
divisors DR, for R ∈ X, are equal to DP , and the claim follows. This completes
the proof of the theorem. �

5. Maps into tropical projective spaces

In this section, we give some complementary results on the image of the map
Red and relate this map to maps into tropical projective spaces.

Let D be a divisor on a tropical curve Γ. Let R(D) be the space of all rational
functions f such that div(f)+D ≥ 0. Since two rational functions f and g have the
same divisor if and only if f = c� g for a constant c ∈ T, we have |D| = PR(D) :=
R(D)/T; the quotient is obtained by identifying f with c� f .

5.1. The tropical module structure of R(D). For two rational functions f
and g, the function f ⊕ g is a rational function on Γ (recall that (f ⊕ g)(x) :=
max{f(x), g(x)}). In addition, it is quite easy to show that div(f ⊕ g) +D ≥ 0. It
follows that R(D) admits the structure of a tropical module over T, the semi-field
of tropical numbers. (Recall that the tropical multiplication c � f , for c ∈ T and
f ∈ R(D), is defined by

(
c� f

)
(x) := f(x) + c.)

Let D be a divisor of non-negative rank. For a point P in Γ, let fP be the unique
rational function in R(D) such that

(i) D + div(fP ) = DP , the unique P -reduced divisor equivalent to D.
(ii) fP (P ) = 0.

The fact that fP is unique comes from the unicity of DP and the assumption on
the value of fP at P . Below we show a set of properties of the rational functions
fP . Some complement properties are given in Section 5.4 below.

The first lemma gives a precise characterization of the rational function fP . For
a set of functions S = {h : Γ → T}, the tropical sum

⊕
h∈S h is the function defined

by x → maxh∈S h(x) for all x ∈ Γ.

Lemma 20. Let D be a divisor of non-negative rank on a tropical curve and fP be
the rational function defined above. We have

fP =
⊕

h∈R(D): h(P )=0

h.

Proof. Since fP itself appears in the tropical sum on the right hand side of the
above equation, we only need to show that for all Q ∈ Γ and h ∈ R(D) with
h(P ) = 0, we have fP (Q) ≥ h(Q). By Lemma 7, we know that h − fP takes
its maximum at P . This proves the lemma since this shows that for all Q ∈ Γ,
h(Q)− fP (Q) ≤ h(P )− fP (P ) = 0. �
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Remark 21. As a tropical module, R(D) cannot be generated in general by the set{
fP

}
for P ∈ Γ. Indeed, for g ∈ R(D) the existence of a solution {xP ;P ∈ Γ}

for the equation g =
⊕

P∈Γ xP � fP (or, equivalently, for the family of equations
g(Q) = maxP∈Γ xP + fP (Q) for all Q) can be equivalently described as follows.
First note that the unique solution of the above equations, if it exists, is given by
xP = minQ∈Γ g(Q)− fP (Q), and the following claim has to be true:

if SP denotes the set of all points Q such that xP = g(Q)− fP (Q), then⋃
P∈Γ SP = Γ.

Let E = div(g) +D = div(g − fP ) + div(fP ) +D = div(g − fP ) +DP . If Q ∈ SP

and if g �= c � fP for all P ∈ Γ and c ∈ T, then g − fP takes at least two values,
and it takes its minimum at Q, so for every point v on the boundary of SP , we
have E(v) ≥ degoutSP

(v). Call a cut X good for E if for all points v on the boundary

of X, we have E(v) ≥ degoutX (v). As we just noticed, the existence of a solution
{xP ;P ∈ Γ} implies that all the cuts SP are good for E and cover the entire Γ.
However, there exist divisors which are not reduced for any point of Γ and for which
the union of the good cuts is not Γ. For example, consider a tropical curve with two
branching points of degree three and three parallel edges between them. Let P and
Q be two points in the interior of two different edges. The divisor E = 2P + 2Q is
not reduced for any point of Γ, and the only cuts X which are good for E are {P},
{Q}, and {P,Q}. We do not know the answer to the following question: provided
that the union of all the good cuts for E is Γ, is it true that g can be written as
g =

⊕
P∈Γ xP � fP for some xP ’s in T ?

5.2. On the image of the reduced divisor map. In this section we consider
the image of the tropical curve Γ under the map Red and study the basic properties
of this map. We then relate our map Red to maps from Γ to tropical projective
spaces considered in [6].

We start by recalling the following basic result from [6] (see the discussion in
Section 2.1).

Proposition 22 (Hasse, Muskier, and Yu [6]). Let D′ be an element of |D| and
X be the set of all the points of the support of D′ which lie in the interior of an
edge of Γ. The dimension of the cell of |D| which contains D′ is one less than the
number of connected components of Γ \X.

Corollary 23. The image of Red lies in the 1-skeleton of the cell complex |D|.

Proof. Let E = DP be the P -reduced divisor equivalent to D. Let X be the set of
all points in the support of E which lie in the interior of an edge. Two cases can
happen:

• P /∈ X. In this case we claim that Γ \ X is connected, i.e., E is a vertex
of the cell complex |D|. Indeed, if this is not the case, then by taking a
connected component of Γ \ X which does not contain the point P , we
obtain a cut in which all the boundary points are in the interior of an edge
and lie in the support of E. This clearly contradicts the assumption that
E is P -reduced.

• P ∈ X. We claim that Γ \X contains either one or two connected compo-
nents. If this was not the case, then there would exist a connected compo-
nent of Γ\X which does not contain P , and we again obtain a contradiction
to the assumption that E is P -reduced.
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This combined with Proposition 22 above clearly completes the proof. �
Theorem 24. Let Γ be a tropical curve. Every point in the image of Red is either
a vertex of |D| or a tropical convex combination of two vertices of |D| which are in
the image of the map Red. The tropical convex hull of the image of Red is finitely
generated.

Proof. Let T be the set of all the points DQ which are among the vertices of |D|.
We first claim that the tropical convex hull of the image of Red is generated by the
set of all DQ ∈ T . For this aim, we will only need to show that for any point P ∈ Γ,
the P -reduced divisor DP ∼ D can be written as a convex hull of two elements of
T . Let P ∈ Γ. If DP ∈ T , we do not have anything to prove. So suppose that
DP /∈ T . This means that the set X consisting of all the points in the support of
DP which lie in the interior of an edge contains the point P and Γ\X consists of two
connected components. Let u and w be the two unit vectors tangent to Γ at P . By
the explicit description of the reduced divisor map we gave in Section 2, it is easy
to see that fP can be written as the tropical convex hull of the rational functions
fP+ε0�u and fP+δ0 �w, where ε0 and δ0 are, respectively, the supremum value of ε and
δ such that for all the values of ε′ in [0, ε] and δ′ in [0, δ], the support points of the
corresponding reduced divisors living in the interior of the edges form a cut. The
two divisors DP+ε0�u and DP+δ0 �w are certainly vertices of |D|. We conclude that
every point in the image of Red is a tropical convex combination of two vertices of
|D| which lie in the image of Red. This also shows that the tropical convex hull of
the image of Red is a finitely generated module. �

We define the reduced linear system of D as follows.

Definition 25. Define R̃(D) to be the tropical convex hull of the image of Red,
i.e., the tropical module generated by the rational functions fP . The reduced linear
system of D, denoted by |D|r, is defined to be R̃(D)/ ∼.

Contrary to what one might expect, it is not in general true that the tropical
convex hull of the image of Red has dimension equal to r(D). An example is given
by a tropical curve Γ consisting of two branching points of degree three P and Q
connected with three parallel edges. The divisor 2P + Q has rank one, while the
tropical convex hull of the image of Red has dimension two.

5.3. Maps to tropical projective spaces. Given a fixed model for Γ, by Theo-
rem 24, R̃(D) is generated by all the vertices of |D| which are reduced with respect
to some base point in Γ. Let F be the set of all the rational functions fP corre-
sponding to these vertices. F allows one to define a map from Γ to TP(F∗). This
latter space is the tropical projective space consisting of all the maps F → T mod-
ulo tropical multiplication by a constant. Note that the map φF : Γ → TP(F∗) is
canonical once a model for Γ is fixed. In particular, if Γ is of genus at least two and
the model of Γ consists of the coarsest model (i.e., all the vertices are the branching
points), then the map Γ → TP(F∗) is canonical.

The following theorem establishes a precise relation between our map Red and
the embeddings of tropical curves into tropical projective spaces considered in [6].

Theorem 26. 1. The image of φF is homeomorphic to the image of Red.

2. Also, there is an injective map |D|r→TP(F∗) with image trop-conv
(
φF (Γ)

)
,

the tropical convex hull of the image of φF in TP(F∗). In particular, |D|r is
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homeomorphic to trop-conv
(
φF (Γ)

)
. In other words, there exists a com-

mutative diagram

Γ
Red ��

id

��

|D|r

∼
��

Γ
φF �� trop-conv

(
φF (Γ)

)
� � ι �� TP(F∗)

Proof. 1. Define a map Ψ : φF (Γ) → |D|r = R̃(D)/ ∼ as follows. Given a point
P ∈ Γ, let Ψ

(
φF (P )

)
=

⊕
f∈F (−f(P )) � f . We claim that Ψ

(
φF (P )

)
= fP in

R̃(D). From the description we give below, this will prove the first part of the

theorem. To show this, note that since F generates R̃(D) as a tropical module,
there are xf ∈ T for f ∈ F such that

⊕
f∈F xf � f = fP . This means that

xf + f(P ) ≤ fP (P ) = 0 for all f ∈ F or, equivalently xf ≤ −f(P ). In particular,
we must have fP =

⊕
f∈F xf � f ≤ Ψ

(
φF (P )

)
. Since (−f(P )) � f takes value

zero at P , by applying Lemma 20 we have fP = Ψ
(
φF (P )

)
, and the claim follows.

To prove the first part, note that there is a map from Red(Γ) → φF (Γ) obtained
by sending fP to φF (P ). This map is well defined since fP =

⊕
f∈F xf � f and

−f(P ) is the maximum value xf can take while verifying the above equation. Thus,
for two points P and Q with fP = fQ, we have f(P ) = f(Q) for all f ∈ F .

2. Define a map Θ : |D|r → TP(F∗) as follows. Given an element g ∈ |D|r,
Θ(g) ∈ TP(F∗) is the map which sends f ∈ F to maxQ∈Γ f(Q)− g(Q):

Θ(g) : F → T is given by Θ(g)(f) = max
Q∈Γ

f(Q)− g(Q).

As mentioned in Remark 21, an element g ∈ |D|r = trop-conv
(
{fP }P∈Γ

)
can be

written in the form g =
⊕

f∈F xf � f , where xf := minQ∈Γ g(Q) − f(Q), so that

the map Θ(g) sends f to −xf . By definition, it is clear that Θ(λ�g) = (−λ)�Θ(f)
so that Θ is a well-defined map from |D|r to TP(F∗). Note also that the restriction
of Θ on Red(Γ) is the inverse of the map Ψ constructed above. Indeed, if g = fP
for a point P ∈ Γ, then the rational function f − fP takes its maximum value at P ,
and this value is equal to f(P ). Thus, Θ(fP ) = φF (P ). In addition, the image of Θ
clearly lies in the tropical convex hull of the image of φF . By the very definition,
the injectivity of Θ follows. To show that Θ is surjective, let η : F → R be a given
map sending f to ηf and η =

⊕
Q∈Γ h(Q)� φF (Q). Define the rational function g

in |D|r as the tropical sum g :=
⊕

f∈F (−ηf )� f . We claim that Θ(g) = η.

By assumption, we have ηf = maxQ h(Q) + f(Q). Thus, −h(Q) ≥ f(Q) − ηf
for all f , i.e.,

−h(Q) ≥ g(Q), ∀ Q ∈ Γ.

Note also that by the definition of g, we have for fixed f ,

ηf ≥ f(Q)− g(Q) ∀ Q ∈ Γ.

Since ηf = maxQ∈Γ h(Q) + f(Q), there is a Q0 such that ηf = h(Q0) + f(Q0). For
this particular point Q0, the above inequality becomes

h(Q0) + f(Q0) ≥ f(Q0)− g(Q0), i.e., − h(Q0) ≤ g(Q0).
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We infer that h(Q0) = −g(Q0), and ηf = f(Q0)− g(Q0).
This shows that for all f , there is a point Q such that −h(Q) = g(Q) = f(Q)−ηf ,

or ηf = f(Q)− g(Q) = maxQ f(Q)− g(Q) = Θ(g)(f). �

Corollary 27. Let F be defined as above. Then D is very ample if and only if φF
is injective.

5.4. Duality. Let fP be as before the rational function defining the P -reduced
divisor DP , i.e., DP = D + div(fP ), and fP (P ) = 0. Consider the function f t

Q

obtained from the family of rational functions fP by interchanging the role of base
points and arguments, namely, f t

Q is the function defined by f t
Q(P ) = −fP (Q).

We now show that all the functions f t
Q are rational and their tropical convex hull

contains the tropical module R(D). (Note that f t
Q does not necessarily lie in R(D).)

To show the second assertion, note that for a point P ∈ Γ, we have g(P ) �
f t
P (P ) = g(P ) + 0 = g(P ), so we only need to show that for all P and Q in Γ,
g(P )� f t

P (Q) ≤ g(Q), or g(P )− fQ(P ) ≤ g(Q)− fQ(Q). This directly follows from
the fact that g − fQ takes its maximum value at Q; cf. Lemma 7.

The fact that f t
Q is a rational function is an easy consequence of the results of the

previous sections. Below, we give a more explicit proof which provides a description
of the sectional derivatives of f t

Q in terms of the results of Section 2.2. For fixed
Q ∈ Γ, and for any P ∈ Γ and any unit vector u emanating from P , we need to
calculate d

dε f
t
Q(P + εu) |ε=0 and show that it is an integer. By definition, this is

− d
dε fP+ε�u(Q) |ε=0 = limε→0

−fP+ε�u(Q)+fP (Q)
ε . Note that gε(.) = fP+ε�u(.) − fP (.)

satisfies DP + div(gε) = DP+ε�u. This shows that gε is the rational function given
in the proof of Theorem 3 up to an additive constant. The constant is defined
by the requirement that fP+ε�u(P + εu) = 0. A simple calculation shows that the
derivation is exactly

− d

dε
fP+ε�u(Q) |ε=0 =

d

dε
fP (P + εu)− h�u(Q),

where the function h�u is defined as follows. Let Y be the cut considered in the proof
of Theorem 3 which contains P , does not contain P + εu and which is maximum
with respect to the property that for all v on its boundary, DP (v) ≥ degoutY (v). If
such a cut does not exist, simply let Y = ∅. Then h�u(Q) = 0 if Q lies outside Y
and h�u(Q) = DP (P ) − degoutY (P ) + 1 if Q is in Y . In particular, the slope of f t

Q

at P is an integer. It is clear that the number of these slopes is finite. This shows
that f t

Q is a rational function. By the description of the directional derivatives of

f t
Q at P , we also see that the coefficient of D+div(f t

Q) at P is DP (P )−
∑

�u h�u(Q),

where the sum is over all the unit vectors u tangent to Γ at P and where h�u(Q) is
either zero or equal to DP (P )−degoutY (P )+1, depending on whether Q lies outside
or inside Y , respectively.

6. Algebraic curves and the reduced divisor map

To make the analogy between the classical and the tropical case, in this section
we provide the classical analogue of the reduced-divisor map.

Let C be a non-singular projective curve over an algebraically closed field κ of
characteristic zero. Let D be a divisor on C and P be a point of C. A divisor
D′ ∼ D is called P -reduced if all the coefficients of D′ outside P are non-negative,
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and, in addition, the coefficient of P in D′ is maximum among all the divisors
linearly equivalent to D with this property.

Proposition 28. For every divisor D on C, there exists a unique P -reduced divisor
linearly equivalent to D.

Proof. The existence of divisors D′ ∼ D with non-negative coefficients outside P is
easy (e.g., is a direct consequence of Riemann-Roch). Since the coefficients ofD′ are
bounded above by the degree of D, the existence of P -reduced divisors follows. To
show the uniqueness, note that if f and g are two non-collinear rational functions
such that both D′ = D + div(f) and D′′ = D + div(g) are P -reduced, and so have
the same coefficient at P , then for two appropriately chosen non-zero scalars α and
β in κ, the non-zero rational function αf + βg has an order at P strictly larger
than that of f and g. In addition, D + div(αf + βg) has non-negative coefficients
outside P . This leads to a contradiction, and the proposition follows. �

Let D be a divisor on C of non-negative rank, and let L = L(D) be the corre-
sponding invertible sheaf on C. Let L be the vector space of the global sections
of L(D); L is the vector space of all the rational functions f with D + div(f) ≥ 0
(L = R(D) with our earlier notation). Note that dim(L) = r(D) + 1. Denote by
L∗ the dual of L.

There are two maps from C to a projective space defined by the above data that
we now explain.

The one that is easier to define, which is the one usually considered, is the map
φ : C → P(L∗): φ(P ) is the point of P(L∗) corresponding to the hyperplane of
L defined by all the rational functions f ∈ L such that the coefficient of P in
D+div(f) is at least one. Equivalently, the map φ is the map given generically by
evaluating at the points of C, i.e., generically, φ(P ) is the linear form on L defined
by sending a rational function f ∈ L to f(P ). If D is base point free, φ is well
defined globally. In any case, the map can be extended to the whole of C.

The second map is η : C → P(L), defined by reduced divisors. Suppose that D
has non-negative rank. For every point P ∈ C, let DP be the unique P -reduced
divisor linearly equivalent to D. Since r(D) ≥ 0, we have DP ≥ 0. Let fP be a
rational function in L such thatDP = D+div(fP ). Note that modulo multiplication
by a constant, fP is well defined. In other words, the line �P defined by fP is well
defined in L. Define a map η : C → P(L) by setting η(P ) = �P for any point
P ∈ C.

We will show below that η is a morphism defined by a set of sections of
L⊗r Ω⊗r(r−1)/2, where Ω is the invertible sheaf of differentials on C and r = r(D).
These sections are defined in terms of Wronskians.

6.1. Wronskians and the reduced divisor map. We first obtain a generic de-
scription of the map η. Let K = K(C) be the field of rational functions on C.
Choose a basis f0, . . . , fr of L over κ and let F = {f0, . . . , fr}. Let Ω be the in-
vertible sheaf of differentials on C. Let P be a point of C and OP be the local ring
of the structural sheaf OC at P . ΩP is the module of κ-differentials of OP and
d : OO → ΩP is the derivation.

If τ denotes a local parameter at P , a basis for ΩP is given by dτ .
The OP -module LP is free of rank one; suppose that it is generated by gP ∈ LP .
For each i ∈ {0, . . . , r}, there exists an element fi,P ∈ OP such that fi|P =

fi,P gP .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REDUCED DIVISORS AND EMBEDDINGS OF TROPICAL CURVES 4877

For each i ∈ {0, . . . , r}, inductively define f
(j)
i,P ∈ OP as follows. Let f

(0)
i,P := fi,P ,

and suppose that f
(j)
i,P ∈ OP is already defined. Then f

(j+1)
i,P := df

(j)
i,P /dτ ∈ OP (i.e.,

f
(j+1)
i,P is the function defined by df

(j)
i,P = f

(j+1)
i,P dτ ).

The Wronskian of f0, . . . , fr at P , denoted by WrF ,P , is now defined as

WrF ,P = det
(
f
(j)
i,P

)r

i,j=0
gr+1
P

(
dτ

)r(r+1)/2 ∈ Γ
(
OP ,L⊗(r+1)

P Ω
⊗r(r+1)/2
P

)
.

It is easy to show that the above (local) definition does not depend on the choice of
the local parameter τ , and glue them together to define a non-zero global section
WrF of L⊗(r+1)Ω⊗r(r+1)/2, i.e., WrF ∈ Γ

(
C,L⊗(r+1)Ω⊗r(r+1)/2

)
. The fact that

WrF is non-zero comes from the non-triviality of the determinant det
(
f
(j)
i,P

)r

i,j=0

for linearly independent fi,P ’s. This latter claim can easily be seen by looking at

the completion ÔP ∼ κ[[τ ]] of OP at the maximal ideal mP of P and the map
OP → κ[[τ ]]. The image of WrF ,P in κ[[τ ]] is non-zero; see for example [4] for a
simple proof.

Note that in the discussion above we only used the linear independence of the
sections fi. Thus, it is clear that instead of choosing a basis for L, we can take any
family G consisting of s ≤ r + 1 linearly independent elements of L and define the
Wronskian WrG with respect to that family. The Wronskian WrG will then be a
non-zero global section of L⊗sω⊗s(s−1)/2.

For i ∈ F , define Fi = F \ {i} and consider the Wronskian

WrFi
∈ Γ

(
C,L⊗rΩ⊗r(r−1)/2

)
.

Locally at a point P , and in the terminology of the previous paragraph, WrFi
is

the maximal minor of the matrix
(
f
(j)
i,P

)
i=0,...,r,j=0,...,r−1

obtained by deleting the

i th column. The sections WrFi
satisfy the following equations:

∀ 0 ≤ j ≤ r − 1
r∑

i=0

(−1)iWrFi,P f
(j)
i,P = 0 and(1)

r∑
i=0

(−1)iWrFi,P f
(r)
i,P = WrF ,P .(2)

Since WrF �= 0, by the definition of f
(j)
i,P , it follows that generically the rational

function
∑

i(−1)iWrFi,P (P )fi is exactly the one defining the reduced divisor DP ,
i.e., the line defined by

∑
i WrFi,P (P )fi is �P (the line defined by the rational

function fP with D + div(fP ) P -reduced). Here WrFi,P (P ) is the value of WrFi,P

at P .
Indeed, to see this, write fP =

∑
aifi for ai ∈ κ, and note that fP has a zero of

order at least s at P if and only if all the derivations of order at most s− 1 of fP
at P are zero, i.e.,

∑
i aif

(j)
i,P (P ) = 0. Now use WrF �= 0 and equations (1) and (2)

to obtain the claim.
We infer that, generically, the map η coincides with the map to P(L) (∼ Pr

with respect to the basis f0, . . . , fr) defined by the sections {(−1)iWrFi
}ri=0 of

L⊗rΩ⊗r(r−1)/2 i.e., η sends the point P to the point [(−1)0WrF0
(P ) : · · · :

(−1)rWrFr
(P )] of Pr). Let Wr be the extension of the map defined by the sec-

tions WrFi
to the whole curve C.
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We now show

Theorem 29. The map η defined by the reduced divisors coincides globally with
the morphism Wr defined by the sections (−1)iWrFi

of L⊗rΩ⊗r(r−1)/2, i = 0, . . . , r.

Proof. We have already seen that η generically coincides with Wr, e.g., for those
points of C for which the determinants appearing in the definition of the Wronskians
WrFi

are not all zero. For a point P and i ∈ {0, . . . , r}, let Ai,P be the determinant
in the definition of WrFi

, in the terminology of the previous lines:

Ai,P = det
(
f
(j′)
j,P

)j′=0,...,r−1

j=0,...,̂i,...,r
.

We now show that the image by Wr of a point P for which all the determinants
Ai,P are zero is exactly η(P ). This will complete the proof of the theorem.

Let P be such a point, and let v ≥ 1 be the integer such that Ai,P = τvhi

for all i, and at least for one i, hi(P ) �= 0. The image of P by Wr is the point
[h0(P ) : −h1(P ) : · · · : (−1)rhr(P )] of Pr(= P(L) in the basis F). We have to show
that

∑
(−1)ihi(P )fi,P has the maximum order of zero at P .

By considering the injective map OP → κ[[τ ]], we can suppose that all the
elements fi,P and hi are in κ[[τ ]], and evaluating at P consists in setting τ = 0.

Write fi,P =
∑

s≥0 ai,sτ
j , and consider the vectors Vs =

(
a0,s, . . . , ar,s

)
. For i =

1, . . . , r, let si be the smallest index s such that the span of the vectors V0, . . . , Vsi

has rank i. In particular, the span of Vs1 , . . . , Vsr has rank r. We now show that
h0(P ), . . . , hr(P ) are a constant multiple of the maximal minors of the r(r + 1)
matrix M with lines equal to the vectors Vs1 , . . . , Vsr ,

M :=

⎛
⎜⎝

Vs1
...

Vsr

⎞
⎟⎠ =

⎛
⎜⎝

as1,0 as1,1 · · · as1,r
...

...
...

asr,0 asr,1 · · · asr,r

⎞
⎟⎠ .

This will of course complete the proof. Indeed, if μi denotes the maximal minor
obtained by deleting the ith column, then by the definition of sr at least one of the
μi’s is non-zero. In addition, for any vector Vs

r∑
j=0

(−1)iμiai,s = 0 if and only if Vs belongs to the span of Vs1 , . . . , Vsr ;

thus,
∑

i(−1)iμifi,P has the maximum order of zero at P .
We claim that v = s1 + (s2 − 1) + · · ·+ (sr − r) and the coefficient of tv in Ai,P

is (
∏r

i=1
si!
i! ) μi (this is trivially equivalent to hi(0) = (

∏r
i=1

si!
i! ) μi). The claim is

easily obtained by developing the determinant in the definition of Ai,P . For any s,
let V i

s =
(
as,0, . . . , âs,i, . . . , as,r

)
so that

μi = det

⎛
⎜⎝

V i
s1
...

V i
sr

⎞
⎟⎠ .
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We have

Ai,P = det
(
f
(j′)
j,P

)j′=0,...,r−1

j=0,...,̂i,...,r
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j1≥0 τ

j1V i
j1

...

∑
ji≥i−1

ji!
i! τ

ji−i+1V i
j2

...

∑
jr≥r−1

jr !
r! τ

jr−r+1V i
jr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

j1≥0, j2≥1, ..., jr≥r−1

τ j1+(j2−1)+···+(jr−r+1)
r∏

i=1

ji!

i!
det

⎛
⎜⎝

V i
j1
...

V i
jr

⎞
⎟⎠ .

By the definition of s1, . . . , sr, all the determinants det

⎛
⎜⎝

V i
j1
...

V i
jr

⎞
⎟⎠ are zero for

∑r
i=1(ji − i + 1) <

∑r
i=1(si − i + 1), and the coefficient of τ

∑r
i=1(si−i+1) is ex-

actly
∏r

i=1
si!
i! μi. The proof of the theorem is now complete. �

Note that D-Weierstrass points are precisely the points in the support of the
effective divisor defined by the global section WrF of L⊗(r+1)Ω⊗r(r+1)/2, and the
multiplicity of a Weierstrass point is defined to be the coefficient of the point in this
divisor. This is a simple consequence of the definition of WrF and equations (1)
and (2) above. The total number of D-Weierstrass points, counted with multi-
plicity, is given by the degree of the invertible sheaf L⊗(r+1)Ω⊗r(r+1)/2 which is
(r + 1) deg(D) + r(r + 1)(g − 1).
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